1
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Yun YI, Ko JH, Ryu JS, Kim S, Jeon HS, Kim N, Kim MK, Oh JY. Toxicity and efficacy of type I interferons on the ocular surface: in vitro, animal, and clinical studies. Ocul Surf 2024; 34:96-107. [PMID: 39002721 DOI: 10.1016/j.jtos.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE To investigate the toxicity of type I interferons (IFNs) on the ocular surface and assess their efficacy in ocular surface tumors. METHODS We examined the effects of IFN-α2a, IFN-α2b and IFN-β on corneal epithelial cells and stromal fibroblasts in vitro as well as the impact of IFN-α2a on the ocular surface in mice. Additionally, we analyzed the therapeutic and adverse effects of topically administered IFN-α2a and IFN-α2b in patients with ocular surface tumors. Risk factors contributing to side effects were explored. RESULTS IFN-α2a, IFN-α2b or IFN-β reduced cell viability and induced pro-inflammatory cytokines in corneal epithelial cells and stromal fibroblasts. Furthermore, IFNs enhanced the expression of major histocompatibility complex class II and CD40 in corneal epithelial cells. In mice, subconjunctival IFN-α2a injection did not induce corneal epithelial defects or opacity, nor did it reduce aqueous tears or conjunctival goblet cells. In patients, topical IFN-α2a or IFN-α2b administration decreased tumor size and prevented recurrence; however, it was associated with mild side effects, including corneal epitheliopathy and conjunctival hyperemia. These complications were associated with longer IFN use, the presence of underlying ocular surface disease and concurrent use of mitomycin C or anti-glaucoma eye drops. CONCLUSION Although type I IFNs cause direct toxicity on corneal cells, they do not induce significant side effects on the healthy ocular surface. Considering its therapeutic and preventive effects, topical type I IFN is safe and effective for treating ocular surface tumors. The potential for ocular side effects should be considered in eyes with identified risk factors.
Collapse
Affiliation(s)
- Young In Yun
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Seonghwan Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, South Korea
| | - Hyun Sun Jeon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Namju Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
3
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Yin XT, Hartman A, Sirajuddin N, Shukla D, Leger AS, Keadle TL, Stuart PM. UVB induced reactivation leads to HSV1 in the corneas of virtually all latently infected mice and requires STING to develop corneal disease. Sci Rep 2024; 14:6859. [PMID: 38514671 PMCID: PMC10957950 DOI: 10.1038/s41598-024-52597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/21/2024] [Indexed: 03/23/2024] Open
Abstract
Reactivation of latent herpes simplex type 1 results in virus returning to the cornea leading to recurrent herpetic stromal keratitis (rHSK). We compare two competing models to reactivate viruses from latency, UV-B irradiation and cyclophosphamide (CP). Results revealed that while both result in corneal recrudescence, only UV-B irradiation results in rHSK. To better understand the dynamics of reactivation, we analyzed corneas for both the presence of infectious viruses and the dynamics of exposure to multiple reactivations using UV-B. We noted that multiple reactivations result in progressively worse corneal disease. We also noted that expression of IFNα and STING, surragate markers for the presence of virus, are induced by the presence of reactivated virus. Studies to determine the importance of STING to the development of HSK revealed that in the absence of STING, mice do not develop significant HSK and the magnitude of the infiltrate of CD45+ cells in these corneas is significantly reduced. The resulting paucity of CD45+CD11b+GR-1+F4/80-neutrophils, and to a lesser extent CD45+CD11b+GR-1-F4/80+ macrophages in B6-STING KO mice following reactivation is likely the underlying cause for lack of rHSK as has been noted by ourselves and others. These results underscore the critical importance of STING's role in developing rHSK.
Collapse
Affiliation(s)
- Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alexis Hartman
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nadia Sirajuddin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Anthony St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammie L Keadle
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Washington University, 7569 Amherst Avenue, University City, MO, 63130-2805, USA.
| |
Collapse
|
5
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
6
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
8
|
Yin XT, Hartman A, Sirajuddin N, Shukla D, St Leger A, Keadle TL, Stuart PM. UV-B induced HSV-1 reactivation leads to infectious virus in the corneas of virtually all latently infected mice and requires an intact STING to develop herpetic stromal keratitis. RESEARCH SQUARE 2023:rs.3.rs-3097720. [PMID: 37502845 PMCID: PMC10371093 DOI: 10.21203/rs.3.rs-3097720/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Reactivation of latent herpes simplex type 1 results in virus returning to the cornea leading to recurrent herpetic stromal keratitis (rHSK). We compare two competing models to reactivate viruses from latency, UV-B irradiation and cyclophosphamide. Results revealed that while both result in corneal recrudescence, only UV-B irradiation results in rHSK. To better understand the dynamics of reactivation, we analyzed corneas for both the presence of infectious viruses and the dynamics of exposure to multiple reactivations using UV-B. We noted that multiple reactivations result in progressively worse corneal disease. We also noted that expression of IFNα and STING, surragate markers for the presence of virus, are induced by the presence of reactivated virus. Studies to determine the importance of STING to the development of HSK revealed that in the absence of STING, mice do not develop significant HSK and the magnitude of the infiltrate of CD45 + cells in these corneas is significantly reduced. The resulting paucity of CD45 + CD11b + GR-1 + F4/80-neutrophils, and to a lesser extent CD45 + CD11b + GR-1-F4/80 + macrophages in B6-STING KO mice following reactivation is likely the underlying cause for lack of rHSK as has been noted by ourselves and others. These results underscore the critical importance of STING's role in developing rHSK.
Collapse
|
9
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat Commun 2022; 13:5511. [PMID: 36127427 PMCID: PMC9489707 DOI: 10.1038/s41467-022-33052-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/30/2022] [Indexed: 01/03/2023] Open
Abstract
Since a detailed inventory of endothelial cell (EC) heterogeneity in breast cancer (BC) is lacking, here we perform single cell RNA-sequencing of 26,515 cells (including 8433 ECs) from 9 BC patients and compare them to published EC taxonomies from lung tumors. Angiogenic ECs are phenotypically similar, while other EC subtypes are different. Predictive interactome analysis reveals known but also previously unreported receptor-ligand interactions between ECs and immune cells, suggesting an involvement of breast EC subtypes in immune responses. We also identify a capillary EC subtype (LIPEC (Lipid Processing EC)), which expresses genes involved in lipid processing that are regulated by PPAR-γ and is more abundant in peri-tumoral breast tissue. Retrospective analysis of 4648 BC patients reveals that treatment with metformin (an indirect PPAR-γ signaling activator) provides long-lasting clinical benefit and is positively associated with LIPEC abundance. Our findings warrant further exploration of this LIPEC/PPAR-γ link for BC treatment. Tumor blood vessels contribute to cancer growth, invasion and metastasis. Here, by using single cell transcriptomics, the authors report an inventory of endothelial cell heterogeneity in patients with breast cancer, including a subtype that expresses genes involved in lipid processing and is regulated by PPAR-γ.
Collapse
|
11
|
TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF)-Dependent Antiviral Responses Protect Mice against Ross River Virus Disease. mBio 2022; 13:e0336321. [PMID: 35089088 PMCID: PMC8725586 DOI: 10.1128/mbio.03363-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ross River virus (RRV) is the major mosquito-borne virus in the South Pacific region. RRV infections are characterized by arthritic symptoms, which can last from several weeks to months. Type I interferon (IFN), the primary antiviral innate immune response, is able to modulate adaptive immune responses. The relationship between the protective role of type I IFN and the induction of signaling proteins that drive RRV disease pathogenesis remains poorly understood. In the present study, the role of TIR-domain-containing adapter-inducing interferon-β (TRIF), an essential signaling adaptor protein downstream of Toll-like receptor (TLR) 3, a key single-stranded RNA (ssRNA)-sensing receptor, was investigated. We found that TRIF-/- mice were highly susceptible to RRV infection, with severe disease, high viremia, and a low type I IFN response early during disease development, which suggests the TLR3-TRIF axis may engage early in response to RRV infection. The number and the activation level of CD4+ T cells, CD8+ T cells, and NK cells were reduced in TRIF-/- mice compared to those in infected wild-type (WT) mice. In addition, the number of germinal center B cells was lower in TRIF-/- mice than WT mice following RRV infection, with lower titers of IgG antibodies detected in infected TRIF-/- mice compared to WT. Interestingly, the requirement for TRIF to promote immunoglobulin class switch recombination was at the level of the local immune microenvironment rather than B cells themselves. The slower resolution of RRV disease in TRIF-/- mice was associated with persistence of the RRV genome in muscle tissue and a continuing IFN response. IMPORTANCE RRV has been prevalent in the South Pacific region for decades and causes substantial economic and social costs. Though RRV is geographically restricted, a number of other alphaviruses have spread globally due to expansion of the mosquito vectors and increased international travel. Since over 30 species of mosquitoes have been implicated as potent vectors for RRV dissemination, RRV has the potential to further expand its distribution. In the pathogenesis of RRV disease, it is still not clear how innate immune responses synergize with adaptive immune responses. Type I IFN is crucial for bridging innate to adaptive immune responses to viral invasion. Hence, key signaling proteins in type I IFN induction pathways, which are important for type I IFN modulation, may also play critical roles in viral pathogenesis. This study provides insight into the role of TRIF in RRV disease development.
Collapse
|
12
|
Greenan E, Gallagher S, Khalil R, Murphy CC, Ní Gabhann-Dromgoole J. Advancing Our Understanding of Corneal Herpes Simplex Virus-1 Immune Evasion Mechanisms and Future Therapeutics. Viruses 2021; 13:v13091856. [PMID: 34578437 PMCID: PMC8473450 DOI: 10.3390/v13091856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes stromal keratitis (HSK) is a disease that commonly affects the cornea and external eye and is caused by Herpes Simplex Virus type 1 (HSV-1). This virus infects approximately 66% of people worldwide; however, only a small portion of these people will develop symptoms in their lifetime. There is no cure or vaccine available for HSV-1; however, there are treatments available that aim to control the inflammation caused by the virus and prevent its recurrence. While these treatments are beneficial to those suffering with HSK, there is a need for more effective treatments to minimise the need for topical steroids, which can have harmful effects, and to prevent bouts of disease reactivation, which can lead to progressive corneal scarring and visual impairment. This review details the current understanding of HSV-1 infection and discusses potential novel treatment options including microRNAs, TLRs, mAbs, and aptamers.
Collapse
Affiliation(s)
- Emily Greenan
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
| | - Sophie Gallagher
- School of Biological and Health Sciences, Technological University (TU) Dublin, Kevin Street, D02 XK51 Dublin, Ireland;
| | - Rana Khalil
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
| | - Conor C. Murphy
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland
| | - Joan Ní Gabhann-Dromgoole
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
13
|
Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci Rep 2020; 10:22216. [PMID: 33335135 PMCID: PMC7747705 DOI: 10.1038/s41598-020-77725-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual's lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.
Collapse
|
14
|
Wang L, Wang R, Xu C, Zhou H. Pathogenesis of Herpes Stromal Keratitis: Immune Inflammatory Response Mediated by Inflammatory Regulators. Front Immunol 2020; 11:766. [PMID: 32477330 PMCID: PMC7237736 DOI: 10.3389/fimmu.2020.00766] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes stromal keratitis (HSK) is one of the primary diseases that cause vision loss or even blindness after herpes simplex virus (HSV)-1 infection. HSK-associated vision impairment is predominantly due to corneal scarring and neovascularization caused by inflammation. In the infected cornea, HSV can activate innate and adaptive immune responses of host cells, which triggers a cascade of reactions that leads to the release of inflammatory cytokines, chemokines, microRNA, and other regulatory factors that have stimulating or inhibitory effects on tissue. Physiologically, host cells show homeostasis. In this review, we summarize the factors involved in HSK pathogenesis from the perspective of immunity, molecules, and pathological angiogenesis. We also describe in detail the pathogenesis of chronic inflammatory lesions of the corneal stroma in response to HSV-1 infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Runbiao Wang
- Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Chuyang Xu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Tan T, Xia L. TRIM21 Aggravates Herpes Simplex Virus Epithelial Keratitis by Attenuating STING-IRF3-Mediated Type I Interferon Signaling. Front Microbiol 2020; 11:703. [PMID: 32373102 PMCID: PMC7176818 DOI: 10.3389/fmicb.2020.00703] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the leading cause of infectious blindness in the developed world. HSV-1 infection can occur anywhere in the eye, and the most common presentation is epithelial keratitis. In the HSV epithelial keratitis mice model, we detected the expression of TRIM21 and then investigated the clinical relationship between TRIM21 and HSV epithelial keratitis by silencing TRIM21. Through the clinical scores and histopathology examination, we found that TRIM21 can effectively reduce the severity of HSV epithelial keratitis. Furthermore, silencing TRIM21 significantly controlled the virus particle release at 1, 3, and 5 days post-HSV-1 infection. Notably, the production of IFN-β was enhanced, and the secretion of pro-inflammatory cytokines (IL-6 and TNF-a) was inhibited. Next, human corneal epithelial cells were pretreated with lentivirus or siRNA, respectively, so that TRIM21 expression was overexpressed or silenced. We focused on the regulation of STING-IRF3 and type I interferon signaling after infected with HSV-1. In conclusion, our results have identified that TRIM21 is abnormally high expressed in HSV epithelial keratitis. TRIM21 enhances the replication of HSV-1 in corneal epithelial cells via suppressing the production of type I IFN by inhibiting STING/IRF3 signaling. It also promotes the secretion of IL-6 and TNF-a, thereby aggravating the severity of HSV epithelial keratitis.
Collapse
Affiliation(s)
- Tianchang Tan
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Likun Xia
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Royer DJ, Echegaray-Mendez J, Lin L, Gmyrek GB, Mathew R, Saban DR, Perez VL, Carr DJ. Complement and CD4 + T cells drive context-specific corneal sensory neuropathy. eLife 2019; 8:48378. [PMID: 31414985 PMCID: PMC6783265 DOI: 10.7554/elife.48378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - Liwen Lin
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Immunology, Duke University Medical Center, Durham, United States
| | - Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel Jj Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
17
|
The US11 Gene of Herpes Simplex Virus 1 Promotes Neuroinvasion and Periocular Replication following Corneal Infection. J Virol 2019; 93:JVI.02246-18. [PMID: 30760571 DOI: 10.1128/jvi.02246-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) cycles between phases of latency in sensory neurons and replication in mucosal sites. HSV-1 encodes two key proteins that antagonize the shutdown of host translation, US11 through preventing PKR activation and ICP34.5 through mediating dephosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). While profound attenuation of ICP34.5 deletion mutants has been repeatedly demonstrated, a role for US11 in HSV-1 pathogenesis remains unclear. We therefore generated an HSV-1 strain 17 US11-null virus and examined its properties in vitro and in vivo In U373 glioblastoma cells, US11 cooperated with ICP34.5 to prevent eIF2α phosphorylation late in infection. However, the effect was muted in human corneal epithelial cells (HCLEs), which did not accumulate phosphorylated eIF2α unless both US11 and ICP34.5 were absent. Low levels of phosphorylated eIF2α correlated with continued protein synthesis and with the ability of virus lacking US11 to overcome antiviral immunity in HCLE and U373 cells. Neurovirulence following intracerebral inoculation of mice was not affected by the deletion of US11. In contrast, the time to endpoint criteria following corneal infection was greater for the US11-null virus than for the wild-type virus. Replication in trigeminal ganglia and periocular tissue was promoted by US11, as was periocular disease. The establishment of latency and the frequency of virus reactivation from trigeminal ganglia were unaffected by US11 deletion, although emergence of the US11-null virus occurred with slowed kinetics. Considered together, the data indicate that US11 facilitates the countering of antiviral response of infected cells and promotes the efficient emergence of virus following reactivation.IMPORTANCE Alphaherpesviruses are ubiquitous DNA viruses and include the human pathogens herpes simplex virus 1 (HSV-1) and HSV-2 and are significant causes of ulcerative mucosal sores, infectious blindness, encephalitis, and devastating neonatal disease. Successful primary infection and persistent coexistence with host immune defenses are dependent on the ability of these viruses to counter the antiviral response. HSV-1 and HSV-2 and other primate viruses within the Simplexvirus genus encode US11, an immune antagonist that promotes virus production by preventing shutdown of protein translation. Here we investigated the impact of US11 deletion on HSV-1 growth in vitro and pathogenesis in vivo This work supports a role for US11 in pathogenesis and emergence from latency, elucidating immunomodulation by this medically important cohort of viruses.
Collapse
|
18
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Jeon S, Rowe AM, Carroll KL, Harvey SAK, Hendricks RL. PD-L1/B7-H1 Inhibits Viral Clearance by Macrophages in HSV-1-Infected Corneas. THE JOURNAL OF IMMUNOLOGY 2018; 200:3711-3719. [PMID: 29669784 DOI: 10.4049/jimmunol.1700417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Abstract
Immune privilege helps protect the cornea from damaging inflammation but can also impair pathogen clearance from this mucosal surface. Programmed death-ligand 1 (PD-L1 or B7-H1) contributes to corneal immune privilege by inhibiting the function of a variety of immune cells. We asked whether programmed death-1 (PD-1)/PD-L1 interaction regulates HSV-1 clearance from infected corneas. We show that PD-L1 is constitutively expressed in the corneal epithelium and is upregulated upon HSV-1 corneal infection, with peak expression on CD45+ cells NK cells, dendritic cells, neutrophils, and macrophages and CD45- corneal epithelial cells at 4 d postinfection (dpi). As early as 1 dpi, HSV-1-infected corneas of B7-H1-/- mice as compared with wild-type mice showed increased chemokine expression and this correlated with increased migration of inflammatory cells into the viral lesions and decreased HSV-1 corneal titers. Local PD-L1 blockade caused a similar increase in viral clearance, suggesting a local effect of PD-1/PD-L1 in the cornea. The enhanced HSV-1 clearance at 2 dpi resulting from PD-1/PD-L1 blockade is mediated primarily by a monocyte/macrophage population. Studies in bone marrow chimeras demonstrated enhanced viral clearance when PD-L1 was absent only from nonhematopoietic cells. We conclude that PD-L1 expression on corneal cells negatively impacts the ability of the innate immune system to clear HSV-1 from infected corneas.
Collapse
Affiliation(s)
- Sohyun Jeon
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Alexander M Rowe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kate L Carroll
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Stephen A K Harvey
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
20
|
Kurscheidt FA, Damke E, Bento JC, Balani VA, Takeda KI, Piva S, Piva JP, Irie MM, Gimenes F, Consolaro ME. Effects of Herpes Simplex Virus Infections on Seminal Parameters in Male Partners of Infertile Couples. Urology 2018; 113:52-58. [DOI: 10.1016/j.urology.2017.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022]
|
21
|
Smedowski A, Tarnawska D, Orski M, Wroblewska-Czajka E, Kaarniranta K, Aragona P, Wylegala E. Cytoarchitecture of epithelial inflammatory infiltration indicates the aetiology of infectious keratitis. Acta Ophthalmol 2017; 95:405-413. [PMID: 28371196 DOI: 10.1111/aos.13363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE To analyse cytological features of corneal epithelium in infectious keratitis. METHODS One hundred and eighteen patients (53 males and 65 females) diagnosed with acute stage of infectious keratitis (45 viral, 40 bacterial, 23 fungal, 10 Acanthamoeba keratitis) were included in study. We performed retrospective analysis of bright and blue-light slit-lamp photographs and in vivo corneal confocal microscopy scans of the corneal epithelium from five corneal regions (superior, inferior, temporal, nasal and central). Density, morphology of inflammatory cells and their relation to epithelial structures, as well as density of nerve fibres, were evaluated in relation to the keratitis aetiology. RESULTS We characterized five morphological types of inflammatory cells forming infiltration. Cell and nerve fibre densities showed significant differences between groups, and the most intense inflammatory infiltration was associated with fungal then bacterial, viral and Acanthamoeba keratitis. Additionally, differences in aetiology-specific ratio of round/non-round inflammatory cells were observed. CONCLUSION Confocal microscopy analysis in infectious keratitis of various aetiologies revealed quantitative and qualitative differences in inflammatory cell infiltration expressed in different ratio of round/non-round inflammatory cells. In vivo microscopic analysis of both the corneal epithelial layer cytopathology and the cytology of inflammatory infiltration provides a fast and specific differentiation of keratitis aetiology that may increase the accuracy in the selection of the initial treatment.
Collapse
Affiliation(s)
- Adrian Smedowski
- Department of Ophthalmology; School of Medicine with the Division of Dentistry in Zabrze; Medical University of Silesia; Katowice Poland
- Chair and Department of Physiology; School of Medicine in Katowice; Medical University of Silesia; Katowice Poland
| | - Dorota Tarnawska
- Department of Ophthalmology; School of Medicine with the Division of Dentistry in Zabrze; Medical University of Silesia; Katowice Poland
- Department of Biophysics and Molecular Physics; Institute of Physics; University of Silesia; Katowice Poland
| | - Michal Orski
- Department of Ophthalmology; School of Medicine with the Division of Dentistry in Zabrze; Medical University of Silesia; Katowice Poland
| | - Ewa Wroblewska-Czajka
- Department of Ophthalmology; School of Medicine with the Division of Dentistry in Zabrze; Medical University of Silesia; Katowice Poland
| | - Kai Kaarniranta
- Department of Ophthalmology; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| | - Pasquale Aragona
- Department of Experimental Medical-Surgical Sciences; Ocular Surface Diseases Unit; University of Messina; Messina Italy
| | - Edward Wylegala
- Department of Ophthalmology; School of Medicine with the Division of Dentistry in Zabrze; Medical University of Silesia; Katowice Poland
| |
Collapse
|
22
|
Immune- and Nonimmune-Compartment-Specific Interferon Responses Are Critical Determinants of Herpes Simplex Virus-Induced Generalized Infections and Acute Liver Failure. J Virol 2016; 90:10789-10799. [PMID: 27681121 DOI: 10.1128/jvi.01473-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
The interferon (IFN) response to viral pathogens is critical for host survival. In humans and mouse models, defects in IFN responses can result in lethal herpes simplex virus 1 (HSV-1) infections, usually from encephalitis. Although rare, HSV-1 can also cause fulminant hepatic failure, which is often fatal. Although herpes simplex encephalitis has been extensively studied, HSV-1 generalized infections and subsequent acute liver failure are less well understood. We previously demonstrated that IFN-αβγR-/- mice are exquisitely susceptible to liver infection following corneal infection with HSV-1. In this study, we used bone marrow chimeras of IFN-αβγR-/- (AG129) and wild-type (WT; 129SvEv) mice to probe the underlying IFN-dependent mechanisms that control HSV-1 pathogenesis. After infection, WT mice with either IFN-αβγR-/- or WT marrow exhibited comparable survival, while IFN-αβγR-/- mice with WT marrow had a significant survival advantage over their counterparts with IFN-αβγR-/- marrow. Furthermore, using bioluminescent imaging to maximize data acquisition, we showed that the transfer of IFN-competent hematopoietic cells controlled HSV-1 replication and damage in the livers of IFN-αβγR-/- mice. Consistent with this, the inability of IFN-αβγR-/- immune cells to control liver infection in IFN-αβγR-/- mice manifested as profoundly elevated aspartate transaminase (AST) and alanine transaminase (ALT) levels, indicative of severe liver damage. In contrast, IFN-αβγR-/- mice receiving WT marrow exhibited only modest elevations of AST and ALT levels. These studies indicate that IFN responsiveness of the immune system is a major determinant of viral tropism and damage during visceral HSV infections. IMPORTANCE Herpes simplex virus 1 (HSV-1) infection is an incurable viral infection with the most significant morbidity and mortality occurring in neonates and patients with compromised immune systems. Severe pathologies from HSV include the blindness-inducing herpetic stromal keratitis, highly debilitating and lethal herpes simplex encephalitis, and generalized infections that can lead to herpes simplex virus-induced acute liver failure. While immune compromise is a known factor, the precise mechanisms that lead to generalized HSV infections are unknown. In this study, we used and developed a mouse model system in combination with real-time bioluminescence imaging to demonstrate the relative importance of the immune and nonimmune compartments for containing viral spread and promoting host survival after corneal infection. Our results shed light on the pathogenesis of HSV infections that lead to generalized infection and acute liver failure.
Collapse
|
23
|
Uyangaa E, Kim JH, Patil AM, Choi JY, Kim SB, Eo SK. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade. PLoS Pathog 2015; 11:e1005256. [PMID: 26618488 PMCID: PMC4664252 DOI: 10.1371/journal.ppat.1005256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/09/2015] [Indexed: 12/24/2022] Open
Abstract
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues. Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide with lifelong latent infection after peripheral replication in mucosal tissues. Furthermore, acquisition of human immunodeficiency virus (HIV) is increased in HSV-infected individuals, underscoring the contribution of this virus in facilitating increased susceptibility to other microbial pathogens. Therefore, it is imperative to characterize the host defense to HSV infection and identify key components that regulate virus resistance, in order to devise therapeutic strategy. Although type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is considered a key player to control replication and CNS-invasion of HSV, the regulators and cell population that are affected by IFN-I to establish the orchestrated environment of innate cells in HSV-infected tissues are largely unknown. In the present study, we demonstrate that IFN-I signal governs the sequential recruitment of Ly-6Chi monocytes and then NK cells into mucosal tissues, depending on CCL2-CCL3 cascade mediated by HSC-derived leukocytes and epithelial resident cells, respectively. Also, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells were involved in producing the initial CCL2 for migration-based self-amplification of rapidly infiltrated Ly-6Chi monocytes through stimulation by IFN-I produced from infected epithelial cells. This study deciphers detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Zhang X, Ye Z, Pei Y, Qiu G, Wang Q, Xu Y, Shen B, Zhang J. Neddylation is required for herpes simplex virus type I (HSV-1)-induced early phase interferon-beta production. Cell Mol Immunol 2015; 13:578-83. [PMID: 27593482 PMCID: PMC5037273 DOI: 10.1038/cmi.2015.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 11/09/2022] Open
Abstract
Type I interferons such as interferon-beta (IFN-β) play essential roles in the host innate immune response to herpes simplex virus type I (HSV-1) infection. The transcription of type I interferon genes is controlled by nuclear factor-κB (NF-κB) and interferon regulatory factor (IRF) family members including IRF3. NF-κB activation depends on the phosphorylation of inhibitor of κB (IκB), which triggers its ubiqitination and degradation. It has been reported that neddylation inhibition by a pharmacological agent MLN4924 potently suppresses lipopolysaccharide (LPS)-induced proinflammatory cytokine production with the accumulation of phosphorylated IκBα. However, the role of neddylation in type I interferon expression remains unknown. Here, we report that neddylation inhibition with MLN4924 or upon UBA3 deficiency led to accumulation of phosphorylated IκBα, impaired IκBα degradation, and impaired NF-κB nuclear translocation in the early phase of HSV-1 infection even though phosphorylation and nuclear translocation of IRF3 were not affected. The blockade of NF-κB nuclear translocation by neddylation inhibition becomes less efficient at the later time points of HSV-1 infection. Consequently, HSV-1-induced early phase IFN-β production significantly decreased upon MLN4924 treatment and UBA3 deficiency. NF-κB inhibitor JSH-23 mimicked the effects of neddylation inhibition in the early phase of HSV-1 infection. Moreover, the effects of neddylation inhibition on HSV-1-induced early phase IFN-β production diminished in the presence of NF-κB inhibitor JSH-23. Thus, neddylation contributes to HSV-1-induced early phase IFN-β production through, at least partially, promoting NF-κB activation.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Zhenjie Ye
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China.,Laboratory of Snake Venom, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, P. R. China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Yunlu Xu
- Laboratory of Snake Venom, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, P. R. China
| | - Beifen Shen
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| |
Collapse
|
25
|
Uyangaa E, Choi JY, Ryu HW, Oh SR, Eo SK. Anti-herpes Activity of Vinegar-processed Daphne genkwa Flos Via Enhancement of Natural Killer Cell Activity. Immune Netw 2015; 15:91-9. [PMID: 25922598 PMCID: PMC4411514 DOI: 10.4110/in.2015.15.2.91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023] Open
Abstract
Herpes simplex virus (HSV) is a common causative agent of genital ulceration and can lead to subsequent neurological disease in some cases. Here, using a genital infection model, we tested the efficacy of vinegar-processed flos of Daphne genkwa (vp-genkwa) to modulate vaginal inflammation caused by HSV-1 infection. Our data revealed that treatment with optimal doses of vp-genkwa after, but not before, HSV-1 infection provided enhanced resistance against HSV-1 infection, as corroborated by reduced mortality and clinical signs. Consistent with these results, treatment with vp-genkwa after HSV-1 infection reduced viral replication in the vaginal tract. Furthermore, somewhat intriguingly, treatment of vp-genkwa after HSV-1 infection increased the frequency and absolute number of CD3-NK1.1+NKp46+ natural killer (NK) cells producing interferon (IFN)-γ and granyzme B, which indicates that vp-genkwa treatment induces the activation of NK cells. Supportively, secreted IFN-γ was detected at an increased level in vaginal lavages of mice treated with vp-genkwa after HSV-1 infection. These results indicate that enhanced resistance to HSV-1 infection by treatment with vp-genkwa is associated with NK cell activation. Therefore, our data provide a valuable insight into the use of vp-genkwa to control clinical severity in HSV infection through NK cell activation.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Specialized Campus, Chonbuk National University, Iksan 570-752, Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Specialized Campus, Chonbuk National University, Iksan 570-752, Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, KRIBB, Chungbuk 363-883, Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, KRIBB, Chungbuk 363-883, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Specialized Campus, Chonbuk National University, Iksan 570-752, Korea. ; Department of Bioactive Materials Sciences, Graduate School, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
26
|
Gaddipati S, Estrada K, Rao P, Jerome AD, Suvas S. IL-2/anti-IL-2 antibody complex treatment inhibits the development but not the progression of herpetic stromal keratitis. THE JOURNAL OF IMMUNOLOGY 2014; 194:273-82. [PMID: 25411200 DOI: 10.4049/jimmunol.1401285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The IL-2/anti-IL-2 Ab immunocomplex has recently been shown to expand the naturally occurring pool of CD4(+)Foxp3(+) regulatory T cells (Tregs). In this study, we show that administration of the IL-2/anti-IL-2 Ab immunocomplex to C57BL/6 mice, prior to corneal HSV-1 infection, significantly increased the pool of Foxp3(+) Tregs when measured at early time points postinfection. Increased numbers of Foxp3(+) Tregs on days 2 and 4 postinfection resulted in a marked reduction in the development of severe herpetic stromal keratitis (HSK). When compared with corneas from the control group, corneas from the immunocomplex-treated group showed a significant reduction in the amount of infectious virus on day 2 but not on day 4 postinfection. Reduced viral load was associated with a 2-fold increase in NK cell numbers in corneas from the immunocomplex-treated group of mice. Moreover, a dramatic reduction in the influx of CD4 T cells in inflamed corneas was determined on days 7 and 16 postinfection in the immunocomplex-treated group of infected mice. Immunocomplex treatment given on days 5, 6, and 7 postinfection significantly increased Foxp3(+) Tregs in draining lymph nodes and in the spleen but failed to reduce the severity of HSK. In terms of the influx of CD4 T cells and granulocytes into inflamed corneas, no significant differences were noted between both groups of mice on day 16 postinfection. Our findings demonstrate that increasing Foxp3(+) Tregs early but not late postinfection in secondary lymphoid tissues is more efficacious in controlling the severity of HSK.
Collapse
Affiliation(s)
- Subhash Gaddipati
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Kathleen Estrada
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Michigan State University College of Human Medicine, East Lansing, MI 48824
| | - Pushpa Rao
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Andrew David Jerome
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Susmit Suvas
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
27
|
Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol 2014; 11:672-87. [PMID: 25330794 DOI: 10.1038/nrurol.2014.285] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexually transmitted diseases (STDs) are caused by several pathogens, including bacteria, viruses and protozoa, and can induce male infertility through multiple pathophysiological mechanisms. Additionally, horizontal transmission of STD pathogens to sexual partners or vertical transmission to fetuses and neonates is possible. Chlamydia trachomatis, Ureaplasma spp., human papillomavirus, hepatitis B and hepatitis C viruses, HIV-1 and human cytomegalovirus have all been detected in semen from symptomatic and asymptomatic men with testicular, accessory gland and urethral infections. These pathogens are associated with poor sperm quality and decreased sperm concentration and motility. However, the effects of these STD agents on semen quality are unclear, as are the effects of herpes simplex virus type 1 and type 2, Neisseria gonorrhoeae, Mycoplasma spp., Treponema pallidum and Trichomonas vaginalis, because few studies have evaluated the influence of these pathogens on male infertility. Chronic or inadequately treated infections seem to be more relevant to infertility than acute infections are, although in many cases the exact aetiological agents remain unknown.
Collapse
|
28
|
Rolinski J, Hus I. Immunological aspects of acute and recurrent herpes simplex keratitis. J Immunol Res 2014; 2014:513560. [PMID: 25276842 PMCID: PMC4170747 DOI: 10.1155/2014/513560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex keratitis (HSK) belongs to the major causes of visual morbidity worldwide and available methods of treatment remain unsatisfactory. Primary infection occurs usually early in life and is often asymptomatic. Chronic visual impairment and visual loss are caused by corneal scaring, thinning, and vascularization connected with recurrent HSV infections. The pathogenesis of herpetic keratitis is complex and is still not fully understood. According to the current knowledge, corneal scarring and vascularization are the result of chronic inflammatory reaction against HSV antigens. In this review we discuss the role of innate and adaptive immunities in acute and recurrent HSV ocular infection and present the potential future targets for novel therapeutical options based on immune interventions.
Collapse
Affiliation(s)
- Jacek Rolinski
- Chair and Department of Clinical Immunology, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Iwona Hus
- Department of Clinical Transplantology, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| |
Collapse
|
29
|
Uyangaa E, Patil AM, Eo SK. Prophylactic and therapeutic modulation of innate and adaptive immunity against mucosal infection of herpes simplex virus. Immune Netw 2014; 14:187-200. [PMID: 25177251 PMCID: PMC4148489 DOI: 10.4110/in.2014.14.4.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/01/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4(+) Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
30
|
Intrinsic innate immunity fails to control herpes simplex virus and vesicular stomatitis virus replication in sensory neurons and fibroblasts. J Virol 2014; 88:9991-10001. [PMID: 24942587 DOI: 10.1128/jvi.01462-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-β pretreatment with STAT1 nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in γ34.5, while wild-type HSV-1 replication was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-β. Taken together, these data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-β, and HSV-1 combats this response through γ34.5. These results further our understanding of the antiviral response of neurons and highlight the importance of paracrine IFN-β signaling in establishing an antiviral state. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict virus replication was unaffected by the presence or absence of innate immunity. In contrast, neurons were able to mount a robust antiviral response when provided with beta interferon, a molecule that strongly stimulates innate immunity, and that HSV-1 can combat this response through the γ34.5 viral gene. Our results have important implications for understanding how the nervous system defends itself against virus infections.
Collapse
|
31
|
Bryant-Hudson K, Conrady CD, Carr DJJ. Type I interferon and lymphangiogenesis in the HSV-1 infected cornea - are they beneficial to the host? Prog Retin Eye Res 2013; 36:281-91. [PMID: 23876483 DOI: 10.1016/j.preteyeres.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that can result in significant human morbidity. Within the cornea, it was thought the initial recognition of the pathogen was through Toll-like receptors expressed on/in resident cells that then elicit pro-inflammatory cytokine production, activation of anti-viral pathways, and recruitment of leukocytes. However, our lab has uncovered a novel, TLR-independent innate sensor that supersedes TLR induction of anti-viral pathways following HSV-1 infection. In addition, we have also found HSV-1 induces the genesis of lymphatic vessels into the cornea proper by a mechanism independent of TLRs and unique in the field of neovascularization. This review will focus on these two innate immune events during acute HSV-1 infection of the cornea.
Collapse
Affiliation(s)
- Katie Bryant-Hudson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
32
|
Murphy AA, Rosato PC, Parker ZM, Khalenkov A, Leib DA. Synergistic control of herpes simplex virus pathogenesis by IRF-3, and IRF-7 revealed through non-invasive bioluminescence imaging. Virology 2013; 444:71-9. [PMID: 23777662 DOI: 10.1016/j.virol.2013.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Interferon regulatory factors IRF-3 and IRF-7 are central to the establishment of the innate antiviral response. This study examines HSV-1 pathogenesis in IRF-3(-/-), IRF-7(-/-) and double-deleted IRF3/7(-/-) (DKO) mice. Bioluminescence imaging of infection revealed that DKO mice developed visceral infection following corneal inoculation, along with increased viral burdens in all tissues relative to single knockout mice. While all DKO mice synchronously reached endpoint criteria 5 days post infection, the IRF-7(-/-) mice survived longer, indicating that although IRF-7 is dominant, IRF-3 also plays a role in controlling disease. Higher levels of systemic pro-inflammatory cytokines were found in IRF7(-/-) and DKO mice relative to wild-type and IRF-3(-/-) mice, and IL-6 and G-CSF, indicative of sepsis, were increased in the DKO mice relative to wild-type or single-knockout mice. In addition to controlling viral replication, IRF-3 and -7 therefore play coordinating roles in modulation of inflammation during HSV infection.
Collapse
Affiliation(s)
- Aisling A Murphy
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, HB 7556, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
33
|
Absence of CXCL10 aggravates herpes stromal keratitis with reduced primary neutrophil influx in mice. J Virol 2013; 87:8502-10. [PMID: 23720717 DOI: 10.1128/jvi.01198-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) replication initiates inflammation and angiogenesis responses in the cornea to result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced vision impairment. Chemokines are secreted to modulate HSK by recruiting leukocytes, which affect virus growth, and by influencing angiogenesis. The present study used a murine infection model to investigate the significance of the chemokine CXC chemokine ligand 10 (CXCL10; gamma interferon-inducible protein 10 [IP-10]) in HSK. Here, we show that HSV-1 infection of the cornea induced CXCL10 protein expression in epithelial cells. The corneas of mice with a targeted disruption of the gene encoding CXCL10 displayed decreases in levels of neutrophil-attracting cytokine (interleukin-6), primary neutrophil influx, and viral clearance 2 or 3 days postinfection. Subsequently, absence of CXCL10 aggravated HSK with elevated levels of interleukin-6, chemokines for CD4(+) T cells and/or neutrophils (macrophage inflammatory protein-1α and macrophage inflammatory protein-2), angiogenic factor (vascular endothelial growth factor A), and secondary neutrophil influx, as well as infiltration of CD4(+) T cells to exacerbate opacity and angiogenesis in the cornea at 14 and up to 28 days postinfection. Our results collectively show that endogenous CXCL10 contributes to recruit the primary neutrophil influx and to affect the expression of cytokines, chemokines, and angiogenic factors as well as to reduce the viral titer and HSK severity.
Collapse
|
34
|
Abstract
Herpes simplex virus-1 (HSV-1) infects the majority of the world's population. These infections are often asymptomatic, but ocular HSV-1 infections cause multiple pathologies with perhaps the most destructive being herpes stromal keratitis (HSK). HSK lesions, which are immunoinflammatory in nature, can recur throughout life and often cause progressive corneal scaring resulting in visual impairment. Current treatment involves broad local immunosuppression with topical steroids along with antiviral coverage. Unfortunately, the immunopathologic mechanisms defined in animal models of HSK have not yet translated into improved therapy. Herein, we review the clinical epidemiology and pathology of the disease and summarize the large amount of basic research regarding the immunopathology of HSK. We examine the role of the innate and adaptive immune system in the clearance of virus and the destruction of the normal corneal architecture that is typical of HSK. Our goal is to define current knowledge of the pathogenic mechanisms and recurrent nature of HSK and identify areas that require further study.
Collapse
|
35
|
Conrady CD, Zheng M, Stone DU, Carr DJJ. CD8+ T cells suppress viral replication in the cornea but contribute to VEGF-C-induced lymphatic vessel genesis. THE JOURNAL OF IMMUNOLOGY 2012; 189:425-32. [PMID: 22649204 DOI: 10.4049/jimmunol.1200063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HSV-1 is the leading cause of infectious corneal blindness in the industrialized world. CD4(+) T cells are thought to be the major leukocyte population mediating immunity to HSV-1 in the cornea as well as the likely source of immunopathology that reduces visual acuity. However, the role of CD8(+) T cells in immune surveillance of the cornea is unclear. Thus, we sought to evaluate the role of CD8(+) T cells in ocular immunity using transgenic mice in which >98% of CD8(+) T cells are specific for the immunodominant HSV-1 epitope (gBT-I.1). We found a significant reduction in virus, elevation in HSV-specific CD8(+) T cell influx, and more CD8(+) T cells expressing CXCR3 in the cornea of transgenic mice compared with those in the cornea of wild-type controls yet similar acute corneal pathology. However, by day 30 postinfection, wild-type mice had drastically more blood and lymphatic vessel projections into the cornea compared with gBT-I.1 mice, in which only lymphatic vessel growth in response to VEGF-C could be appreciated. Taken together, these results show that CD8(+) T cells are required to eliminate virus more efficiently from the cornea but play a minimal role in immunopathology as a source of VEGF-C.
Collapse
Affiliation(s)
- Christopher D Conrady
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
36
|
Monavari SH, Vaziri MS, Khalili M, Shamsi-Shahrabadi M, Keyvani H, Mollaei H, Fazlalipour M. Asymptomatic seminal infection of herpes simplex virus: impact on male infertility. J Biomed Res 2012; 27:56-61. [PMID: 23554795 PMCID: PMC3596154 DOI: 10.7555/jbr.27.20110139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/04/2012] [Accepted: 02/04/2012] [Indexed: 11/03/2022] Open
Abstract
In more than half of infertile men, the cause of their infertility is unknown. Several studies revealed the role of viral infections in male infertility. The aim of the present study was to determine the prevalence of herpes simplex virus-1 (HSV-1) and HSV-2 in semen from asymptomatic infertile male patients, and its association with altered semen parameters. A total of 70 semen samples were collected from infertile men who attended the Research and Clinical Center for Infertility in Yazd, Iran. Semen analysis and diagnostic real-time PCR using specific primers and probes for HSV-1 and HSV-2 DNA were performed. Comparison of semen parameters between virally infected and non-infected samples were performed with independent t-test and Mann-Whitney test. Semen analysis showed that infertile men fell into two groups, the male factor group and the unexplained group. HSV-1 and HSV-2 DNA was detected in 16 (22.9%) and 10 (14.3%) of 70 semen samples, respectively. All HSV-positive samples had abnormal semen parameters (the male factor group). Although HSV infection was not associated with sperm motility and morphological defects, it was correlated with lower sperm count in the seminal fluid. The findings suggest that asymptomatic seminal infection of HSV plays an important role in male infertility by adversely affecting sperm count.
Collapse
Affiliation(s)
- Seyed Hamidreza Monavari
- Department of Virology and Anti-Microbial Resistant Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Toll-like receptors (TLRs) are innate sentinels required for clearance of bacterial and fungal infections of the cornea, but their role in viral immunity is currently unknown. We report that TLR signaling is expendable in herpes simplex virus (HSV)-1 containment as depicted by plaque assays of knockout mice (MyD88(-/-), Trif(-/-) and MyD88(-/-) Trif(-/-) double knockout) resembling wild-type controls. To identify the key sentinel in viral recognition of the cornea, in vivo knockdown of the DNA sensor IFI-16/p204 in the corneal epithelium was performed and resulted in a loss of IFN-regulatory factor-3 (IRF-3) nuclear translocation, interferon-α production, and viral containment. The sensor seems to have a similar function in other HSV clinically relevant sites such as the vaginal mucosa in which a loss of p204/IFI-16 results in significantly more HSV-2 shedding. Thus, we have identified an IRF-3-dependent, IRF-7- and TLR-independent innate sensor responsible for HSV containment at the site of acute infection.
Collapse
|