1
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. Neurobiol Dis 2024; 200:106643. [PMID: 39173846 PMCID: PMC11452906 DOI: 10.1016/j.nbd.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Down syndrome (DS) is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n = 29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n = 29) and developmental-matched (n = 58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and developmental-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
Affiliation(s)
- McKena Geiger
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sophie R Hurewitz
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Katherine Pawlowski
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chang P, Pérez-González M, Constable J, Bush D, Cleverley K, Tybulewicz VLJ, Fisher EMC, Walker MC. Neuronal oscillations in cognition: Down syndrome as a model of mouse to human translation. Neuroscientist 2024:10738584241271414. [PMID: 39316548 DOI: 10.1177/10738584241271414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Down syndrome (DS), a prevalent cognitive disorder resulting from trisomy of human chromosome 21 (Hsa21), poses a significant global health concern. Affecting approximately 1 in 800 live births worldwide, DS is the leading genetic cause of intellectual disability and a major predisposing factor for early-onset Alzheimer's dementia. The estimated global population of individuals with DS is 6 million, with increasing prevalence due to advances in DS health care. Global efforts are dedicated to unraveling the mechanisms behind the varied clinical outcomes in DS. Recent studies on DS mouse models reveal disrupted neuronal circuits, providing insights into DS pathologies. Yet, translating these findings to humans faces challenges due to limited systematic electrophysiological analyses directly comparing human and mouse. Additionally, disparities in experimental procedures between the two species pose hurdles to successful translation. This review provides a concise overview of neuronal oscillations in human and rodent cognition. Focusing on recent DS mouse model studies, we highlight disruptions in associated brain function. We discuss various electrophysiological paradigms and suggest avenues for exploring molecular dysfunctions contributing to DS-related cognitive impairments. Deciphering neuronal oscillation intricacies holds promise for targeted therapies to alleviate cognitive disabilities in DS individuals.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | | | - Jessica Constable
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology, and Pharmacology, UCL, London, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| |
Collapse
|
3
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306729. [PMID: 38746335 PMCID: PMC11092732 DOI: 10.1101/2024.05.01.24306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Down syndrome is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n=29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n=29) and cognitive-matched (n=58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and cognitive-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
|
4
|
Abukhaled Y, Hatab K, Awadhalla M, Hamdan H. Understanding the genetic mechanisms and cognitive impairments in Down syndrome: towards a holistic approach. J Neurol 2024; 271:87-104. [PMID: 37561187 PMCID: PMC10769995 DOI: 10.1007/s00415-023-11890-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The most common genetic cause of intellectual disability is Down syndrome (DS), trisomy 21. It commonly results from three copies of human chromosome 21 (HC21). There are no mutations or deletions involved in DS. Instead, the phenotype is caused by altered transcription of the genes on HC21. These transcriptional variations are responsible for a myriad of symptoms affecting every organ system. A very debilitating aspect of DS is intellectual disability (ID). Although tremendous advances have been made to try and understand the underlying mechanisms of ID, there is a lack of a unified, holistic view to defining the cause and managing the cognitive impairments. In this literature review, we discuss the mechanisms of neuronal over-inhibition, abnormal morphology, and other genetic factors in contributing to the development of ID in DS patients and to gain a holistic understanding of ID in DS patients. We also highlight potential therapeutic approaches to improve the quality of life of DS patients.
Collapse
Affiliation(s)
- Yara Abukhaled
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Hatab
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Awadhalla
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Ishihara K, Kawashita E, Akiba S. Bio-Metal Dyshomeostasis-Associated Acceleration of Aging and Cognitive Decline in Down Syndrome. Biol Pharm Bull 2023; 46:1169-1175. [PMID: 37661395 DOI: 10.1248/bpb.b23-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| |
Collapse
|
6
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Song Y, Lally PJ, Yanez Lopez M, Oeltzschner G, Nebel MB, Gagoski B, Kecskemeti S, Hui SCN, Zöllner HJ, Shukla D, Arichi T, De Vita E, Yedavalli V, Thayyil S, Fallin D, Dean DC, Grant PE, Wisnowski JL, Edden RAE. Edited magnetic resonance spectroscopy in the neonatal brain. Neuroradiology 2022; 64:217-232. [PMID: 34654960 PMCID: PMC8887832 DOI: 10.1007/s00234-021-02821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
J-difference-edited spectroscopy is a valuable approach for the detection of low-concentration metabolites with magnetic resonance spectroscopy (MRS). Currently, few edited MRS studies are performed in neonates due to suboptimal signal-to-noise ratio, relatively long acquisition times, and vulnerability to motion artifacts. Nonetheless, the technique presents an exciting opportunity in pediatric imaging research to study rapid maturational changes of neurotransmitter systems and other metabolic systems in early postnatal life. Studying these metabolic processes is vital to understanding the widespread and rapid structural and functional changes that occur in the first years of life. The overarching goal of this review is to provide an introduction to edited MRS for neonates, including the current state-of-the-art in editing methods and editable metabolites, as well as to review the current literature applying edited MRS to the neonatal brain. Existing challenges and future opportunities, including the lack of age-specific reference data, are also discussed.
Collapse
Affiliation(s)
- Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter J Lally
- Department of Brain Sciences, Imperial College London, London, UK
| | - Maria Yanez Lopez
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Borjan Gagoski
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Deepika Shukla
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Tomoki Arichi
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Enrico De Vita
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, St Thomas's Hospital, Westminster Bridge Road, Lambeth Wing, 3rd Floor, London, SE1 7EH, UK
| | - Vivek Yedavalli
- Division of Neuroradiology, Park 367G, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. B-112 D, Baltimore, MD, 21287, USA
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Douglas C Dean
- Waisman Center, University of WI-Madison, Madison, WI, 53705, USA.,Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of WI-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Medical Physics, University of WI-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - P Ellen Grant
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica L Wisnowski
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Radiology and Fetal and Neonatal Institute, CHLA Division of Neonatology, Department of Pediatrics, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, CA, 90033, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA. .,Division of Neuroradiology, Park 367G, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. B-112 D, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Patkee PA, Baburamani AA, Long KR, Dimitrova R, Ciarrusta J, Allsop J, Hughes E, Kangas J, McAlonan GM, Rutherford MA, De Vita E. Neurometabolite mapping highlights elevated myo-inositol profiles within the developing brain in down syndrome. Neurobiol Dis 2021; 153:105316. [PMID: 33711492 PMCID: PMC8039898 DOI: 10.1016/j.nbd.2021.105316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.
Collapse
Affiliation(s)
- Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Ana A Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Joanna Allsop
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Johanna Kangas
- Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Enrico De Vita
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
9
|
Fonseca LM, Mattar GP, Haddad GG, Burduli E, McPherson SM, Guilhoto LMDFF, Yassuda MS, Busatto GF, Bottino CMDC, Hoexter MQ, Chaytor NS. Neuropsychiatric Symptoms of Alzheimer's Disease in Down Syndrome and Its Impact on Caregiver Distress. J Alzheimers Dis 2021; 81:137-154. [PMID: 33749644 PMCID: PMC9789481 DOI: 10.3233/jad-201009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are non-cognitive manifestations common to dementia and other medical conditions, with important consequences for the patient, caregivers, and society. Studies investigating NPS in individuals with Down syndrome (DS) and dementia are scarce. OBJECTIVE Characterize NPS and caregiver distress among adults with DS using the Neuropsychiatric Inventory (NPI). METHODS We evaluated 92 individuals with DS (≥30 years of age), divided by clinical diagnosis: stable cognition, prodromal dementia, and AD. Diagnosis was determined by a psychiatrist using the Cambridge Examination for Mental Disorders of Older People with Down's Syndrome and Others with Intellectual Disabilities (CAMDEX-DS). NPS and caregiver distress were evaluated by an independent psychiatrist using the NPI, and participants underwent a neuropsychological assessment with Cambridge Cognitive Examination (CAMCOG-DS). RESULTS Symptom severity differed between-groups for delusion, agitation, apathy, aberrant motor behavior, nighttime behavior disturbance, and total NPI scores, with NPS total score being found to be a predictor of AD in comparison to stable cognition (OR for one-point increase in the NPI = 1.342, p = 0.012). Agitation, apathy, nighttime behavior disturbances, and total NPI were associated with CAMCOG-DS, and 62% of caregivers of individuals with AD reported severe distress related to NPS. Caregiver distress was most impacted by symptoms of apathy followed by nighttime behavior, appetite/eating abnormalities, anxiety, irritability, disinhibition, and depression (R2 = 0.627, F(15,76) = 8.510, p < 0.001). CONCLUSION NPS are frequent and severe in individuals with DS and AD, contributing to caregiver distress. NPS in DS must be considered of critical relevance demanding management and treatment. Further studies are warranted to understand the biological underpinnings of such symptoms.
Collapse
Affiliation(s)
- Luciana Mascarenhas Fonseca
- Department of Medical Education and Clinical Science, Washington State University, Spokane, WA, USA
- Programa Terceira Idade PROTER, Old Age Research Group, Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Guilherme Prado Mattar
- Programa Terceira Idade PROTER, Old Age Research Group, Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Glenda Guerra Haddad
- Programa Terceira Idade PROTER, Old Age Research Group, Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Sterling M. McPherson
- Department of Medical Education and Clinical Science, Washington State University, Spokane, WA, USA
| | | | | | - Geraldo Filho Busatto
- Programa Terceira Idade PROTER, Old Age Research Group, Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratorio de Neuroimagem em Psiquiatria (LIM21, Laboratory of Psychiatric Neuroimaging), Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Cassio Machado de Campos Bottino
- Programa Terceira Idade PROTER, Old Age Research Group, Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcelo Queiroz Hoexter
- Projeto Transtornos do Espectro Obsessivo-Compulsivo PROTOC, Obsessive-Compulsive Spectrum Disorders Program, Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Naomi Sage Chaytor
- Department of Medical Education and Clinical Science, Washington State University, Spokane, WA, USA
| |
Collapse
|
10
|
Lee SE, Duran-Martinez M, Khantsis S, Bianchi DW, Guedj F. Challenges and Opportunities for Translation of Therapies to Improve Cognition in Down Syndrome. Trends Mol Med 2019; 26:150-169. [PMID: 31706840 DOI: 10.1016/j.molmed.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
While preclinical studies have reported improvement of behavioral deficits in the Ts65Dn mouse model of Down syndrome (DS), translation to human clinical trials to improve cognition in individuals with DS has had a poor success record. Timing of the intervention, choice of animal models, strategy for drug selection, and lack of translational endpoints between animals and humans contributed to prior failures of human clinical trials. Here, we focus on in vitro cell models from humans with DS to identify the molecular mechanisms underlying the brain phenotype associated with DS. We emphasize the importance of using these cell models to screen for therapeutic molecules, followed by validating them in the most suitable animal models prior to initiating human clinical trials.
Collapse
Affiliation(s)
- Sarah E Lee
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Monica Duran-Martinez
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabina Khantsis
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana W Bianchi
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - Faycal Guedj
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Rueda N, Flórez J, Dierssen M, Martínez-Cué C. Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:245-268. [PMID: 32057309 DOI: 10.1016/bs.pbr.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are challenging to study in the laboratory, and despite a large investment, few novel treatments have been developed in the last decade. While animal models have been valuable in elucidating disease mechanisms and in providing insights into the function of specific genes, the predictive validity of preclinical models to test potential therapies has been questioned. In the last two decades, diverse new murine models of Down syndrome (DS) have been developed and numerous studies have demonstrated neurobiological alterations that could be responsible for the cognitive and behavioral phenotypes found in this syndrome. In many cases, similar alterations were found in murine models and in individuals with DS, although several phenotypes shown in animals have yet not been confirmed in the human condition. Some of the neurobiological alterations observed in mice have been proposed to account for their changes in cognition and behavior, and have received special attention because of being putative therapeutic targets. Those include increased oxidative stress, altered neurogenesis, overexpression of the Dyrk1A gene, GABA-mediated overinhibition and Alzheimer's disease-related neurodegeneration. Subsequently, different laboratories have tested the efficacy of pharmacotherapies targeting these alterations. Unfortunately, animal models are limited in their ability to mimic the extremely complex process of human neurodevelopment and neuropathology. Therefore, the safety and efficacy identified in animal studies are not always translated to humans, and most of the drugs tested have not demonstrated any positive effect or very limited efficacy in clinical trials. Despite their limitations, though, animal trials give us extremely valuable information for developing and testing drugs for human use that cannot be obtained from molecular or cellular experiments alone. This chapter reviews some of these therapeutic approaches and discusses some reasons that could account for the discrepancy between the findings in mouse models of DS and in humans, including: (i) the incomplete resemble of the genetic alterations of available mouse models of DS and human trisomy 21, (ii) the lack of evidence that some of the phenotypic alterations found in mice (e.g., GABA-mediated overinhibition, and alterations in adult neurogenesis) are also present in DS individuals, and (iii) the inaccuracy and/or inadequacy of the methods used in clinical trials to detect changes in the cognitive and behavioral functions of people with DS. Despite the shortcomings of animal models, animal experimentation remains an invaluable tool in developing drugs. Thus, we will also discuss how to increase predictive validity of mouse models.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
12
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
13
|
Head E, Powell DK, Schmitt FA. Metabolic and Vascular Imaging Biomarkers in Down Syndrome Provide Unique Insights Into Brain Aging and Alzheimer Disease Pathogenesis. Front Aging Neurosci 2018; 10:191. [PMID: 29977201 PMCID: PMC6021507 DOI: 10.3389/fnagi.2018.00191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD). Neuropathology consistent with AD is present by 40 years of age and dementia may develop up to a decade later. In this review, we describe metabolic and vascular neuroimaging studies in DS that suggest these functional changes are a key feature of aging, linked to cognitive decline and AD in this vulnerable cohort. FDG-PET imaging in DS suggests systematic reductions in glucose metabolism in posterior cingulate and parietotemporal cortex. Magentic resonance spectroscopy studies show consistent decreases in neuronal health and increased myoinositol, suggesting inflammation. There are few vascular imaging studies in DS suggesting a gap in our knowledge. Future studies would benefit from longitudinal measures and combining various imaging approaches to identify early signs of dementia in DS that may be amenable to intervention.
Collapse
Affiliation(s)
- Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - David K Powell
- Magnetic Resonance Imaging and Spectroscopy Center, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Frederick A Schmitt
- Department of Neurology, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Zorrilla de San Martin J, Delabar JM, Bacci A, Potier MC. GABAergic over-inhibition, a promising hypothesis for cognitive deficits in Down syndrome. Free Radic Biol Med 2018; 114:33-39. [PMID: 28993272 DOI: 10.1016/j.freeradbiomed.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022]
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability. It is also a model human disease for exploring consequences of gene dosage imbalance on complex phenotypes. Learning and memory impairments linked to intellectual disabilities in DS could result from synaptic plasticity deficits and excitatory-inhibitory alterations leading to changes in neuronal circuitry in the brain of affected individuals. Increasing number of studies in mouse and cellular models converge towards the assumption that excitatory-inhibitory imbalance occurs in DS, likely early during development. Thus increased inhibition appears to be a common trend that could explain synaptic and circuit disorganization. Interestingly using several potent pharmacological tools, preclinical studies strongly demonstrated that cognitive deficits could be restored in mouse models of DS. Clinical trials have not yet provided robust data for therapeutic application and additional studies are needed. Here we review the literature and our own published work emphasizing the over-inhibition hypothesis in DS and their links with gene dosage imbalance paving the way for future basic and clinical research.
Collapse
Affiliation(s)
- Javier Zorrilla de San Martin
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Maurice Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alberto Bacci
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Marie-Claude Potier
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| |
Collapse
|
15
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|
16
|
Lin AL, Powell D, Caban-Holt A, Jicha G, Robertson W, Gold BT, Davis R, Abner E, Wilcock DM, Schmitt FA, Head E. (1)H-MRS metabolites in adults with Down syndrome: Effects of dementia. NEUROIMAGE-CLINICAL 2016; 11:728-735. [PMID: 27330972 PMCID: PMC4908308 DOI: 10.1016/j.nicl.2016.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
To determine if proton magnetic resonance spectroscopy (1H-MRS) detect differences in dementia status in adults with Down syndrome (DS), we used 1H-MRS to measure neuronal and glial metabolites in the posterior cingulate cortex in 22 adults with DS and in 15 age- and gender-matched healthy controls. We evaluated associations between 1H-MRS results and cognition among DS participants. Neuronal biomarkers, including N-acetylaspartate (NAA) and glutamate-glutamine complex (Glx), were significantly lower in DS patients with Alzheimer's should probably be changed to Alzheimer (without ' or s) through ms as per the new naming standard disease (DSAD) when compared to non-demented DS (DS) and healthy controls (CTL). Neuronal biomarkers therefore appear to reflect dementia status in DS. In contrast, all DS participants had significantly higher myo-inositol (MI), a putative glial biomarker, compared to CTL. Our data indicate that there may be an overall higher glial inflammatory component in DS compared to CTL prior to and possibly independent of developing dementia. When computing the NAA to MI ratio, we found that presence or absence of dementia could be distinguished in DS. NAA, Glx, and NAA/MI in all DS participants were correlated with scores from the Brief Praxis Test and the Severe Impairment Battery. 1H-MRS may be a useful diagnostic tool in future longitudinal studies to measure AD progression in persons with DS. In particular, NAA and the NAA/MI ratio is sensitive to the functional status of adults with DS, including prior to dementia. 1H-MRS was used to compare demented and nondemented adults with Down syndrome. Neuronal biomarkers were lowest in demented adults with Down syndrome. Glial biomarkers including myoinositol were higher in demented adults with DS. Neuronal and glial biomarkers were correlated with cognition in Down syndrome.
Collapse
Affiliation(s)
- A-L Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - D Powell
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - A Caban-Holt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - G Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - W Robertson
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - B T Gold
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - R Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - E Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - D M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - F A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - E Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Plasma Amyloid Beta 1-42 and DNA Methylation Pattern Predict Accelerated Aging in Young Subjects with Down Syndrome. Neuromolecular Med 2016; 18:593-601. [DOI: 10.1007/s12017-016-8413-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/14/2016] [Indexed: 01/17/2023]
|
18
|
Araujo BHS, Torres LB, Guilhoto LMFF. Cerebal overinhibition could be the basis for the high prevalence of epilepsy in persons with Down syndrome. Epilepsy Behav 2015; 53:120-5. [PMID: 26558714 DOI: 10.1016/j.yebeh.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023]
Abstract
Down syndrome (DS) is the most common cause of genetic intellectual disability, and the trisomy 21 is associated with more than 80 clinical traits, including higher risk for epilepsy. Several hypotheses have been put forward to explain the mechanisms underlying increased seizure susceptibility in DS: inherent structural brain abnormalities, abnormal cortical lamination, disruption of normal dendritic morphology, and underdeveloped synaptic profiles. A deficiency or loss of GABA inhibition is hypothesized to be one of the main alterations related to the epileptogenic process. Paradoxically, enhanced GABA inhibition has also been reported to promote seizures. One major functional abnormality observed in the brains of individuals and mouse models with DS appears to be an imbalance between excitatory and inhibitory neurotransmission, with excessive inhibitory brain function. This review discusses the GABAergic system in the human DS brain and the possible implication of the GABAergic network circuit in the epileptogenic process in individuals where the pathogenetic basis for epilepsy is unknown.
Collapse
Affiliation(s)
- Bruno Henrique Silva Araujo
- Universidade Federal de São Paulo - Unifesp/EPM, Department of Neurology and Neurosurgery - Laboratório de Neurociências, São Paulo, SP, Brazil.
| | - Laila Brito Torres
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Centro Sul Brasileiro de Pesquisa, Extensão e Pós-Graduação, CENSUPEG, Joinville, SC, Brazil
| | - Laura Maria F F Guilhoto
- Universidade Federal de São Paulo - Unifesp/EPM, Department of Neurology and Neurosurgery, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Malak R, Kostiukow A, Krawczyk-Wasielewska A, Mojs E, Samborski W. Delays in Motor Development in Children with Down Syndrome. Med Sci Monit 2015; 21:1904-10. [PMID: 26132100 PMCID: PMC4500597 DOI: 10.12659/msm.893377] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Children with Down syndrome (DS) present with delays in motor development. The reduced size of the cerebrum, brain maturation disorders, and pathophysiological processes lead to motor development delay. The aim of this study was to examine the gross motor function and estimate what motor abilities are significantly delayed in children with Down syndrome even if they attend physical therapy sessions. Another purpose of the study was to assess the functional balance. Material/Methods The study group consisted of 79 children with DS (42 boys, 37 girls), average age 6 years and 3 months ±4 years and 6 months. Participants were divided into 3 groups according to (i) age: <3 years old, 3–6 years old, and >6 years old; and (ii) motor impairment scale: mild (SNR 1), moderate (SNR 2), and severe (SNR 3). Children were assessed using the Gross Motor Function Measure-88 (GMFM-88) and Pediatric Balance Scale (PBS). Results None of the assessed children developed all the functions included in GMFM-88. The standing position was achieved at the specified age by 10% of children in the first age group (<3 years old) and 95% of children aged 3–6 years. Similarly, the walking ability was performed by 10% of children under 3 years old and by 95% of children aged 3–6 years. The median score of PBS was 50 points (min. 34 p. – max. 56 p.). There was a statistically significant correlation between PBS scores and GMFM-88 scores, r=0.7; p<0.0001, and between balance scores and GMFM – 88 E (walking, running, jumping) (r=0.64; p<0.0001). Conclusions Motor development, especially standing position and walking ability, is delayed in children with Down syndrome. Balance and motor functions are correlated with each other, so both aspects of development should be consider together in physical therapy of children with Down syndrome.
Collapse
Affiliation(s)
- Roksana Malak
- Department of Rheumatology and Rehabilitation, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Kostiukow
- Department of Rheumatology and Rehabilitation, Poznań University of Medical Science, Poznań, Poland
| | | | - Ewa Mojs
- Department of Clinical Psychology, Poznań University of Medical Sciences, Poznań, Poland
| | - Włodzimierz Samborski
- Department of Rheumatology and Rehabilitation, Poznań University of Medical Science, Poznań, Poland
| |
Collapse
|
20
|
Ribeiro MJ, Violante IR, Bernardino I, Edden RAE, Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex 2015; 64:194-208. [PMID: 25437375 PMCID: PMC4777301 DOI: 10.1016/j.cortex.2014.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and region dependent manner.
Collapse
Affiliation(s)
- Maria J Ribeiro
- IBILI - Faculty of Medicine, University of Coimbra, Portugal.
| | - Inês R Violante
- IBILI - Faculty of Medicine, University of Coimbra, Portugal.
| | - Inês Bernardino
- IBILI - Faculty of Medicine, University of Coimbra, Portugal
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | | |
Collapse
|
21
|
Tan GM, Beacher F, Daly E, Horder J, Prasher V, Hanney ML, Morris R, Lovestone S, Murphy KC, Simmons A, Murphy DG. Hippocampal glutamate-glutamine (Glx) in adults with Down syndrome: a preliminary study using in vivo proton magnetic resonance spectroscopy ((1)H MRS). J Neurodev Disord 2014; 6:42. [PMID: 25937842 PMCID: PMC4416419 DOI: 10.1186/1866-1955-6-42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Down syndrome (DS), or trisomy 21, is one of the most common autosomal mutations. People with DS have intellectual disability (ID) and are at significantly increased risk of developing Alzheimer's disease (AD). The biological associates of both ID and AD in DS are poorly understood, but glutamate has been proposed to play a key role. In non-DS populations, glutamate is essential to learning and memory and glutamate-mediated excitotoxicity has been implicated in AD. However, the concentration of hippocampal glutamate in DS individuals with and without dementia has not previously been directly investigated. Proton magnetic resonance spectroscopy ((1)H MRS) can be used to measure in vivo the concentrations of glutamate-glutamine (Glx). The objective of the current study was to examine the hippocampal Glx concentration in non-demented DS (DS-) and demented DS (DS+) individuals. METHODS We examined 46 adults with DS (35 without dementia and 11 with dementia) and 39 healthy controls (HC) using (1)H MRS and measured their hippocampal Glx concentrations. RESULTS There was no significant difference in the hippocampal Glx concentration between DS+ and DS-, or between either of the DS groups and the healthy controls. Also, within DS, there was no significant correlation between hippocampal Glx concentration and measures of overall cognitive ability. Last, a sample size calculation based on the effect sizes from this study showed that it would have required 6,257 participants to provide 80% power to detect a significant difference between the groups which would indicate that there is a very low likelihood of a type 2 error accounting for the findings in this study. CONCLUSIONS Individuals with DS do not have clinically detectable differences in hippocampal Glx concentration. Other pathophysiological processes likely account for ID and AD in people with DS.
Collapse
Affiliation(s)
- Giles My Tan
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK ; Southern Health NHS Foundation Trust, North Hampshire Community Learning Disability Service, Winchester, Hampshire UK
| | - Felix Beacher
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Eileen Daly
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Jamie Horder
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK
| | | | - Maria-Luisa Hanney
- Northumberland Tyne and Wear NHS Foundation Trust, Northgate Hospital, Morpeth, Northumberland UK
| | - Robin Morris
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - Simon Lovestone
- Department of Old Age Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK ; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation Trust, London, UK
| | - Declan Gm Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK ; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Santin MD, Valabrègue R, Rivals I, Pénager R, Paquin R, Dauphinot L, Albac C, Delatour B, Potier MC. In vivo 1H MRS study in microlitre voxels in the hippocampus of a mouse model of Down syndrome at 11.7 T. NMR IN BIOMEDICINE 2014; 27:1143-50. [PMID: 25088227 DOI: 10.1002/nbm.3155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 05/05/2023]
Abstract
In this article, we report in vivo (1)H MRS performed in 1.8-μL voxels in a mouse model of Down syndrome (DS). To characterise the excitation-inhibition imbalance observed in DS, metabolite concentrations in the hippocampi of adult Ts65Dn mice, which recapitulate features of DS, were compared with those of their euploid littermates at a voxel 42-fold smaller than in a previously published study. Quantification of the metabolites was performed using a linear combination model. We detected 16 metabolites in the right and left hippocampi. Principal component analysis revealed that the absolute concentrations of the 16 detected metabolites could differentiate between Ts65Dn and euploid hippocampi. Although measurements in the left and right hippocampi were highly correlated, the concentration of individual metabolites was sometimes significantly different in the left and right structures. Thus, bilateral values from Ts65Dn and euploid mice were further compared with Hotelling's test. The level of glutamine was found to be significantly lower, whereas myo-inositol was significantly higher, in the hippocampi of Ts65Dn relative to euploid mice. However, γ-aminobutyric acid (GABA) and glutamate levels remained similar between the groups. Thus, the excitation-inhibition imbalance described in DS does not appear to be related to a radical change in the levels of either GABA or glutamate in the hippocampus. In conclusion, microliter MRS appears to be a valuable tool to detect changes associated with DS, which may be useful in investigating whether differences can be rescued after pharmacological treatments or supplementation with glutamine.
Collapse
Affiliation(s)
- Mathieu D Santin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France; Centre de NeuroImagerie de Recherche, ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Park KM, Hur Y, Kim HY, Ji KH, Hwang TG, Shin KJ, Ha SY, Park J, Kim SE. Initial response to antiepileptic drugs in patients with newly diagnosed epilepsy. J Clin Neurosci 2014; 21:923-6. [DOI: 10.1016/j.jocn.2013.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/14/2013] [Accepted: 10/27/2013] [Indexed: 12/18/2022]
|
24
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
25
|
Schaevitz L, Berger-Sweeney J, Ricceri L. One-carbon metabolism in neurodevelopmental disorders: using broad-based nutraceutics to treat cognitive deficits in complex spectrum disorders. Neurosci Biobehav Rev 2014; 46 Pt 2:270-84. [PMID: 24769289 DOI: 10.1016/j.neubiorev.2014.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/07/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
Folate and choline, two nutrients involved in the one-carbon metabolic cycle, are intimately involved in regulating DNA integrity, synthesis, biogenic amine synthesis, and methylation. In this review, we discuss evidence that folate and choline play an important role in normal cognitive development, and that altered levels of these nutrients during periods of high neuronal proliferation and synaptogenesis can result in diminished cognitive function. We also discuss the use of these nutrients as therapeutic agents in a spectrum of developmental disorders in which intellectual disability is a prominent feature, such as in Fragile-X, Rett syndrome, Down syndrome, and Autism spectrum disorders. A survey of recent literature suggests that nutritional supplements have mild, but generally consistent, effects on improving cognition. Intervening with supplements earlier rather than later during development is more effective in improving cognitive outcomes. Given the mild improvements seen after treatments using nutrients alone, and the importance of the genetic profile of parents and offspring, we suggest that using nutraceutics early in development and in combination with other therapeutics are likely to have positive impacts on cognitive outcomes in a broad spectrum of complex neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Dept Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
26
|
Martínez-Cué C, Delatour B, Potier MC. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists. Neurosci Biobehav Rev 2014; 46 Pt 2:218-27. [PMID: 24412222 DOI: 10.1016/j.neubiorev.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/27/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022]
Abstract
Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Benoît Delatour
- Institut du Cerveau et de Moelle Epinière, CNRS UMR7225, INSERM U1127, UPMC, IHUA-ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et de Moelle Epinière, CNRS UMR7225, INSERM U1127, UPMC, IHUA-ICM, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
27
|
Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [¹H]MRS study. Transl Psychiatry 2013; 3:e279. [PMID: 23838890 PMCID: PMC3731785 DOI: 10.1038/tp.2013.53] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 01/13/2023] Open
Abstract
Dysfunctional glutamatergic neurotransmission has been implicated in autism spectrum disorder (ASD). However, relatively few studies have directly measured brain glutamate in ASD adults, or related variation in glutamate to clinical phenotype. We therefore set out to investigate brain glutamate levels in adults with an ASD, comparing these to healthy controls and also comparing results between individuals at different points on the spectrum of symptom severity. We recruited 28 adults with ASD and 14 matched healthy controls. Of those with ASD, 15 fulfilled the 'narrowly' defined criteria for typical autism, whereas 13 met the 'broader phenotype'. We measured the concentration of the combined glutamate and glutamine signal (Glx), and other important metabolites, using proton magnetic resonance spectroscopy in two brain regions implicated in ASD--the basal ganglia (including the head of caudate and the anterior putamen) and the dorsolateral prefrontal cortex--as well as in a parietal cortex 'control' region. Individuals with ASD had a significant decrease (P<0.001) in concentration of Glx in the basal ganglia, and this was true in both the 'narrow' and 'broader' phenotype. Also, within the ASD sample, reduced basal ganglia Glx was significantly correlated with increased impairment in social communication (P=0.013). In addition, there was a significant reduction in the concentration of other metabolites such as choline, creatine (Cr) and N-acetylaspartate (NAA) in the basal ganglia. In the dorsolateral prefrontal cortex, Cr and NAA were reduced (P<0.05), although Glx was not. There were no detectable differences in Glx, or any other metabolite, in the parietal lobe control region. There were no significant between-group differences in age, gender, IQ, voxel composition or data quality. In conclusion, individuals across the spectrum of ASD have regionally specific abnormalities in subcortical glutamatergic neurotransmission that are associated with variation in social development.
Collapse
|
28
|
Violante IR, Ribeiro MJ, Edden RAE, Guimarães P, Bernardino I, Rebola J, Cunha G, Silva E, Castelo-Branco M. GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype-phenotype correlations and functional impact. Brain 2013; 136:918-25. [PMID: 23404336 DOI: 10.1093/brain/aws368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in the balance between excitatory and inhibitory neurotransmission have been implicated in several neurodevelopmental disorders. Neurofibromatosis type 1 is one of the most common monogenic disorders causing cognitive deficits for which studies on a mouse model (Nfl(+/-)) proposed increased γ-aminobutyric acid-mediated inhibitory neurotransmission as the neural mechanism underlying these deficits. To test whether a similar mechanism translates to the human disorder, we used magnetic resonance spectroscopy to measure γ-aminobutyric acid levels in the visual cortex of children and adolescents with neurofibromatosis type 1 (n = 20) and matched control subjects (n = 26). We found that patients with neurofibromatosis type 1 have significantly lower γ-aminobutyric acid levels than control subjects, and that neurofibromatosis type 1 mutation type significantly predicted cortical γ-aminobutyric acid. Moreover, functional imaging of the visual cortex indicated that blood oxygen level-dependent signal was correlated with γ-aminobutyric acid levels both in patients and control subjects. Our results provide in vivo evidence of γ-aminobutyric acidergic dysfunction in neurofibromatosis type 1 by showing a reduction in γ-aminobutyric acid levels in human patients. This finding is relevant to understand the physiological profile of the disorder and has implications for the identification of targets for therapeutic strategies.
Collapse
Affiliation(s)
- Inês R Violante
- IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A volumetric magnetic resonance imaging study of brain structures in children with Down syndrome. Neurol Neurochir Pol 2011; 45:363-9. [PMID: 22101997 DOI: 10.1016/s0028-3843(14)60107-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Down syndrome (DS) is the most common genetic cause of mental retardation with deficits in language and memory. Mental retardation of varying degrees is the most consistent feature of DS. The objective of this study was to use high-resolution magnetic resonance imaging (MRI) techniques to investigate the volumes of the hippocampus, amygdala, and temporal and frontal lobes in children with DS compared with healthy children. MATERIAL AND METHODS MRI of 49 patients was reviewed prospectively. The study included 23 children with DS (9 girls and 14 boys, mean age 6.7 ± 3.7 years) and 26 healthy children (11 girls and 15 boys, mean age 8.3 ± 2.4 years). Volumes of the right and left hippocampus, the right and left amygdala, temporal and frontal lobes and the total brain volume were measured by a radiologist who was unaware of the diagnosis. RESULTS Total brain volume in children with DS was significantly lower compared with controls. It was associated with significantly lower volume of the frontal and temporal lobes. Children with DS had a significantly smaller right and left hippocampus volume and a significantly smaller right and left amygdala volume than did the control group. We also found a negative correlation between mental retardation and volume of the right hippocampus. CONCLUSIONS The presence of these abnormalities from an early age contributes to the specific cognitive and developmental deficits seen in children with DS.
Collapse
|