1
|
Zhou W, Zheng X, Wang X, Tian Y, Wen Y, Tu Y, Lei J, Cheng H, Yu J. Bioassay-guided isolation of antibacterial and anti-inflammatory components from Atractylodes lancea. PHYTOCHEMISTRY 2024; 227:114232. [PMID: 39097216 DOI: 10.1016/j.phytochem.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 μg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 μM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Xiaoqin Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Xilei Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yinghan Tian
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yi Wen
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yijun Tu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Jiachuan Lei
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jianqing Yu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Zhong W, Zhang Q. Atractylodin: An Alkyne Compound with Anticancer Potential. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024:1-29. [PMID: 39192675 DOI: 10.1142/s0192415x24500551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Atractylodin is one of the main active ingredients of Atractylodis Rhizoma. It has various pharmacological properties, such as antigastric ulcer, immune regulation, antibacterial, anti-inflammatory, antitumor, anti-oxidant, and neuroprotective properties. In the past few decades, atractylodin has attracted the attention of researchers due to its excellent therapeutic effects. This paper aims to review the pharmacology of atractylodin, focusing mainly on its pharmacological effects in tumor treatment. Atractylodin exerts its antitumor effect by regulating different signaling pathways to induce important biological events such as apoptosis, cell cycle arrest, and autophagy, inhibiting cancer cell invasion and metastasis. In the process of cell apoptosis, atractylodin mainly induces cancer cell apoptosis by downregulating the Notch signaling pathway, affecting multiple upstream and downstream targets. In addition, atractylodin induces autophagy in cancer cells by regulating various signaling pathways such as PI3K/AKT/mTOR, p38MAPK, and hypothalamic Sirt1 and p-AMPK. Atractylodin effectively induces G1/M and G2/M phase arrest under the action of multiple signaling pathways. Among them, the pathways related to G1/M are more widely stagnated. In inhibiting the migration and invasion of cancer cells, atractylodin mainly regulates the Wnt signaling pathway, downregulates the expression of N-cadherin in cancer cells, and then blocks the PI3K/AKT/mTOR signaling pathway, inhibiting the phosphorylation of PI3K, AKT, and mTOR proteins, thereby having a significant impact on the invasion and migration of cancer cells. This paper systematically reviews the research progress on the antitumor effects and mechanisms of atractylodin, hoping to provide a reference and theoretical basis for its clinical application and new drug development.
Collapse
Affiliation(s)
- Wenxia Zhong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
3
|
Wang G, Guo C, Pi H, Wang Y, Lin S, Bi K, Zhang M, Wang N, Zhao G. Elucidation of the anti-colorectal cancer mechanism of Atractylodes lancea by network pharmacology and experimental verification. Aging (Albany NY) 2024; 16:12008-12028. [PMID: 39177661 PMCID: PMC11386916 DOI: 10.18632/aging.206075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
Atractylodes lancea which was listed in "Shennong's Materia Medica" and could be used to treat gastrointestinal-associated diseases. However, its roles, core and active ingredients, and mechanisms in treatment of colorectal cancer (CRC) were still unknown. Therefore, network pharmacology and experimental validation were used to clarify the effects, core active ingredients and molecular mechanisms of Atractylodes lancea. We found that Atractylodes lancea has 28 effective active components and 213 potential targets. Seventy-three genes which demonstrate interaction between the Atractylodes lancea and CRC were confirmed. Enrichment analysis showed that 2033 GO biological process items and 144 KEGG pathways. Survival and molecular docking analysis revealed that luteolin as the core component interacted with these genes (Matrix metalloproteinase 3 (MMP3), Matrix metalloproteinase 9 (MMP9), Tissue inhibitor of metalloproteinases 1 (TIMP1), Vascular endothelial growth factor A (VEGFA)) with the lowest binding energy, and these genes were involved in building a prognostic model for CRC. Cellular phenotyping experiments showed that luteolin could inhibit the proliferation and migration of CRC cells and downregulate the expression of MMP3, MMP9, TIMP1, VEGFA probably by Phosphoinositide 3-kinase/ serine/threonine kinase Akt (PI3K/AKT) pathway. To conclude, Atractylodes lancea could inhibit proliferation and migration of CRC cells through its core active ingredient (luteolin) to suppress the expression of MMP3, MMP9, TIMP1, VEGFA probably by PI3K/AKT pathway.
Collapse
Affiliation(s)
- Guangliang Wang
- Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, Guangdong, China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Chuangchuang Guo
- Faculty of Public Health, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Hui Pi
- Faculty of Basic Medical Sciences, Dali University, Dali 671003, Yunnan, China
| | - Yu Wang
- Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, Guangdong, China
| | - Shuyun Lin
- Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, Guangdong, China
| | - Keyi Bi
- Department of Pharmacy, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, Guangdong, China
| | - Na Wang
- Faculty of Public Health, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, Guangdong, China
| |
Collapse
|
4
|
Guo D, Xu K, Wan Q, Yu S, Ma C, Zhang B, Liu Y, Qu L. Different processing methods and pharmacological effects of Atractylodis Rhizoma. Chin J Nat Med 2024; 22:756-768. [PMID: 39197965 DOI: 10.1016/s1875-5364(24)60591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 09/01/2024]
Abstract
Atractylodis Rhizoma, a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases, undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions. However, a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking. This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma, including raw Atractylodis Rhizoma (SCZ), bran-fried Atractylodis Rhizoma (FCZ), deep-fried Atractylodis Rhizoma (JCZ), and rice water-processed Atractylodis Rhizoma (MCZ). It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Dongmei Guo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Qianyun Wan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Songyang Yu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chaoyang Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
5
|
Li B, Tian Y, Guo X, Ren Y, Ma J, Zang Y, Sun H, Zhang D, Li C. Atramacrolodes A-D (1-4), Four Undescribed Eudesmane-Type Sesquiterpenes from the Rhizome of Atractylodes macrocephala. Chem Biodivers 2024; 21:e202400817. [PMID: 38775105 DOI: 10.1002/cbdv.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 08/02/2024]
Abstract
Four undescribed sesquiterpenes, atramacrolodes A-D (1-4), along with six known compounds 5-10 were isolated from the rhizome of Atractylodes macrocephala. Compound 3 possessed a new skeleton based on an unprecedented carton-carton connection. Their structures were determined by UV, IR, HRESIMS, NMR spectra, 13C NMR calculation with DP4+ analysis, and the comparison of experimental and calculated ECD spectra. Compounds 5 and 8 showed protective effects against paracetamol-induced liver cell injury.
Collapse
Affiliation(s)
- Bei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Yulu Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xinyi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Yating Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Yingda Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
6
|
He Q, Tian D, Wang Z, Zheng D, Zhi L, Ma J, An J, Zhang R. Modified Si Miao Powder granules alleviates osteoarthritis progression by regulating M1/M2 polarization of macrophage through NF-κB signaling pathway. Front Pharmacol 2024; 15:1361561. [PMID: 38974041 PMCID: PMC11224909 DOI: 10.3389/fphar.2024.1361561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background Osteoarthritis (OA) is a chronic degenerative disease mainly characterized by cartilage damage and synovial inflammation. Si Miao Powder, an herbal formula, was recorded in ancient Chinese medicine prescription with excellent anti-inflammatory properties. Based on the classical formula, the modified Si Miao Powder (MSMP) was developed with the addition of two commonly Chinese orthopedic herbs, which had the efficacy of strengthening the therapeutic effect for OA. Methods In the in vivo experiments, thirty-six 8-week-old male C57BL/6 mice were randomly divided into six groups: sham group, OA group, celecoxib group, low-MSMP group, middle-MSMP group, and high-MSMP group. OA mice were constructed by destabilization of medial meniscus (DMM) and treated with MSMP granules or celecoxib by gavage. The effects of MSMP on cartilage, synovitis and inflammatory factor of serum were tested. For in vitro experiments, control serum and MSMP-containing serum were prepared from twenty-five C57BL/6 mice. Macrophages (RAW264.7 cells) were induced by lipopolysaccharide (LPS) and then treated with MSMP-containing serum. The expression of inflammatory factors and the change of the NF-κB pathway were tested. Results In vivo, celecoxib and MSMP alleviated OA progression in the treated groups compared with OA group. The damage was partly recovered in cartilage, the synovial inflammatory were reduced in synovium, and the concentrations of IL-6 and TNF-α were reduced and the expression of IL-10 was increased in serum. The function of the middle MSMP was most effective for OA treatment. The results of in vitro experiments showed that compared with the LPS group, the MSMP-containing serum significantly reduced the expression levels of pro-inflammatory (M1-type) factors, such as CD86, iNOS, TNF-α and IL-6, and promoted the expression levels of anti-inflammatory (M2-type) factors, such as Arg1 and IL-10. The MSMP-containing serum further inhibited NF-κB signaling pathway after LPS induction. Conclusion The study demonstrated that MSMP alleviated OA progression in mice and MSMP-containing serum modulated macrophage M1/M2 phenotype by inhibiting the NF-κB signaling pathway. Our study provided experimental evidence and therapeutic targets of MSMP for OA treatment.
Collapse
Affiliation(s)
- Qi He
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ding Tian
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Zheng
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Kawada K, Ishida T, Morisawa S, Jobu K, Higashi Y, Aizawa F, Yagi K, Izawa-Ishizawa Y, Niimura T, Abe S, Goda M, Miyamura M, Ishizawa K. Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced inflammation in murine microglial cells. Front Pharmacol 2024; 15:1302055. [PMID: 38738173 PMCID: PMC11082290 DOI: 10.3389/fphar.2024.1302055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Exosome-like nanoparticles (ELNs) mediate interspecies intercellular communications and modulate gene expression. Hypothesis/Purpose In this study, we isolated and purified ELNs from the dried rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a traditional natural medicine, and investigated their potential as neuroinflammatory therapeutic agents. Methods ALR-ELN samples were isolated and purified using differential centrifugation, and their physical features and microRNA contents were analyzed through transmission electron microscopy and RNA sequencing, respectively. BV-2 microglial murine cells and primary mouse microglial cells were cultured in vitro, and their ability to uptake ALR-ELNs was explored using fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-inflammatory responses of these cells to lipopolysaccharide (LPS) exposure was assessed through mRNA and protein expression analyses. Results Overall, BV-2 cells were found to internalize ALR-ELNs, which comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2 cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN treatment. In addition, pretreatment of primary mouse microglial cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide. Conclusion Our findings indicate that ALR-ELNs exhibit anti-inflammatory effects on murine microglial cells. Further validation may prove ALR-ELNs as a promising neuroinflammatory therapeutic agent.
Collapse
Affiliation(s)
- Kei Kawada
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Shumpei Morisawa
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiko Miyamura
- Center for Regional Sustainability and Innovation, Kochi University, Kochi, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| |
Collapse
|
8
|
Parashar A, Jha D, Mehta V, Chauhan B, Ghosh P, Deb PK, Jaiswal M, Prajapati SK. Sonic hedgehog signalling pathway contributes in age-related disorders and Alzheimer's disease. Ageing Res Rev 2024; 96:102271. [PMID: 38492808 DOI: 10.1016/j.arr.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is caused by the aging process and manifested by cognitive deficits and progressive memory loss. During aging, several conditions, including hypertension, diabetes, and cholesterol, have been identified as potential causes of AD by affecting Sonic hedgehog (Shh) signalling. In addition to being essential for cell differentiation and proliferation, Shh signalling is involved in tissue repair and the prevention of neurodegeneration. Neurogenesis is dependent on Shh signalling; inhibition of this pathway results in neurodegeneration. Several protein-protein interactions that are involved in Shh signalling are implicated in the pathophysiology of AD like overexpression of the protein nexin-1 inhibits the Shh pathway in AD. A protein called Growth Arrest Specific-1 works with another protein called cysteine dioxygenase (CDO) to boost Shh signalling. CDO is involved in the development of the central nervous system (CNS). Shh signalling strengthened the blood brain barrier and therefore prevent the entry of amyloid beta and other toxins to the brain from periphery. Further, several traditional remedies used for AD and dementia, including Epigallocatechin gallate, yokukansan, Lycium barbarum polysaccharides, salvianolic acid, and baicalin, are known to stimulate the Shh pathway. In this review, we elaborated that the Shh signalling exerts a substantial influence on the pathogenesis of AD. In this article, we have tried to explore the various possible connections between the Shh signalling and various known pathologies of AD.
Collapse
Affiliation(s)
- Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India.
| | - Dhruv Jha
- Birla Institute of Technology, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | - Bonney Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Pappu Ghosh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Prashanta Kumar Deb
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | | | | |
Collapse
|
9
|
Lu M, Yin J, Xu T, Dai X, Liu T, Zhang Y, Wang S, Liu Y, Shi H, Zhang Y, Mo F, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117262. [PMID: 37788785 DOI: 10.1016/j.jep.2023.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuling-Zexie (FZ) formula, a traditional Chinese herbal prescription composed of Poria cocos (Schwan.) Wolf. (Poria), Pueraria lobate (Willd.) Howe. (Puerariae Lobatae Radix), Alisma orientale (Sam.) Julep. (Alismatis Rhizoma), and Atractylodes lancea (Thunb.) Dc. (Atractylodis Rhizoma), has been clinically used to ameliorate hyperuricemia (HUA) and its associated renal injury. AIM OF STUDY This study aims to explore the action and mechanism of FZ on renal inflammation and dysfunction caused by HUA. MATERIALS AND METHODS FZ was orally administered to rapid HUA mouse induced by potassium oxonate (PO) and hypoxanthine (HX) for 7 days. Serum levels of uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD), adenosine deaminase (ADA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urine levels of UA, CRE and urinary albumin were determined by biochemical assays. Serum levels of interleukin (IL)-1β and IL-6 were tested by ELISA. Hematoxylin-eosin and Masson staining were used to examine kidney and liver histopathological alterations. The expressions of renal glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), phospho-janus kinase 2 (p-JAK2), p-signal transducer and activator of transcription 3 (p-STAT3), suppression of cytokine signaling 3 (SOCS3), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cleaved-cysteinyl aspartate specific proteinase-1 (cleaved-Cas-1) were detected by western blots. The potential protein targets and pathways of FZ intervention on HUA were predicted by network pharmacology. The constituents in FZ aqueous extract were analyzed by UPLC-MS. RESULTS FZ reduced serum UA, CRE, BUN, and urinary albumin and increased urine UA, CRE levels in HUA mice. In addition, the treatment with FZ to HUA mice inhibited the elevated serum levels of XOD and ADA, and regulated renal urate transports including OAT1, GLUT9 and ABCG2. FZ also attenuated kidney inflammation and fibrosis and downregulated the expressions of IL-1β, p-JAK2, p-STAT3, SOCS3, IL-6, NLRP3, ASC, and cleaved-Cas-1. Thirteen compounds were identified in the FG, including L-phenylalanine, D-tryptophan, 3'-hydroxypuerarin, Puerarin, 3'-Methoxy Puerarin, Daidzin, Pueroside A, formononetin-8-C- [xylosyl (1→6)]-glucoside, Ononin, Alisol I 23-acetate, 16-oxo-alisol A, Alisol C and Alisol A. CONCLUSION FZ inhibits serum UA generation and promotes urine UA excretion as well as attenuates kidney inflammation and fibrosis in HUA mouse with nephropathy. The underlying mechanism of its action may be associated with suppression of the JAK2/STAT3 signaling pathway and NLRP3 inflammasome activation. This formula may offer a novel source for developing anti-HUA drugs.
Collapse
Affiliation(s)
- Meixi Lu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Fangfang Mo
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Chen L, Zhang S, Wang Y, Sun H, Wang S, Wang D, Duan Y, Niu J, Wang Z. Integrative analysis of transcriptome and metabolome reveals the sesquiterpenoids and polyacetylenes biosynthesis regulation in Atractylodes lancea (Thunb.) DC. Int J Biol Macromol 2023; 253:127044. [PMID: 37742891 DOI: 10.1016/j.ijbiomac.2023.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and β-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and β-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and β-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.
Collapse
Affiliation(s)
- Lijun Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Shenfei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yufei Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Hongxia Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Donghao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yizhong Duan
- College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Junfeng Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| |
Collapse
|
11
|
Muhamad N, Na‐Bangchang K. The roles of CYP2C19 and CYP3A4 in the in vitro metabolism of β-eudesmol in human liver: Reaction phenotyping and enzyme kinetics. Pharmacol Res Perspect 2023; 11:e01149. [PMID: 37902256 PMCID: PMC10614204 DOI: 10.1002/prp2.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
β-eudesmol is a major bioactive component of Atractylodes lancea (AL). AL has been developed as the capsule formulation of standardized AL extract for treating cholangiocarcinoma (CCA). However, the complex constituents of herbal products increase the risk of adverse drug interactions. β-eudesmol has demonstrated inhibitory effects on rCYP2C19 and rCYP3A4 in the previous research. This study aimed to identify the cytochrome P450 (CYP) isoforms responsible for the metabolism of β-eudesmol and determine the enzyme kinetic parameters and the metabolic stability of β-eudesmol metabolism in the microsomal system. Reaction phenotyping using human recombinant CYPs (rCYPs) and selective chemical inhibitors of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was performed, and enzyme kinetics and metabolic stability were investigated using human liver microsome (HLM). The results suggest that CYP2C19 and CYP3A4 play significant roles in β-eudesmol metabolism. The disappearance half-life (t1/2 ) and intrinsic clearance (CLint ) of β-eudesmol were 17.09 min and 0.20 mL/min·mg protein, respectively. Enzyme kinetic analysis revealed the Michaelis-Menten constant (Km ) and maximum velocity (Vmax ) of 16.76 μM and 3.35 nmol/min·mg protein, respectively. As a component of AL, β-eudesmol, as a substrate and inhibitor of CYP2C19 and CYP3A4, has a high potential for drug-drug interactions when AL is co-administered with other herbs or conventional medicines.
Collapse
Affiliation(s)
- Nadda Muhamad
- Graduate Studies, Chulabhorn International College of MedicineThammasat UniversityPathumthaniThailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat UniversityPathumthaniThailand
| | - Kesara Na‐Bangchang
- Graduate Studies, Chulabhorn International College of MedicineThammasat UniversityPathumthaniThailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat UniversityPathumthaniThailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat UniversityPathumthaniThailand
| |
Collapse
|
12
|
Zixuan Z, Rongping D, Yingying Z, Yueyue L, Jiajing Z, Yue J, Tan M, Zengxu X. The phenotypic variation mechanisms of Atractylodes lancea post-cultivation revealed by conjoint analysis of rhizomic transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108025. [PMID: 37722282 DOI: 10.1016/j.plaphy.2023.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
The wild Atractylodes lancea rhizomes have been traditionally used as herbal medicine. As the increasingly exhaustion of wild A. lancea, the artificial cultivation mainly contributed to the medicinal material production. However, besides the phenotypic variation of rhizome phenotypic trait alteration, the qualities of cultivated A. lancea decrease compared with the wild counterpart. To unveil the physiological and molecular mechanism beneath the phenotypic variation, GC-MS-based volatile organic compounds (VOCs) profiling and RNAseq-based transcriptome analysis were conducted. The volatile metabolomics profiling revealed 65 differentially accumulated metabolites (DAMs) while the transcriptomic profiling identified 12 009 differentially expressed unigenes (DEGs) post-cultivation. The volatile active compounds including atractylone, and eudesmol accumulated more in wild rhizome than in the cultivated counterpart, and several unigenes in terpene synthesis were downregulated under cultivated condition. Compared with the wild A. lancea rhizome, the contents of bioactive Jasmonic Acid (JAs) in cultivated A. lancea rhizome were higher, and evidences that JAs negatively regulate the terpenes biosynthesis in the cultivated A. lancea rhizome were also provided. The combinational omics analysis further indicated the high correlation between the ten cultivation-suppressed VOCs and the cultivation-altered genes for sesquiterpenoids biosynthesis in A. lancea. The network of the cultivation-altered transcription factors (TFs) and the ten VOCs suggested TFs (e.g. Arabidopsis ERF13 homologs and WRKY50) are involved in the regulation of terpenes biosynthesis. These results laid a theoretical basis for developing geo-herbalism medicinal plants with "high quality and optimal shape".
Collapse
Affiliation(s)
- Zhang Zixuan
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Ding Rongping
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Zhang Yingying
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Liao Yueyue
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Zhao Jiajing
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Jia Yue
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Xiang Zengxu
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Plirat W, Chaniad P, Phuwajaroanpong A, Konyanee A, Viriyavejakul P, Septama AW, Punsawad C. Efficacy of artesunate combined with Atractylodes lancea or Prabchompoothaweep remedy extracts as adjunctive therapy for the treatment of cerebral malaria. BMC Complement Med Ther 2023; 23:332. [PMID: 37730604 PMCID: PMC10510250 DOI: 10.1186/s12906-023-04150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.
Collapse
Affiliation(s)
- Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | | | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
14
|
Wang M, Deng J, Duan G, Chen L, Huang X, Wang W, Gong L, Zhang Y, Yu K, Guo L. Insights into the impacts of autotoxic allelochemicals from rhizosphere of Atractylodes lancea on soil microenvironments. FRONTIERS IN PLANT SCIENCE 2023; 14:1136833. [PMID: 36968368 PMCID: PMC10036400 DOI: 10.3389/fpls.2023.1136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Atractylodes lancea suffers from continuous cropping obstacles that have become a major constraint in its cultivation, but there is still little information on the autotoxic allelochemicals and their interaction with soil microorganisms. In this study, we firstly identified the autotoxic allelochemicals from rhizosphere of A. lancea and determined their autotoxicity. Third-year continuous A. lancea cropping soils, i.e., rhizospheric soil and bulk soil, compared with control soil and one-year natural fallow soil were used to determine soil biochemical properties and microbial community. Eight allelochemicals from A. lancea roots were detected and exhibited significant autotoxicity effects on seed germination and seedling growth of A. lancea with the highest content of dibutyl phthalate in rhizospheric soil and lowest IC50 value of 2,4-di-tert-butylphenol inhibiting seed germination. The contents of soil nutrients and organic matter, pH value, and enzyme activity were altered between different soils, and the parameters of fallow soil were close to those of the unplanted soil. The PCoA analysis indicated that the community composition of both bacteria and fungi were differed significantly among the soil samples. Continuous cropping decreased OTUs numbers of bacterial and fungal communities, and natural fallow restored them. The relative abundance of Proteobacteria, Planctomycetes, and Actinobacteria decreased, and that of Acidobacteria and Ascomycota increased after three years cultivation. The LEfSe analysis identified 115 and 49 biomarkers for bacterial and fungal communities, respectively. The results suggested that natural fallow restored the structure of soil microbial community. Overall, our results revealed that autotoxic allelochemicals caused the variations of soil microenvironments and resulted in replantation problem of A. lancea, and natural fallow alleviated the soil deterioration by remodeling the rhizospheric microbial community and restoring soil biochemical properties. These findings provide important insights and clues for solving the continuous cropping problems and guiding the management of sustainable farmland.
Collapse
Affiliation(s)
- Meng Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Gonghao Duan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenjie Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Gong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Yu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis. Molecules 2023; 28:molecules28052216. [PMID: 36903461 PMCID: PMC10004716 DOI: 10.3390/molecules28052216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The rhizome of Atractylodes lancea (RAL) is a well-known Chinese herbal medicine (CHM) that has been applied in clinical settings for thousands of years. In the past two decades, cultivated RAL has gradually replaced wild RAL and become mainstream in clinical practice. The quality of CHM is significantly influenced by its geographical origin. To date, limited studies have compared the composition of cultivated RAL from different geographical origins. As essential oil is the primary active component of RAL, a strategy combining gas chromatography-mass spectrometry (GC-MS) and chemical pattern recognition was first applied to compare the essential oil of RAL (RALO) from different regions in China. Total ion chromatography (TIC) revealed that RALO from different origins had a similar composition; however, the relative content of the main compounds varied significantly. In addition, 26 samples obtained from various regions were divided into three categories by hierarchical cluster analysis (HCA) and principal component analysis (PCA). Combined with the geographical location and chemical composition analysis, the producing regions of RAL were classified into three areas. The main compounds of RALO vary depending on the production areas. Furthermore, a one-way analysis of variance (ANOVA) revealed that there were significant differences in six compounds, including modephene, caryophyllene, γ-elemene, atractylon, hinesol, and atractylodin, between the three areas. Hinesol, atractylon, and β-eudesmol were selected as the potential markers for distinguishing different areas by orthogonal partial least squares discriminant analysis (OPLS-DA). In conclusion, by combining GC-MS with chemical pattern recognition analysis, this research has identified the chemical variations across various producing areas and developed an effective method for geographic origin tracking of cultivated RAL based on essential oils.
Collapse
|
16
|
Heo G, Kim Y, Kim EL, Park S, Rhee SH, Jung JH, Im E. Atractylodin Ameliorates Colitis via PPARα Agonism. Int J Mol Sci 2023; 24:802. [PMID: 36614242 PMCID: PMC9821687 DOI: 10.3390/ijms24010802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Atractylodin is a major compound in the rhizome of Atractylodes lancea, an oriental herbal medicine used for the treatment of gastrointestinal diseases, including dyspepsia, nausea, and diarrhea. Recent studies have shown that atractylodin exerts anti-inflammatory effects in various inflammatory diseases. Herein, we investigated the anti-colitis effects of atractylodin and its molecular targets. We determined the non-cytotoxic concentration of atractylodin (50 μM) using a cell proliferation assay in colonic epithelial cells. We found that pretreatment with atractylodin significantly inhibits tumor necrosis factor-α-induced phosphorylation of nuclear factor-κ-light-chain-enhancer of activated B in HCT116 cells. Through docking simulation analysis, luciferase assays, and in vitro binding assays, we found that atractylodin has an affinity for peroxisome proliferator-activated receptor alpha (PPARα). Daily administration of atractylodin (40 mg/kg) increased the survival rate of mice in a dextran sodium sulfate-induced colitis mouse model. Thus, atractylodin can be a good strategy for colitis therapy through inducing PPARα-dependent pathways.
Collapse
Affiliation(s)
- Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yuju Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
17
|
Na-Bangchang K, Plengsuriyakarn T, Karbwang J. The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review. PLANTA MEDICA 2023; 89:3-18. [PMID: 35468650 DOI: 10.1055/a-1676-9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| |
Collapse
|
18
|
Plirat W, Chaniad P, Phuwajaroanpong A, Septama AW, Punsawad C. Phytochemical, Antimalarial, and Acute Oral Toxicity Properties of Selected Crude Extracts of Prabchompoothaweep Remedy in Plasmodium berghei-Infected Mice. Trop Med Infect Dis 2022; 7:tropicalmed7120395. [PMID: 36548650 PMCID: PMC9785619 DOI: 10.3390/tropicalmed7120395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Malaria remains a life-threatening health problem and encounters with the increasing of antimalarial drug resistance. Medicinal plants play a critical role in synthesizing novel and potent antimalarial agents. This study aimed to investigate the phytochemical constituents, antiplasmodial activity, and evaluate the toxicity of crude ethanolic extracts of Myristica fragrans, Atractylodes lancea, and Prabchompoothaweep remedy in a mouse model. The phytochemical constituents were characterized by liquid chromatography-mass spectrometry (LC-MS). Antimalarial efficacy against Plasmodium berghei was assessed using 4-day suppressive tests at doses of 200, 400, and 600 mg/kg body weight. Acute toxicity was assessed at a dose of 2000 mg/kg body weight of crude extracts. The 4-day suppression test showed that all crude extracts significantly suppressed parasitemia (p < 0.05) compared to the control group. Higher parasitemia suppression was observed both in Prabchompoothaweep remedy at a dose of 600 mg/kg (60.1%), and A. lancea at a dose of 400 mg/kg (60.1%). The acute oral toxicity test indicated that the LD50 values of all extracts were greater than 2000 mg/kg and that these extracts were not toxic in the mouse model. LC-MS analysis revealed several compounds in M. fragrans, A. lancea, and Prabchompoothaweep remedy. For quantitative analysis, 1,2,6,8-tetrahydroxy-3-methylanthraquinone 2-O-b-D-glucoside, chlorogenic acid, and 3-O-(beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl) ethyl 3-hydroxyoctanoate were found in A. lancea, while (7′x,8′x)-4,7′-epoxy-3,8′-bilign-7-ene-3,5′-dimethoxy-4′,9,9′-triol, edulisin III, and tetra-hydrosappanone A trimethyl ether are found in M. fragrans. 6′-O-Formylmarmin was present in the Prabchompoothaweep remedy, followed by pterostilbene glycinate and amlaic acid. This study showed that the ethanolic extracts of A. lancea and Prabchompoothaweep remedy possess antimalarial activity against Plasmodium berghei. None of the extracts had toxic effects on liver and kidney function. Therefore, the ethanolic extract of A. lancea rhizome and Prabchompoothaweep remedy could be used as an alternative source of new antimalarial agents. Further studies are needed to determine the active compounds in both extracts.
Collapse
Affiliation(s)
- Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence:
| |
Collapse
|
19
|
Network Pharmacology and Experimental Validation to Investigate the Antidepressant Potential of Atractylodes lancea (Thunb.) DC. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111925. [PMID: 36431060 PMCID: PMC9696776 DOI: 10.3390/life12111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Atractylodes lancea (Thunb.) DC. (AL) has been indicated in traditional prescriptions for the treatment of depression. However, the mechanism of action of AL in the treatment of depression is still unclear. This study aimed to investigate the antidepressant potential of AL using network pharmacology, molecular docking, and animal experiments. The active components of AL were retrieved from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and the depression-related targets were screened through the DisGeNET database. Overlapping targets of AL and depression were selected and analyzed. Ten active compounds of AL showed anti-depressant potential, including stigmasterol, 3β-acetoxyatractylone, wogonin, β-sitosterol, selina-4(14),7(11)-dien-8-one, atractylenolide I, atractylenolide II, atractylenolide III, patchoulene, and cyperene. These compounds target 28 potential antidepressant genes/proteins. Gene Ontology (GO) enrichment analysis revealed that the potential targets might directly influence neural cells and regulate neuroinflammation and neurotransmitter-related processes. The potential Kyoto Encyclopedia Genes and Genomes (KEGG) pathways for the antidepressant effects of AL include neuroactive ligand-receptor interactions, calcium signaling pathways, dopaminergic synapse, interleukin (IL)-17 signaling pathways, and the pathways of neurodegeneration. IL-6, nitric oxide synthase 3 (NOS), solute carrier family 6 member 4 (SLC6A4), estrogen receptor (ESR1), and tumor necrosis factor (TNF) were the most important proteins in the protein-protein interaction network and these proteins showed high binding affinities with the corresponding AL compounds. AL showed an antidepressant effect in mice by decreasing immobility time in the tail suspension test and increasing the total contact number in the social interaction test. This study demonstrated the antidepressant potential of AL, which provides evidence for pursuing further studies to develop a novel antidepressant.
Collapse
|
20
|
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Atractylodes lancea for cholangiocarcinoma: Modulatory effects on CYP1A2 and CYP3A1 and pharmacokinetics in rats and biodistribution in mice. PLoS One 2022; 17:e0277614. [PMID: 36374864 PMCID: PMC9662714 DOI: 10.1371/journal.pone.0277614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (A. lancea: AL) is a promising candidate for the treatment of cholangiocarcinoma (bile duct cancer). The study investigated (i) the propensity of capsule formulation of the standardized extract of AL (formulated AL) to modulate mRNA and protein expression and activities of CYP1A2 and CYP3A1 in rats after long- and short-term exposure, (ii) the pharmacokinetics of atractylodin (ATD: active constituent) after long-term administration of formulated AL, and (iii) the biodistribution of atractylodin-loaded polylactic-co-glycolic acid (ATD-PLGA-NPs) in mice. To investigate CYP1A2 and CYP3A1 modulatory activities following long-term exposure, rats of both genders received oral doses of the formulated AL at 1,000 (low dose), 3,000 (medium dose), and 5,000 (high dose) mg/kg body weight daily for 12 months. For short-term effects, male rats were orally administered the formulated AL at the dose of 5,000 mg/kg body weight daily for 1, 7, 14 and 21 days. The pharmacokinetic study was conducted in male rats after administration of the formulated AL at the dose of 5,000 mg/kg body weight daily for 9 months. The biodistribution study was conducted in a male mouse receiving ATD-PLGA-NPs at the equivalent dose to ATD of 100 mg/kg body weight. The high dose of formulated AL produced an inducing effect on CYP1A2 but an inhibitory effect on CYP3A1 activities in male rats. The low dose, however, did not inhibit or induce the activities of both enzymes in male and female rats. ATD reached maximum plasma concentration (Cmax) of 359.73 ng/mL at 3 h (tmax). Mean residence time (MRT) and terminal phase elimination half-life (t1/2z) were 3.03 and 0.56 h, respectively. The extent of biodistribution of ATD in mouse livers receiving ATD-PLGA-NPs was 5-fold of that receiving free ATD. Clinical use of low-dose AL should be considered to avoid potential herb-drug interactions after long-term use. ATD-PLGA-NPs is a potential drug delivery system for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Nadda Muhamad
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- * E-mail:
| |
Collapse
|
21
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Effects of β-eudesmol and atractylodin on target genes and hormone related to cardiotoxicity, hepatotoxicity, and endocrine disruption in developing zebrafish embryos. Sci Prog 2022; 105:368504221137458. [PMID: 36474426 PMCID: PMC10306152 DOI: 10.1177/00368504221137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atractylodes lancea, commonly known as Kod-Kamao in Thai, a traditional medicinal herb, is being developed for clinical use in cholangiocarcinoma. β-eudesmol and atractylodin are the main active components of this herb which possess most of the pharmacological properties. However, the lack of adequate toxicity data would be a significant hindrance to their further development. The present study investigated the toxic effects of selected concentrations of β-eudesmol and atractylodin in the heart, liver, and endocrine systems of zebrafish embryos. Study endpoints included changes in the expression of genes related to Na/K-ATPase activity in the heart, fatty acid-binding protein 10a and cytochrome P450 family 1 subfamily A member 1 in the liver, and cortisol levels in the endocrine system. Both compounds produced inhibitory effects on the Na/K-ATPase gene expressions in the heart. Both also triggered the biomarkers of liver toxicity. While β-eudesmol did not alter the expression of the cytochrome P450 family 1 subfamily A member 1 gene, atractylodin at high concentrations upregulated the gene, suggesting its potential enzyme-inducing activity in this gene. β-eudesmol, but not atractylodin, showed some stress-reducing properties with suppression of cortisol production.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety
Research Team, National Nanotechnology Center, National Science and Technology
Development Agency, Klong Luang, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Drug Discovery and Development Center, Thammasat University, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
22
|
Atractylodin alleviates cancer anorexia-cachexia syndrome by regulating NPY through hypothalamic Sirt1/AMPK axis-induced autophagy. Biochem Biophys Res Commun 2022; 625:154-160. [DOI: 10.1016/j.bbrc.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
|
23
|
Preparation, characterization and immunoregulatory activity of derivatives of polysaccharide from Atractylodes lancea (Thunb.) DC. Int J Biol Macromol 2022; 216:225-234. [PMID: 35753515 DOI: 10.1016/j.ijbiomac.2022.06.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide (ALP-1) extracted from Atractylodes lancea (Thunb.) DC. was carboxymethylated (C-ALP-1), phosphorylated (P-ALP-1) and acetylated (A-ALP-1) to improve its physicochemical properties and bioactivities. The solubility of all derivatives was increased, and the solubility of A-ALP-1 increased to 137.5 mg/mL, which was much higher than the solubility of ALP-1 (15.0 mg/mL). The results of HPSEC-MALLS-RID showed that the molecular weight of polysaccharides was slightly increased after the modification, and the root mean square radius of rotation (Rz) and morphology of polysaccharides in solution were also changed. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results confirmed that the surface morphology of ALP-1 changed dramatically and the crystallinity decreased after structural modification. From thermal analysis results, the T50 of ALP-1, C-ALP-1, P-ALP-1 and A-ALP-1 were 281.34, 292.14, 333.75 and 298.70 °C, which showed that derivatives had stronger thermal stability than ALP-1. The immunomodulatory activity studies displayed that P-ALP-1 showed the best ability to stimulate RAW264.7 macrophages to release NO, and A-ALP-1 showed the best capacity to stimulate TNF-α and IL-6 releasing. These results indicated that chemical modification could enhance the solubility, the thermal stability and immunomodulatory activity of polysaccharides, which is beneficial for the development and utilization of natural polysaccharides.
Collapse
|
24
|
Krenc D, Na-Bangchang K. Spectroscopic observations of β-eudesmol binding to human cytochrome P450 isoforms 3A4 and 1A2, but not to isoforms 2C9, 2C19 and 2D6. Xenobiotica 2022; 52:199-208. [PMID: 35139770 DOI: 10.1080/00498254.2022.2037168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-Eudesmol is a sesquiterpenoid component o Atractylodes lancea with cytotoxic activity against cholangiocarcinoma. Its lipophilic nature makes β-eudesmol a likely substrate of human cytochrome P450 (P450) enzymes.Using ligand-binding difference spectroscopy, the affinities of this compound to recombinant CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 were investigated in Escherichia coli membrane preparations.CYP3A4 showed a type I spectral change, with a binding constant Ks of 77 ± 23 (mean ± SD) μM at 0.5 μM P450 (Ks/[P450] ≈ 155). The reference substrate testosterone and the inhibitor fluconazole bound to the enzyme with apparent affinities of 86 ± 4 μM (type I) and 21 μM (type II), respectively. β-Eudesmol was bound to CYP3A4 in a non-cooperative manner (Hill coefficient n ≈ 0.8). CYP1A2 showed reverse type I difference spectra with either β-eudesmol or caffeine. The CYP1A2 affinity for β-eudesmol was higher (0.23 mM) than for caffeine (0.37 mM) but lower than for phenacetin (0.11 mM, type I). β-Eudesmol did not bind significantly to CYP2C9, CYP2C19, and CYP2D6.Confirmation of metabolic activity and studies on the involvement of other human P450 isoforms studies are required. Double-beam spectrometry is needed to validate Ks measurements made with a plate reader.
Collapse
Affiliation(s)
- Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand.,Drug Discovery and Development Center, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
25
|
Sunagawa M, Takayama Y, Kato M, Tanaka M, Fukuoka S, Okumo T, Tsukada M, Yamaguchi K. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼. Front Mol Neurosci 2021; 14:705023. [PMID: 34970116 PMCID: PMC8712661 DOI: 10.3389/fnmol.2021.705023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Tanaka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Seiya Fukuoka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kojiro Yamaguchi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
26
|
Oh SH, Kim YD, Jang CS. Development and application of DNA markers to detect adulteration with Scopolia japonica in the medicinal herb Atractylodes lancea. Food Sci Biotechnol 2021; 31:89-100. [DOI: 10.1007/s10068-021-01008-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
|
27
|
Zhang F, Jiang Y, Jiao P, Li S, Tang C. Ligand fishing via a monolithic column coated with white blood cell membranes: A useful technique for screening active compounds in Astractylodes lancea. J Chromatogr A 2021; 1656:462544. [PMID: 34543881 DOI: 10.1016/j.chroma.2021.462544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
The cell membrane-coated monolithic column (CMMC) ligand fishing assay is an interesting approach set up for the study of natural products (NPs). NPs such as Atractylodes lancea contain many compounds. Traditional methods used to separate compounds and determine active compounds by pharmacological tests are time-consuming and inefficient. Therefore, an alternative method is required to determine active compounds in NPs. Here, white blood cells were broken, and the white blood cell membranes (WBCMs) were immobilized on the surface of a monolithic column to form a CMMC. The column was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Combined with gas chromatography/mass spectrometry (GC/MS), the CMMC was used to screen active compounds in Atractylodes lancea. Three potential active compounds including hinesol, β-eudesmol, and 4-phenylbenzaldehyde were discovered. A molecular docking assay demonstrated that these compounds could bind to MD-2 laid on WBCMs. In addition, antiinflammatory effects by the discovered compound in vitro were confirmed, and β-eudesmol showed a concentration-dependent inhibitory effect on the tumor necrosis factor (TNF)-α of a RAW264.7 cell (P < 0.05). The CMMC ligand fishing assay exhibits good selectivity, great speed effects and is a potentially reliable tool for drug discovery in NPs.
Collapse
Affiliation(s)
- Fan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Jiang
- Department of Pharmacy, Tianjin Union Medical Center, 130, Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
28
|
Sum CH, Ching J, Zhang H, Loo S, Lo CW, Lai MK, Cheong PK, Yu CL, Lin ZX. Integrated Chinese and western medicine interventions for atopic dermatitis: a systematic review and meta-analysis. Chin Med 2021; 16:101. [PMID: 34629103 PMCID: PMC8504066 DOI: 10.1186/s13020-021-00506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic relapsing skin disease characterized by recurring episodes of itchiness with skin erythema and surface damages. Chinese medicine (CM) is widely used for the management of AD in China not only by its own, but also used in combination with conventional therapy (integrated Chinese-Western medicine, ICWM). Although many clinical trials on the effectiveness of ICWM on AD have been conducted, however, up to date, no sound evidence has been established on the clinical effectiveness and safety of ICWM for AD. OBJECTIVES To systematically review the currently available clinical evidence on the clinical effectiveness and safety of ICWM for AD. METHODS Randomised and quasi-randomised controlled trials, which investigated ICWM interventions with at least one control group using the same conventional interventions, no treatment or placebo treatment, were included. Four English (CENTRAL, MEDLINE, EMBASE, AMED) and three Chinese (CNKI, CBM, WanFang Med) databases were searched. Risk of bias was assessed according to the Cochrane's tool. Meta-analysis was performed to pool the data. RESULTS From 1473 entries, 55 studies were included, involving 5953 participants aged between 35 days and 67 years old. Duration of treatment ranged from 1 to 24 weeks. Only 2 studies were judged to have low risk of bias, 3 studies had unclear risk of bias, and the other 50 studies were with high risk of bias. ICWM was found to be superior over WM alone in improving clinical severity of AD (measured by EASI, SCORAD), health-related quality of life (measured by CDLQI, DLQI), long term control of AD (recurrence rate), patients/investigator global score (clinical effectiveness rate), and serum IgE level. Adverse events associated with ICWM were found to be comparable with WM alone. CONCLUSION ICWM seems to produce superior treatment response than WM alone in managing AD without increased risk of adverse events. However, the current available evidence remains too weak to make a conclusive decision.
Collapse
Affiliation(s)
- Chi Him Sum
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jessica Ching
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Hongwei Zhang
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Steven Loo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Cho Wing Lo
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mei Kwan Lai
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui Kuan Cheong
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chau Leung Yu
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Zhi-Xiu Lin
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
29
|
Hossen MJ, Amin A, Fu XQ, Chou JY, Wu JY, Wang XQ, Chen YJ, Wu Y, Li J, Yin CL, Liang C, Chou GX, Yu ZL. The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-κB signaling pathway inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114183. [PMID: 33991638 DOI: 10.1016/j.jep.2021.114183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rhizome of Atractylodes lancea (Thumb.) DC. (Compositae) has been prescribed in folk medicine for the management of various inflammatory conditions such as rheumatic diseases, gastritis and hepatitis. However, the molecular mechanisms underlying the beneficial properties of this herb remain elusive. AIM OF THE STUDY In this study, we investigated the anti-gastritis activities of Al-EE (an ethanolic extract of the herb) and explored the mechanism of action. MATERIALS AND METHODS An ethanolic extract of the Atractylodes lancea (Thumb.) DC. (Compositae) rhizome, Al-EE, was prepared with ethanol (95%) and quality controlled using HPLC analysis. To determine the in vivo effects of this extract, we utilised a HCl/EtOH-induced gastritis rat model. In vitro assays were carried out using a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell model. MTT assays were used to examine cell viability, while Griess assays were carried out to measure nitric oxide (NO) production. Messenger RNA expression was examined by real-time PCR. Prostaglandin E2 (PGE2) production was examined using ELISA assays. To examine protein expression and enzymatic activities, we employed western blot analysis. Nuclear transcription factor (NF)-κB activity was determined by Luciferase reporter assays. RESULTS The content of atractylenolide (AT)-1 and AT-2 in Al-EE was 0.45% and 5.07% (w/w), respectively (Supplementary Fig. 1). Al-EE treatment suppressed the production of NO and PGE2, reduced the mRNA expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α, while also reducing the protein levels of iNOS and COX-2 in RAW264.7 macrophage cells. Furthermore, Al-EE inhibited the nuclear protein levels of NF-κB (p65) and NF-κB-driven luciferase reporter gene activity in RAW264.7 macrophage cells. Critically, intra-gastric injection of Al-EE (25 mg/kg) attenuated HCl/EtOH-induced gastric damage in SD rats, while the phosphorylation of Akt and IκBα was suppressed by Al-EE in vitro and in vivo. CONCLUSION In summary, Al-EE has significant anti-gastritis effects in vivo and in vitro, which can be associated with the inhibition of the Akt/IκBα/NF-κB signalling pathway. This mechanistic finding provides a pharmacological basis for the use of the A. lancea rhizome in the clinical treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Aftab Amin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jia-Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiao-Qi Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Junkui Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Center for Natural Health Products, HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
30
|
Tharabenjasin P, Ferraris RP, Choowongkomon K, Pongkorpsakol P, Worakajit N, Sawasvirojwong S, Pabalan N, Na-Bangchang K, Muanprasat C. β-eudesmol but not atractylodin exerts an inhibitory effect on CFTR-mediated chloride transport in human intestinal epithelial cells. Biomed Pharmacother 2021; 142:112030. [PMID: 34426253 DOI: 10.1016/j.biopha.2021.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/13/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Oriental herbal medicine with the two bioactive constituents, β-eudesmol (BE) and atractylodin (AT), has been used as a remedy for gastrointestinal disorders. There was no scientific evidence reporting their antidiarrheal effect and underpinning mechanisms. Therefore, we aimed to investigate the anti-secretory activity of these two compounds in vitro. The inhibitory effect of BE and AT on cAMP-induced Cl- secretion was evaluated by Ussing chamber in human intestinal epithelial (T84) cells. Short-circuit current (ISC) and apical Cl- current (ICl-) were measured after adding indirect and direct cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activator. MTT assay was used to determine cellular cytotoxicity. Protein-ligand interaction was investigated by in silico molecular docking analysis. BE, but not AT concentration-dependently (IC50 of ~1.05 µM) reduced cAMP-mediated, CFTRinh-172 inhibitable Cl- secretion as determined by transepithelial ISC across a monolayer of T84 cells. Potency of CFTR-mediated ICl- inhibition by BE did not change with the use of different CFTR activators suggesting a direct blockage of the channel active site(s). Pretreatment with BE completely prevented cAMP-induced ICl-. Furthermore, BE at concentrations up to 200 µM (24 h) had no effect on T84 cell viability. In silico studies indicated that BE could best dock onto dephosphorylated structure of CFTR at ATP-binding pockets in nucleotide-binding domain (NBD) 2 region. These findings provide the first evidence for the anti-secretory effect of BE involving inhibition of CFTR function. BE represents a promising candidate for the therapeutic or prophylactic intervention of diarrhea resulted from intestinal hypersecretion of Cl.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07946, USA
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok 10900, Thailand
| | - Pawin Pongkorpsakol
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nichakorn Worakajit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan 10540, Thailand
| | - Sutthipong Sawasvirojwong
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Rangsit Center, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan 10540, Thailand.
| |
Collapse
|
31
|
Yu Y, Song H, Liu J, Wang P, Wang C. Efficiency and safety of yueju antidepressant for primary depression patients: a meta-analysis of randomized controlled trials. J Herb Med 2021. [DOI: 10.1016/j.hermed.2020.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Gao L, Wang Y, Zhang W, Zhu X, Gao Q, Xiao Y, Chen K, Liu F, Chen L. Novel in vivo and in vitro mechanisms of positive inotropic effect of atractylodin. Clin Exp Pharmacol Physiol 2021; 48:686-696. [PMID: 32931027 DOI: 10.1111/1440-1681.13406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/28/2022]
Abstract
This study was to investigate the inotropic effect of atractylodin and its underlying mechanism. The cardiac pressure-volume loop (P-V loop), Langendroff-perfused isolated rat heart, patch-clamp, Ca2+ transient and western blot techniques were used. The results demonstrated that atractylodin (3 mg/kg, ip) remarkably increased the left ventricular stroke work, cardiac output, stroke volume, heart rate, ejection fraction, end-systolic pressure, peak rates of rise and fall of left ventricular pressures (+dP/dtmax , -dP/dtmax ), the slopes of end-systolic pressure-volume relationship (also named as end-systolic elastance, Ees) and reducing end-systolic volume and end-diastolic volume in the in vivo rat study. Also, atractylodin (3 mg/kg, ip) significantly decreased diastolic blood pressure and the arterial elastance (Ea) without significant systolic blood pressure change. In addition, atractylodin (0.1, 1, 10 µmol/L) also increased the isolated rat heart left ventricular developed pressure which is the difference between the systolic and diastolic pressure in non-pacing and pacing modes. Furthermore, JMV-2959 (1 μmol/L), a ghrelin receptor unbiased antagonist, blocked the increased left ventricular developed pressure of atractylodin in isolated rat hearts. Finally, atractylodin (5 µmol/L) increased the amplitude of Ca2+ transient by enhancing SERCA2a activity, the sarcoplasmic reticulum Ca2+ content and the phosphorylation of phospholamban at 16-serine. These results demonstrated that atractylodin had a positive inotropic effect by enhancing SERCA2a activity which might be mediated by acting ghrelin receptor in myocardium. In conclusion, atractylodin which had the positive inotropic effect and decreased diastolic blood pressure might serve as an agent for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Li Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Taizhou Fourth People's Hospital, Taizhou, China
| | - Yuwei Wang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianwen Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujie Xiao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Fuming Liu
- First Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Long Chen
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
33
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Anti-angiogenic effects of beta-eudesmol and atractylodin in developing zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108980. [PMID: 33493664 DOI: 10.1016/j.cbpc.2021.108980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023]
Abstract
Angiogenesis is the process of formation of new blood vessels which plays an essential role in the normal physiological development of the organs and systems. Several factors contribute to and regulate this process. Unregulated angiogenesis, however, is harmful and is usually found in tumors and cancerous cells. β-Eudesmol and atractylodin are sesquiterpenoid contents extracted from the rhizome of Atractylodes lancea (AL). Reports suggest potential anti-angiogenic activities of both compounds. In this study, the anti-angiogenic activities of both compounds were investigated using the well-established zebrafish in vivo model. Zebrafish embryos were treated with a series of concentrations (6.3, 12.5, 25, and 50 μM) of β-eudesmol and (6.3, 12.5, and 25 μM) of atractylodin up to 72 h post-fertilization. Assessment of the effects on phenotypic blood vessel development (sub-intestinal vessel intersection count) revealed that both the compounds inhibited vessel development, particularly at higher concentrations. At the genetic levels, only β-eudesmol significantly downregulated the expression of the Vegfaa gene and also its receptor Vegfr2. β-Eudesmol also affected the expression of Vegfaa protein in a concentration-dependent manner. Results indicate that β-eudesmol exerts anti-angiogenic property through inhibition of Vegfaa at both the gene and protein levels. However, atractylodin does not possess this property.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand; Drug Discovery and Development Center, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
34
|
Tu J, Xie Y, Xu K, Qu L, Lin X, Ke C, Yang D, Cao G, Zhou Z, Liu Y. Treatment of Spleen-Deficiency Syndrome With Atractyloside A From Bran-Processed Atractylodes lancea by Protection of the Intestinal Mucosal Barrier. Front Pharmacol 2021; 11:583160. [PMID: 33658928 PMCID: PMC7919195 DOI: 10.3389/fphar.2020.583160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (AL) is used in traditional Chinese medicine for the treatment of spleen-deficiency syndrome (SDS). Bran-processed Atractylodes lancea (BAL) has been found to be more effective than unprocessed AL. However, the compound in BAL active against SDS remains unclear. The pharmacological efficacy of BAL and its mechanism of action against SDS were investigated by HPLC-ELSD. Candidate compound AA (atractyloside A) in AL and BAL extracts was identified by HPLC-MS analysis. AA was tested in a rat model of SDS in which body weight, gastric residual rate, and intestinal propulsion were measured, and motilin (MTL), gastrin (GAS), and c-Kit were quantified by enzyme-linked immunosorbent assay. Potential targets and associated pathways were identified based on network pharmacology analysis. mRNA expression levels were measured by qRT-PCR and protein expression levels were measured by Western blot analysis and immunohistochemistry. AA increased body weight, intestinal propulsion, MTL, GAS, and c-Kit levels, while decreasing gastric residual volume and intestinal tissue damage, as same as Epidermal Growth Factor Receptor and Proliferating Cell Nuclear Antigen levels. Seventy-one potential pharmacologic targets were identified. Analysis of protein interaction, Gene Ontology (GO) functional analysis, pathway enrichment analysis, and docking and molecular interactions highlighted MAPK signaling as the potential signal transduction pathway. Validation experiments indicated that treatment with AA increased MTL, GAS, ZO-1, and OCLN levels, while reducing AQP1, AQP3, and FGF2 levels. In addition, phosphorylation of p38 and myosin light-chain kinase (MLCK) expression were inhibited. AA improved gastrointestinal function by protecting the intestinal mucosal barrier via inhibition of the p38 MAPK pathway. The results have clinical implications for the therapy of SDS.
Collapse
Affiliation(s)
- Jiyuan Tu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| | - Ying Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Lin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chang Ke
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Desen Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
35
|
Omar AI, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma. Clin Exp Pharmacol Physiol 2021; 48:318-328. [PMID: 33125766 DOI: 10.1111/1440-1681.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023]
Abstract
Atractylodes lancea (Thunb) DC. and its bioactive compound atractylodin (ATD), have been shown to exert promising anticancer activity against cholangiocarcinoma (CCA) both in vitro and in vivo. However, the clinical development of ATD could be hindered due to hydrophobicity and poor pharmacokinetic properties, and thus, the requirement of high dose administration and the risk of toxicity. In the present study, ATD-loaded in PLGA nanoparticles (ATD-PLGA) and that coated with chitosan (ATD-PLGA-CS) were developed using nanoprecipitation and single emulsification methods, respectively. The optimized ATD-PLGA formulation provided superior physical and pharmaceutical properties over ATD-PLGA-CS. The antiproliferative activity of ATD-PLGA against the two CCA cell lines, HuCCT1 and CL6, and the normal cell line (OUMS-36T-1F) was evaluated using MTT assay. Results showed that normal epithelial cell was less sensitive to ATD-PLGA compared to both CCA cell lines. In mice, the radiolabelled 99m Tc-ATD-PLGA showed superior pharmacokinetic profile over free 99m Tc-ATD, as evidenced by a 2.7-fold increase of area under plasma concentration-time curve (AUC0-∞ ), maximum plasma concentration (Cmax ), time to Cmax (tmax ), and mean residence time (MRT). Higher accumulation of 99m Tc-ATD-PLGA was observed in vital organs/tissues such as blood, liver, heart, and kidney, compared with free 99m Tc-ATD-PLGA. Altogether, the results suggest that PLGA NPs could be a suitable drug delivery carrier for ATD in CCA.
Collapse
Affiliation(s)
- Abdifetah Ibrahim Omar
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Bangkok, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Bangkok, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Bangkok, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Bangkok, Thailand
| |
Collapse
|
36
|
Zhang WJ, Zhao ZY, Chang LK, Cao Y, Wang S, Kang CZ, Wang HY, Zhou L, Huang LQ, Guo LP. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113415. [PMID: 32987126 PMCID: PMC7521906 DOI: 10.1016/j.jep.2020.113415] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodis Rhizoma (AR), mainly includes Atractylodes lancea (Thunb.) DC. (A. lancea) and Atractylodes chinensis (DC.) Koidz. (A. chinensis) is widely used in East Asia as a diuretic and stomachic drug, for the treatment of rheumatic diseases, digestive disorders, night blindness, and influenza as it contains a variety of sesquiterpenoids and other components of medicinal importance. AIM OF THE REVIEW A systematic summary on the botany, traditional uses, phytochemistry, pharmacology, toxicology, and quality control of AR was presented to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A review of the literature was performed by consulting scientific databases including Google Scholar, Web of Science, Baidu Scholar, Springer, PubMed, ScienceDirect, CNKI, etc. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Over 200 chemical compounds have been isolated from AR, notably sesquiterpenoids and alkynes. Various pharmacological activities have been demonstrated, especially improving gastrointestinal function and thus allowed to assert most of the traditional uses of AR. CONCLUSIONS The researches on AR are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components need to be further elucidated. It is suggested that further studies should be carried out in the aspects of comprehensive evaluation of the quality of medicinal materials, understanding of the "effective forms" and "additive effects" of the pharmacodynamic substances based on the same pharmacophore of TCM, and its long-term toxicity in vivo and clinical efficacy.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen-Yu Zhao
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Kun Chang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ye Cao
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuan-Zhi Kang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Yang Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
37
|
Phase I clinical trial to evaluate the safety and pharmacokinetics of capsule formulation of the standardized extract of Atractylodes lancea. J Tradit Complement Med 2021; 11:343-355. [PMID: 34195029 PMCID: PMC8240349 DOI: 10.1016/j.jtcme.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aim Atractylodes lancea (AL) has been demonstrated in a series of studies to be a potential candidate for the treatment of cholangiocarcinoma. The aim of the current study was to evaluate the safety and pharmacokinetics of the capsule formulation of the standardized AL extract in healthy Thai participants. Experimental procedure Forty-eight healthy Thai participants who fulfilled the inclusion and had none of the exclusion criteria were allocated to two study groups. The group 1 participants were randomized to receive a single oral dose of 1,000 mg of AL or placebo (20:4 participants). The group 2 participants were randomized to receive daily oral doses of 1,000 mg AL or placebo daily for 21 days (20:4 participants). Safety and tolerability of the two AL regimens were monitored. Blood samples were collected for measurement of atractylodin concentrations by HPLC and pharmacokinetic analysis was performed using model-dependent and model-independent analysis. Results and conclusion The AL extract was well tolerated in both groups. Atractylodin was rapidly absorbed but with low systemic exposure and residence time. There was no difference in the pharmacokinetic parameters of atractylodin following a single or multiple dosing, suggesting the absence of accumulation and dose-dependency in human plasma after continuous dosing for 21 days. The information on human pharmacokinetics of AL, when given as capsule formulation of the standardized extract, would assist in further dose optimization in cholangiocarcinoma patients with the defined pharmacokinetic-pharmacodynamic relationship. The study is the first pharmacokinetics of Atractylodes lancea (AL) in humans. AL was well tolerated as verified by clinical and laboratory investigations. There was no change in the pharmacokinetics of atractylodin (AL active compound) when given as multiple dosing for 21 days. The information will be used for further dose optimization in cholangiocarcinoma patients.
Collapse
|
38
|
Lopes DCDXP, de Oliveira TB, Viçosa AL, Valverde SS, Ricci Júnior E. Anti-Inflammatory Activity of the Compositae Family and Its Therapeutic Potential. PLANTA MEDICA 2021; 87:71-100. [PMID: 32663896 DOI: 10.1055/a-1178-5158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compositae is the largest family of flowering plants, with more than 1600 genera and 22 000 species. It has many economic uses in foods, cosmetics, and pharmaceutics. The literature reports its numerous medicinal benefits and recognized anti-inflammatory activity. Thus, this study evaluated the technological trends of anti-inflammatory activity of Compositae, based on the survey of scientific databases, articles, and patents, as well as the website of the Brazilian National Health Regulatory Agency (ANVISA), which is responsible for registering and controlling of healthcare and cosmetic products in the Brazil. The survey was conducted between 2008 and 2018, in the databases Science Direct, Lilacs, PubMed, and Web of Science (main collection), as well as the SciELO Citation Index. The patent survey was carried out on the basis of the Derwent Innovations Index, an important source for worldwide patent consultation, which covers 20 y of registered patents. Despite the numerous studies involving species of the Compositae family in different models of anti-inflammatory activity, there are few records of patents or products on the market from these species for that purpose. Some species have a traditional use and are present even in the Phytotherapic Summary of the Brazilian Pharmacopeia. This review confirms the therapeutic potential of Compositae for the development of anti-inflammatory drugs and reinforces the need to develop competencies and reduce technological bottlenecks to promote research and innovation in biodiversity products.
Collapse
Affiliation(s)
- Deise Cristina Drummond Xavier Paes Lopes
- Galenic Development Laboratory, LADEG, Health Sciences Center, Block L, Underground University Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Experimental Pharmacotechnical Laboratory, LabFE/Farmanguinhos-Fiocruz
| | | | | | - Simone Sacramento Valverde
- Laboratory of Medicinal Chemistry of Bioactive Products, LaQMed/Tec4Bio/Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Eduardo Ricci Júnior
- Galenic Development Laboratory, LADEG, Health Sciences Center, Block L, Underground University Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Cruz J, Trombley J, Carrington L, Cheng X. Properties of the Novel Chinese Herbal Medicine Formula Qu Du Qiang Fei I Hao Fang Warrant Further Research to Determine Its Clinical Efficacy in COVID-19 Treatment. Med Acupunct 2021; 33:71-82. [PMID: 33613814 PMCID: PMC7894031 DOI: 10.1089/acu.2020.1466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: COVID-19, the infectious disease induced by the virus severe acute respiratory syndrome-related coronavirus-2, has caused increasing global health concerns, and novel strategies to prevent or ameliorate the condition are needed. Traditional Chinese Medicine (TCM) herbal formulas have been used in the treatment of epidemics in China for over 2000 years. This study investigated the therapeutic effects of Qu Du Qiang Fei I Hao Fang (QDQF1) "Eliminating Virus and Strengthening Lung-No.1 Formula," in the treatment and prevention of COVID-19. QDQF1 consists of Shēng Huáng Qí, Běi Shā Shēn, Chuān Jié Gěng, Zhì Fáng Fēng, Qīng Lián Qiáo, Jīn Yín Huā, Bǎn Lán Gēn, Chǎo Cāng Zhú, Zǐ Huā Dì Dīng, and Shēng gān căo. Materials and Methods: A literature survey was performed by conducting systematic electronic searches in PubMed, Science Direct, Google Scholar, and in books. Results: Each herb in this formula has long been used to treat various diseases due to their pharmacologic, antiviral, anti-inflammatory, and antimicrobial effects that inhibit microbial adherence to mucosal or epithelial surfaces, inhibit endotoxin shock, and selectively inhibit microbial growth. Conclusion: The herbs chosen for the QDQF1 formula have been historically paired, and cast a wide net over the potential COVID-19 symptomatology. Their combined functions provide comprehensive and balanced therapeutics from both TCM and allopathic perspectives. Individual herbs and herbal combinations are analyzed for their applicability to pertinent TCM patterns of COVID-19 presentations, including heat and cold patterns, damp and phlegm syndromes, toxicity, and deficiency patterns. A further study in a randomized, double-blind, and placebo-controlled trial of QDQF1 is recommended to assess its therapeutic efficacy in the treatment of COVID-19.
Collapse
Affiliation(s)
- Jennifer Cruz
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Jason Trombley
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Linda Carrington
- Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Cai Q, Ma S, Xue D, Zhang B, Jiang Y. Targeted metabolomic analysis of seven short-chain fatty acids in feces of rats with spleen-deficiency syndrome after administering raw and bran-fried atractylodis rhizoma by gas chromatography-mass spectrometer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_185_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Jeong SH, Jang JH, Cho HY, Lee YB. Simultaneous determination of asarinin, β-eudesmol, and wogonin in rats using ultraperformance liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic studies following administration of standards and Gumiganghwal-tang. Biomed Chromatogr 2020; 35:e5021. [PMID: 33169364 DOI: 10.1002/bmc.5021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Asarinin, β-eudesmol, and wogonin have common antiangiogenic activities and have the potential for use in chemotherapy. Besides, they are multivalent substances that are combined in various herbal medicines. The purpose of this study was to develop a method for simultaneous analysis of asarinin, β-eudesmol, and wogonin, which are representative pharmacological components of Asarum heterotropoides, Atractylodes lancea, and Scutellaria baicalensis, respectively, in rat biosamples using ultraperformance liquid chromatography-tandem mass spectrometry. The three components were separated using 5 mm aqueous ammonium acetate containing 0.1% formic acid and acetonitrile as a mobile phase, equipped with a KINETEX core-shell C18 column. The analysis was quantitated on a triple-quadrupole mass-spectrometer employing electrospray ionization, and operated in the multiple reaction monitoring mode. The chromatograms showed high resolution, sensitivity, and selectivity with no interference with plasma, urine, and feces constituents. The developed analytical method satisfied international guidance criteria and could be successfully applied to the pharmacokinetic (PK) studies evaluating oral bioavailability of asarinin, β-eudesmol, and wogonin after oral and intravenous administration and their urinary and fecal excretion ratios after oral administration to rats. Furthermore, the analysis was extended to PK studies following oral administration of Gumiganghwal-tang. This study was the first simultaneous analysis of the aforesaid three constituents in rat plasma, urine, and feces that also determined their PK parameters.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
42
|
Genome survey sequencing of Atractylodes lancea and identification of its SSR markers. Biosci Rep 2020; 40:226599. [PMID: 33026067 PMCID: PMC7593537 DOI: 10.1042/bsr20202709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. is a traditional Chinese medicine rich in sesquiterpenes that has been widely used in China and Japan for the treatment of viral infections. Despite its important pharmacological value, genomic information regarding A. lancea is currently unavailable. In the present study, the whole genome sequence of A. lancea was obtained using an Illumina sequencing platform. The results revealed an estimated genome size for A. lancea of 4,159.24 Mb, with 2.28% heterozygosity, and a repeat rate of 89.2%, all of which indicate a highly heterozygous genome. Based on the genomic data of A. lancea, 27,582 simple sequence repeat (SSR) markers were identified. The differences in representation among nucleotide repeat types were large, e.g., the mononucleotide repeat type was the most abundant (54.74%) while the pentanucleotide repeats were the least abundant (0.10%), and sequence motifs GA/TC (31.17%) and TTC/GAA (7.23%) were the most abundant among the dinucleotide and trinucleotide repeat motifs, respectively. A total of 93,434 genes matched known genes in common databases including 48,493 genes in the Gene Ontology (GO) database and 34,929 genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. This is the first report to sequence and characterize the whole genome of A. lancea and will provide a theoretical basis and reference for further genome-wide deep sequencing and SSR molecular marker development of A. lancea.
Collapse
|
43
|
Huang M, Wu H, Wu J, Chen Q, Zou D, Xu D. Prevention of platelet aggregation and arterial thrombosis using a modified Shenzhu Guanxin Formula. J Int Med Res 2020; 48:300060520941326. [PMID: 33086881 PMCID: PMC7586491 DOI: 10.1177/0300060520941326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Modified Shenzhu Guanxin Formula (mSGF) has beneficial effects in coronary artery disease. Previously, we found that mSGF inhibited platelet aggregation in rats. In the present study we further investigated the antiplatelet and antithrombotic activities of mSGF in rats. METHODS Rats were orally administered mSGF (4.2, 8.4, or 16.8 g crude drug/kg), the adenosine 5'-diphosphate (ADP) receptor antagonist clopidogrel (7.875 mg/kg), or saline once a day for 7 days. The effects of mSGF on platelet aggregation were measured. Levels of cyclic adenosine monophosphate (cAMP) and phosphoinositide 3-kinase (PI3K) signaling were analyzed by ELISA and western blotting, respectively. The antithrombotic effect of mSGF was investigated using a FeCl3-induced carotid arterial thrombosis model and effects on bleeding time were assessed in a rat tail transection model. RESULTS mSGF significantly inhibited ADP-induced platelet aggregation in a dose-dependent manner, elevated cAMP levels and inhibited phosphorylation of extracellular signal-regulated kinase (ERK) and PI3K/protein kinase B (Akt). Moreover, mSGF dose-dependently inhibited thrombosis in a FeCl3-induced carotid arterial thrombus model and had a significantly smaller effect on bleeding time compared with clopidogrel. CONCLUSIONS mSGF represents a potent and safe antithrombotic agent whose antiplatelet activity is probably mediated through blockade of PI3K/Akt signaling and increased cAMP generation.
Collapse
Affiliation(s)
- Manting Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Huanlin Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jianping Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Qiuxiong Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Dezhi Zou
- Emergency Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Danping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
- Postdoctoral Research Center, Fujian University of Traditional Chinese Medicine, Fujian, P.R. China
| |
Collapse
|
44
|
Zhong K, Fan S, Yao S, Xu H, Bai S. A Atractylodes lancea polysaccharide inhibits metastasis of human osteosarcoma U-2 OS cells by blocking sialyl Lewis X (sLe x )/E-selectin binding. J Cell Mol Med 2020; 24:12789-12798. [PMID: 32985079 PMCID: PMC7686983 DOI: 10.1111/jcmm.15870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, a new water and alkaline‐soluble polysaccharide (ALP), with an average molecular weight of 6.63 × 104 Da, was successfully purified from the rhizomes of Atractylodes lancea. GC analysis demonstrated that ALP was a kind of glucan. The effect of the ALP on the interaction between E‐selectin and sialyl Lewis X (sLex) was examined in human osteosarcoma U‐2 OS cells. It was obvious that the expression of sLex antigen on the surface of U‐2 OS cells was visible under fluorescence microscopy. The addition of ALP (0.5, 1 and 2 mg/mL) resulted in a marked inhibition on the adhesion, migration and invasion of U‐2 OS cells to human umbilical vein endothelial cells (HUVECs), which was achieved by the decreased sLex expression on U‐2 OS cells. Additionally, the induction of apoptosis can be observed in U‐2 OS cells following ALP treatment using TUNEL staining and Annexin V‐FITC/PI double‐staining analysis on flow cytometry. In conclusion, these results indicated that ALP exerted anti‐metastatic activity towards osteosarcoma cells via inhibition of sLex/E‐selectin binding, which suggested that ALP could be a potent agent for human osteosarcoma intervention.
Collapse
Affiliation(s)
- Kaihua Zhong
- Department of Orthopedics, Zhoukou City Central Hospital, Zhoukou, China
| | - Shuxin Fan
- Department of Orthopedics, Zhoukou City Central Hospital, Zhoukou, China
| | - Shujun Yao
- Department of Orthopedics, Zhoukou City Central Hospital, Zhoukou, China
| | - Haibin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
45
|
Wu YX, Lu WW, Geng YC, Yu CH, Sun HJ, Kim YJ, Zhang G, Kim T. Antioxidant, Antimicrobial and Anti-Inflammatory Activities of Essential Oil Derived from the Wild Rhizome of Atractylodes macrocephala. Chem Biodivers 2020; 17:e2000268. [PMID: 32533626 DOI: 10.1002/cbdv.202000268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The present study investigated the chemical composition, antioxidant, antimicrobial, and anti-inflammatory activities of essential oil (EO) derived from the wild rhizomes of Atractylodes macrocephala Koidz. (AMA) growing in Qimen County (eastern China). GC/MS analysis identified fifteen compounds, representing 92.55 % of AMA EO. The major compounds were atractylone (39.22 %), β-eudesmol (27.70 %), thymol (5.74 %), hinesol (5.50 %), and 11-isopropylidenetricyclo[4.3.1.1(2,5)]undec-3-en-10-one (4.71 %). Ferricyanide reducing, 1,1-diphenyl-2-picyrlhydrazyl (DPPH) and 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) scavenging assays revealed that AMA EO exhibited strong antioxidant capacities. Additionally, AMA EO showed inhibitory effects on growth of Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, and Bacillus subtilis, with the minimum inhibitory concentrations (MIC) ranging from 0.5 to 2.0 mg/mL. Treatments with AMA EO also significantly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in lipopolysaccharide-stimulated RAW264.7 cells, indicating anti-inflammatory activity of AMA EO. Furthermore, treatments with AMA EO decreased the transcriptional levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which might be the molecular mechanisms underlying its anti-inflammatory effects. Overall, these results provide a theoretical basis for further study and application of AMA EO in food and medicine products.
Collapse
Affiliation(s)
- Yong-Xiang Wu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Wei-Wei Lu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Yu-Chuang Geng
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Chang-Hao Yu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Han-Ju Sun
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - You-Jeong Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 760749, Korea
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company Limited, Shenzhen, 518101, P. R. China
| | - Taewan Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 760749, Korea
| |
Collapse
|
46
|
Siriyong T, Phungtammasan S, Jansorn S, Chonsongkram N, Chanwanitsakul S, Subhadhirasakul S, Voravuthikunchai SP. Traditional Thai herbal medicine as an alternative treatment for refractory chronic eczema. Explore (NY) 2020; 16:242-249. [DOI: 10.1016/j.explore.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
|
47
|
Tsusaka T, Makino B, Ohsawa R, Ezura H. Evaluation of heritability of β-eudesmol/hinesol content ratio in Atractylodes lancea De Candolle. Hereditas 2020; 157:7. [PMID: 32160928 PMCID: PMC7066747 DOI: 10.1186/s41065-020-00123-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Background Atractylodes lancea De Candolle is a medicinal plant distributed in East Asia. Its rhizome has been used as an important crude drug in traditional Chinese and Japanese medicines for the treatment of numerous diseases and disorders. In recent years, the demand for mass production of the crude drug with a stable quality has increased. Its major active compounds are sesquiterpenoids, such as β-eudesmol and hinesol that have closely related chemical structures with each other. As the criteria for evaluating the quality of A. lancea, the β-eudesmol/hinesol content ratio is considered important. In A. lancea, the ratio could be considered to be influenced by genetic factors, geographical environment factors and these interactions. Few studies of a detail genetic analyses for β-eudesmol/hinesol content ratio have been reported. Therefore, we evaluated the heritability and genotype–environment interaction on the β-eudesmol/hinesol content ratio in A. lancea using clonal lines propagated with division of rhizome. Results The heritability of the β-eudesmol/hinesol content ratio in A. lancea was evaluated through the cultivation of clonal lines of A. lancea in both different years (2016, 2017) and locations (Hokkaido, Ibaraki). Correlations between β-eudesmol and hinesol contents were identified in all clonal lines, with high correlation coefficients (r = 0.73–0.99). The broad-sense heritability of the β-eudesmol/hinesol content ratio was revealed to be high at 0.92. The effects of cultivation year were smaller than that of genotype, and few genotype–environment interactions were observed. In addition, the influence of cultivation location was also smaller than that of genotype, and the correlation between the two cultivation locations on the β-eudesmol/hinesol content ratio was high. The results suggested that the β-eudesmol/hinesol content ratio in A. lancea is highly dependent on genetic factors. Conclusion We demonstrate that the heritability of β-eudesmol/hinesol content ratio is high and that the effects of genetic factors were stronger than that of environmental factors such as cultivation location and year. Our findings suggested that selective breeding and clonal propagation are effective strategies for the production of A. lancea with stable qualities for use in the production of crude drugs.
Collapse
Affiliation(s)
- Takahiro Tsusaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. .,Botanical Raw Materials Production Department 2, Tsumura & Co., Ami Town, Ibaraki, Japan.
| | - Bunsho Makino
- Botanical Raw Materials Research Laboratories , Tsumura & Co., 3586 Yoshiwara, Ami-machi, Ibashiki-gun, Ami Town, Ibaraki, Japan
| | - Ryo Ohsawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
48
|
The Protective Effect of Different Polar Solvent Extracts of Er Miao San on Rats with Adjuvant Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5305278. [PMID: 32148544 PMCID: PMC7053457 DOI: 10.1155/2020/5305278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Objective The aim of this study was to evaluate the antiarthritic effects of different polar solvent extracts of Er Miao San (EMS) on model rats with adjuvant arthritis (AA) and screen the effective pats of EMS in the treatment of arthritis. Methods Four different polar solvent extracts of EMS such as petroleum ether (PE), methylene chloride (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-butanol ( Results Administration of EtOAc and CH2Cl2 parts remarkably inhibited the paw swelling, decreased the index of arthritis, decreased the body weight loss, and improved the changes of histopathology. Furthermore, the concentrations of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) were significantly lower, while the anti-inflammatory cytokine (IL-10) was remarkably higher compared with that in the model group. And the result of UHPLC analysis indicated that the effective parts of EMS contain berberine and atractylodin. Conclusions EtOAc and CH2Cl2 are the effective parts of EMS that can improve arthritis. In particular, berberine and atractylodin may be responsible for the antiarthritic activity of EMS. This research provided pharmacological and chemical foundation for the application of EMS in treating rheumatoid arthritis (RA).
Collapse
|
49
|
Narahara C, Saeheng T, Chaijaroenkul W, Dumre SP, Na-Bangchang K, Karbwang J. β-Eudesmol induces the expression of apoptosis pathway proteins in cholangiocarcinoma cell lines. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:7. [PMID: 32055247 PMCID: PMC7003544 DOI: 10.4103/jrms.jrms_291_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/25/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022]
Abstract
Background: Cholangiocarcinoma (CCA) is a neglected disease prevalent in developing countries with high burden and mortality rate, and there is no effective treatment. We aimed to investigate β-eudesmol molecular target of action in human CCA cell lines using the selected key molecules of apoptotic pathways. Materials and Methods: Two CCA cell lines (HuH28 and HuCCT1) were assessed at different time points after β-eudesmol treatment for mRNA and protein expression profiles of caspase-3, -8, -9, p53, p21, Bcl-2, and Bax by real-time polymerase chain reaction and western blot, respectively. Results: β-eudesmol induced expressions of p21 and p53 in mRNA/protein level in HuH28 and HuCCT1 cells. These CCA cells also expressed caspase-3, -8, -9 and bax (mRNA and/or protein level) among others after β-eudesmol treatment indicating its role in both intrinsic and extrinsic caspase-dependent apoptotic pathways. Conclusion: The study demonstrated that β-eudesmol induced the expression of apoptosis pathway proteins, suggesting its potential role in promoting the caspase-dependent apoptotic pathway, and induction of the cell cycle arrest in CCA cell lines. β-eudesmol can be considered as a potential compound for further investigation as an anti-CCA agent.
Collapse
Affiliation(s)
- Chisato Narahara
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Teerachat Saeheng
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Wanna Chaijaroenkul
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
50
|
Guo W, Liu S, Ju X, Du J, Xu B, Yuan H, Qin F, Li L. The antitumor effect of hinesol, extract from Atractylodes lancea (Thunb.) DC. by proliferation, inhibition, and apoptosis induction via MEK/ERK and NF-κB pathway in non-small cell lung cancer cell lines A549 and NCI-H1299. J Cell Biochem 2019; 120:18600-18607. [PMID: 31338882 DOI: 10.1002/jcb.28696] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Lung cancer (especially, non-small cell lung cancer [NSCLC]) is one of the most malignant cancers in the world. Hinesol is the major component of the essential oil of Atractylodes lancea (Thunb.) DC and possesses the most promising anticancer function. However, the effects and molecular mechanism of hinesol on antiproliferation in NSCLC cells has not been well understood. In this study, we found that hinesol effectively inhibited the A549 and NCI-H1299 cells in a dose- and time-dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. In addition, hinesol induced cell cycle arrest at G0/G1 phase and apoptosis assessed by flow cytometry in A549 cells. Furthermore, Western blot analysis showed that hinesol decreased phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase, IκBα, and p65 inhibited the expressions of Bcl-2, cyclin D1 and upregulated the expression of Bax. Based on these results, hinesol might be a potential drug candidate of anti-NSCLC for therapy.
Collapse
Affiliation(s)
- Weiqiang Guo
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Songbai Liu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xin Ju
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Bin Xu
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongxia Yuan
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Fenju Qin
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Liangzhi Li
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|