1
|
Apaza-Ticona L, Beltrán M, Moraga E, Cossio D, Bermejo P, Guerra JA, Alcamí J, Bedoya LM. Maca (Lepidium meyenii Walp.) inhibits HIV-1 infection through the activity of thiadiazole alkaloids in viral integration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118613. [PMID: 39047879 DOI: 10.1016/j.jep.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Lepidium meyenii Walp. (maca) has been traditionally used for centuries in the Central Andes region both as food and as medicine. In the last decades, its fertility enhancer properties have gained importance, with the majority of the scientific literature related to this topic. However, other traditional uses are less known as metabolic or infectious diseases. AIM OF THE STUDY The main purpose of this study is to investigate the anti-infectious activity of L. meyenii, specifically in HIV-1 infection. There are previous reports of the transcriptional related activity of L. meyenii extracts in human T lymphocytes via transcription factors as NF-κB. Since T lymphocytes are the main target of HIV-1 infection and NF-κB is strongly involved in HIV-1 transcription, L. meyenii could display antiviral activity. MATERIAL AND METHODS Chromatography and spectroscopy techniques were used to isolate and identify the compounds in the active extracts. An antiviral assay system based on recombinant viruses was used to evaluate the anti-HIV activity. Cell toxicity was tested for all the extracts and compounds. Viral entry was studied using VSV-HIV chimera viruses and reverse transcription and viral integration were studied by qPCR of viral DNA in infected cells. Finally, viral transcription was studied in primary lymphocytes transfected with HIV-1 or NF-κB luciferase reporter plasmids. RESULTS n-Hexane extracts of purple maca displayed anti-HIV activity in an in vitro assay. A bioassay-guided fractionation led to the identification of three thiadiazole alkaloids with antiviral activity. All the compounds were able to inhibit HIV infection of MT-2 cell lines and primary lymphocytes (PBMCs) with IC50 values in the low micromolar range. The mechanism of action differs between the three compounds: one of them showed activity on viral entry, and all the three compounds inhibited viral integration at low concentrations. Remarkably, none of the compounds inhibited reverse transcription or viral transcription. CONCLUSIONS n-Hexane extracts of the purple ecotype of L. meyenii inhibit HIV-1 infection in vitro and three active thiadiazole alkaloids were isolated acting mainly on viral integration and viral entry.
Collapse
Affiliation(s)
- Luis Apaza-Ticona
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Manuela Beltrán
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain.
| | - Elisa Moraga
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, c/ Rosselló, 149-153, 08036, Barcelona, Spain.
| | - David Cossio
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Paulina Bermejo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - José A Guerra
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - José Alcamí
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain.
| | - Luis M Bedoya
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Kasprzak D, Gaweł-Bęben K, Kukula-Koch W, Strzępek-Gomółka M, Wawruszak A, Woźniak S, Chrzanowska M, Czech K, Borzyszkowska-Bukowska J, Głowniak K, Matosiuk D, Orihuela-Campos RC, Jodłowska-Jędrych B, Laskowski T, Meissner HO. Lepidium peruvianum as a Source of Compounds with Anticancer and Cosmetic Applications. Int J Mol Sci 2024; 25:10816. [PMID: 39409148 PMCID: PMC11476809 DOI: 10.3390/ijms251910816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Lepidium peruvianum-an edible herbaceous biennial plant distributed in the Andes-has been used for centuries as food and as a natural medicine in treating hormonal disorders, as an antidepressant, and as an anti-osteoporotic agent. The presented study aims to prove its beneficial cosmetic and chemopreventive properties by testing the antiradical, whitening, cytotoxic, and anticancer properties of differently colored phenotypes that were extracted using three solvents: methanol, water, and chloroform, with the help of the chemometric approach to provide evidence on the impact of single glucosinolanes (seven identified compounds in the HPLC-ESI-QTOF-MS/MS analysis) on the biological activity of the total extracts. The tested extracts exhibited moderate antiradical activity, with the methanolic extract from yellow and grey maca phenotypes scavenging 49.9 ± 8.96% and 48.8% ± 0.44% of DPPH radical solution at a concentration of 1 mg/mL, respectively. Grey maca was the most active tyrosinase inhibitor, with 72.86 ± 3.42% of the enzyme activity calculated for the water extract and 75.66 ± 6.21% for the chloroform extract. The studies in cells showed no cytotoxicity towards the human keratinocyte line HaCaT in all studied extracts and a marked inhibition of cell viability towards the G361 melanoma cell line, which the presence of pent-4-enylglucosinolate, glucotropaeolin, and glucoalyssin in the samples could have caused. Given all biological activity tests combined, the three mentioned compounds were shown to be the most significant positive contributors to the results obtained, and the grey maca water extract was found to be the best source of the former compound among the tested samples.
Collapse
Affiliation(s)
- Dorota Kasprzak
- Department of Cosmetology, Faculty of Health Sciences, Wincenty Pol Academy of Applied Sciences in Lublin, Choiny 2 Street, 20-816 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Sylwia Woźniak
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Marcelina Chrzanowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Karolina Czech
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Kazimierz Głowniak
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Rita Cristina Orihuela-Campos
- Academic Department of Stomatology for Children and Adolescents, Integrated Faculties of Medicine, Stomatology and Nursing, Cayetano Heredia Peruvian University, Av. Honorio Delgado 430, Lima 15102, Peru;
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland;
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Henry O. Meissner
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora, Gold Coast, QLD 4221, Australia;
| |
Collapse
|
3
|
Sabra MS, Mohammed AA, Hassanein KMA, Ahmed AAN, Hassan D, Abdel-Lah ES. Novel drug therapy of acute hepatic failure induced in rats by a combination of tadalafil and Lepidium sativum. BMC Complement Med Ther 2024; 24:104. [PMID: 38413963 PMCID: PMC10900715 DOI: 10.1186/s12906-024-04406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hepatocyte death and a systemic inflammatory response are the outcome of a complex chain of events mediated by numerous inflammatory cells and chemical mediators. The point of this study was to find out if tadalafil and/or Lepidium sativum (L. sativum) could help people who have been exposed to carbon tetrachloride (CCL4) and are experiencing acute moderate liver failure. This was especially true when the two were used together. METHOD AND MATERIALS To cause mild liver failure 24 h before sacrifice, a single oral dosage of CCL4 (2.5 mL/kg b.w.) (50% in olive oil) was utilized. Furthermore, immunohistochemical expression of nuclear factor kappa B (NF-κB) as well as histological abnormalities were performed on liver tissue. RESULTS The results showed that tadalafil and/or L. sativum, especially in combination, performed well to cure acute mild liver failure caused by CCL4. This was demonstrated by a decrease in NF-κB expression in the liver tissue and an improvement in organ damage markers observed in the blood and liver tissues. Furthermore, such therapy reduced interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels in the liver tissue. It's worth noting that the tested combination resulted in greater liver improvement. CONCLUSIONS According to the findings, tadalafil and L. sativum, particularly in combination, have the ability to protect the liver from the negative effects of CCL4 exposure. Because of its capacity to improve liver function, restore redox equilibrium, and decrease inflammatory mediators, it is a prospective option for mitigating the negative effects of common environmental pollutants such as CCL4.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed A Mohammed
- Department of animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Khaled M Ahmed Hassanein
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assiut branch, Assiut, 71526, Egypt
| | - Dalia Hassan
- Department of animal and poultry hygiene and environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ebtsam S Abdel-Lah
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
4
|
Shahrajabian MH, Sun W. Iranian Traditional Medicine (ITM) and Natural Remedies for Treatment of the Common Cold and Flu. Rev Recent Clin Trials 2024; 19:91-100. [PMID: 38047364 DOI: 10.2174/0115748871275500231127065053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Traditional Iranian medicine is usually used for both prevention and relief of cold and flu symptoms in China, Iran, and many other Asian countries all over the world. There are 4 kinds of influenza viruses. Unlike type B, which may cause seasonal epidemics, type A viruses can cause pandemics, and influenza C may lead to mild human infection with little public health effects. A literature review was done by using multiple databases such as ISI Web of knowledge, PubMed, Science Direct and Google Scholar. The most notable antiviral medicinal plants for flu and cold are honeysuckle flowers, thyme leaf, green chiretta, andrographis, peppermint oil and leaf and calendula. The most important expectorant medicinal plants for cold and flu are snake root, tulsi, licorice root, slippery elm, clove, and sage leaf. Recommended immunostimulant medicinal plants for cold and flu are eucalyptus, Echinacea root, ginseng, garlic, slippery elm, marshmallow, Usnea lichen, Isatis root, ginger root, and myrrh resin. Iranian traditional medicine, which is one of the oldest schools of traditional medicine, is one of the main concepts of disease and health, and it can be considered as an important complementary and alternative medicine, as in some cases, modern medicine has many side effects, low efficiency, and high costs. Medicinal plants and herbs, which are included in many traditional systems, have significant and promising bioactive components in organic life.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Medicinal Plants in Peru as a Source of Immunomodulatory Drugs Potentially Useful Against COVID-19. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:237-258. [PMID: 36855527 PMCID: PMC9948797 DOI: 10.1007/s43450-023-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
The current COVID-19 pandemic, characterized by a highly contagious severe acute respiratory syndrome, led us to look for medicinal plants as an alternative to obtain new drugs, especially those with immunomodulatory abilities, capable of acting against the pulmonary infection caused by coronavirus 2 (SARS-CoV-2). Despite medical advances with COVID-19 drugs and vaccines, plant-based compounds could provide an array of suitable candidates to test against this virus, or at the very least, to alleviate some symptoms. Therefore, this review explores some plants widely used in Peru that show immunomodulatory properties or, even more, contain phytoconstituents potentially useful to prevent or alleviate the COVID-19 infection. More interestingly, the present review highlights relevant information from those plants to support the development of new drugs to boost the immune system. We used three criteria to choose nine vegetal species, and a descriptive search was then conducted from 1978 to 2021 on different databases, using keywords focused on the immune system that included information such as pharmacological properties, phytochemical, botanical, ethnobotanical uses, and some clinical trials. From these literature data, our results displayed considerable immunomodulation activity along with anti-inflammatory, antiviral, antioxidant, and antitumoral activities. Noticeably, these pharmacological activities are related with a wide variety of bioactive phytoconstituents (mixtures or isolated compounds) which may be beneficial in modulating the overt inflammatory response in severe COVID-19. Further scientific research on the pharmacological activities and clinical utilization of these potential plants are warranted. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00367-w.
Collapse
|
6
|
Non-targeted Metabolite Profiling to Evaluate the Drying Process Effect in the Peruvian Maca Actives Through Principal Component Analysis. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Fluorinated Analogues of Lepidilines A and C: Synthesis and Screening of Their Anticancer and Antiviral Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113524. [PMID: 35684460 PMCID: PMC9181938 DOI: 10.3390/molecules27113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Starting with fluorinated benzylamines, a series of 2-unsubstituted imidazole N-oxides was prepared and subsequently deoxygenated in order to prepare the corresponding imidazoles. The latter were treated with benzyl halides yielding imidazolium salts, which are considered fluorinated analogues of naturally occurring imidazolium alkaloids known as lepidilines A and C. A second series of oxa-lepidiline analogues was obtained by O-benzylation of the initially synthetized imidazole N-oxides. Both series of imidazolium salts were tested as anticancer and antiviral agents. The obtained results demonstrated that the introduction of a fluorine atom, fluoroalkyl or fluoroalkoxy substituents (F, CF3 or OCF3) amplifies cytotoxic properties, whereas the cytotoxicity of some fluorinated lepidilines is promising in the context of drug discovery. All studied compounds revealed a lack of antiviral activity against the investigated viruses in the nontoxic concentrations.
Collapse
|
8
|
Todorova V, Ivanov K, Ivanova S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties ( Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). PLANTS (BASEL, SWITZERLAND) 2021; 11:64. [PMID: 35009068 PMCID: PMC8747685 DOI: 10.3390/plants11010064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the 1960s, research into plant adaptogens began. Plants with adaptogenic properties have rich phytochemical compositions and have been used by humanity since ancient times. However, it is not still clear whether the adaptogenic properties are because of specific compounds or because of the whole plant extracts. The aim of this review is to compare the bioactive compounds in the different parts of these plants. METHODS The search strategy was based on studies related to the isolation of bioactive compounds from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS This review includes data from 259 articles. The phytochemicals isolated from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng were described and classified in several categories. CONCLUSIONS Plant species have always played an important role in drug discovery because their effectiveness is based on the hundreds of years of experience with folk medicine in different nations. In our view, there is great potential in the near future for some of the phytochemicals found in these plants species to become pharmaceutical agents.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|
9
|
Tomas M, Capanoglu E, Bahrami A, Hosseini H, Akbari‐Alavijeh S, Shaddel R, Rehman A, Rezaei A, Rashidinejad A, Garavand F, Goudarzi M, Jafari SM. The direct and indirect effects of bioactive compounds against coronavirus. FOOD FRONTIERS 2021; 3:96-123. [PMID: 35462942 PMCID: PMC9015578 DOI: 10.1002/fft2.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging viruses are known to pose a threat to humans in the world. COVID‐19, a newly emerging viral respiratory disease, can spread quickly from people to people via respiratory droplets, cough, sneeze, or exhale. Up to now, there are no specific therapies found for the treatment of COVID‐19. In this sense, the rising demand for effective antiviral drugs is stressed. The main goal of the present study is to cover the current literature about bioactive compounds (e.g., polyphenols, glucosinolates, carotenoids, minerals, vitamins, oligosaccharides, bioactive peptides, essential oils, and probiotics) with potential efficiency against COVID‐19, showing antiviral activities via the inhibition of coronavirus entry into the host cell, coronavirus enzymes, as well as the virus replication in human cells. In turn, these compounds can boost the immune system, helping fight against COVID‐19. Overall, it can be concluded that bioactives and the functional foods containing these compounds can be natural alternatives for boosting the immune system and defeating coronavirus.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering Faculty of Engineering and Natural Sciences Istanbul Sabahattin Zaim University Halkali Istanbul Turkey
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak Istanbul Turkey
| | - Akbar Bahrami
- Center for Excellence in Post‐Harvest Technologies North Carolina Agricultural and Technical State University Kannapolis North Carolina USA
| | - Hamed Hosseini
- Food Additives Department Food Science and Technology Research Institute Research Center for Iranian Academic Center for Education Culture and Research (ACECR) Mashhad Iran
| | - Safoura Akbari‐Alavijeh
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology Jiangnan University Jiangsu Wuxi China
- Collaborative Innovation Centre of Food Safety and Quality Control Wuxi Jiangsu Province China
| | - Atefe Rezaei
- Department of Food Science and Technology School of Nutrition and Food Science Isfahan University of Medical Sciences Isfahan Iran
| | | | - Farhad Garavand
- Department of Food Chemistry and Technology Teagasc Food Research Centre, Moorepark Fermoy, Co. Cork Ireland
| | - Mostafa Goudarzi
- Department of Food Science and Engineering University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| |
Collapse
|
10
|
Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021; 27:6551-6571. [PMID: 34754152 PMCID: PMC8554406 DOI: 10.3748/wjg.v27.i39.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Information about the coronavirus disease 2019 (COVID-19) pandemic is still evolving since its appearance in December 2019 and has affected the whole world. Particularly, a search for an effective and safe treatment for COVID-19 continues. Botanical mixtures contain secondary metabolites (such as flavonoids, phenolics, alkaloids, essential oils etc.) with many therapeutic effects. In this study, the use of herbal treatments against COVID-19 was evaluated. Medical synthetic drugs focus mainly on respiratory symptoms, however herbal therapy with plant extracts may be useful to relieve overall symptoms of COVID-19 due to the variety of bioactive ingredients. Since COVID-19 is a virus that affects the respiratory tract, the antiviral effects of botanicals/plants against respiratory viruses have been examined through clinical studies. Data about COVID-19 patients revealed that the virus not only affects the respiratory system but different organs including the gastrointestinal (GI) system. As GI symptoms seriously affect quality of life, herbal options that might eliminate these problems were also evaluated. Finally, computer modeling studies of plants and their active compounds on COVID-19 were included. In summary, herbal therapies were identified as potential options for both antiviral effects and control of COVID-19 symptoms. Further data will be needed to enlighten all aspects of COVID-19 pathogenesis, before determining the effects of plants on severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Ufuk Koca Caliskan
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| | - Methiye Mancak Karakus
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
11
|
Purnomo KA, Korinek M, Tsai YH, Hu HC, Wang YH, Backlund A, Hwang TL, Chen BH, Wang SW, Wu CC, Chang FR. Decoding Multiple Biofunctions of Maca on Its Anti-allergic, Anti-inflammatory, Anti-thrombotic, and Pro-angiogenic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11856-11866. [PMID: 34590863 DOI: 10.1021/acs.jafc.1c03485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Four active partition layers and ten isolates, including (5R)- and (5S)-macapyrrolidone A (1a, 1b), and four new alkaloids, (5R)- and (5S)-macapyrrolidone B (2a, 2b) and macapyrrolins D, E (3, 4), were isolated from maca (Lepidium meyenii Walp.), an indigenous food plant from Peru. Derived from the n-hexane layer, the macamide-rich fraction exhibited pro-angiogenic activity on EPC and HUVEC cells. Anti-thrombotic activity was displayed by the polar part of maca extracts (n-butanol and water layers). Both 75% methanol aq. (midlower polar part) and n-hexane (low polar part) layers, which showed signs of fatty acid content, markedly inhibited superoxide and elastase release in an anti-inflammatory assay. The 75% methanol aq. layer showed strong anti-allergic activity, and macapyrrolin A (5) was found active based on β-hexosaminidase release inhibition assays and a ChemGPS-NP experiment. These valuable bioactivity results suggest that maca is a food plant with good benefits for human health.
Collapse
Affiliation(s)
- Kartiko Arif Purnomo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Anders Backlund
- Research Group Pharmacognosy, Department of Pharmaceutical Biochemistry, Uppsala University, BMC, Box 574, S-75123 Uppsala, Sweden
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital 33305 Taoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shih-Wei Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
12
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
13
|
Shahrajabian MH, Sun W, Cheng Q. Traditional Herbal Medicine for the Prevention and Treatment of Cold and Flu in the Autumn of 2020, Overlapped With COVID-19. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many herbs and plants included in several traditional systems have promising bioactive compounds for modern drug therapy. The second round of COVID-19 cases will be accompanied by the spread of seasonal influenza in the fall. The combination of the influenza season and the second wave of COVID-19 may lead to more confusion and put more pressure on public health systems. A literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge, and Google Scholar. The most important antiviral herbs for cold and flu are Thymus vulgaris, honeysuckle flowers, Andrographis, yarrow, peppermint leaf and oil, and Calendula. The most important expectorant herbs for flu and cold are tulsi, snake root, licorice root, clove, slippery elm root, marshmallow osha root, and sage leaf. Immunostimulant herbs for these 2 diseases are Echinacea root, Eucalyptus, garlic, ginseng, marshmallow, slippery elm, Isatisroot, Usnea lichen, myrrh resin, and ginger root. In this mini-review, we mention the key role of some of the most important herbal plants and prescriptions against influenza and cold on the basis of traditional Asian medicine.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei, China
| |
Collapse
|
14
|
Chemical composition and health effects of maca (Lepidium meyenii). Food Chem 2019; 288:422-443. [PMID: 30902313 DOI: 10.1016/j.foodchem.2019.02.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
Maca (Lepidium meyenii Walpers) has emerged as a popular functional plant food due to various claimed health effects. This review details the major (i.e., starch, dietary fiber, and protein) and minor constituents (i.e., minerals, non-starch polysaccharides, polyphenols (flavonolignans), macaenes, macamides, glucosinolates, and alkaloids) of maca (root and aerial parts). Diverse health effects of maca are also summarized. Various bioactivities of maca include enhanced reproductive health, antifatigue, antioxidation, neuroprotection, antimicrobial activity, anticancer, hepatoprotection, immunomodulation, and improving skin health and digestive system's function. Plant genetics, botanical parts, processing, extraction, and experimental protocols represent the major factors affecting the chemical composition, physicochemical attributes, and health effects of maca-based products. However, clinical studies to support the claimed health effects of maca and related mechanisms appear to be lacking. Product innovation and diversification in food and non-food utilization of different parts of maca to maximize the value perceptions are suggested.
Collapse
|
15
|
Lee JY, Abundo MEC, Lee CW. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1663-1700. [PMID: 30612461 DOI: 10.1142/s0192415x18500854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapidly changing influenza virus has remained a consistent threat to the well-being of a variety of species on the planet. Influenza virus' high mutation rate has allowed the virus to rapidly and continuously evolve, as well as generate new strains that are resistant to the current commercially available antivirals. Thus, the increased resistance has compelled the scientific community to explore alternative compounds that have antiviral effects against influenza virus. In this paper, the authors systematically review numerous herbal extracts that were shown to have antiviral effects against the virus. Specifically, the herbal antiviral targets mainly include hemagglutinin, neuraminidase and matrix 2 proteins. In some instances, herbal extracts inhibited the replication of oseltamivir-resistant strains and certain pentacyclic triterpenes exhibited higher antiviral activity than oseltamivir. This paper also explores the possibility of targeting various host-cell signaling pathways that are utilized by the virus during its replication process. Infected cell pathways are hijacked by intracellular signaling cascades such as NF-kB signaling, PI3K/Akt pathway, MAPK pathway and PKC/PKR signaling cascades. Herbal antivirals have been shown to target these pathways by suppressing nuclear export of influenza vRNP and thus inhibiting the phosphorylation signaling cascade. In conclusion, copious amounts of herbal antivirals have been shown to inhibit influenza virus, however further studies are needed for these new compounds to be up to modern pharmacological standards.
Collapse
Affiliation(s)
- Ju-Young Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,‡ Mom-Pyon Han Pharmacy, Nambusoonhwan-ro 770, Seosan City, Chungnam, Republic of Korea
| | - Michael Edward C Abundo
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chang-Won Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Kasprzak D, Jodlowska-Jedrych B, Borowska K, Wojtowicz A. Lepidium meyenii (Maca) – multidirectional health effects – review. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2018. [DOI: 10.1515/cipms-2018-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Lepidium meyenii, commonly known as Maca, is a Peruvian plant that grows high in the Andes, in areas over 4,000 meters above sea level. Its composition contains almost all of the essential amino acids and twenty of the essential fatty acids needed by man, as well as many vitamins, minerals and several sterols and glucosinolates. The specific and unique unsaturated acids and amides found only in this plant are the macaenes and macamides. Most valuable ingredients are contained within the hypocotyls. Maca comes in three forms, based on its root colour, yellow, red and black. Although used individually, consumption recommendations are usually for a mix of all three. Since Inca times, it has been considered as super food.
Although now mostly used in the form of a supplement, ongoing research does not exclude future applications of Maca as medicine. It is attributed to have an effect on male fertility (adding energy and vitality), and in regulating hormone secretion. In animal studies, Maca has been shown to have antioxidant, neuroprotective effects and antiviral activity. Moreover, it has been demonstrated to alleviate the effects of depression. In addition, there are reports that Maca reduces the development of cancer and osteoporosis, improves memory, facilitates concentration and alleviates the symptoms of menopause. The obtained results, however, require further analysis to confirm its effect. Currently, there is little information on toxicity, so there is a need for specialized research in this area, and on-going research concerns the most effective variety and form of preparation of Maca for administration to achieve best effects. The potential of Maca as medicine exists. The increasing pan-continental popularity of Maca has created the need for a better understanding of its action mechanisms.
Collapse
Affiliation(s)
- Dorota Kasprzak
- Chair and Department of Histology and Embryology with Experimental Cytology Unit , Medical University of Lublin , Radziwillowska 11, 20-080 Lublin , Poland
| | - Barbara Jodlowska-Jedrych
- Chair and Department of Histology and Embryology with Experimental Cytology Unit , Medical University of Lublin , Radziwillowska 11, 20-080 Lublin , Poland
| | - Katarzyna Borowska
- Chair and Department of Histology and Embryology with Experimental Cytology Unit , Medical University of Lublin , Radziwillowska 11, 20-080 Lublin , Poland
| | - Agnieszka Wojtowicz
- Chair and Department of Histology and Embryology with Experimental Cytology Unit , Medical University of Lublin , Radziwillowska 11, 20-080 Lublin , Poland
| |
Collapse
|
17
|
Antibacterial and Cytotoxic Effects of Moringa oleifera (Moringa) and Azadirachta indica (Neem) Methanolic Extracts against Strains of Enterococcus faecalis. Int J Dent 2018; 2018:1071676. [PMID: 30356384 PMCID: PMC6176315 DOI: 10.1155/2018/1071676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/26/2018] [Indexed: 01/27/2023] Open
Abstract
Objective To evaluate antibacterial and cytotoxic effect of 2 methanolic extracts of Azadirachta indica and Moringa oleifera against strains of Enterococcus faecalis (ATCC 29212) in vitro. Methods The methanolic extracts of Azadirachta indica and Moringa oleifera were prepared in vitro. The antibacterial effect of the extracts against Enterococcus faecalis was evaluated using the agar diffusion technique. The minimum inhibitory concentration (MIC) was determined using the microdilution method and the cytotoxicity using the cellular line MDCK. Results The methanolic extract with the most antibacterial effect during the first 24 and 48 hours against Enterococcus faecalis was Moringa oleifera, evidencing a growth inhibition zone of 35.5 ± 1.05 and 44.83 ± 0.98, respectively. The MIC for both extracts was 75 µg/ml. The bactericidal effect of the Azadirachta indica extract was found at a concentration of 25 µg/ml and a concentration of 75 µg/ml for Moringa extract. Conclusions In conclusion, we demonstrated that the methanolic extract of Azadirachta indica and Moringa oleifera both have an antibacterial effect against Enterococcus faecalis strains during the first 24 and 48 hours. None of the extracts exhibited toxicity against the cell lines under low concentrations.
Collapse
|
18
|
Ding Y, Cao Z, Cao L, Ding G, Wang Z, Xiao W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci Rep 2017; 7:45723. [PMID: 28393840 PMCID: PMC5385491 DOI: 10.1038/srep45723] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/06/2017] [Indexed: 11/09/2022] Open
Abstract
Lonicera japonica Thunb, rich in chlorogenic acid (CHA), is used for viral upper respiratory tract infection treatment caused by influenza virus, parainfluenza virus, and respiratory syncytial virus, ect in China. It was reported that CHA reduced serum hepatitis B virus level and death rate of influenza virus-infected mice. However, the underlying mechanisms of CHA against the influenza A virus have not been fully elucidated. Here, the antiviral effects and potential mechanisms of CHA against influenza A virus were investigated. CHA revealed inhibitory against A/PuertoRico/8/1934(H1N1) (EC50 = 44.87 μM), A/Beijing/32/92(H3N2) (EC50 = 62.33 μM), and oseltamivir-resistant strains. Time-course analysis showed CHA inhibited influenza virus during the late stage of infectious cycle. Indirect immunofluorescence assay indicated CHA down-regulated the NP protein expression. The inhibition of neuraminidase activity confirmed CHA blocked release of newly formed virus particles from infected cells. Intravenous injection of 100 mg/kg/d CHA possessed effective antiviral activity in mice, conferring 60% and 50% protection from death against H1N1 and H3N2, reducing virus titres and alleviating inflammation in the lungs effectively. These results demonstrate that CHA acts as a neuraminidase blocker to inhibit influenza A virus both in cellular and animal models. Thus, CHA has potential utility in the treatment of the influenza virus infection.
Collapse
Affiliation(s)
- Yue Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Gang Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
19
|
Zhou T, Yang Y, Hu Y, Zhang X, Bai G, Zhao G. Characterization of the complete chloroplast genome sequence of Lepidium meyenii (Brassicaceae). CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0695-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Raish M, Ahmad A, Alkharfy KM, Ahamad SR, Mohsin K, Al-Jenoobi FI, Al-Mohizea AM, Ansari MA. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/lipopolysaccharide induced hepatotoxicity in animal model. Altern Ther Health Med 2016; 16:501. [PMID: 27912738 PMCID: PMC5135812 DOI: 10.1186/s12906-016-1483-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fulminant hepatic failure (FHF) is clinical syndrome with very poor prognosis and high mortality there is urgent need for the development of safe and non-toxic hepatoprotective agents for the adequate management of hepatitis. Hepatoprotective effect of the Lepidium sativum ethanolic extract (LSEE) was assessed by D-galactosamine-induced/lipopolysaccharide (400 mg/kg and 30 μg/kg) liver damage model in rats. METHODS Hepatoprotective activity of LSEE (150 and 300 mg/kg) and silymarin on D-GalN/LPS induced FHF in rat was assessed using several liver function enzyme parameters. Antioxidant properties as antioxidant stress enzymes were assessed in hepatic Liver as well as mRNA expression of cytokines genes such as TNF-α, IL-6, and IL-10 and stress related genes iNOS and HO-1 were determined by RT-PCR. Protein expression of apoptotic genes were evaluated through western blot. MPO and NF-κB DNA-binding activity was analyzed by ELISA. The magnitude of hepatic impairment was investigated through histopathological evaluation. RESULTS Marked amelioration of hepatic injuries by attenuation of serum and lipid peroxidation has been observed as comparable with silymarin (25 mg/kg p.o). D-GalN/LPS induced significant decrease in oxidative stress markers protein level, and albumin. LSEE significantly down-regulated the D-GalN/LPS induced pro-inflammatory cytokines TNFα and IL-6 mRNA expression in dose dependent fashion about 0.47 and 0.26 fold and up-regulates the IL-10 by 1.9 and 2.8 fold, respectively. While encourages hepatoprotective activity by down-regulating mRNA expression of iNOS and HO-1. MPO activity and NF-κB DNA-binding effect significantly increased and was mitigated by LSEE in a dose-dependent style as paralleled with silymarin. CONCLUSION Our data suggests that pretreatment of LSEE down regulates the caspase 3 and up-regulates the BCl2 protein expression. The above findings revealed that Lepidium sativum has significant hepatoprotective activity.
Collapse
|
21
|
Camere-Colarossi R, Ulloa-Urizar G, Medina-Flores D, Caballero-García S, Mayta-Tovalino F, del Valle-Mendoza J. Antibacterial activity of Myrciaria dubia (Camu camu) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Zhang M, Wang G, Lai F, Wu H. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lepidium meyenii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1921-1931. [PMID: 26883006 DOI: 10.1021/acs.jafc.5b05610] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel polysaccharide named as MC-1 was isolated from the roots of Lepidium meyenii using a water extraction method. Structural characterization revealed that MC-1 had an average molecular weight of 11.3 kDa and consisted of arabinose (26.21%), mannose (11.81%), glucose (53.66%), and galactose (8.32%). The main linkage types of MC-1 were proven to be (1 → 5)-α-L-Ara, (1 → 3)-α-L-Man, (1 → 2,6)-α-L-Man, (1 → )-α-D-Glc, (1 → 4)-α-D-Glc, (1 → 6)-α-D-Glc and (1 → 6)-β-D-Gal by methylation analysis, periodate oxidation-Smith degradation and NMR analysis. The immunostimulating assay indicated that MC-1 could significantly enhance the pinocytic and phagocytic capacity and promote the NO, TNF-α, and IL-6 secretion of RAW 264.7 cells, involving toll-like receptor 2, complement receptor 3, and mannose receptor mainly. These results suggested the potential utilization of MC-1 as an attractive functional food supplement candidate for hypoimmunity population.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Guang Wang
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Furao Lai
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
- Guangdong Provincial Key Laboratory of Green Agricultural Products Processing, Guangzhou, Guangdong 510640, China
| | - Hui Wu
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
| |
Collapse
|
24
|
Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Zeng Y, Yang J, Du J, Pu X, Yang X, Yang S, Yang T. Strategies of Functional Foods Promote Sleep in Human Being. ACTA ACUST UNITED AC 2015; 9:148-155. [PMID: 26005400 PMCID: PMC4440346 DOI: 10.2174/1574362410666150205165504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sleep is a vital segment of life, however, the mechanisms of diet promoting sleep are
unclear and are the focus of research. Insomnia is a general sleep disorder and functional foods are
known to play a key role in the prevention of insomnia. A number of studies have demonstrated that
major insomnia risk factors in human being are less functional foods in dietary. There are higher
functional components in functional foods promoting sleep, including tryptophan, GABA, calcium,
potassium, melatonin, pyridoxine, L-ornithine and hexadecanoic acid; but wake-promoting neurochemical
factors include serotonin, noradrenalin, acetylcholine, histamine, orexin and so on. The factors promoting sleep in human
being are the functional foods include barley grass powder, whole grains, maca, panax, Lingzhi, asparagus powder,
lettuce, cherry, kiwifruits, walnut, schisandra wine, and milk; Barley grass powder with higher GABA and calcium, as
well as potassium is the most ideal functional food promoting sleep, however, the sleep duration for modern humans is
associated with food structure of ancient humans. In this review, we put forward possible mechanisms of functional
components in foods promoting sleep. Although there is clear relevance between sleep and diet, their molecular
mechanisms need to be studied further.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China; ; Kuming Tiankang Science & Technology Limited Company, Kunming 650231, P.R. China
| | - Juan Du
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Xiaoying Pu
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Xiaomen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Tao Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| |
Collapse
|
26
|
Lee J, Kim HH. Methanol Extract of Croton Pycnanthus Benth. Inhibits Osteoclast Differentiation by Suppressing the MAPK and NF-κB Signaling Pathways. J Bone Metab 2014; 21:269-75. [PMID: 25489576 PMCID: PMC4255048 DOI: 10.11005/jbm.2014.21.4.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 01/09/2023] Open
Abstract
Background Osteoclasts are differentiated from monocytes/macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL). Croton pycnanthus Benth. (CPB) is a herbal plant that belongs to Euphorbiaceae family. The aim of this study was to investigate the effects of CPB on osteoclastogenesis and RANKL-dependent signaling pathways. Methods Methanol extract of CPB was obtained from International Biological Material Research Center. Osteoclast differentiation was achieved by culturing mouse bone marrow-derived macrophages (BMMs) with M-CSF and RANKL. Osteoclast numbers were evaluated by counting multinuclear cells positive for tartrate-resistant acid phosphatase (TRAP). mRNA and protein levels were analyzed by real-time polymerase chain reaction (PCR) and Western blotting, respectively. The activation of signaling molecules were assessed after acute stimulation of cells with high dose of RANKL by Western blotting with phospho-specific antibodies. Results CPB reduced the generation of TRAP-positive multinucleated cells and the activation of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways. The induction of the expression of c-Fos, nuclear factor-activated T cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) by RANKL was also suppressed. Conclusions CPB exerts negative effects on osteoclast differentiation in response to the RANKL. The inhibitory mechanism involves the suppression of MAPK and NF-κB signaling pathways and subsequently the down-regulation of c-Fos and NFATc1 transcription factors.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|