1
|
Scott J, Morris A, Hawley J, Scorza AV, Henriksen M, Lappin M. Evaluating the significance of Toxoplasma gondii sporozoite antibodies in cats: a pilot study. Parasit Vectors 2024; 17:497. [PMID: 39623473 PMCID: PMC11610286 DOI: 10.1186/s13071-024-06553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND People can acquire Toxoplasma gondii infection by ingestion of sporulated oocysts passed in cat feces; whether this route is common in cats is unknown. The primary objectives of this study were to (a) adapt a commercially available enzyme-linked immunosorbent assay (ELISA) for the detection of T. gondii tachyzoite IgG antibodies in feline sera to detect T. gondii sporozoite IgG antibodies, (b) utilize the ELISA to confirm that exposed cats can mount an antibody response to sporozoites, (c) estimate the prevalence of sporozoite antibodies in naturally exposed cats, and (d) evaluate associations between the serologic status of naturally exposed cats and clinical signs that could be caused by toxoplasmosis. METHODS To generate positive control sera, three male cats were orally inoculated with approximately 100,000 sporulated oocysts of the ME49 strain of T. gondii. A human antisporozoite antibody ELISA was then adapted for use with cat sera. Detectable levels of antisporozoite IgG were found in two of the three experimentally inoculated cats. The sera of 100 healthy cats and 295 clinically ill cats were assessed in the prototype sporozoite ELISA and a commercially available tachyzoite ELISA. RESULTS The ELISA estimated that prevalence of antisporozoite IgG was 2% in healthy cats and 3.1% in clinically ill cats; in contrast, the overall estimated prevalence of antitachyzoite IgG was 15%. Only two of 395 cats (0.5%) had both antisporozoite and antitachyzoite IgG. CONCLUSIONS While experimentally infected and naturally exposed cats developed antisporozoite antibodies, the low prevalence did not allow for the evaluation of associations among clinical signs.
Collapse
Affiliation(s)
- Janelle Scott
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Arianne Morris
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Hawley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Andrea Valeria Scorza
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michala Henriksen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael Lappin
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Tipu JH, Sivertsen A, Afset JE, Sandven L, Brekke H, Lund HM, Elburg LS, Gaustad P, Lier T, Tverelv LR, Johansen ØH, Robertson LJ, Hanevik K. Cryptosporidium species and subtypes in Norway: predominance of C. parvum and emergence of C. mortiferum. Emerg Microbes Infect 2024; 13:2412624. [PMID: 39361548 PMCID: PMC11485689 DOI: 10.1080/22221751.2024.2412624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
PCR-based diagnostics has revealed the previously largely unknown Cryptosporidium transmission and infections in high-income countries. This study aimed to determine domestic and imported subtypes of Cryptosporidium species in Norway, evaluate their demographic distribution, and identify potential small outbreaks. Cryptosporidium-positive human faecal samples were obtained from six medical microbiology laboratories between February 2022 and January 2024, together with 22 Cryptosporidium-positive animal samples. Species and subtypes were identified by sequencing PCR products from gp60 and SSU rRNA genes. Most cryptosporidiosis cases occurred during late summer/early autumn, primarily in children and young adults. Of 550 human samples, 359 were successfully characterized molecularly (65%), revealing infection with 10 different Cryptosporidium species. C. parvum occurred in 245 (68%) human isolates with IIa and IId being major allele families, with distinct regional distribution patterns of common subtypes. A kindergarten outbreak with 5 cases was due to C. parvum IIaA14G1R1. C. mortiferum was identified in 33 (9.2%) human cases of which 24 were known to be of domestic origin, making it the second most common species in human autochthonous cases in Norway. All C. mortiferum isolates were of the same genotype; XIVaA20G2T1, including 13 cases from a suspected small outbreak in Trøndelag. C. hominis occurred in 68 typed cases (19%), but mostly in infections acquired abroad, with allele families Ib and If occurring most often. In conclusion, this study of recent Cryptosporidium spp. and subtypes in Norway, highlights the predominance of C. parvum and the emergence of C. mortiferum among autochthonous cases.
Collapse
Affiliation(s)
- Jahid Hasan Tipu
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Audun Sivertsen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Jan-Egil Afset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars Sandven
- Department of Internal Medicine, Førde Central Hospital, Førde, Norway
| | - Hanne Brekke
- Department of Medical Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | - Peter Gaustad
- Fürst Medical Laboratory, Oslo, Norway
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tore Lier
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Liv Reidun Tverelv
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | | | - Lucy J. Robertson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Kosik-Bogacka D, Łanocha-Arendarczyk N, Korzeniewski K, Mularczyk M, Kabat-Koperska J, Ziętek P, Marchelek-Myśliwiec M. Cryptosporidium spp. Infection in Adult Kidney Transplant Patients: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:6395. [PMID: 39518534 PMCID: PMC11546429 DOI: 10.3390/jcm13216395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Diarrhea frequently occurs after vascular organ transplantation, including kidney transplants. This may result from non-infectious factors, adverse effects of immunosuppressive medications, or infections caused by various pathogens, including viruses, bacteria, fungi, or parasites, for example, intestinal protozoan parasites such as Cryptosporidium spp., which are particularly dangerous for immunocompromised patients. Methods: This review is based on scientific articles sourced from validated databases such as PubMed, the National Center for Biotechnology Information (NCBI), ScienceDirect, and Google Scholar. The primary search was conducted on 12-13 July 2024, using the keywords 'Cryptosporidium' AND 'cryptosporidiosis' AND 'kidney' AND 'transplant' AND 'adult'. Inclusion criteria encompassed human studies, case reports, peer-reviewed journal publications, review articles, and research articles in English. Exclusion criteria included studies not in English, gray literature (e.g., conference proceedings and abstracts), and data related to pediatric patients (under 18 years old) and HIV patients. Results: This systematic review and meta-analysis have highlighted an often-overlooked connection between Cryptosporidium spp. infections in adult kidney transplant recipients (KTR). Furthermore, it includes an analysis of the clinical presentation, diagnosis, and treatment of Cryptosporidium spp. infection in these patients, based on available case reports. Our study demonstrates that adult kidney transplant patients are at a significantly higher risk of acquiring Cryptosporidium spp. compared to healthy participants. Conclusions:Cryptosporidium spp. infections can be asymptomatic, making it essential to screen both symptomatic and asymptomatic kidney transplant recipients. The clinical presentation of cryptosporidiosis typically involves digestive symptoms and can be complicated by biliary tract involvement. In KTR patients presenting with diarrhea, it is crucial to not only test for Cryptosporidium spp. but also to rule out bacterial and viral etiologies, including infections such as C. difficile, C. colitis, Clostridium spp., and rotavirus. The diagnosis of Cryptosporidium spp. infections primarily relies on microscopic methods, which are known for their low sensitivity. Therefore, diagnostic approaches should include both direct methods and, where possible, molecular techniques. Based on the analyzed cases, the most effective treatment results were achieved with reduction in immunosuppression if possible (strong, very low) and nitazoxanide at a dose of 500 mg twice daily for 14 days. Considering the public health implications of our findings, the current epidemiological data underscore the need for further research to develop effective prevention and intervention strategies against cryptosporidiosis. Preventive measures, regular screening programs, and the treatment of Cryptosporidium spp. infections should be integrated into the clinical care of transplant patients. It is also important that patients are informed about environmental risk factors.
Collapse
Affiliation(s)
- Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Krzysztof Korzeniewski
- Department of Epidemiology and Tropical Medicine, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Maciej Mularczyk
- Department of Gross Anatomy, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Joanna Kabat-Koperska
- Clinic of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (J.K.-K.); (M.M.-M.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Małgorzata Marchelek-Myśliwiec
- Clinic of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (J.K.-K.); (M.M.-M.)
| |
Collapse
|
5
|
Caldwell N, Peet C, Miller P, Colon BL, Taylor MG, Cocco M, Dawson A, Lukac I, Teixeira JE, Robinson L, Frame L, Seizova S, Damerow S, Tamaki F, Post J, Riley J, Mutter N, Hanna JC, Ferguson L, Hu X, Tinti M, Forte B, Norcross NR, Campbell PS, Svensen N, Caldwell FC, Jansen C, Postis V, Read KD, Huston CD, Gilbert IH, Baragaña B, Pawlowic MC. Cryptosporidium lysyl-tRNA synthetase inhibitors define the interplay between solubility and permeability required to achieve efficacy. Sci Transl Med 2024; 16:eadm8631. [PMID: 39441903 DOI: 10.1126/scitranslmed.adm8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Cryptosporidiosis is a diarrheal disease caused by infection with Cryptosporidium spp. parasites and is a leading cause of death in malnourished children worldwide. The only approved treatment, nitazoxanide, has limited efficacy in this at-risk patient population. Additional safe therapeutics are urgently required to tackle this unmet medical need. However, the development of anti-cryptosporidial drugs is hindered by a lack of understanding of the optimal compound properties required to treat this gastrointestinal infection. To address this knowledge gap, a diverse set of potent lysyl-tRNA synthetase inhibitors was profiled to identify optimal physicochemical and pharmacokinetic properties required for efficacy in a chronic mouse model of infection. The results from this comprehensive study illustrated the importance of balancing solubility and permeability to achieve efficacy in vivo. Our results establish in vitro criteria for solubility and permeability that are predictive of compound efficacy in vivo to guide the optimization of anti-cryptosporidial drugs. Two compounds from chemically distinct series (DDD489 and DDD508) were identified as demonstrating superior efficacy and prioritized for further evaluation. Both compounds achieved marked parasite reduction in immunocompromised mouse models and a disease-relevant calf model of infection. On the basis of these promising data, these compounds have been selected for progression to preclinical safety studies, expanding the portfolio of potential treatments for this neglected infectious disease.
Collapse
Affiliation(s)
- Nicola Caldwell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Caroline Peet
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter Miller
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Beatrice L Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Malcolm G Taylor
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattia Cocco
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alice Dawson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iva Lukac
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jose E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laura Frame
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fabio Tamaki
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - John Post
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Riley
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jack C Hanna
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Liam Ferguson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Xiao Hu
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil R Norcross
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter S Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nina Svensen
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Flora C Caldwell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Chimed Jansen
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vincent Postis
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattie C Pawlowic
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Altwaim SA, Alsaady IM, Gattan HS, Alruhaili MH, Khateb AM, El-Daly MM, Dubey A, Dwivedi VD, Azhar EI. Exploring the anti-protozoal mechanisms of Syzygium aromaticum phytochemicals targeting Cryptosporidium parvum lactate dehydrogenase through molecular dynamics simulations. Arch Biochem Biophys 2024; 760:110124. [PMID: 39154815 DOI: 10.1016/j.abb.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Cryptosporidium parvum (C. parvum), a protozoan parasite, is known to induce significant gastrointestinal disease in humans. Lactate dehydrogenase (LDH), a protein of C. parvum, has been identified as a potential therapeutic target for developing effective drugs against infection. This study utilized a computational drug discovery approach to identify potential drug molecules against the LDH protein of C. parvum. In the present investigation, we conducted a structure-based virtual screening of 55 phytochemicals from the Syzygium aromaticum (S. aromaticum). This process identified four phytochemicals, including Gallotannin 23, Eugeniin, Strictinin, and Ellagitannin, that demonstrated significant binding affinity and dynamic stability with LDH protein. Interestingly, these four compounds have been documented to possess antibacterial, antiviral, anti-inflammatory, and antioxidant properties. The docked complexes were simulated for 100 ns using Desmond to check the dynamic stability. Finally, the free binding energy was computed from the last 10ns MD trajectories. Gallotannin 23 and Ellagitannin exhibited considerable binding affinity and stability with the target protein among all four phytochemicals. These findings suggest that these predicted phytochemicals from S. aromaticum could be further explored as potential hit candidates for developing effective drugs against C. parvum infection. The in vitro and in vivo experimental validation is still required to confirm their efficacy and safety as LDH inhibitors.
Collapse
Affiliation(s)
- Sarah A Altwaim
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine. King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Isra M Alsaady
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Mohammed H Alruhaili
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine. King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Aiah M Khateb
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Amit Dubey
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, 605102, India; Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia.
| |
Collapse
|
7
|
Ashinze P. Addressing the cryptosporidiosis outbreak in Devon, England: Urgent measures for public health and water safety. New Microbes New Infect 2024; 60-61:101448. [PMID: 39040127 PMCID: PMC11261434 DOI: 10.1016/j.nmni.2024.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Patrick Ashinze
- Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
8
|
Hasan MM, Mattice EB, Teixeira JE, Jumani RS, Stebbins EE, Klopfer CE, Franco SE, Love MS, McNamara CW, Huston CD. Cryptosporidium life cycle small molecule probing implicates translational repression and an Apetala 2 transcription factor in macrogamont differentiation. PLoS Pathog 2024; 20:e1011906. [PMID: 38669269 PMCID: PMC11078545 DOI: 10.1371/journal.ppat.1011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The apicomplexan parasite Cryptosporidium is a leading cause of childhood diarrhea in developing countries. Current treatment options are inadequate and multiple preclinical compounds are being actively pursued as potential drugs for cryptosporidiosis. Unlike most apicomplexans, Cryptosporidium spp. sequentially replicate asexually and then sexually within a single host to complete their lifecycles. Anti-cryptosporidial compounds are generally identified or tested through in vitro phenotypic assays that only assess the asexual stages. Therefore, compounds that specifically target the sexual stages remain unexplored. In this study, we leveraged the ReFRAME drug repurposing library against a newly devised multi-readout imaging assay to identify small-molecule compounds that modulate macrogamont differentiation and maturation. RNA-seq studies confirmed selective modulation of macrogamont differentiation for 10 identified compounds (9 inhibitors and 1 accelerator). The collective transcriptomic profiles of these compounds indicates that translational repression accompanies Cryptosporidium sexual differentiation, which we validated experimentally. Additionally, cross comparison of the RNA-seq data with promoter sequence analysis for stage-specific genes converged on a key role for an Apetala 2 (AP2) transcription factor (cgd2_3490) in differentiation into macrogamonts. Finally, drug annotation for the ReFRAME hits indicates that an elevated supply of energy equivalence in the host cell is critical for macrogamont formation.
Collapse
Affiliation(s)
- Muhammad M. Hasan
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Ethan B. Mattice
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - José E. Teixeira
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Rajiv S. Jumani
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Erin E. Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Connor E. Klopfer
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Sebastian E. Franco
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Melissa S. Love
- Calibr at Scripps Research, San Diego, California, United States of America
| | - Case W. McNamara
- Calibr at Scripps Research, San Diego, California, United States of America
| | - Christopher D. Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
9
|
Zhang CX, Conrad TM, Hermann D, Gordon MA, Houpt E, Iroh Tam P, Jere KC, Nedi W, Operario DJ, Phulusa J, Quinnan GV, Sawyer LA, Barrett LK, Thole H, Toto N, Van Voorhis WC, Arnold SLM. Clofazimine pharmacokinetics in HIV-infected adults with diarrhea: Implications of diarrheal disease on absorption of orally administered therapeutics. CPT Pharmacometrics Syst Pharmacol 2024; 13:410-423. [PMID: 38164114 PMCID: PMC10941540 DOI: 10.1002/psp4.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Oral drug absorption kinetics are usually established in populations with a properly functioning gastrointestinal tract. However, many diseases and therapeutics can alter gastrointestinal physiology and cause diarrhea. The extent of diarrhea-associated impact on drug pharmacokinetics has not been quantitatively described. To address this knowledge gap, we used a population pharmacokinetic modeling approach with data collected in a phase IIa study of matched human immunodeficiency virus (HIV)-infected adults with/without cryptosporidiosis and diarrhea to examine diarrhea-associated impact on oral clofazimine pharmacokinetics. A population pharmacokinetic model was developed with 428 plasma samples from 23 HIV-infected adults with/without Cryptosporidium infection using nonlinear mixed-effects modeling. Covariates describing cryptosporidiosis-associated diarrhea severity (e.g., number of diarrhea episodes, diarrhea grade) or HIV infection (e.g., viral load, CD4+ T cell count) were evaluated. A two-compartment model with lag time and first-order absorption and elimination best fit the data. Maximum diarrhea grade over the study duration was found to be associated with a more than sixfold reduction in clofazimine bioavailability. Apparent clofazimine clearance, intercompartmental clearance, central volume of distribution, and peripheral volume of distribution were 3.71 L/h, 18.2 L/h (interindividual variability [IIV] 45.0%), 473 L (IIV 3.46%), and 3434 L, respectively. The absorption rate constant was 0.625 h-1 (IIV 149%) and absorption lag time was 1.83 h. In conclusion, the maximum diarrhea grade observed for the duration of oral clofazimine administration was associated with a significant reduction in clofazimine bioavailability. Our results highlight the importance of studying disease impacts on oral therapeutic pharmacokinetics to inform dose optimization and maximize the chance of treatment success.
Collapse
Affiliation(s)
- Cindy X. Zhang
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas M. Conrad
- EmmesRockvilleMarylandUSA
- Present address:
AstraZenecaRockvilleMDUSA
| | | | - Melita A. Gordon
- Paediatrics and Child Health Research GroupMalawi‐Liverpool Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| | - Eric Houpt
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pui‐Ying Iroh Tam
- Paediatrics and Child Health Research GroupMalawi‐Liverpool Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
- Liverpool School of Tropical MedicineLiverpoolUK
| | - Khuzwayo C. Jere
- Paediatrics and Child Health Research GroupMalawi‐Liverpool Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| | - Wilfred Nedi
- Paediatrics and Child Health Research GroupMalawi‐Liverpool Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
| | - Darwin J. Operario
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVirginiaUSA
- Present address:
World Health OrganizationSuvaCentralFiji
| | - Jacob Phulusa
- Paediatrics and Child Health Research GroupMalawi‐Liverpool Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
| | | | | | - Lynn K. Barrett
- Center for Emerging and Re‐emerging Infectious DiseasesUniversity of WashingtonSeattleWashingtonUSA
| | - Herbert Thole
- Paediatrics and Child Health Research GroupMalawi‐Liverpool Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
| | - Neema Toto
- Liverpool School of Tropical MedicineLiverpoolUK
| | - Wesley C. Van Voorhis
- Center for Emerging and Re‐emerging Infectious DiseasesUniversity of WashingtonSeattleWashingtonUSA
| | | |
Collapse
|
10
|
Pardy RD, Wallbank BA, Striepen B, Hunter CA. Immunity to Cryptosporidium: insights into principles of enteric responses to infection. Nat Rev Immunol 2024; 24:142-155. [PMID: 37697084 DOI: 10.1038/s41577-023-00932-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Ali M, Xu C, Nawaz S, Ahmed AE, Hina Q, Li K. Anti-Cryptosporidial Drug-Discovery Challenges and Existing Therapeutic Avenues: A "One-Health" Concern. Life (Basel) 2024; 14:80. [PMID: 38255695 PMCID: PMC10820218 DOI: 10.3390/life14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Cryptosporidiosis is the leading cause of life-threatening diarrheal infection, especially in infants. Oocysts contaminate the environment, and also, being a zoonotic disease, cryptosporidiosis is a threat to One Health. Nitazoxanide is the only FDA-approved drug, effective only in immunocompetent adults, and is not safe for infants. The absence of mitochondria and apicoplast, the presence of an electron-dense band (ED band), hindrances in its genetic and phenotypic manipulations, and its unique position inside the host cell are some challenges to the anti-cryptosporidial drug-discovery process. However, many compounds, including herbal products, have shown efficacy against Cryptosporidium during in vitro and in vivo trials. Still, the "drug of choice" against this protozoan parasite, especially in immunocompromised individuals and infants, has not yet been explored. The One-Health approach addresses this issue, focusing on the intersection of animal, human, and environmental health. The objective of this review is to provide knowledge about novel anti-cryptosporidial drug targets, available treatment options with associated limitations, and possible future shifts toward natural products to treat cryptosporidiosis. The current review is organized to address the treatment and prevention of cryptosporidiosis. An anti-cryptosporidial drug that is effective in immunocompromised individuals and infants is a necessity of our time.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Robi DT, Mossie T, Temteme S. Eukaryotic Infections in Dairy Calves: Impacts, Diagnosis, and Strategies for Prevention and Control. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2023; 14:195-208. [PMID: 38058381 PMCID: PMC10697087 DOI: 10.2147/vmrr.s442374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Eukaryotic infections are common among dairy calves and can have significant impacts on their health and growth rates. Fungal infections caused by Aspergillus fumigatus, Trichophyton verrucosum, and Candida albicans can cause respiratory diseases, dermatophytosis, and diarrhea, respectively. Protozoan parasites, including Cryptosporidium parvum, Giardia duodenalis, and Eimeria spp., are also common in dairy calves. C. parvum is highly contagious and can cause severe diarrhea and dehydration, while Giardia duodenalis can lead to poor growth and is transmissible to humans through contaminated food or water. Eimeria spp. can cause coccidiosis and lead to reduced growth rates, poor feed conversion, and death. The common helminthic infections in dairy calves include Ostertagia ostertagi, Cooperia spp., Fasciola hepatica, and Strongyloides papillosus. These parasitic infections significantly impact calf health, growth, and dairy industry productivity. Diagnosis of these infections can be made through fecal samples using microscopy or molecular methods. However, diagnosis of the infections can be challenging and requires a combination of clinical signs and laboratory tests such as culture and PCR. Preventing and controlling eukaryotic infections in dairy calves requires several measures. Good hygiene and sanitation practices, proper management strategies, and timely treatment of affected animals are important. It is also necessary to avoid overcrowding and consider vaccination against ringworm. Further research is needed to better understand the epidemiology and characterization of eukaryotic infections in dairy calves, which will help in the development of more effective prevention and control strategies. In general, good hygiene practices, appropriate management strategies, and timely treatment of affected animals are crucial in preventing and controlling the infections, ensuring the health and well-being of dairy calves.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| | - Tesfa Mossie
- Ethiopian Institute of Agriculture Research, Jimma Agriculture Research Center, Jimma, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| |
Collapse
|
13
|
Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol 2023; 43:211-228. [PMID: 37980574 DOI: 10.1080/08830185.2023.2281566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mrinalini Tiwari
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
14
|
Liu M, Zhang D, Wang D, Wu X, Zhang Y, Yin J, Zhu G. Cost-effective In Vivo and In Vitro Mouse Models for Evaluating Anticryptosporidial Drug Efficacy: Assessing Vorinostat, Docetaxel, and Baicalein. J Infect Dis 2023; 228:1430-1440. [PMID: 37418629 DOI: 10.1093/infdis/jiad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Cryptosporidiosis is a significant diarrheal disease in humans and animals. Immunodeficient mice are the primary small animal models, but their high costs and specialized breeding/housing requirements limit in vivo drug testing. Numerous anticryptosporidial lead compounds identified in vitro remain untested in vivo. METHODS Cryptosporidium tyzzeri, a natural mouse parasite closely related to Cryptosporidium parvum and Cryptosporidium hominis, was isolated to establish an infection model in immunocompetent mice. The model was validated using classic anticryptosporidial drugs (paromomycin and nitazoxanide) and then employed to assess the efficacy of 3 new leads (vorinostat, docetaxel, and baicalein). An in vitro culture of C. tyzzeri was also developed to complement the animal model. RESULTS Chronic C. tyzzeri infection was established in chemically immunosuppressed wild-type mice. Paromomycin (1000 mg/kg/d) and nitazoxanide (100 mg/kg/d) demonstrated efficacy against C. tyzzeri. Vorinostat (30 mg/kg/d), docetaxel (25 mg/kg/d), and baicalein (50 mg/kg/d) were highly effective against C. tyzzeri infection. In vitro, nitazoxanide, vorinostat, docetaxel, and baicalein exhibited low to submicromolar efficacy against C. tyzzeri. CONCLUSIONS Novel in vivo and in vitro models have been developed for cost-effective anticryptosporidial drug testing. Vorinostat, docetaxel, and baicalein show potential for repurposing and/or optimization for developing new anticryptosporidial drugs.
Collapse
Affiliation(s)
- Mingxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Di Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaodong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Prabakaran M, Weible LJ, Champlain JD, Jiang RY, Biondi K, Weil AA, Van Voorhis WC, Ojo KK. The Gut-Wrenching Effects of Cryptosporidiosis and Giardiasis in Children. Microorganisms 2023; 11:2323. [PMID: 37764167 PMCID: PMC10538111 DOI: 10.3390/microorganisms11092323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cryptosporidium species and Giardia duodenalis are infectious intestinal protozoan pathogens that cause alarming rates of morbidity and mortality worldwide. Children are more likely to have clinical symptoms due to their less developed immune systems and factors such as undernutrition, especially in low- and middle-income countries. The severity of the symptoms and clinical manifestations in children may vary from asymptomatic to life-threatening depending on the Cryptosporidium species/G. duodenalis strains and the resulting complex stepwise interactions between the parasite, the host nutritional and immunologic status, and the gut microbiome profile. Structural damages inflicted by both parasites to epithelial cells in the large and small intestines could severely impair children's gut health, including the ability to absorb nutrients, resulting in stunted growth, diminished neurocognitive development, and other long-term effects. Clinically approved cryptosporidiosis and giardiasis drugs have broad antimicrobial effects that have incomprehensible impacts on growing children's gut health.
Collapse
Affiliation(s)
- Mayuri Prabakaran
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| | - Lyssa J. Weible
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| | - Joshua D. Champlain
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| | - Ryan Ye Jiang
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| | - Katalina Biondi
- Human Center for Artificial Intelligence, Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Ana A. Weil
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| | - Wesley C. Van Voorhis
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| | - Kayode K. Ojo
- Center for Emerging and Reemerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (M.P.); (L.J.W.); (J.D.C.); (R.Y.J.); (A.A.W.); (W.C.V.V.)
| |
Collapse
|
16
|
Mafokwane T, Djikeng A, Nesengani LT, Dewar J, Mapholi O. Gastrointestinal Infection in South African Children under the Age of 5 years: A Mini Review. Gastroenterol Res Pract 2023; 2023:1906782. [PMID: 37663241 PMCID: PMC10469397 DOI: 10.1155/2023/1906782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Objective To estimate gastroenteritis disease and its etiological agents in children under the age of 5 years living in South Africa. Methods A mini literature review of pertinent articles published in ScienceDirect, PubMed, GoogleScholar, and Scopus was conducted using search terms: "Gastroenteritis in children," "Gastroenteritis in the world," Gastroenteritis in South Africa," "Prevalence of gastroenteritis," "Epidemiological surveillance of gastroenteritis in the world," and "Causes of gastroenteritis". Results A total of 174 published articles were included in this mini review. In the last 20 years, the mortality rate resulting from diarrhea in children under the age of 5 years has declined and this is influenced by improved hygiene practices, awareness programs, an improved water and sanitation supply, and the availability of vaccines. More modern genomic amplification techniques were used to re-analyze stool specimens collected from children in eight low-resource settings in Asia, South America, and Africa reported improved sensitivity of pathogen detection to about 65%, that viruses were the main etiological agents in patients with diarrhea aged from 0 to 11 months but that Shigella, followed by sapovirus and enterotoxigenic Escherichia coli had a high incidence in children aged 12-24 months. In addition, co-infections were noted in nearly 10% of diarrhea cases, with rotavirus and Shigella being the main co-infecting agents together with adenovirus, enteropathogenic E. coli, Clostridium jejuni, or Clostridium coli. Conclusions This mini review outlines the epidemiology and trends relating to parasitic, viral, and bacterial agents responsible for gastroenteritis in children in South Africa. An increase in sequence-independent diagnostic approaches will improve the identification of pathogens to resolve undiagnosed cases of gastroenteritis. Emerging state and national surveillance systems should focus on improving the identification of gastrointestinal pathogens in children and the development of further vaccines against gastrointestinal pathogens.
Collapse
Affiliation(s)
- Tshepo Mafokwane
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Appolinaire Djikeng
- Department of Agriculture, College of Agriculture and Environmental Sciences, University of South Africa Science Campus, Florida, Johannesburg, South Africa
- Centre for Tropical Livestock Genetics and Health (CTLGH), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lucky T. Nesengani
- Department of Agriculture, College of Agriculture and Environmental Sciences, University of South Africa Science Campus, Florida, Johannesburg, South Africa
| | - John Dewar
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Olivia Mapholi
- Department of Agriculture, College of Agriculture and Environmental Sciences, University of South Africa Science Campus, Florida, Johannesburg, South Africa
| |
Collapse
|
17
|
Siwak AM, Baker PG, Dube A. Biosensors as early warning detection systems for waterborne Cryptosporidium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:615-630. [PMID: 37578878 PMCID: wst_2023_229 DOI: 10.2166/wst.2023.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness. The hardy nature of the organism leads to its persistence in various water sources, with certain water treatment procedures proving inefficient for its complete removal. While diagnostic methods for Cryptosporidium are well-defined in the clinical sphere, detection of Cryptosporidium in water sources remains suboptimal due to low dispersion of organisms in large sample volumes, lengthy processing times and high costs of equipment and reagents. A need for improvement exists to identify the organism as an emerging threat in domestic water systems, and the technological advantages that biosensors offer over current analytical methods may provide a preventative approach to outbreaks of Cryptosporidium. Biosensors are innovative, versatile and adaptable analytical tools that could provide highly sensitive, rapid, on-site analysis needed for Cryptosporidium detection in low-resource settings.
Collapse
Affiliation(s)
- Andrea M Siwak
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa E-mail:
| | - Priscilla G Baker
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| |
Collapse
|
18
|
Hu Y, Wu W. Application of Membrane Filtration to Cold Sterilization of Drinks and Establishment of Aseptic Workshop. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:89-106. [PMID: 36933166 PMCID: PMC10024305 DOI: 10.1007/s12560-023-09551-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Aseptic packaging of high quality beverage is necessary and its cold-pasteurization or sterilization is vital. Studies on application of ultrafiltration or microfiltration membrane to cold- pasteurization or sterilization for the aseptic packaging of beverages have been reviewed. Designing and manufacturing ultrafiltration or microfiltration membrane systems for cold-pasteurization or sterilization of beverage are based on the understanding of size of microorganisms and theoretical achievement of filtration. It is concluded that adaptability of membrane filtration, especially its combination with other safe cold method, to cold- pasteurization and sterilization for the aseptic packaging of beverages should be assured without a shadow of doubt in future.
Collapse
Affiliation(s)
- Yunhao Hu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China
| | - Wenbiao Wu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
- Research Center of Grains, Oils and Foods Engineering Design, Industrial Research Institute, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
| |
Collapse
|
19
|
Hassanein F, Masoud IM, Awwad ZM, Abdel-Salam H, Salem M, Shehata AI. Microbial bowel infections-induced biochemical and biological abnormalities and their effects on young Egyptian swimmers. Sci Rep 2023; 13:4597. [PMID: 36944683 PMCID: PMC10030829 DOI: 10.1038/s41598-023-31708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Swimmers' personal hygiene affects the spread of microbes in pools. The present study aimed to determine the incidence of microbial infections among young Egyptian swimmers and its impact on swimmers' scores. From January 2020 to June 2021, 528 public club swimmers were examined cross-sectionally. Swimmers were divided into two groups according to their star tests and their scores in the competition (group 1 with a high score and group 2 with a low score). Stool samples, biochemical and biological parameters were assessed. Microbial infections were 54% for intestinal parasitosis and 2.8% for Helicobacter pylori. The rate of intestinal parasitosis was higher among Gp2 as compared to Gp1. The results also revealed higher prevalence of Cryptosporidium spp., Giardia lamblia, Entameba histolytica, and Cyclospora among Gp2 than Gp1. Swimming frequency, and duration influenced the infectious status that induced anemia, abnormal blood pressure, and heart rate. Infected swimmers with cryptosporidiosis had higher alanine transaminase levels, white blood cells, and differential cells but lower aspartate transaminase levels. Giardiasis showed higher reduction in the biochemical markers including ferritin, lactoferrin, iron, and transferrin among Gp 2, compared to Gp 1 and thus affected the swimmers' scores. Thus, raising swimmers' hygiene awareness and targeting health education is obliged.
Collapse
Affiliation(s)
- Faika Hassanein
- Department of Microbiology and Immunology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Inas M Masoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Zeinab M Awwad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hussin Abdel-Salam
- Department of Water Sports Training, Faculty of Fitness Education, Alexandria University, Alexandria, Egypt
| | - Mohamed Salem
- Department of Water Sports Training, Faculty of Fitness Education, Alexandria University, Alexandria, Egypt
| | - Amany I Shehata
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Nemati S, Shalileh F, Mirjalali H, Omidfar K. Toward waterborne protozoa detection using sensing technologies. Front Microbiol 2023; 14:1118164. [PMID: 36910193 PMCID: PMC9999019 DOI: 10.3389/fmicb.2023.1118164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Deciphering Diets and Lifestyles of Prehistoric Humans through Paleoparasitology: A Review. Genes (Basel) 2023; 14:genes14020303. [PMID: 36833230 PMCID: PMC9957072 DOI: 10.3390/genes14020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Parasites have affected and coevolved with humans and animals throughout history. Evidence of ancient parasitic infections, particularly, reside in archeological remains originating from different sources dating to various periods of times. The study of ancient parasites preserved in archaeological remains is known as paleoparasitology, and it initially intended to interpret migration, evolution, and dispersion patterns of ancient parasites, along with their hosts. Recently, paleoparasitology has been used to better understand dietary habits and lifestyles of ancient human societies. Paleoparasitology is increasingly being recognized as an interdisciplinary field within paleopathology that integrates areas such as palynology, archaeobotany, and zooarchaeology. Paleoparasitology also incorporates techniques such as microscopy, immunoassays, PCR, targeted sequencing, and more recently, high-throughput sequencing or shotgun metagenomics to understand ancient parasitic infections and thus interpret migration and evolution patterns, as well as dietary habits and lifestyles. The present review covers the original theories developed in the field of paleoparasitology, as well as the biology of some parasites identified in pre-Columbian cultures. Conclusions, as well as assumptions made during the discovery of the parasites in ancient samples, and how their identification may aid in better understanding part of human history, ancient diet, and lifestyles are discussed.
Collapse
|
22
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
23
|
Cryptosporidiosis: From Prevention to Treatment, a Narrative Review. Microorganisms 2022; 10:microorganisms10122456. [PMID: 36557709 PMCID: PMC9782356 DOI: 10.3390/microorganisms10122456] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cryptosporidiosis is a water- and food-borne zoonotic disease caused by the protozoon parasite of the genus Cryptosporidium. C. hominis and C. parvum are the main two species causing infections in humans and animals. The disease can be transmitted by the fecal-oral route as well as the respiratory route. The infective stage (sporulated oocysts) is resistant to different disinfectants including chlorine. Currently, no effective therapeutic drugs or vaccines are available to treat and control Cryptosporidium infection. To prevent cryptosporidiosis in humans and animals, we need to understand better how the disease is spread and transmitted, and how to interrupt its transmission cycle. This review focuses on understanding cryptosporidiosis, including its infective stage, pathogenesis, life cycle, genomics, epidemiology, previous outbreaks, source of the infection, transmission dynamics, host spectrum, risk factors and high-risk groups, the disease in animals and humans, diagnosis, treatment and control, and the prospect of an effective anti-Cryptosporidium vaccine. It also focuses on the role of the One Health approach in managing cryptosporidiosis at the animal-human-environmental interface. The summarized data in this review will help to tackle future Cryptosporidium infections in humans and animals and reduce the disease occurrence.
Collapse
|
24
|
Identification of potent anti-Cryptosporidium new drug leads by screening traditional Chinese medicines. PLoS Negl Trop Dis 2022; 16:e0010947. [PMID: 36441814 PMCID: PMC9731497 DOI: 10.1371/journal.pntd.0010947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/08/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cryptosporidium spp. are gastrointestinal opportunistic protozoan parasites that infect humans, domestic animals, and wild animals all over the world. Cryptosporidiosis is the second leading infectious diarrheal disease in infants less than 5 years old. Cryptosporidiosis is a common zoonotic disease associated with diarrhea in infants and immunocompromised individuals. Consequently, cryptosporidiosis is considered a serious economic, veterinary, and medical concern. The treatment options for cryptosporidiosis are limited. To address this problem, we screened a natural product library containing 87 compounds of Traditional Chinese Medicines for anti-Cryptosporidium compounds that could serve as novel drug leads and therapeutic targets against C. parvum. To examine the anti-Cryptosporidium activity and half-maximal inhibitory doses (EC50) of these compounds, we performed in vitro assays (Cryptosporidium growth inhibition assay and host cell viability assay) and in vivo experiments in mice. In these assays, the C. parvum HNJ-1 strain was used. Four of the 87 compounds (alisol-A, alisol-B, atropine sulfate, and bufotalin) showed strong anti-Cryptosporidium activity in vitro (EC50 values = 122.9±6.7, 79.58±13.8, 253.5±30.3, and 63.43±18.7 nM, respectively), and minimum host cell cytotoxicity (cell survival > 95%). Furthermore, atropine sulfate (200 mg/kg) and bufotalin (0.1 mg/kg) also showed in vivo inhibitory effects. Our findings demonstrate that atropine sulfate and bufotalin are effective against C. parvum infection both in vitro and in vivo. These compounds may, therefore, represent promising novel anti-Cryptosporidium drug leads for future medications against cryptosporidiosis.
Collapse
|
25
|
An allergist's approach to food poisoning. Ann Allergy Asthma Immunol 2022; 130:444-451. [PMID: 36334721 DOI: 10.1016/j.anai.2022.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Foodborne illnesses represent a significant global health concern. These preventable diseases lead to substantial mortality and morbidity worldwide. Substantial overlap with food allergy exists with similar clinical presentations and symptom onset. Knowledge of the typically implicated microorganisms and toxins can help properly identify these diseases. A thorough history is essential to differentiate between these 2 disorders. The types of food implicated may be similar including milk, egg, fish, and shellfish. The timing of symptom onset may overlap and lead to misdiagnosis of disorders such as food protein-induced enterocolitis syndrome. Classically, histamine-related food poisoning is also typically confused with true food allergy and may be seen as related to fish and cheese. Knowledge of epidemiology, patterns, and etiology of allergic conditions and foodborne illness may help the allergist differentiate among these common diseases.
Collapse
|
26
|
Evaluation of Next-Generation Sequencing Applied to Cryptosporidium parvum and Cryptosporidium hominis Epidemiological Study. Pathogens 2022; 11:pathogens11080938. [PMID: 36015058 PMCID: PMC9414878 DOI: 10.3390/pathogens11080938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background. Nowadays, most of the C. parvum and C. hominis epidemiological studies are based on gp60 gene subtyping using the Sanger sequencing (SgS) method. Unfortunately, SgS presents the limitation of being unable to detect mixed infections. Next-Generation Sequencing (NGS) seems to be an interesting solution to overcome SgS limits. Thus, the aim of our study was to (i) evaluate the reliability of NGS as a molecular typing tool for cryptosporidiosis, (ii) investigate the genetic diversity of the parasite and the frequency of mixed infections, (iii) assess NGS usefulness in Cryptosporidium sp. outbreak investigations, and (iv) assess an interpretation threshold of sequencing data. Methods. 108 DNA extracts from positive samples were sequenced by NGS. Among them, two samples were used to validate the reliability of the subtyping obtained by NGS and its capacity to detect DNA mixtures. In parallel, 106 samples from French outbreaks were used to expose NGS to epidemic samples. Results. NGS proved suitable for Cryptosporidium sp. subtyping at the gp60 gene locus, bringing more genetic information compared to SgS, especially by working on many samples simultaneously and detecting more diversity. Conclusions. This study confirms the usefulness of NGS applied to C. hominis and C. parvum epidemiological studies, especially aimed at detecting minority variants.
Collapse
|
27
|
Fradette MS, Charette SJ. Working toward improved monitoring of Cryptosporidium and Giardia (oo)cysts in water samples: testing alternatives to elution and immunomagnetic separation from USEPA Method 1623.1. BMC Res Notes 2022; 15:254. [PMID: 35841071 PMCID: PMC9284717 DOI: 10.1186/s13104-022-06118-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study was designed to find a method to enhance the recovery of Cryptosporidium spp. and Giardia spp. parasites from water samples for research purposes compared to the results that can be achieved with USEPA Method 1623.1. Four different approaches were used to test water samples that were artificially spiked with parasites. The approaches were: (i) Method 1623.1 itself, (ii) elution of Method 1623.1 combined with microfiltration, (iii) an elution technique based on grinding the filter membrane in a blender before the eluent was concentrated by immunomagnetic separation, and (iv) the blender elution followed by microfiltration. Fluorescence microscopy was used to determine which approach led to the highest parasite recovery rates. RESULTS Method 1623.1 gave the best results for Giardia, while all four approaches were statistically equivalent for Cryptosporidium. We evaluated the costs and laboratory time requirements for each protocol to give readers a complete comparison of the methods tested. Elution of Method 1623.1 combined with microfiltration resulted in lower costs and less laboratory work time without compromising the recovery of the parasites.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030, avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada. .,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des sciences et de génie, Laval University, 1045, avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada. .,Centre de Recherche en Aménagement et Développement du Territoire (CRAD), 2325, allée Des Bibliothèques, Laval University, Québec City, Québec, G1V 0A6, Canada.
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030, avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des sciences et de génie, Laval University, 1045, avenue de la Médecine, Québec City, Québec, G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725, chemin Sainte-Foy, Québec City, Québec, G1V 4G5, Canada
| |
Collapse
|
28
|
Nipa NJ, Aktar N, Hira HM, Akter F, Jahan D, Islam S, Etando A, Abdullah A, Chowdhury K, Ahmad R, Haq A, Haque M. Intestinal Parasitic Infections Among Pediatric Patients in a Metropolitan City of Bangladesh With Emphasis on Cryptosporidiosis. Cureus 2022; 14:e26927. [PMID: 35865179 PMCID: PMC9293268 DOI: 10.7759/cureus.26927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Gastrointestinal parasitic infections are one of the global health concerns in developing countries like Bangladesh. Among them, Cryptosporidium spp. plays an essential role in causing diarrhea, malnutrition, and poor cognitive function, especially in children. This study was conducted to identify the frequency of Cryptosporidium cases and other parasitic agents. Methods A cross-sectional observational study was conducted among 219 hospitalized children with diarrhea. The conventional microscopic technique was applied for parasitic detection. Particular staining (modified Ziehl-Neelsen) procedure was performed to identify oocysts of Cryptosporidium spp. A polymerase chain reaction (PCR) was performed to determine the SSU rRNA and gp60 gene of Cryptosporidium. Results Cysts of Giardia duodenalis (2.3%), ova of Ascaris lumbricoides (1.4%,), Trichuris trichiura (0.5%), and both A. lumbricoides and T. trichiura (0.9%) were identified in samples through wet mount preparation. The distribution of Cryptosporidium spp. as detected by the staining method and nested PCR was 1.4% and 4.1%, respectively. Conclusion Factors independently associated with Cryptosporidium infection are unsafe water, lack of regular hand washing, and insufficiency of exclusive breastfeeding. This study reports, presumably for the first time, the detection of Cryptosporidium oocysts in Chattogram metropolitan city of Bangladesh.
Collapse
Affiliation(s)
| | - Nasima Aktar
- Microbiology, Chittagong Medical College, Chattogram, BGD
| | - Hasina M Hira
- Community Medicine, Chittagong Medical College, Chattogram, BGD
| | - Farhana Akter
- Endocrinology and Diabetes, Chittagong Medical College, Chattogram, BGD
| | | | | | - Ayukafangha Etando
- Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, Mbabane, SWZ
| | - Adnan Abdullah
- Occupational Medicine, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, MYS
| | - Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Savar, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Ahsanul Haq
- Statistics, Gonoshasthaya - RNA Biotech Limited, Savar, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, MYS
| |
Collapse
|
29
|
Tsakona A, Syrnioti A, Goulis I, Hytiroglou P. Severe gastrointestinal cryptosporidiosis three years after multi-visceral transplantation. Hippokratia 2022; 26:121-123. [PMID: 37324043 PMCID: PMC10266323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cryptosporidia are known to cause opportunistic gastrointestinal tract infections with variable severity. Such infections can be life-threatening in transplant recipients. We report the evolution of cryptosporidiosis in a multi-visceral transplant recipient with repeated endoscopic biopsies until specific therapy was instituted. CASE DESCRIPTION A 40-year-old woman with a history of multi-visceral (stomach, duodenum, small bowel, liver, and pancreas) transplantation presented with severe acute diarrhea three years after transplantation. Endoscopic biopsies of the stomach, duodenum, and lower small bowel were performed and submitted for histologic examination to assess the possibility of rejection. Microscopic examination of the lower small bowel biopsy specimens revealed mild to moderate inflammation and the presence of microorganisms with features of Cryptosporidia in the intestinal crypts. No evidence of rejection was found. While waiting for the availability of nitazoxanide, the patient was initiated on metronidazole, but her diarrhea worsened. Eleven days later, new biopsies were obtained, revealing abundant Cryptosporidia in the lower small bowel and duodenal specimens and few Cryptosporidia in the gastric biopsy specimen. Nitazoxanide was soon administered, leading to clinical improvement. Six weeks later, new biopsies showed complete resolution of inflammation and the absence of microorganisms. CONCLUSION Histological examination of biopsy specimens is crucial for the diagnosis of cryptosporidiosis, which can threaten the life of immunocompromised individuals. The importance of specific antiprotozoal treatment must be emphasized. HIPPOKRATIA 2022, 26 (3):121-123.
Collapse
Affiliation(s)
- A Tsakona
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - A Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - I Goulis
- Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - P Hytiroglou
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
30
|
Farid A, Yousry M, Safwat G. Garlic (Allium sativum Linnaeus) improved inflammation and reduced cryptosporidiosis burden in immunocompromised mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115174. [PMID: 35259443 DOI: 10.1016/j.jep.2022.115174] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For thousands of years, garlic (Allium sativum Linnaeus) has been consumed in food and health by numerous civilizations. Cryptosporidium (C.) parvum is an apicomplexan parasite that causes a gastrointestinal disease, with the most common symptoms being watery diarrhea. Although several substances have been tried for its anti-cryptosporidial action, there is no effective treatment for Cryptosporidium disease, especially in immunocompromised individuals. The present study aimed firstly to characterize the bio-active compounds in Allium sativum L. and secondly to evaluate its efficacy as a therapy for cryptosporidiosis especially in immunocompromised mice. MATERIALS AND METHODS This was accomplished by evaluating the parasitological and histopathological parameters in the experimentally infected immunocompetent and immunocompromised mice. Also, the cytokine profile during the experimental time was recorded through the measuring of T helper (h)1, Th2 and Th17 cells cytokines. Immunosuppressed mice were given 0.25 μg/g per day of dexamethasone orally, before infection with Cryptosporidium parvum oocysts, for fourteen consecutive days. Starting 10 days post infection (PI), nitazoxanide (100 mg/kg per day) or Allium sativum (50 mg/kg per day) was given orally for fourteen consecutive days. RESULTS Our results showed that oocyst shedding, on the 32nd day PI, in immunocompromised infected group treated with Allium sativum (354.11, 99.35% PR) showed a significant decrease when compared to its corresponding group treated with nitazoxanide (4369.14, 92.05% PR). On the 32nd day PI, all cytokines levels have been decreased to levels that were similar to those of their uninfected corresponding control groups; also, the histopathological changes and the loss in animals' body weight had been improved. Treatment with nitazoxanide did not result in infection clearance or a reduction in the increased cytokines' levels. CONCLUSION Allium sativum L. displayed high efficacy as a potential therapeutic agent against Cryptosporidium, which supports its traditional usage in parasite diseases.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Dep, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mona Yousry
- Zoology Dep, Faculty of Science, Cairo University, Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
31
|
Nguyen-Ho-Bao T, Ambe LA, Berberich M, Hermosilla C, Taubert A, Daugschies A, Kamena F. Octaarginine Improves the Efficacy of Nitazoxanide against Cryptosporidium parvum. Pathogens 2022; 11:pathogens11060653. [PMID: 35745507 PMCID: PMC9227457 DOI: 10.3390/pathogens11060653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptosporidiosis is an intestinal disease that affects a variety of hosts including animals and humans. Since no vaccines exist against the disease till date, drug treatment is the mainstay of disease control. Nitazoxanide (NTZ) is the only FDA-approved drug for the treatment of human cryptosporidiosis. However, its efficacy in immunocompromised people such as those with AIDS, in malnourished children, or those with concomitant cryptosporidiosis is limited. In the absence of effective drugs against cryptosporidiosis, improving the efficacy of existing drugs may offer an attractive alternative. In the present work, we have assessed the potential of the cell-penetrating peptide (CPP) octaarginine (R8) to increase the uptake of NTZ. Octaarginine (R8) was synthetically attached to NTZ in an enzymatically releasable manner and used to inhibit growth of Cryptosporidium parvum in an in vitro culture system using human ileocecal adenocarcinoma (HCT-8) cell line. We observed a significant concentration-dependent increase in drug efficacy. We conclude that coupling of octaarginine to NTZ is beneficial for drug activity and it represents an attractive strategy to widen the repertoire of anti-cryptosporidial therapeutics. Further investigations such as in vivo studies with the conjugate drug will help to further characterize this strategy for the treatment of cryptosporidiosis.
Collapse
Affiliation(s)
- Tran Nguyen-Ho-Bao
- Centre for Infectious Medicine, Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (T.N.-H.-B.); (M.B.); (A.D.)
- Department of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Lum A. Ambe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon;
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé P.O Box 13033, Cameroon
| | - Maxi Berberich
- Centre for Infectious Medicine, Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (T.N.-H.-B.); (M.B.); (A.D.)
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (A.T.)
| | - Anja Taubert
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (A.T.)
| | - Arwid Daugschies
- Centre for Infectious Medicine, Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (T.N.-H.-B.); (M.B.); (A.D.)
| | - Faustin Kamena
- Centre for Infectious Medicine, Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (T.N.-H.-B.); (M.B.); (A.D.)
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon;
- Correspondence: ; Tel.: +237-690533718
| |
Collapse
|
32
|
Protein Kinase C-α Is a Gatekeeper of Cryptosporidium Sporozoite Adherence and Invasion. Infect Immun 2022; 90:e0067921. [PMID: 35099276 PMCID: PMC8929341 DOI: 10.1128/iai.00679-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cryptosporidium infection is a leading cause of diarrhea-associated morbidity and mortality in young children globally. Single nucleotide polymorphisms (SNPs) in the human protein kinase C-α (PRKCA) gene region have been associated with susceptibility to cryptosporidiosis. Here, we examined the role of protein kinase C-α (PKCα) activity in human HCT-8 intestinal epithelial cells during infection with Cryptosporidium parvum sporozoites. To delineate the role of PKCα in infection, we developed a fluorescence-based imaging assay to differentiate adherent from intracellular parasites. We tested pharmacological agonists and antagonists of PKCα and measured the effect on C. parvum sporozoite adherence to and invasion of HCT-8 cells. We demonstrate that both PKCα agonists and antagonists significantly alter parasite adherence and invasion in vitro. We found that HCT-8 cell PKCα is activated by C. parvum infection. Our findings suggest intestinal epithelial cell PKCα as a potential host-directed therapeutic target for cryptosporidiosis and implicate PKCα activity as a mediator of parasite adherence and invasion.
Collapse
|
33
|
Hoque S, Mavrides DE, Pinto P, Costas S, Begum N, Azevedo-Ribeiro C, Liapi M, Kváč M, Malas S, Gentekaki E, Tsaousis AD. High Occurrence of Zoonotic Subtypes of Cryptosporidiumparvum in Cypriot Dairy Farms. Microorganisms 2022; 10:microorganisms10030531. [PMID: 35336110 PMCID: PMC8951114 DOI: 10.3390/microorganisms10030531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cryptosporidium parvum is one of the major causes of neonatal calf diarrhoea resulting in reduced farm productivity and compromised animal welfare worldwide. Livestock act as a major reservoir of this parasite, which can be transmitted to humans directly and/or indirectly, posing a public health risk. Research reports on the prevalence of Cryptosporidium in ruminants from east Mediterranean countries, including Cyprus, are limited. This study is the first to explore the occurrence of Cryptosporidium spp. in cattle up to 24 months old on the island of Cyprus. A total of 242 faecal samples were collected from 10 dairy cattle farms in Cyprus, all of which were screened for Cryptosporidium spp. using nested-PCR amplification targeting the small subunit of the ribosomal RNA (18S rRNA) gene. The 60 kDa glycoprotein (gp60) gene was also sequenced for the samples identified as Cryptosporidium parvum-positive to determine the subtypes present. The occurrence of Cryptosporidium was 43.8% (106/242) with at least one positive isolate in each farm sampled. Cryptosporidium bovis, Cryptosporidium ryanae and C. parvum were the only species identified, while the prevalence per farm ranged from 20–64%. Amongst these, the latter was the predominant species, representing 51.8% of all positive samples, followed by C. bovis (21.7%) and C. ryanae (31.1%). Five C. parvum subtypes were identified, four of which are zoonotic—IIaA14G1R1, IIaA15G1R1, IIaA15G2R1 and IIaA18G2R1. IIaA14G1R1 was the most abundant, representing 48.2% of all C. parvum positive samples, and was also the most widespread. This is the first report of zoonotic subtypes of C. parvum circulating in Cyprus. These results highlight the need for further research into the parasite focusing on its diversity, prevalence, host range and transmission dynamics on the island.
Collapse
Affiliation(s)
- Sumaiya Hoque
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (S.H.); (P.P.); (S.C.); (N.B.); (C.A.-R.)
| | - Daphne E. Mavrides
- Department of Basic Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus; (D.E.M.); (S.M.)
| | - Pedro Pinto
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (S.H.); (P.P.); (S.C.); (N.B.); (C.A.-R.)
| | - Silvia Costas
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (S.H.); (P.P.); (S.C.); (N.B.); (C.A.-R.)
| | - Nisa Begum
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (S.H.); (P.P.); (S.C.); (N.B.); (C.A.-R.)
| | - Claudia Azevedo-Ribeiro
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (S.H.); (P.P.); (S.C.); (N.B.); (C.A.-R.)
| | - Maria Liapi
- Veterinary Services of Cyprus, Nicosia 1417, Cyprus;
| | - Martin Kváč
- Biology Centre CAS, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Stavros Malas
- Department of Basic Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus; (D.E.M.); (S.M.)
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Anastasios D. Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (S.H.); (P.P.); (S.C.); (N.B.); (C.A.-R.)
- Department of Basic Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus; (D.E.M.); (S.M.)
- Correspondence: or
| |
Collapse
|
34
|
Arslan AH, Ciloglu FU, Yilmaz U, Simsek E, Aydin O. Discrimination of waterborne pathogens, Cryptosporidium parvum oocysts and bacteria using surface-enhanced Raman spectroscopy coupled with principal component analysis and hierarchical clustering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120475. [PMID: 34653850 DOI: 10.1016/j.saa.2021.120475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/24/2023]
Abstract
Waterborne pathogens (parasites, bacteria) are serious threats to human health. Cryptosporidium parvum is one of the protozoan parasites that can contaminate drinking water and lead to diarrhea in animals and humans. Rapid and reliable detection of these kinds of waterborne pathogens is highly essential. Yet, current detection techniques are limited for waterborne pathogens and time-consuming and have some major drawbacks. Therefore, rapid screening methods would play an important role in controlling the outbreaks of these pathogens. Here, we used label-free surface-enhanced Raman Spectroscopy (SERS) combined with multivariate analysis for the detection of C. parvum oocysts along with bacterial contaminants including, Escherichia coli, and Staphylococcus aureus. Silver nanoparticles (AgNPs) are used as SERS substrate and samples were prepared with simply mixed of concentrated AgNPs with microorganisms. Each species presented distinct SERS spectra. Principal component analysis (PCA) and hierarchical clustering were performed to discriminate C. parvum oocysts, E. coli, and S. aureus. PCA was used to visualize the dataset and extract significant spectral features. According to score plots in 3 dimensional PCA space, species formed distinct group. Furthermore, each species formed different clusters in hierarchical clustering. Our study indicates that SERS combined with multivariate analysis techniques can be utilized for the detection of C. parvum oocysts quickly.
Collapse
Affiliation(s)
- Afra Hacer Arslan
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | | | - Ummugulsum Yilmaz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Emrah Simsek
- Preclinical Sciences, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; ERKAM-Clinical Engineering Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
35
|
You H, Gordon CA, MacGregor SR, Cai P, McManus DP. Potential of the CRISPR-Cas system for improved parasite diagnosis: CRISPR-Cas mediated diagnosis in parasitic infections: CRISPR-Cas mediated diagnosis in parasitic infections. Bioessays 2022; 44:e2100286. [PMID: 35142378 DOI: 10.1002/bies.202100286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas technology accelerates development of fast, accurate, and portable diagnostic tools, typified by recent applications in COVID-19 diagnosis. Parasitic helminths cause devastating diseases afflicting 1.5 billion people globally, representing a significant public health and economic burden, especially in developing countries. Currently available diagnostic tests for worm infection are neither sufficiently sensitive nor field-friendly for use in low-endemic or resource-poor settings, leading to underestimation of true prevalence rates. Mass drug administration programs are unsustainable long-term, and diagnostic tools - required to be rapid, specific, sensitive, cost-effective, and user-friendly without specialized equipment and expertise - are urgently needed for rapid mapping of helminthic diseases and monitoring control programs. We describe the key features of the CRISPR-Cas12/13 system and emphasise its potential for the development of effective tools for the diagnosis of parasitic and other neglected tropical diseases (NTDs), a key recommendation of the NTDs 2021-2030 roadmap released by the World Health Organization.
Collapse
Affiliation(s)
- Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Catherine A Gordon
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Skye R MacGregor
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Pengfei Cai
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| |
Collapse
|
36
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Meshkat M, Shemshadi B, Amini K. The profile of inflammatory factors in dairy calves with Cryptosporidium infection. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:597-601. [PMID: 36686872 PMCID: PMC9840795 DOI: 10.30466/vrf.2021.523112.3128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023]
Abstract
The present study was conducted to investigate the detection and identification of Cryptosporidium species via molecular techniques and evaluate the serum concentrations of inflammatory factors in Cryptosporidium species. The fecal samples (n = 256) were collected from pre-weaned (≤ 2.00 months) calves and the positive samples were identified utilizing Ziehl-Neelsen staining. Nested species-specific multiplex PCR (nssm-PCR) and restriction fragment length polymorphism (RFLP) were used to identify the species and sub-species. The serum concentrations of IL-1β, IL-6, IL-12, TNF-α, and IFN-γ were also assessed. The results revealed that 10.54% of samples were positive. The results of Nested-PCR showed that 92.59% of the samples were positive for C. parvum while 7.41% were positive for C. andersoni. The results of RFLP confirmed 92.59% of the samples for C. parvum, 3.70% for C. muris / C. andersoni, and 3.70% for C. muris. The serum concentrations of IL-1β, IL-6, IL-12, TNF-α, and IFN-γ were significantly higher in the infected calves compared to those in healthy calves. However, the serum concentration of IFN-γ was significantly higher in the calves infected with C. parvum while the serum concentrations of TNF-α and IL-6 were significantly higher in those infected with C. andersoni . In conclusion, C. parvum was prevalent in the region and the calves demonstrated inflammatory responses to Cryptosporidium species.
Collapse
Affiliation(s)
- Mostafa Meshkat
- Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran;
| | - Bahar Shemshadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran; ,Correspondence Bahar Shemshadi. PhD Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Kumarss Amini
- Department of Microbiology, Faculty of Basic Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran.
| |
Collapse
|
38
|
Development and evaluation of a molecular based protocol for detection and quantification of Cryptosporidium spp. In wastewater. Exp Parasitol 2022; 234:108216. [DOI: 10.1016/j.exppara.2022.108216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
39
|
Dual transcriptomics to determine interferon-gamma independent host response to intestinal Cryptosporidium parvum infection. Infect Immun 2021; 90:e0063821. [PMID: 34928716 PMCID: PMC8852703 DOI: 10.1128/iai.00638-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Animals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens. Because treatments are limited for the parasite Cryptosporidium parvum, we tested STAg as a C. parvum therapeutic. We determined that STAg treatment reduced C. parvum Iowa II oocyst shedding in gamma interferon knockout (IFN-γ-KO) mice. Murine intestinal sections were then sequenced to define the IFN-γ-independent transcriptomic response to C. parvum infection. Gene Ontology and transcript abundance comparisons showed host immune response and metabolism changes. Transcripts for type I interferon-responsive genes were more abundant in C. parvum-infected mice treated with STAg. Comparisons between phosphate-buffered saline (PBS) and STAg treatments showed no significant differences in C. parvum gene expression. C. parvum transcript abundance was highest in the ileum and mucin-like glycoproteins and the GDP-fucose transporter were among the most abundant. These results will assist the field in determining both host- and parasite-directed future therapeutic targets.
Collapse
|
40
|
Fahmy MEA, Abdelaal AA, Hassan SI, Shalaby MA, Ismail MAM, Khairy RA, Badawi MA, Afife AA, Fadl HO. Antiparasitic and immunomodulating effects of nitazoxanide, ivermectin and selenium on Cryptosporidium infection in diabetic mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e012121. [PMID: 34852131 DOI: 10.1590/s1984-29612021087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The present work aims to investigate the antiparasitic and the immunomodulating effects of nitazoxanide (NTZ) and ivermectin (IVC) alone or combined together or combined with selenium (Se), on Cryptosporidium infection in diabetic mice. The results revealed that the combined NTZ and IVC therapy achieved the highest reduction of fecal oocysts (92%), whereas single NTZ showed the lowest reduction (63%). Also, adding Se to either NTZ or IVC resulted in elevation of oocyst reduction from 63% to 71% and from 82% to 84% respectively. All treatment regimens, with the exception of NTZ monotherapy, showed a significant improvement in the intestinal histopathology, the highest score was in combined NTZ and IVC therapy. The unique results of immunohistochemistry in this study showed reversal of the normal CD4/CD8 T cell ratio in the infected untreated mice, however, following therapy it reverts back to a normal balanced ratio. The combined (NTZ+ IVC) treatment demonstrated the highest level of CD4 T cell expression. Taken together, NTZ and IVC combined therapy showed remarkable anti-parasitic and immunostimulatory effects, specifically towards the CD4 population that seem to be promising in controlling cryptosporidiosis in diabetic individuals. Further research is required to explore other effective treatment strategies for those comorbid patients.
Collapse
Affiliation(s)
| | - Amany Ahmed Abdelaal
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine - AFCM, Cairo, Egypt
| | - Soad Ismail Hassan
- Medical Parasitology Department, Theodor Bilharz Research Institute - TBRI, Giza, Egypt
| | - Maisa Ahmed Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute - TBRI, Giza, Egypt
| | | | - Rasha Ahmed Khairy
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Adam Ashraf Afife
- College of Life Sciences, Faculty of Medicine, Leicester University, United Kingdom
| | - Hanaa Omar Fadl
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
41
|
Commercial Simplex and Multiplex PCR Assays for the Detection of Intestinal Parasites Giardia intestinalis, Entamoeba spp., and Cryptosporidium spp.: Comparative Evaluation of Seven Commercial PCR Kits with Routine In-House Simplex PCR Assays. Microorganisms 2021; 9:microorganisms9112325. [PMID: 34835453 PMCID: PMC8623296 DOI: 10.3390/microorganisms9112325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023] Open
Abstract
Nowadays, many commercial kits allowing the detection of digestive parasites by DNA amplification methods have been developed, including simplex PCR assays (SimpPCRa) allowing the identification of a single parasite, and multiplex PCR assays (MultPCRa) allowing the identification of several parasites at once. Thus, aimed at improving the diagnosis of intestinal protozoal infections, it is essential to evaluate the performances of these new tools. A total of 174 DNA samples collected between 2007 and 2017 were retrospectively included in this study. Performances of four commercial SimpPCRa (i.e., CerTest-VIASURETM) and three MultPCRa (i.e., CerTest-VIASURETM, FAST-TRACK-Diagnostics-FTD-Stool-ParasiteTM and DIAGENODE-Gastroenteritis/Parasite-panel-ITM) were evaluated for the detection of Cryptosporidium spp., Entamoeba spp., and Giardia intestinalis in stool samples compared to our routinely used in-house SimpPCRa. Globally, the SimpPCRa showed better sensitivity/specificity for the detection of G. intestinalis, E. histolytica, E. dispar, and Cryptosporidium spp. (i.e., 96.9/93.6%; 100/100%; 95.5/100%; and 100/99.3%, respectively), compared to the three commercial MultPCRa tested. All in all, we showed that MultPCRa offer an interesting alternative for the detection of protozoans in stool samples depending on the clinical context.
Collapse
|
42
|
Chen D, Mechlowitz K, Li X, Schaefer N, Havelaar AH, McKune SL. Benefits and Risks of Smallholder Livestock Production on Child Nutrition in Low- and Middle-Income Countries. Front Nutr 2021; 8:751686. [PMID: 34778344 PMCID: PMC8579112 DOI: 10.3389/fnut.2021.751686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Livestock production may improve nutritional outcomes of pregnant women and children by increasing household income, availability of nutrient-dense foods, and women's empowerment. Nevertheless, the relationship is complex, and the nutritional status of children may be impaired by presence of or proximity to livestock and their pathogens. In this paper, we review the benefits and risks of livestock production on child nutrition. Evidence supports the nutritional benefits of livestock farming through income, production, and women's empowerment. Increasing animal source food consumption requires a combination of efforts, including improved animal management so that herd size is adequate to meet household income needs and consumption and addressing sociocultural and gendered norms. Evidence supports the inclusion of behavior change communication strategies into livestock production interventions to facilitate the sustainability of nutritional benefits over time, particularly interventions that engage women and foster dimensions of women's empowerment. In evaluating the risks of livestock production, evidence indicates that a broad range of enteric pathogens may chronically infect the intestines of children and, in combination with dietary deficits, may cause environmental enteric dysfunction (EED), a chronic inflammation of the gut. Some of the most important pathogens associated with EED are zoonotic in nature with livestock as their main reservoir. Very few studies have aimed to understand which livestock species contribute most to colonization with these pathogens, or how to reduce transmission. Control at the point of exposure has been investigated in a few studies, but much less effort has been spent on improving animal husbandry practices, which may have additional benefits. There is an urgent need for dedicated and long-term research to understand which livestock species contribute most to exposure of young children to zoonotic enteric pathogens, to test the potential of a wide range of intervention methods, to assess their effectiveness in randomized trials, and to assure their broad adaptation and sustainability. This review highlights the benefits and risks of livestock production on child nutrition. In addition to identifying research gaps, findings support inclusion of poor gut health as an immediate determinant of child undernutrition, expanding the established UNICEF framework which includes only inadequate diet and disease.
Collapse
Affiliation(s)
- Dehao Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Karah Mechlowitz
- Department of Social and Behavioral Sciences, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Xiaolong Li
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Nancy Schaefer
- Health Science Center Libraries, University of Florida, Gainesville, FL, United States
| | - Arie H. Havelaar
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, United States
| | - Sarah L. McKune
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for African Studies, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
McCowin S, Marie C, Petri WA. Parasite protein pirates host cytoskeletal modulator during invasion. Trends Parasitol 2021; 37:937-939. [PMID: 34598896 DOI: 10.1016/j.pt.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
Host cytoskeletal rearrangements are an essential yet poorly understood component of Cryptosporidium invasion. Guérin et al. demonstrate that actin rearrangements occur immediately during adherence and capture a unique mechanism of invasion using live-cell imaging. The authors identify a parasite-secreted effector, ROP1, recruited by a host protein, LMO7, involved in pathogenesis.
Collapse
Affiliation(s)
- Sayo McCowin
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chelsea Marie
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
44
|
Karabey M, Can H, Öner TÖ, Döşkaya M, Alak SE, Döşkaya AD, Karakavuk M, Köseoğlu AE, Ün C, Gürüz AY, Alacacıoğlu A, Pektaş B, Gül A, Kaya S, Gökmen AA. Cryptosporidium spp. during chemotherapy: a cross-sectional study of 94 patients with malignant solid tumor. Ann Saudi Med 2021; 41:293-298. [PMID: 34618605 PMCID: PMC8497003 DOI: 10.5144/0256-4947.2021.293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cryptosporidium spp. is a protozoan parasite that infects many vertebrate animals, including humans. Since Cryptosporidium spp. can cause chronic life-threatening diarrhea and severe malabsorption in immunocompromised patients, we investigated the prevalence of this parasite among patients undergoing chemotherapy for malignant solid tumors. OBJECTIVE Investigate the prevalence of Cryptosporidium spp. in stool samples. DESIGN Cross-sectional. SETTING Tertiary care. PATIENTS AND METHODS Stool samples were collected from adult patients with malignant solid tumors receiving chemotherapy and diarrhea. Cryptosporidium spp. prevalence was determined using Ziehl-Neelsen staining, ELISA, and real-time PCR targeting of the COWP gene. MAIN OUTCOME MEASURE The prevalence of Cryptosporidium spp. in patients undergoing chemotherapy for malignant solid tumors. SAMPLE SIZE 94 RESULTS: The prevalence was 2.1% (2/94), 5.3% (5/94), and 5.3% (5/94) as detected by Ziehl-Neelsen staining, real-time PCR and ELISA, respectively. The prevalence reached 8.5% (8/94) using all results obtained from the three methods. Among eight positive stool samples, four were positive by at least two different methods (Ziehl-Neelsen staining-ELISA or ELISA-real-time PCR) whereas the remaining four were positive by either ELISA or real-time PCR. CONCLUSION These findings show the risk of cryptosporidiosis in cancer patients and the necessity to use at least two diagnostic methods during the diagnosis of cryptosporidiosis to reach more accurate and trustworthy results. LIMITATIONS Further studies with a larger sample size are recommended. CONFLICT OF INTEREST None.
Collapse
Affiliation(s)
- Mehmet Karabey
- From the Department of Medical Microbiology, Izmir Katip Celebi Universitesi, Izmir, Turkey
| | - Hüseyin Can
- From the Department of Biology, Ege Universitesi, Izmir, Turkey
| | - Tülay Öncü Öner
- From the Department of Bioengineering, Manisa Celal Bayar Universitesi, Manisa, Turkey
| | - Mert Döşkaya
- From the Department of Parasitology, Ege University, Izmir, Turkey
| | | | | | | | | | - Cemal Ün
- From the Department of Biology, Ege Universitesi, Izmir, Turkey
| | | | - Ahmet Alacacıoğlu
- From the Department of Medical Oncology, Izmir Katip Celebi Universitesi, Izmir, Turkey
| | - Bayram Pektaş
- From theızmir Atatürk Training and Research Hospital, Department of Microbiology,ızmir, Turkey
| | - Aytül Gül
- From the Department of Bioengineering, Ege Universitesi, Izmir, Turkey
| | - Selçuk Kaya
- From the Department of Medical Microbiology, Izmir Katip Celebi Universitesi, Izmir, Turkey
| | - Ayşegül Aksoy Gökmen
- From the Department of Medical Microbiology, Izmir Katip Celebi Universitesi, Izmir, Turkey
| |
Collapse
|
45
|
Mararenko A, Douedi S, Alshami A, Odak M, Patel SV. Rare Case of Small Bowel Obstruction Secondary to Cryptosporidium in a Young Patient With Uncontrolled AIDS. Cureus 2021; 13:e16040. [PMID: 34336522 PMCID: PMC8321418 DOI: 10.7759/cureus.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 11/05/2022] Open
Abstract
Small bowel obstruction is a common cause of abdominal pain and accounts for approximately 20% of surgical admissions related to abdominal pain. In the United States alone, there are over 300,000 admissions annually for small bowel obstruction and account for every 15 out of 100 admissions for abdominal pain. If treated appropriately with medical management, over 80% of cases resolve without life-threatening, long-term complications or the need for surgical intervention. The three most common causes including adhesions, tumors, and hernias account for the majority of cases. Less frequently reported causes include infections. We present the case of a 26-year-old male with a history of AIDS who was found to have a small bowel obstruction in the setting of active Cryptosporidium infection. Cryptosporidium is an opportunistic infection that more commonly affects immunocompromised hosts, especially those noncompliant with antiretroviral therapy. Our patient had an uncomplicated hospital course and made a full recovery due to early diagnosis and immediate intervention. We hope to make the medical community more aware of this rare and potentially life-threatening association given the rarity of such a presentation. Early diagnosis and intervention are critical to preventing morbidity and mortality.
Collapse
Affiliation(s)
- Anton Mararenko
- Internal Medicine, Jersey Shore University Medical Center, Neptune, USA
| | - Steven Douedi
- Internal Medicine, Jersey Shore University Medical Center, Neptune, USA
| | - Abbas Alshami
- Internal Medicine, Jersey Shore University Medical Center, Neptune, USA
| | - Mihir Odak
- Internal Medicine, Jersey Shore University Medical Center, Neptune, USA
| | - Swapnil V Patel
- Internal Medicine, Jersey Shore University Medical Center, Neptune, USA
| |
Collapse
|
46
|
Absence of Cryptosporidium hominis and dominance of zoonotic Cryptosporidium species in patients after Covid-19 restrictions in Auckland, New Zealand. Parasitology 2021; 148:1288-1292. [PMID: 34120663 PMCID: PMC8383192 DOI: 10.1017/s0031182021000974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.
Collapse
|
47
|
Jillani NE, Nyachieo A, Chai DC, Nyariki JN. Successful experimental infant baboon model for childhood cryptosporidiosis studies. Parasit Vectors 2021; 14:316. [PMID: 34112218 PMCID: PMC8193905 DOI: 10.1186/s13071-021-04804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cryptosporidiosis causes high morbidity and mortality in children under 2 years of age globally. The lack of an appropriate animal model that mimics the pathogenesis of disease in humans has hampered the development and testing of potential therapeutic options. This study aimed to develop and validate an infant baboon infection model of cryptosporidiosis. METHODS Eighteen immunocompetent weaned infant baboons aged 12 to 16 months were used. The animals were n = 3 controls and three experimental groups of n = 5 animals each inoculated with Cryptosporidium parvum oocysts as follows: group 1: 2 × 104, group 2: 2 × 105, group 3: 2 × 106 followed by daily fecal sampling for oocyst evaluation. Blood sampling for immunological assay was done on the day of infection and weekly thereafter until the end of the experiment, followed by necropsy and histopathology. Statistical analysis was performed using R, SPSS, and GraphPad Prism software. Analysis of variance (ANOVA) and Bonferroni post hoc tests were used for comparison of the means, with p < 0.05 considered as a significant difference. Correlation coefficient and probit analysis were also performed. RESULTS In all experimental animals but not controls, the onset of oocyst shedding occurred between days 2 and 4, with the highest oocyst shedding occurring between days 6 and 28. Histological analysis revealed parasite establishment only in infected animals. Levels of cytokines (TNF-α, IFN-γ, and IL-10) increased significantly in experimental groups compared to controls. CONCLUSION For developing a reproducible infant baboon model, 2 × 104 oocysts were an effective minimum quantifiable experimental infection dose.
Collapse
Affiliation(s)
- Ngalla E. Jillani
- Institute of Primate Research, Box 24481-00502, Karen Nairobi, Kenya
| | - Atunga Nyachieo
- Institute of Primate Research, Box 24481-00502, Karen Nairobi, Kenya
| | - Daniel C. Chai
- Institute of Primate Research, Box 24481-00502, Karen Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
48
|
Zhu G, Yin J, Cuny GD. Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe zoonotic cryptosporidiosis is globally distributed, one of the major diarrheal diseases in humans and animals. Cryptosporidium oocysts are also one of the major environmental concerns, making it a pathogen that fits well into the One Health concept. Despite its importance, fully effective drugs are not yet available. Anti-cryptosporidial drug discovery has historically faced many unusual challenges attributed to unique parasite biology and technical burdens. While significant progresses have been made recently, anti-cryptosporidial drug discovery still faces a major obstacle: identification of systemic drugs that can be absorbed by patients experiencing watery diarrhea and effectively pass through electron-dense (ED) band at the parasite-host cell interface to act on the epicellular parasite. There may be a need to develop an in vitro assay to effectively screen hits/leads for their capability to cross ED band. In the meantime, non-systemic drugs with strong mucoadhesive properties for extended gastrointestinal exposure may represent another direction in developing anti-cryptosporidial therapeutics. For developing both systemic and non-systemic drugs, a non-ruminant animal model exhibiting diarrheal symptoms suitable for routine evaluation of drug absorption and anti-cryptosporidial efficacy may be very helpful.
Collapse
|
49
|
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, Lane CE, Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol 2021; 19:77. [PMID: 33863338 PMCID: PMC8051059 DOI: 10.1186/s12915-021-01007-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.
Collapse
Affiliation(s)
- Eric D Salomaki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
50
|
Iqbal MD, Naeem T, Khurshid U, Hameed F. Frequency of Cryptosporidiosis in Children having Persistent Diarrhea. Pak J Med Sci 2020; 37:121-124. [PMID: 33437262 PMCID: PMC7794158 DOI: 10.12669/pjms.37.1.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: Globally childhood diarrheal diseases continue to be the second leading cause of death. Cryptosporidium spp are important intestinal parasites that cause diarrhea in humans and animals particularly in developing countries. This investigation was carried out to find out the frequency of cryptosporidiosis in children presenting with persistent diarrhea. Methods: Two hundred stool samples were collected in this descriptive cross-sectional study conducted at Microbiology Department, Combined Military Hospital, Lahore Pakistan between the months of July to Dec 2014. Children aged five years to 12 years who presented with persistent diarrhea were included in the study. Stool specimens were processed using the modified acid-fast staining method, and microscopically examined for Cryptosporidium infection. Results: The average age of study participants was 7.95 with a standard deviation of 2.21 years. Among the participants 66% were males whereas 34% were females. Twenty eight percent had presence of oocysts in stool samples. Conclusions: The frequency of Cryptosporidiosis among children with persistent diarrhea was 28%. This high frequency indicates that this population is uniquely susceptible to infection. It also highlights the need for education about hygiene, accurate diagnosis, and treatment of Cryptosporidiosis. There is also a need for additional studies regarding the occurrence of this pathogen.
Collapse
Affiliation(s)
- Mariam Danish Iqbal
- Mariam Danish Iqbal, FCPS Microbiology. Pathology Department, Shalamar Medical & Dental College, Lahore, Pakistan
| | - Tahir Naeem
- Tahir Naeem, MCPS, D(ABMM). Pathology Department, Shalamar Medical & Dental College, Lahore, Pakistan
| | - Umar Khurshid
- Umar Khurshid, FCPS Microbiology. Microbiology Department, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Fatima Hameed
- Fatima Hameed, FCPS Microbiology. Pathology Department, CMH Lahore Medical College, Lahore, Pakistan
| |
Collapse
|