1
|
Yang Y, Xiong H, Wu Z, Luo Z, Chen X, Wang X, Wei F. Deep Learning-Enabled STEM Imaging for Precise Single-Molecule Identification in Zeolite Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408629. [PMID: 39703985 PMCID: PMC11809325 DOI: 10.1002/advs.202408629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Observing chemical reactions in complex structures such as zeolites involves a major challenge in precisely capturing single-molecule behavior at ultra-high spatial resolutions. To address this, a sophisticated deep learning framework tailored has been developed for integrated Differential Phase Contrast Scanning Transmission Electron Microscopy (iDPC-STEM) imaging under low-dose conditions. The framework utilizes a denoising super-resolution model (Denoising Inference Variational Autoencoder Super-Resolution (DIVAESR)) to effectively mitigate shot noise and thereby obtain substantially clearer atomic-resolved iDPC-STEM images. It supports advanced single-molecule detection and analysis, such as conformation matching and elemental clustering, by incorporating object detection and Density Functional Theory (DFT) configurational matching for precise molecular analysis. the model's performance is demonstrated with a significant improvement in standard image quality evaluation metrics including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The test conducted using synthetic datasets shows its robustness and extended applicability to real iDPC-STEM images, highlighting its potential in elucidating dynamic behaviors of single molecules in real space. This study lays a critical groundwork for the advancement of deep learning applications within electron microscopy, particularly in unraveling chemical dynamics through precise material characterization and analysis.
Collapse
Affiliation(s)
- Yaotian Yang
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Hao Xiong
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zirong Wu
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhiyao Luo
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xiao Chen
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
- Ordos LaboratoryOrdosInner Mongolia017000China
| | - Xiaonan Wang
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
- Ordos LaboratoryOrdosInner Mongolia017000China
| | - Fei Wei
- Department of Chemical EngineeringTsinghua UniversityBeijing100084China
- Ordos LaboratoryOrdosInner Mongolia017000China
| |
Collapse
|
2
|
Peralta YM, Molina R, Moreno S. Rice HUSK silica: A review from conventional uses to new catalysts for advanced oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122735. [PMID: 39378807 DOI: 10.1016/j.jenvman.2024.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
The rice industry is of great importance worldwide and within the cereal industrialization process, rice husk is obtained as waste, a by-product with various alternative uses, among others, the obtaining of amorphous silica, a covalent oxide with chemical, structural and textural properties suitable for use as catalytic support. This review shows the potential of rice husk silica in the synthesis of heterogeneous catalysts with transition metals for the oxidation of different polluting molecules present in water, as well as the limitations of the catalytic system and the way to overcome them through new synthesis routes, to obtain single atom catalysts - SACs. The main preparation strategies applied for aqueous phase systems are summarized, as well as the studies of single atom catalysts in oxidation reactions of recalcitrant compounds using silica as support and, finally, the perspectives and opportunities regarding this novel topic.
Collapse
Affiliation(s)
- Yury M Peralta
- Estado Sólido y Catálisis Ambiental ESCA, Departamento de Química, Universidad Nacional de Colombia, Carrera 30 N8 45-03, Bogotá, Colombia.
| | - Rafael Molina
- Estado Sólido y Catálisis Ambiental ESCA, Departamento de Química, Universidad Nacional de Colombia, Carrera 30 N8 45-03, Bogotá, Colombia
| | - Sonia Moreno
- Estado Sólido y Catálisis Ambiental ESCA, Departamento de Química, Universidad Nacional de Colombia, Carrera 30 N8 45-03, Bogotá, Colombia.
| |
Collapse
|
3
|
Han X, Jiang M, Li H, Li R, Sulaiman NHM, Zhang T, Li H, Zheng L, Wei J, He L, Zhou X. Upcycle polyethylene terephthalate waste by photoreforming: Bifunction of Pt cocatalyst. J Colloid Interface Sci 2024; 665:204-218. [PMID: 38522160 DOI: 10.1016/j.jcis.2024.03.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Upcycle polyethylene terephthalate (PET) waste by photoreforming (PR) is a sustainable and green approach to tackle environmental problems but with challenges to obtain valuable oxidation products and high purity hydrogen simultaneously. Noble metal cocatalysts are essential to enhance the overall PR reaction efficacy. In this work, TiO2 nanotubes (TiO2 NTs) decorated with single Pt atoms (Pt1/TiO2) or Pt nanoparticles (PtNPs/TiO2) are used in the photoreforming reaction (in one batch), and the oxidation products from ethylene glycol (EG, hydrolysed product of PET) in liquid phase and hydrogen are detected. With Pt1/TiO2, EG is oxidized to glyoxal, glyoxylate or lactate, and hydrogen evolution rate (r H2) reaches 51.8 μmol⋅h-1⋅gcat-1, that is 30 times higher than that of TiO2. For PtNPs/TiO2 (size of Pt NPs: 1.97 nm), hydrogen evolution reaches 219.1 μmol⋅h-1⋅gcat-1, but with the oxidation product of acetate only. DFT calculation demonstrates that for Pt NPs, the reaction path for hydrogen evolution is preferred thermodynamically, due to the formation of Schottky junction. On the oxidation of EG, theoretical and spectroscopic analysis suggest that bidentate adsorption of EG at the interface is facile on Pt1/TiO2, compared to that on PtNPs/TiO2 (two Pt sites), but oxidation products, adsorb less strongly, compared to PtNPs/TiO2, that eventually regulates the distribution of oxidation products. The results thus demonstrate the bifunctions of Pt in the PR reaction, i.e., electron transfer mediator for hydrogen evolution and reactive sites for molecules adsorption. The oxidation reaction is dominated by the adsorption-desorption behavior of molecules but the reduction reaction is controlled by the electron transfer. In addition, acidification of pretreated PET alkaline solution achieves separation of pure terephthalic acid (PTA), which further improves the reaction efficiency possibly by offering high density of active sites and acidic environment. Our work thus demonstrates that to upcycle PET plastics, an optimized process can be reached by atomic design of photocatalysts and proper treatment on the plastic wastes.
Collapse
Affiliation(s)
- Xiaochi Han
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Ming Jiang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Huaxing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Rongjie Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Nashwan H M Sulaiman
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Tao Zhang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiake Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Lirong He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, PR China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Zhao H, Lv X, Wang Y. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303677. [PMID: 37749877 PMCID: PMC10646274 DOI: 10.1002/advs.202303677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces, and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xinmao Lv
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yang‐Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
5
|
Liu J, Delazzer T, Yu Y, Christensen C. Electron-beam Induced Effects on Supported Metal Atoms and Clusters. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1772-1773. [PMID: 37613759 DOI: 10.1093/micmic/ozad067.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Jingyue Liu
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Timothy Delazzer
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Yiwei Yu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Courtney Christensen
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Dai Y, Kong F, Tai X, Zhang Y, Liu B, Cai J, Gong X, Xia Y, Guo P, Liu B, Zhang J, Li L, Zhao L, Sui X, Wang Z. Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Li X, Pereira-Hernández XI, Chen Y, Xu J, Zhao J, Pao CW, Fang CY, Zeng J, Wang Y, Gates BC, Liu J. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022; 611:284-288. [DOI: 10.1038/s41586-022-05251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
|
8
|
Abstract
The field of single-atom catalysis (SAC) has expanded greatly in recent years. While there has been much success developing new synthesis methods, a fundamental disconnect exists between most experiments and the theoretical computations used to model them. The real catalysts are based on powder supports, which inevitably contain a multitude of different facets, different surface sites, defects, hydroxyl groups, and other contaminants due to the environment. This makes it extremely difficult to determine the structure of the active SAC site using current techniques. To be tractable, computations aimed at modeling SAC utilize periodic boundary conditions and low-index facets of an idealized support. Thus, the reaction barriers and mechanisms determined computationally represent, at best, a plausibility argument, and there is a strong chance that some critical aspect is omitted. One way to better understand what is plausible is by experimental modeling, i.e., comparing the results of computations to experiments based on precisely defined single-crystalline supports prepared in an ultrahigh-vacuum (UHV) environment. In this review, we report the status of the surface-science literature as it pertains to SAC. We focus on experimental work on supports where the site of the metal atom are unambiguously determined from experiment, in particular, the surfaces of rutile and anatase TiO2, the iron oxides Fe2O3 and Fe3O4, as well as CeO2 and MgO. Much of this work is based on scanning probe microscopy in conjunction with spectroscopy, and we highlight the remarkably few studies in which metal atoms are stable on low-index surfaces of typical supports. In the Perspective section, we discuss the possibility for expanding such studies into other relevant supports.
Collapse
Affiliation(s)
- Florian Kraushofer
- Institute of Applied Physics, Technische Universitat Wien, 1040 Vienna, Austria
| | - Gareth S. Parkinson
- Institute of Applied Physics, Technische Universitat Wien, 1040 Vienna, Austria
| |
Collapse
|
9
|
Single-atom catalysts on metal-based supports for solar photoreduction catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules 2022; 27:molecules27175426. [PMID: 36080194 PMCID: PMC9457768 DOI: 10.3390/molecules27175426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 12/29/2022] Open
Abstract
Nanozymes are nanomaterials with intrinsic natural enzyme-like catalytic properties. They have received extensive attention and have the potential to be an alternative to natural enzymes. Increasing the atom utilization rate of active centers in nanozymes has gradually become a concern of scientists. As the limit of designing nanozymes at the atomic level, single-atom nanozymes (SAzymes) have become the research frontier of the biomedical field recently because of their high atom utilization, well-defined active centers, and good natural enzyme mimicry. In this review, we first introduce the preparation of SAzymes through pyrolysis and defect engineering with regulated activity, then the characterization and surface modification methods of SAzymes are introduced. The possible influences of surface modification on the activity of SAzymes are discussed. Furthermore, we summarize the applications of SAzymes in the biomedical fields, especially in those of reactive oxygen species (ROS) scavenging and antibacterial. Finally, the challenges and opportunities of SAzymes are summarized and prospected.
Collapse
|
11
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
12
|
The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Aggarwal P, Sarkar D, Awasthi K, Menezes PW. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Wan J, Zheng J, Zhang H, Wu A, Li X. Single atom catalysis for electrocatalytic ammonia synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01442k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review points out major challenges and outlook of NH3 synthesis via SACs. Summarizing the deficiencies of existing research can help researchers to continuously innovate and improve, and explore new research approaches.
Collapse
Affiliation(s)
- Jieying Wan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiageng Zheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hao Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Angjian Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
16
|
Cheng L, Yue X, Wang L, Zhang D, Zhang P, Fan J, Xiang Q. Dual-Single-Atom Tailoring with Bifunctional Integration for High-Performance CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105135. [PMID: 34622513 DOI: 10.1002/adma.202105135] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Single-atom photocatalysis has been demonstrated as a novel strategy to promote heterogeneous reactions. There is a diversity of monoatomic metal species with specific functions; however, integrating representative merits into dual-single-atoms and regulating cooperative photocatalysis remain a pressing challenge. For dual-single-atom catalysts, enhanced photocatalytic activity would be realized through integrating bifunctional properties and tuning the synergistic effect. Herein, dual-single-atoms supported on conjugated porous carbon nitride polymer are developed for effective photocatalytic CO2 reduction, featuring the function of cobalt (Co) and ruthenium (Ru). A series of in situ characterizations and theoretical calculations are conducted for quantitative analysis of structure-performance correlation. It is concluded that the active Co sites facilitate dynamic charge transfer, while the Ru sites promote selective CO2 surface-bound interaction during CO2 photoreduction. The combination of atom-specific traits and the synergy between Co and Ru lead to the high photocatalytic CO2 conversion with corresponding apparent quantum efficiency (AQE) of 2.8% at 385 nm, along with a high turnover number (TON) of more than 200 without addition of any sacrificial agent. This work presents an example of identifying the roles of different single-atom metals and regulating the synergy, where the two metals with unique properties collaborate to further boost the photocatalytic performance.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Dainan Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| |
Collapse
|
17
|
Shivhare A, Kumar A, Srivastava R. The Size‐Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the Upgrading of Biomass‐Derived 5‐Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Atal Shivhare
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| | - Atul Kumar
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| | - Rajendra Srivastava
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| |
Collapse
|
18
|
Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M, Wang E, Guo S. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102576. [PMID: 34296795 DOI: 10.1002/adma.202102576] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Indexed: 05/24/2023]
Abstract
Atomically dispersed metal catalysts with well-defined structures have been the research hotspot in heterogeneous catalysis because of their high atomic utilization efficiency, outstanding activity, and selectivity. Dual-atomic-site catalysts (DASCs), as an extension of single-atom catalysts (SACs), have recently drawn surging attention. The DASCs possess higher metal loading, more sophisticated and flexible active sites, offering more chance for achieving better catalytic performance, compared with SACs. In this review, recent advances on how to design new DASCs for enhancing energy catalysis will be highlighted. It will start with the classification of marriage of two kinds of single-atom active sites, homonuclear DASCs and heteronuclear DASCs according to the configuration of active sites. Then, the state-of-the-art characterization techniques for DASCs will be discussed. Different synthetic methods and catalytic applications of the DASCs in various reactions, including oxygen reduction reaction, carbon dioxide reduction reaction, carbon monoxide oxidation reaction, and others will be followed. Finally, the major challenges and perspectives of DASCs will be provided.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Yuguang Chao
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Wenshu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jinhui Zhou
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Lv
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Kai Wang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fangxu Lin
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Heng Luo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jing Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Erkang Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Guo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Liu JJ. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-53. [PMID: 34414878 DOI: 10.1017/s1431927621012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.
Collapse
Affiliation(s)
- Jingyue Jimmy Liu
- Department of Physics, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
20
|
Fonseca J, Lu J. Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01200] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Javier Fonseca
- Nanomaterial Laboratory for Catalysis and Advanced Separations, Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, United States
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Zhang B, Goh TW, Kobayashi T, Jing D, Wu X, Chen M, Huang W. Structure evolution of single-site Pt in a metal-organic framework. J Chem Phys 2021; 154:094710. [PMID: 33685166 DOI: 10.1063/5.0041904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterogeneous single-metal-site catalyst or single-atom catalyst research has grown rapidly due to the accessibility of modern characterization techniques that can provide invaluable information at the atomic-scale. Herein, we study the structural evolution of isolated single Pt sites incorporated in a metal-organic framework containing bipyridine functional groups using in situ diffuse reflectance infrared Fourier transform spectroscopy with CO as the probe molecule. The structure and electronic properties of the isolated Pt sites are further corroborated by x-ray photoelectron spectroscopy and aberration-corrected scanning transmission electron microscopy. We find the prerequisite of high temperature He treatment for Pt activation and CO insertion and inquire into the structural transformation of Pt site process by dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Biying Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Tian Wei Goh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | - Dapeng Jing
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
| | - Xun Wu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Minda Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
22
|
Hulva J, Meier M, Bliem R, Jakub Z, Kraushofer F, Schmid M, Diebold U, Franchini C, Parkinson GS. Unraveling CO adsorption on model single-atom catalysts. Science 2021; 371:375-379. [PMID: 33479148 DOI: 10.1126/science.abe5757] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Understanding how the local environment of a "single-atom" catalyst affects stability and reactivity remains a challenge. We present an in-depth study of copper1, silver1, gold1, nickel1, palladium1, platinum1, rhodium1, and iridium1 species on Fe3O4(001), a model support in which all metals occupy the same twofold-coordinated adsorption site upon deposition at room temperature. Surface science techniques revealed that CO adsorption strength at single metal sites differs from the respective metal surfaces and supported clusters. Charge transfer into the support modifies the d-states of the metal atom and the strength of the metal-CO bond. These effects could strengthen the bond (as for Ag1-CO) or weaken it (as for Ni1-CO), but CO-induced structural distortions reduce adsorption energies from those expected on the basis of electronic structure alone. The extent of the relaxations depends on the local geometry and could be predicted by analogy to coordination chemistry.
Collapse
Affiliation(s)
- Jan Hulva
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, Austria.,Computational Materials Physics, University of Vienna, Vienna, Austria
| | - Roland Bliem
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | | | | | - Cesare Franchini
- Computational Materials Physics, University of Vienna, Vienna, Austria.,Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | | |
Collapse
|
23
|
Xiong Y, Wang S, Chen W, Zhang J, Li Q, Hu HS, Zheng L, Yan W, Gu L, Wang D, Li Y. Construction of Dual-Active-Site Copper Catalyst Containing both CuN 3 and CuN 4 Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006834. [PMID: 33522142 DOI: 10.1002/smll.202006834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Clear recognition and rational construction of suitable active center for specific reaction is always of great significance in designing highly efficient catalysts. Herein, a dual-active-site copper catalyst (DAS-Cu) containing both CuN3 and CuN4 sites is reported. Such catalysts show extremely high catalytic performance (yield: up to 97%) toward oxyphosphorylation of alkenes, while catalysts with single active site (CuN3 or CuN4 ) are chemically inert in this reaction. Combined with theoretical and experimental results, the different roles of two different Cu active sites in this reaction are further identified. CuN3 site captures the oxygen and trigger further oxidizing process, while CuN4 site provides moderate adsorption sites for the protection of phosphonyl radicals. This work deeply discloses the significant cooperated role with two single-atomic sites in one catalytic active center and brings up a valuable clue for the rational design of better-performing heterogeneous catalyst.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shibin Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiheng Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Han-Shi Hu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Wang K, Wang X, Liang X. Synthesis of High Metal Loading Single Atom Catalysts and Exploration of the Active Center Structure. ChemCatChem 2020. [DOI: 10.1002/cctc.202001255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kaiying Wang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| | - Xiaofeng Wang
- College of Environmental Science and Engineering Dalian Maritime University Dalian 116026 P.R. China
| | - Xinhua Liang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| |
Collapse
|
25
|
Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem Rev 2020; 120:12217-12314. [DOI: 10.1021/acs.chemrev.0c00594] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongyang Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pengfei Xie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xianbiao Fu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dengke Zhao
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Xiaojing Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
27
|
Zhou J, Xu Z, Xu M, Zhou X, Wu K. A perspective on oxide-supported single-atom catalysts. NANOSCALE ADVANCES 2020; 2:3624-3631. [PMID: 36132800 PMCID: PMC9418980 DOI: 10.1039/d0na00393j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 06/16/2023]
Abstract
Single-atom catalysts (SACs) can not only maximize the metal atom utilization efficiency, but also show drastically improved catalytic performance for various important catalytic processes. Insights into the working principles of SACs provide rational guidance to design and prepare advanced catalysts. Many factors have been claimed to affect the performance of SACs, which makes it very challenging to clarify the correlation between the catalytic performance and physicochemical characteristics of SACs. Oxide-supported SACs are one of the most extensively explored systems. In this minireview, some latest developments on the determining factors of the stability, activity and selectivity of SACs on oxide supports are overviewed. Discussed also are the reaction mechanisms for different systems and methods that are employed to correlate the properties with the catalyst structures at the atomic level. In particular, a recently proposed surface free energy approach is introduced to fabricate well-defined modelled SACs that may help address some key issues in the development of SACs in the future.
Collapse
Affiliation(s)
- Junyi Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhen Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Meijia Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
28
|
Lei Y, Wang Y, Liu Y, Song C, Li Q, Wang D, Li Y. Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angew Chem Int Ed Engl 2020; 59:20794-20812. [DOI: 10.1002/anie.201914647] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Yongpeng Lei
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Yi Liu
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Chengye Song
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Qian Li
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
29
|
Lei Y, Wang Y, Liu Y, Song C, Li Q, Wang D, Li Y. Design aktiver atomarer Zentren für HER‐Elektrokatalysatoren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yongpeng Lei
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Yi Liu
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Chengye Song
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Qian Li
- State Key Laboratory of Powder Metallurgy Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Peking 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Peking 100084 China
| |
Collapse
|
30
|
Li L, Chang X, Lin X, Zhao ZJ, Gong J. Theoretical insights into single-atom catalysts. Chem Soc Rev 2020; 49:8156-8178. [DOI: 10.1039/d0cs00795a] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schematic diagram of theoretical models and applications of single atom catalysts. A review on the theoretical models, intrinsic properties, and the related application of SACs.
Collapse
Affiliation(s)
- Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaoyun Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
31
|
Lou Y, Zheng Y, Li X, Ta N, Xu J, Nie Y, Cho K, Liu J. Pocketlike Active Site of Rh1/MoS2 Single-Atom Catalyst for Selective Crotonaldehyde Hydrogenation. J Am Chem Soc 2019; 141:19289-19295. [DOI: 10.1021/jacs.9b06628] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Lou
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongping Zheng
- Department of Materials Science & Engineering, University of Texas at Dallas University, Dallas, Texas 75080, United States
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu Li
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Na Ta
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Jia Xu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Yifan Nie
- Department of Materials Science & Engineering, University of Texas at Dallas University, Dallas, Texas 75080, United States
| | - Kyeongjae Cho
- Department of Materials Science & Engineering, University of Texas at Dallas University, Dallas, Texas 75080, United States
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
32
|
Insight into the Microstructure and Deactivation Effects on Commercial NiMo/γ-Al2O3 Catalyst through Aberration-Corrected Scanning Transmission Electron Microscopy. Catalysts 2019. [DOI: 10.3390/catal9100810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Atom-resolved microstructure variations and deactivation effects on the commercial NiMo/γ-Al2O3 catalysts were revealed by aberration-corrected scanning transmission electron microscope (Cs-STEM) equipped with enhanced energy dispersive X-ray spectroscopy (EDS). Structural information parallel to and vertical to the electron beam provides definitive insight toward an understanding of structure–activity relations. Under the mild to harsher reaction conditions, “fragment” structures (like metal single atoms, metal clusters, and nanoparticles) of commercial NiMo/γ-Al2O3 catalysts, gradually reduces, while MoS2 nanoslabs get longer and thinner. Such a result about active slabs leads to the reduction in the number of active sites, resulting in a significant decrease in activity. Likewise, the average atomic ratio of promoter Ni and Ni/(Mo + S) ratio of slabs decrease from 2.53% to 0.45% and from 0.0788 to 0.0326, respectively, by means of EDS under the same conditions stated above, reflecting the weakening of the promotional effect. XPS result confirms the existence of NixSy species in deactivated catalysts. This could be ascribed to the Ni segregation from active phase. Furthermore, statistical data give realistic coke behaviors associated with the active metals. With catalytic activity decreasing, the coke on the active metals regions tends to increase faster than that on the support regions. This highlights that the commercial NiMo/γ-Al2O3 catalyst during catalysis is prone to produce more coke on the active metal areas.
Collapse
|
33
|
Zhao S, Chen F, Duan S, Shao B, Li T, Tang H, Lin Q, Zhang J, Li L, Huang J, Bion N, Liu W, Sun H, Wang AQ, Haruta M, Qiao B, Li J, Liu J, Zhang T. Remarkable active-site dependent H 2O promoting effect in CO oxidation. Nat Commun 2019; 10:3824. [PMID: 31444352 PMCID: PMC6707188 DOI: 10.1038/s41467-019-11871-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022] Open
Abstract
The interfacial sites of supported metal catalysts are often critical in determining their performance. Single-atom catalysts (SACs), with every atom contacted to the support, can maximize the number of interfacial sites. However, it is still an open question whether the single-atom sites possess similar catalytic properties to those of the interfacial sites of nanocatalysts. Herein, we report an active-site dependent catalytic performance on supported gold single atoms and nanoparticles (NPs), where CO oxidation on the single-atom sites is dramatically promoted by the presence of H2O whereas on NPs’ interfacial sites the promoting effect is much weaker. The remarkable H2O promoting effect makes the Au SAC two orders of magnitude more active than the commercial three-way catalyst. Theoretical studies reveal that the dramatic promoting effect of water on SACs originates from their unique local atomic structure and electronic properties that facilitate an efficient reaction channel of CO + OH. The issue that whether single-atom sites possess similar catalytic properties to the interfacial sites of nanocatalysts remains unresolved. Here, the authors demonstrate a large H2O promotional effect on CO oxidation over Au single-atom sites due to their unique local atomic structure and electronic properties.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, 100084, Beijing, China.,Beijing Guyue New Materials Research Institute, Beijing University of Technology, 100124, Beijing, China
| | - Fang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Sibin Duan
- Department of Physics, Arizona State University, Tempe, AZ, 85287, United States
| | - Bin Shao
- Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Tianbo Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hailian Tang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Qingquan Lin
- Institute of Applied Catalysis, School of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Junying Zhang
- Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jiahui Huang
- Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Nicolas Bion
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), University of Poitiers, CNRS, 4 rue Michel Brunet, TSA51106, F86073, Poitiers Cedex 9, France
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Hui Sun
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Ai-Qin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Masatake Haruta
- Gold Catalysis Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,Research Center for Gold Chemistry and Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Botao Qiao
- Department of Physics, Arizona State University, Tempe, AZ, 85287, United States. .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China.
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, 100084, Beijing, China. .,Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, AZ, 85287, United States.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
34
|
Kottwitz M, Li Y, Palomino RM, Liu Z, Wang G, Wu Q, Huang J, Timoshenko J, Senanayake SD, Balasubramanian M, Lu D, Nuzzo RG, Frenkel AI. Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02083] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthew Kottwitz
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuanyuan Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert M. Palomino
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zongyuan Liu
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangjin Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jiahao Huang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Janis Timoshenko
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sanjaya D. Senanayake
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ralph G. Nuzzo
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinasväg 51, 100 44 Stockholm, Sweden
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
35
|
Goh TW, Tsung CK, Huang W. Spectroscopy Identification of the Bimetallic Surface of Metal-Organic Framework-Confined Pt-Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23254-23260. [PMID: 31252478 DOI: 10.1021/acsami.9b06229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research and development in bimetallic nanoparticles have gained great interest over their monometallic counterparts because of their distinct and unique properties in a wide range of applications such as catalysis, energy storage, and bio/plasmonic imaging. Identification and characterization of these bimetallic surfaces for application in heterogeneous catalysis remain a challenge and heavily rely on advanced characterization techniques such as aberration-corrected electron microscopy and synchrotron X-ray absorption studies. In this article, we have reported a strategy to prepare sub-2 nm bimetallic Pt-Sn nanoclusters confined in the pores of a Zr-based metal-organic framework (MOF). The Pt-Sn nanoclusters encapsulated in the Zr-MOF pores show enhanced chemoselectivity from 51 to 93% in an industrially relevant reaction, furfural hydrogenation to furfuryl alcohol. The presence of bimetallic Pt-Sn surfaces was investigated by a surface-sensitive characterization technique utilizing diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO to probe the bimetallic surface of the encapsulated ultrafine Pt-Sn nanocluster. Complementary techniques such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were also used to characterize the Pt-Sn nanoclusters.
Collapse
Affiliation(s)
- Tian Wei Goh
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Chia-Kuang Tsung
- Department of Chemistry , Boston College , Boston , Massachusetts 02467 , United States
| | - Wenyu Huang
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
36
|
Parkinson GS. Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catal Letters 2019; 149:1137-1146. [PMID: 30971855 PMCID: PMC6432890 DOI: 10.1007/s10562-019-02709-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/05/2019] [Indexed: 02/01/2023]
|
37
|
Nanocarbon-Edge-Anchored High-Density Pt Atoms for 3-nitrostyrene Hydrogenation: Strong Metal-Carbon Interaction. iScience 2019; 13:190-198. [PMID: 30852451 PMCID: PMC6409412 DOI: 10.1016/j.isci.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 02/14/2019] [Indexed: 11/22/2022] Open
Abstract
Strong metal-support interaction (SMSI) has been widely used to improve catalytic performance and to identify reaction mechanisms. We report that single Pt atoms anchored onto hollow nanocarbon (h-NC) edges possess strong metal-carbon interaction, which significantly modifies the catalytic behavior of the anchored Pt atoms for selective hydrogenation reactions. The strong Pt-C bonding not only stabilizes single Pt atoms but also modifies their electronic structure, tunes their adsorption properties, and enhances activation of reactants. The fabricated Pt1/h-NC single-atom catalysts (SACs) demonstrated excellent activity for hydrogenation of 3-nitrostyrene to 3-vinylaniline with a turnover number >31,000/h, 20 times higher than that of the best catalyst for such selective hydrogenation reactions reported in the literature. The strategy to strongly anchor Pt atoms by edge carbon atoms of h-NCs is general and can be extended to construct strongly anchored metal atoms, via SMSI, onto surfaces of various types of support materials to develop robust SACs.
Collapse
|
38
|
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem Rev 2018; 119:1806-1854. [PMID: 30575386 DOI: 10.1021/acs.chemrev.8b00501] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional materials and single-atom catalysts are two frontier research fields in catalysis. A new category of catalysts with the integration of both aspects has been rapidly developed in recent years, and significant advantages were established to make it an independent research field. In this Review, we will focus on the concept of two-dimensional materials confining single atoms for catalysis. The new electronic states via the integration lead to their mutual benefits in activity, that is, two-dimensional materials with unique geometric and electronic structures can modulate the catalytic performance of the confined single atoms, and in other cases the confined single atoms can in turn affect the intrinsic activity of two-dimensional materials. Three typical two-dimensional materials are mainly involved here, i.e., graphene, g-C3N4, and MoS2, and the confined single atoms include both metal and nonmetal atoms. First, we systematically introduce and discuss the classic synthesis methods, advanced characterization techniques, and various catalytic applications toward two-dimensional materials confining single-atom catalysts. Finally, the opportunities and challenges in this emerging field are featured on the basis of its current development.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Jun Mao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Xianguang Meng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| |
Collapse
|
39
|
Affiliation(s)
| | - Philippe Serp
- LCC CNRS-UPR 8241 ENSIACET Université de Toulouse Toulouse France
| |
Collapse
|
40
|
|
41
|
Duan S, Wang R, Liu J. Stability investigation of a high number density Pt 1/Fe 2O 3 single-atom catalyst under different gas environments by HAADF-STEM. NANOTECHNOLOGY 2018; 29:204002. [PMID: 29473830 DOI: 10.1088/1361-6528/aab1d2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.
Collapse
Affiliation(s)
- Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China. Department of Physics, Arizona State University, Tempe, Arizona 85287, United States of America
| | | | | |
Collapse
|
42
|
Cheng J, Shen Y, Chen K, Wang X, Guo Y, Zhou X, Bai R. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)63004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Lou Y, Xu J, Wu H, Liu J. Hollow carbon anchored highly dispersed Pd species for selective hydrogenation of 3-nitrostyrene: metal-carbon interaction. Chem Commun (Camb) 2018; 54:13248-13251. [DOI: 10.1039/c8cc07430e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow nanocarbon supported Pd species are highly active (TOF of 21 845 h−1), selective (97%), and stable (4 cycles) for selective hydrogenation of 3-nitrostyrene to 3-ethylnitrobenze.
Collapse
Affiliation(s)
- Yang Lou
- Department of Physics
- Arizona State University
- Tempe
- USA
| | - Jia Xu
- Department of Physics
- Arizona State University
- Tempe
- USA
| | - Honglu Wu
- Department of Physics
- Arizona State University
- Tempe
- USA
| | - Jingyue Liu
- Department of Physics
- Arizona State University
- Tempe
- USA
| |
Collapse
|