1
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs inhibition improves sequential gene insertion of the full-length CFTR cDNA in airway stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102339. [PMID: 39398224 PMCID: PMC11470261 DOI: 10.1016/j.omtn.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two-halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558, which inhibit non-homologous end-joining (NHEJ) and micro-homology mediated end-joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2- to 3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Song D, Zhao Y, Wang Z, Xu Q. Tuning Lipid Nanoparticles for RNA Delivery to Extrahepatic Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401445. [PMID: 39233550 PMCID: PMC11530311 DOI: 10.1002/adma.202401445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Indexed: 09/06/2024]
Abstract
RNA therapeutics have been successfully transitioned into clinical applications. Lipid nanoparticles (LNPs) are widely employed as nonviral delivery vehicles for RNA therapeutics in commercial vaccine and gene therapy products. However, the bottleneck in expanding the clinical applications of LNP-based RNA therapeutics lies in the tendency of these nanoparticles to preferentially accumulate in the liver. This challenge underscores the need to design LNPs capable of delivering RNA to organs beyond the liver. In this perspective, recent progress is discussed in developing strategies for designing LNPs to deliver RNA to extrahepatic organs. Organ-selective targeting capability is achieved by either altering the composition of the LNP formulation or chemically modifying the ionizable lipid component. Both approaches result in changes in the physicochemical properties of the LNPs, which subsequently alters the composition of the biomolecular corona that adsorbs onto its surface following administration. The biomolecular corona is a known mechanism that mediates organ-selective LNP delivery. Furthermore, this perspective aims to provide an outlook on shaping the next-generation LNP delivery platforms. Potential efforts include targeting specific cell types, improving the safety profile of LNPs, and developing strategies to overcome physiological barriers against organ-specific delivery.
Collapse
Affiliation(s)
| | | | - Zeyu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA 02155
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA 02155
| |
Collapse
|
3
|
R S A, R M, Sastri KT, G S M, A R A, V B. Precision medicine advances in cystic fibrosis: Exploring genetic pathways for targeted therapies. Life Sci 2024; 358:123186. [PMID: 39471902 DOI: 10.1016/j.lfs.2024.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Personalized medicine has transformed the treatment of cystic fibrosis (CF), providing customized therapeutic approaches based on individual genetic profiles. This review explores the genetic foundations of CF, focusing on mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and their implications for the development of the disease. The advent of genetic testing has enabled the association of specific mutations to disease severity, leading to the development of CFTR modulators like Ivacaftor, Lumacaftor, and Tezacaftor. Beyond CFTR mutations, genetic modifiers, including gene replacement therapy, genetic manipulation, lentivirus, and non-viral gene therapy formulations, along with environmental factors, play critical roles in influencing disease expression and outcomes. The identification of these modifiers is essential for optimizing therapeutic strategies. Emerging biomarkers, including inflammatory markers and pulmonary function indicators, aid in early disease detection and monitoring progression. Omics technologies are uncovering novel biomarkers, enabling more precise disease management. Pharmacogenomics has become integral to CF care, allowing for personalized approaches that consider genetic variations influencing drug metabolism, especially in antibiotics and anti-inflammatory therapies. The future of CF treatment lies in precision therapies, including CFTR modulators and cutting-edge techniques like gene therapy and CRISPR-Cas9 for mutation correction. As research evolves, these advances can improve patient outcomes while minimizing adverse effects. Ethical considerations and regulatory challenges remain critical as personalized medicine advances, ensuring equitable access and the long-term effectiveness of these innovative therapies.
Collapse
Affiliation(s)
- Abinesh R S
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - Madhav R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India.
| | - Meghana G S
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - Akhila A R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| |
Collapse
|
4
|
Vassiliou VS, Johnson N, Langlands K, Tsampasian V. Genetics of Calcific Aortic Stenosis: A Systematic Review. Genes (Basel) 2024; 15:1309. [PMID: 39457433 PMCID: PMC11508093 DOI: 10.3390/genes15101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Calcific aortic stenosis is the most prevalent valvular abnormality in the Western world. Factors commonly associated with calcific aortic stenosis include advanced age, male sex, hypertension, diabetes and impaired renal function. This review synthesises the existing literature on genetic associations with calcific aortic stenosis. Methods: A systematic search was conducted in the PubMed, Ovid and Cochrane libraries from inception to 21 July 2024 to identify human studies investigating the genetic factors involved in calcific aortic stenosis. From an initial pool of 1392 articles, 78 were selected for full-text review and 31 were included in the final qualitative synthesis. The risk of bias in these studies was assessed using the Newcastle Ottawa Scale. Results: Multiple genes have been associated with calcific aortic stenosis. These genes are involved in different biological pathways, including the lipid metabolism pathway (PLA, LDL, APO, PCSK9, Lp-PLA2, PONS1), the inflammatory pathway (IL-6, IL-10), the calcification pathway (PALMD, TEX41) and the endocrine pathway (PTH, VIT D, RUNX2, CACNA1C, ALPL). Additional genes such as NOTCH1, NAV1 and FADS1/2 influence different pathways. Mechanistically, these genes may promote a pro-inflammatory and pro-calcific environment in the aortic valve itself, leading to increased osteoblastic activity and subsequent calcific degeneration of the valve. Conclusions: Numerous genetic associations contribute to calcific aortic stenosis. Recognition of these associations can enhance risk stratification for individuals and their first-degree relatives, facilitate family screening, and importantly, pave the way for targeted therapeutic interventions focusing on the identified genetic factors. Understanding these genetic factors can also lead to gene therapy to prevent calcific aortic stenosis in the future.
Collapse
Affiliation(s)
- Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
- Fitzwilliam College, University of Cambridge, Cambridge CB3 0DG, UK
| | - Nicholas Johnson
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| | - Kenneth Langlands
- Institute of Continuing Education, University of Cambridge, Cambridge CB23 8AQ, UK;
| | - Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| |
Collapse
|
5
|
Plasschaert LW, MacDonald KD, Moffit JS. Current landscape of cystic fibrosis gene therapy. Front Pharmacol 2024; 15:1476331. [PMID: 39439894 PMCID: PMC11493704 DOI: 10.3389/fphar.2024.1476331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis is a life-threatening disease that is caused by mutations in CFTR, a gene which encodes an ion channel that supports proper function of several epithelial tissues, most critically the lung. Without CFTR, airway barrier mechanisms are impaired, allowing for chronic, recurrent infections that result in airway remodeling and deterioration of lung structure and function. Small molecule modulators can rescue existing, defective CFTR protein; however, they still leave a subset of people with CF with no current disease modifying treatments, aside from lung transplantation. Gene therapy directed to the lung is a promising strategy to modify CF disease in the organ most associated with morbidity and mortality. It is accomplished through delivery of a CFTR transgene with an airway permissive vector. Despite more than three decades of research in this area, a lung directed gene therapy has yet to be realized. There is hope that with improved delivery vectors, sufficient transduction of airway cells can achieve therapeutic levels of functional CFTR. In order to do this, preclinical programs need to meet a certain level of CFTR protein expression in vitro and in vivo through improved transduction, particularly in relevant airway cell types. Furthermore, clinical programs must be designed with sensitive methods to detect CFTR expression and function as well as methods to measure meaningful endpoints for lung structure, function and disease. Here, we discuss the current understanding of how much and where CFTR needs to be expressed, the most advanced vectors for CFTR delivery and clinical considerations for detecting CFTR protein and function in different patient subsets.
Collapse
Affiliation(s)
| | - Kelvin D. MacDonald
- Carbon Biosciences, Waltham, MA, United States
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
6
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs Inhibition Improves Sequential Gene Insertion of the Full-Length CFTR cDNA in Airway Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607571. [PMID: 39185207 PMCID: PMC11343149 DOI: 10.1101/2024.08.12.607571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558 which inhibit non-homologous end joining (NHEJ) and micro-homology mediated end joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2-3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | | | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
8
|
Huang Y, Zhang J, Wang X, Jing H, Li H. Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases. Biomolecules 2024; 14:904. [PMID: 39199292 PMCID: PMC11352762 DOI: 10.3390/biom14080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Gene delivery therapy has emerged as a popular approach for the treatment of various diseases. However, it still poses the challenges of accumulation in target sites and reducing off-target effects. Aerosol gene delivery for the treatment of pulmonary diseases has the advantages of high lung accumulation, specific targeting and fewer systemic side effects. However, the key challenge is selecting the appropriate formulation for aerosol gene delivery that can overcome physiological barriers. There are numerous existing gene carriers under study, including viral vectors and non-viral vectors. With the development of biomaterials, more biocompatible substances have applied gene delivery via inhalation. Furthermore, many types of genes can be delivered through aerosol inhalation, such as DNA, mRNA, siRNA and CRISPR/Cas9. Aerosol delivery of different types of genes has proven to be efficient in the treatment of many diseases such as SARS-CoV-2, cystic fibrosis and lung cancer. In this paper, we provide a comprehensive review of the ongoing research on aerosol gene delivery therapy, including the basic respiratory system, different types of gene carriers, different types of carried genes and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| |
Collapse
|
9
|
Upadhyay K, Nigam N, Gupta S, Tripathi SK, Jain A, Puri B. Current and future therapeutic approaches of CFTR and airway dysbiosis in an era of personalized medicine. J Family Med Prim Care 2024; 13:2200-2208. [PMID: 39027867 PMCID: PMC11254065 DOI: 10.4103/jfmpc.jfmpc_1085_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 07/20/2024] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disorder caused by mutations in the CFTR gene. This leads to a defective protein that impairs chloride transport, resulting in thick mucus buildup and chronic inflammation in the airways. The review discusses current and future therapeutic approaches for CFTR dysfunction and airway dysbiosis in the era of personalized medicine. Personalized medicine has revolutionized CF treatment with the advent of CFTR modulator therapies that target specific genetic mutations. These therapies have significantly improved patient outcomes, slowing disease progression, and enhancing quality of life. It also highlights the growing recognition of the airway microbiome's role in CF pathogenesis and discusses strategies to modulate the microbiome to further improve patient outcomes. This review discusses various therapeutic approaches for cystic fibrosis (CFTR) mutations, including adenovirus gene treatments, nonviral vectors, CRISPR/cas9 methods, RNA replacement, antisense-oligonucleotide-mediated DNA-based therapies, and cell-based therapies. It also introduces airway dysbiosis with CF and how microbes influence the lungs. The review highlights the importance of understanding the cellular and molecular causes of CF and the development of personalized medicine to improve quality of life and health outcomes.
Collapse
Affiliation(s)
- Kirti Upadhyay
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Nitu Nigam
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Surbhi Gupta
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant Tripathi
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Bipin Puri
- King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
11
|
Matthews J, Dobra R, Wilson G, Allen L, Bossley C, Brendell R, Brugha R, Brown D, Brown S, Cadiente S, Cameron L, Davies G, Dawson C, Elborn S, Hughes D, Longmate J, Macedo P, Pappas L, Pao C, Round C, Ruiz G, Saunders C, Shafi N, Simmonds N, Waller M, Watson D, Davies JC. Levelling the playing field through the London Network of the UK clinical trials accelerator platform. Contemp Clin Trials Commun 2024; 39:101301. [PMID: 38711836 PMCID: PMC11070816 DOI: 10.1016/j.conctc.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Cystic fibrosis (CF) is a multisystem, genetic disease with a significantly reduced life expectancy. Despite substantial progress in therapies in the last 10-15 years, there is still no cure. There are dozens of drugs in the development pipeline and multiple clinical trials are being conducted across the globe. The UK Cystic Fibrosis Trust's (CFT) Clinical Trials Accelerator Platform (CTAP) is a national initiative bringing together 25 UK based CF centres to support the CF community in accessing and participating in CF clinical trials. CTAP enables more CF centres to run a broader portfolio of trials and increases the range of CF studies available for UK patients. There are four large specialist CF centres based in London, all within a small geographical region as well as two smaller centres which deliver CF care. At the launch of CTAP, these centres formed a sub-network in a consortium-style collaboration. The purpose of the network was to ensure equity of access to trials for patients across the UK's capital, and to share experience and knowledge. Four years into the programme we have reviewed our practices through working group meetings and an online survey. We sought to identify strengths and areas for improvement. We share our findings here, as we believe they are relevant to others delivering research in regions outside of London and in other chronic diseases.
Collapse
Affiliation(s)
- Jessie Matthews
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Rebecca Dobra
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Gemma Wilson
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | | | - Cara Bossley
- King's College Hospital, NHS Foundation Trust, London, UK
| | | | - Rossa Brugha
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Danielle Brown
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sarah Brown
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | | | | | - Gwyneth Davies
- Royal London Hospital, Barts Health NHS Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte Dawson
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | | | - Dominic Hughes
- King's College Hospital, NHS Foundation Trust, London, UK
| | | | | | | | - Caroline Pao
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | | | - Gary Ruiz
- King's College Hospital, NHS Foundation Trust, London, UK
| | - Clare Saunders
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
- European CF Society Lung Clearance Index Central Overreading Centre, UK
| | - Nadia Shafi
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Nicholas Simmonds
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Michael Waller
- King's College Hospital, NHS Foundation Trust, London, UK
| | - Danie Watson
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Jane C. Davies
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
- European CF Society Lung Clearance Index Central Overreading Centre, UK
| |
Collapse
|
12
|
Terlizzi V, Farrell PM. Update on advances in cystic fibrosis towards a cure and implications for primary care clinicians. Curr Probl Pediatr Adolesc Health Care 2024; 54:101637. [PMID: 38811287 DOI: 10.1016/j.cppeds.2024.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
During the past quarter century, the diagnosis and treatment of cystic fibrosis (CF) have been transformed by molecular sciences that initiated a new era with discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The knowledge gained from that breakthrough has had dramatic clinical impact. Although once a diagnostic dilemma with long delays, preventable deaths, and irreversible pathology, CF can now be routinely diagnosed shortly after birth through newborn screening programs. This strategy of pre-symptomatic identification has eliminated the common diagnostic "odyssey" that was a failure of the healthcare delivery system causing psychologically traumatic experiences for parents. Therapeutic advances of many kinds have culminated in CFTR modulator treatment that can reduce the effects of or even correct the molecular defect in the chloride channel -the basic cause of CF. This astonishing advance has transformed CF care as described fully herein. Despite this impressive progress, there are challenges and controversies in the delivery of care. Issues include how best to achieve high sensitivity newborn screening with acceptable specificity; what course of action is appropriate for children who are identified through the unavoidable incidental findings of screening tests (CFSPID/CRMS cases and heterozygote carriers); how best to ensure genetic counseling; when to initiate the very expensive but life-saving CFTR modulator drugs; how to identify new CFTR modulator drugs for patients with non-responsive CFTR variants; how to adjust other therapeutic modalities; and how to best partner with primary care clinicians. Progress always brings new challenges, and this has been evident worldwide for CF. Consequently, this article summarizes the major advances of recent years along with controversies and describes their implications with an international perspective.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Philip M Farrell
- Departments of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Clinical Sciences Center (K4/948), 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
13
|
Urquhart DS, Dowle H, Moffat K, Forster J, Cunningham S, Macleod KA. Lung clearance index (LCI 2.5) changes after initiation of Elexacaftor/Tezacaftor/Ivacaftor in children with cystic fibrosis aged between 6 and 11 years: The "real-world" differs from trial data. Pediatr Pulmonol 2024; 59:1449-1453. [PMID: 38415920 DOI: 10.1002/ppul.26938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Elexacaftor in combination with Tezacaftor and Ivacaftor (ETI) became licensed in the United Kingdom in early 2022 for children aged 6-11 years with cystic fibrosis (CF) and an eligible mutation. Many in this age group have excellent prior lung health making quantitative measurement of benefit challenging. Clinical trials purport that lung clearance index (LCI2.5) measurement is most suitable for this purpose. OBJECTIVES This study aimed to understand the clinical utility of LCI2.5 in detecting change after commencing ETI in the real world. PATIENT SELECTION/METHODS Baseline anthropometric data were collected along with spirometry (forced expiratory volume in 1 s [FEV1], forced vital capacityFV and LCI2.5 measures in children aged 6-11 years with CF before starting ETI. Measures were repeated after a mean (range) of 8.2 (7-14) months of ETI treatment. The primary endpoint was a change in LCI2.5, with secondary endpoints including change in FEV1 and change in body mass index (BMI) also reported. RESULTS Twelve children were studied (seven male, mean age 9.5 years at baseline). Our study population had a mean (SD) LCI2.5 of 7.01 (1.14) and FEV1 of 96 (13) %predicted at baseline. Mean (95% confidence interval) changes in LCI2.5 [-0.7 (-1.4, 0), p = .06] and BMI [+0.7 (+0.1, +1.3), p = .03] were observed, along with changes in FEV1 of +3.1 (-1.9, +8.1) %predicted. CONCLUSIONS Real-world changes in LCI2.5 (-0.7) are different to those reported in clinical trials (-2.29). Lower baseline LCI2.5 as a result of prior modulator exposure, high baseline lung health, and new LCI2.5 software analyses all contribute to lower LCI2.5 values being recorded in the real world of children with CF.
Collapse
Affiliation(s)
- Don S Urquhart
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
- Department of Child Life and Health, Edinburgh Bioquarter, University of Edinburgh, Edinburgh, UK
| | - Heather Dowle
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Kellie Moffat
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Jody Forster
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Steve Cunningham
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
- Department of Child Life and Health, Edinburgh Bioquarter, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Kenneth A Macleod
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
14
|
Kim J, Eygeris Y, Ryals RC, Jozić A, Sahay G. Strategies for non-viral vectors targeting organs beyond the liver. NATURE NANOTECHNOLOGY 2024; 19:428-447. [PMID: 38151642 DOI: 10.1038/s41565-023-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
In recent years, nanoparticles have evolved to a clinical modality to deliver diverse nucleic acids. Rising interest in nanomedicines comes from proven safety and efficacy profiles established by continuous efforts to optimize physicochemical properties and endosomal escape. However, despite their transformative impact on the pharmaceutical industry, the clinical use of non-viral nucleic acid delivery is limited to hepatic diseases and vaccines due to liver accumulation. Overcoming liver tropism of nanoparticles is vital to meet clinical needs in other organs. Understanding the anatomical structure and physiological features of various organs would help to identify potential strategies for fine-tuning nanoparticle characteristics. In this Review, we discuss the source of liver tropism of non-viral vectors, present a brief overview of biological structure, processes and barriers in select organs, highlight approaches available to reach non-liver targets, and discuss techniques to accelerate the discovery of non-hepatic therapies.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
15
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
16
|
Sun M, Zhang H, Liu J, Chen J, Cui Y, Wang S, Zhang X, Yang Z. Extracellular Vesicles: A New Star for Gene Drug Delivery. Int J Nanomedicine 2024; 19:2241-2264. [PMID: 38465204 PMCID: PMC10924919 DOI: 10.2147/ijn.s446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Recently, gene therapy has become a subject of considerable research and has been widely evaluated in various disease models. Though it is considered as a stand-alone agent for COVID-19 vaccination, gene therapy is still suffering from the following drawbacks during its translation from the bench to the bedside: the high sensitivity of exogenous nucleic acids to enzymatic degradation; the severe side effects induced either by exogenous nucleic acids or components in the formulation; and the difficulty to cross the barriers before reaching the therapeutic target. Therefore, for the successful application of gene therapy, a safe and reliable transport vector is urgently needed. Extracellular vesicles (EVs) are the ideal candidate for the delivery of gene drugs owing to their low immunogenicity, good biocompatibility and low toxicity. To better understand the properties of EVs and their advantages as gene drug delivery vehicles, this review covers from the origin of EVs to the methods of EVs generation, as well as the common methods of isolation and purification in research, with their pros and cons discussed. Meanwhile, the engineering of EVs for gene drugs is also highlighted. In addition, this paper also presents the progress in the EVs-mediated delivery of microRNAs, small interfering RNAs, messenger RNAs, plasmids, and antisense oligonucleotides. We believe this review will provide a theoretical basis for the development of gene drugs.
Collapse
Affiliation(s)
- Man Sun
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Liu
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310020, People’s Republic of China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
17
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
18
|
Guan X, Pei Y, Song J. DNA-Based Nonviral Gene Therapy─Challenging but Promising. Mol Pharm 2024; 21:427-453. [PMID: 38198640 DOI: 10.1021/acs.molpharmaceut.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decades, significant progress has been made in utilizing nucleic acids, including DNA and RNA molecules, for therapeutic purposes. For DNA molecules, although various DNA delivery systems have been established, viral vector systems are the go-to choice for large-scale commercial applications. However, viral systems have certain disadvantages such as immune response, limited payload capacity, insertional mutagenesis and pre-existing immunity. In contrast, nonviral systems are less immunogenic, not size limited, safer, and easier for manufacturing compared with viral systems. What's more, nonviral DNA vectors have demonstrated their capacity to mediate specific protein expression in vivo for diverse therapeutic objectives containing a wide range of diseases such as cancer, rare diseases, neurodegenerative diseases, and infectious diseases, yielding promising therapeutic outcomes. However, exogenous plasmid DNA is prone to degrade and has poor immunogenicity in vivo. Thus, various strategies have been developed: (i) designing novel plasmids with special structures, (ii) optimizing plasmid sequences for higher expression, and (iii) developing more efficient nonviral DNA delivery systems. Based on these strategies, many interesting clinical results have been reported. This Review discusses the development of DNA-based nonviral gene therapy, including novel plasmids, nonviral delivery systems, clinical advances, and prospects. These developments hold great potential for enhancing the efficacy and safety of nonviral gene therapy and expanding its applications in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaocai Guan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
19
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
20
|
Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024; 16:161. [PMID: 38399222 PMCID: PMC10893528 DOI: 10.3390/pharmaceutics16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.
Collapse
Affiliation(s)
- Siyuan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Walker AJ, Graham C, Greenwood M, Woodall M, Maeshima R, O’Hara-Wright M, Sanz DJ, Guerrini I, Aldossary AM, O’Callaghan C, Baines DL, Harrison PT, Hart SL. Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2023; 31:101140. [PMID: 38027060 PMCID: PMC10661860 DOI: 10.1016/j.omtm.2023.101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. The 10th most common mutation, c.3178-2477C>T (3849+10kb C>T), involves a cryptic, intronic splice site. This mutation was corrected in CF primary cells homozygous for this mutation by delivering pairs of guide RNAs (gRNAs) with Cas9 protein in ribonucleoprotein (RNP) complexes that introduce double-strand breaks to flanking sites to excise the 3849+10kb C>T mutation, followed by DNA repair by the non-homologous end-joining pathway, which functions in all cells of the airway epithelium. RNP complexes were delivered to CF basal epithelial cell by a non-viral, receptor-targeted nanocomplex comprising a formulation of targeting peptides and lipids. Canonical CFTR mRNA splicing was, thus, restored leading to the restoration of CFTR protein expression with concomitant restoration of electrophysiological function in airway epithelial air-liquid interface cultures. Off-target editing was not detected by Sanger sequencing of in silico-selected genomic sites with the highest sequence similarities to the gRNAs, although more sensitive unbiased whole genome sequencing methods would be required for possible translational developments. This approach could potentially be used to correct aberrant splicing signals in several other CF mutations and other genetic disorders where deep-intronic mutations are pathogenic.
Collapse
Affiliation(s)
- Amy J. Walker
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Miriam Greenwood
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maximillian Woodall
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michelle O’Hara-Wright
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David J. Sanz
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Ileana Guerrini
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ahmad M. Aldossary
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher O’Callaghan
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Deborah L. Baines
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
22
|
Tian Y, Shi H, Zhang D, Wang C, Zhao F, Li L, Xu Z, Jiang J, Li J. Nebulized inhalation of LPAE-HDAC10 inhibits acetylation-mediated ROS/NF-κB pathway for silicosis treatment. J Control Release 2023; 364:618-631. [PMID: 37848136 DOI: 10.1016/j.jconrel.2023.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Silicosis is a serious silica-induced respiratory disease for which there is currently no effective treatment. Irreversible pulmonary fibrosis caused by persistent inflammation is the main feature of silicosis. As an underlying mechanism, acetylation regulated by histone deacetylases (HDACs) are believed to be closely associated with persistent inflammation and pulmonary fibrosis. However, details of the mechanisms associated with the regulation of acetylated modification in silicosis have yet to be sufficiently established. Furthermore, studies on the efficient delivery of DNA to lung tissues by nebulized inhalation for the treatment of silicosis are limited. In this study, we established a mouse model of silicosis successfully. Differentially expressed genes (DEGs) between the lung tissues of silicosis and control mice were identified based on transcriptomic analysis, and HDAC10 was the only DEG among the HDACs. Acetylomic and combined acetylomic/proteomic analysis were performed and found that the differentially expressed acetylated proteins have diverse biological functions, among which 12 proteins were identified as the main targets of HDAC10. Subsequently, HDAC10 expression levels were confirmed to increase following nebulized inhalation of linear poly(β-amino ester) (LPAE)-HDAC10 nanocomplexes. The levels of oxidative stress, the phosphorylation of IKKβ, IκBα and p65, as well as inflammation were inhibited by HDAC10. Pulmonary fibrosis, and lung function in silicosis showed significant improvements in response to the upregulation of HDAC10. Similar results were obtained for the silica-treated macrophages in vitro. In conclusion, HDAC10 was identified as the main mediator of acetylation in silicosis. Nebulized inhalation of LPAE-HDAC10 nanocomplexes was confirmed to be a promising treatment option for silicosis. The ROS/NF-κB pathway was identified as an essential signaling pathway through which HDAC10 attenuates oxidative stress, inflammation, and pulmonary fibrosis in silicosis. This study provides a new theoretical basis for the treatment of silicosis.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Hongyang Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
| |
Collapse
|
23
|
Chen C, Wang Z, Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Exp Hematol Oncol 2023; 12:95. [PMID: 37964355 PMCID: PMC10647168 DOI: 10.1186/s40164-023-00457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is essentially an adaptive immunity weapon in prokaryotes against foreign DNA. This system inspires the development of genome-editing technology in eukaryotes. In biomedicine research, CRISPR has offered a powerful platform to establish tumor-bearing models and screen potential targets in the immuno-oncology field, broadening our insights into cancer genomics. In translational medicine, the versatile CRISPR/Cas9 system exhibits immense potential to break the current limitations of cancer immunotherapy, thereby expanding the feasibility of adoptive cell therapy (ACT) in treating solid tumors. Herein, we first explain the principles of CRISPR/Cas9 genome editing technology and introduce CRISPR as a tool in tumor modeling. We next focus on the CRISPR screening for target discovery that reveals tumorigenesis, immune evasion, and drug resistance mechanisms. Moreover, we discuss the recent breakthroughs of genetically modified ACT using CRISPR/Cas9. Finally, we present potential challenges and perspectives in basic research and clinical translation of CRISPR/Cas9. This review provides a comprehensive overview of CRISPR/Cas9 applications that advance our insights into tumor-immune interaction and lay the foundation to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
24
|
Burgener EB, Cornfield DN. Delivering a New Future for People With Cystic Fibrosis. Pediatrics 2023; 152:e2023062985. [PMID: 37671451 PMCID: PMC10522926 DOI: 10.1542/peds.2023-062985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Treatment, prognosis, and quality of life for people with cystic fibrosis (CF) have improved steadily since the initial description of the disease, but most dramatically in the past decade. In 2021, the median predicted survival increased to 53 years, compared with 17 years in 1970. The recent improvement in outcomes is attributable to the advent of cystic fibrosis transmembrane regulator (CFTR) modulators, small molecules that enhance the function of defective CFTR protein. The first CFTR modulator, ivacaftor, received Food and Drug Administration approval in 2011 to treat a single CFTR variant, comprising only 4% of those affected by CF. With the demonstration of efficacy, drug approval has been expanded to other variants. Multiple CFTR modulators used in combination with ivacaftor augment efficacy and increase the number of CFTR variants amenable to therapy. Approval of elexecaftor/tezecaftor/ivacaftor in 2019 increased the number of individuals who could benefit from highly effective modulator therapy (HEMT) to ∼90% of the CF population in the United States. HEMT has been dramatically effective, with overall improvements in lung function, quality of life, nutritional status, and, in women, increased fertility. HEMT may delay the onset of other CF-related comorbidities. Although off-target effects, including hepatotoxicity, drug-drug interactions, and putative mental health issues can complicate use, modulator therapy has been generally well tolerated. Ten percent of people with CF have variants that are not amenable to modulator treatment. HEMT, despite its great cost and limited global access, has brought legitimate hope and changed the lives of a significant majority of individuals and families affected by CF in North America.
Collapse
Affiliation(s)
- Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Divisions of Pulmonary, Asthma, and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David N. Cornfield
- Center for Excellence in Pulmonary Biology, Divisions of Pulmonary, Asthma, and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
25
|
Mayer-Hamblett N, Clancy JP, Jain R, Donaldson SH, Fajac I, Goss CH, Polineni D, Ratjen F, Quon BS, Zemanick ET, Bell SC, Davies JC, Jain M, Konstan MW, Kerper NR, LaRosa T, Mall MA, McKone E, Pearson K, Pilewski JM, Quittell L, Rayment JH, Rowe SM, Taylor-Cousar JL, Retsch-Bogart G, Downey DG. Advancing the pipeline of cystic fibrosis clinical trials: a new roadmap with a global trial network perspective. THE LANCET. RESPIRATORY MEDICINE 2023; 11:932-944. [PMID: 37699421 PMCID: PMC10982891 DOI: 10.1016/s2213-2600(23)00297-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
The growing use of modulator therapies aimed at restoring cystic fibrosis transmembrane conductance regulator (CFTR) protein function in people with cystic fibrosis has fundamentally altered clinical trial strategies needed to advance new therapeutics across an orphan disease population that is now divided by CFTR modulator eligibility. The development of a robust pipeline of nucleic acid-based therapies (NABTs)-initially directed towards the estimated 10% of the cystic fibrosis population who are genetically ineligible for, or intolerant of, CFTR modulators-is dependent on the optimisation of restricted trial participant resources across multiple development programmes, a challenge that will preclude the use of gold standard placebo-controlled trials. Advancement of a full pipeline of symptomatic therapies across the entire cystic fibrosis population will be challenged by smaller effect sizes and uncertainty regarding their clinical importance in a growing modulator-treated population with more mild and stable pulmonary disease. In this Series paper, we aim to lay the foundation for clinical trial strategy and community partnership that must deviate from established and familiar precedent to advance the future pipeline of cystic fibrosis therapeutics.
Collapse
Affiliation(s)
- Nicole Mayer-Hamblett
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | | | - Raksha Jain
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott H Donaldson
- Division of Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Isabelle Fajac
- Assistance Publique, Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Christopher H Goss
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine University of Washington, Seattle, WA, USA
| | - Deepika Polineni
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Felix Ratjen
- Translational Medicine Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia; Children's Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK; Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Manu Jain
- University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael W Konstan
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | | | | | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Lung Research, Berlin, Germany; Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Edward McKone
- St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | | | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynne Quittell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - George Retsch-Bogart
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, USA
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
26
|
Woodall M, Tarran R, Lee R, Anfishi H, Prins S, Counsell J, Vergani P, Hart S, Baines D. Expression of gain-of-function CFTR in cystic fibrosis airway cells restores epithelial function better than wild-type or codon-optimized CFTR. Mol Ther Methods Clin Dev 2023; 30:593-605. [PMID: 37701179 PMCID: PMC10494266 DOI: 10.1016/j.omtm.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
Class Ia/b cystic fibrosis transmembrane regulator (CFTR) variants cause severe lung disease in 10% of cystic fibrosis (CF) patients and are untreatable with small-molecule pharmaceuticals. Genetic replacement of CFTR offers a cure, but its effectiveness is limited in vivo. We hypothesized that enhancing protein levels (using codon optimization) and/or activity (using gain-of-function variants) of CFTR would more effectively restore function to CF bronchial epithelial cells. Three different variants of the CFTR protein were tested: codon optimized (high codon adaptation index [hCAI]), a gain-of-function (GOF) variant (K978C), and a combination of both (hˆK978C). In human embryonic kidney (HEK293T) cells, initial results showed that hCAI and hˆK978C produced greater than 10-fold more CFTR protein and displayed ∼4-fold greater activity than wild-type (WT) CFTR. However, functionality was profoundly different in CF bronchial epithelial cells. Here, K978C CFTR more potently restored essential epithelial functions (anion transport, airway surface liquid height, and pH) than WT CFTR. hCAI and hˆK978C CFTRs had limited impact because of mislocalization in the cell. These data provide a proof of principle showing that GOF variants may be more effective than codon-optimized forms of CFTR for CF gene therapy. Video abstract
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Rhianna Lee
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Hafssa Anfishi
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Stella Prins
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - John Counsell
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Paola Vergani
- Neuroscience, Physiology, & Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Stephen Hart
- Genetics & Genomic Medicine Department, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
27
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
28
|
Esposito C, Kamper M, Trentacoste J, Galvin S, Pfister H, Wang J. Advances in the Cystic Fibrosis Drug Development Pipeline. Life (Basel) 2023; 13:1835. [PMID: 37763239 PMCID: PMC10532558 DOI: 10.3390/life13091835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis is a genetic disease that results in progressive multi-organ manifestations with predominance in the respiratory and gastrointestinal systems. The significant morbidity and mortality seen in the CF population has been the driving force urging the CF research community to further advance treatments to slow disease progression and, in turn, prolong life expectancy. Enormous strides in medical advancements have translated to improvement in quality of life, symptom burden, and survival; however, there is still no cure. This review discusses the most current mainstay treatments and anticipated therapeutics in the CF drug development pipeline within the mechanisms of mucociliary clearance, anti-inflammatory and anti-infective therapies, restoration of the cystic fibrosis transmembrane conductance regulator (CFTR) protein (also known as highly effective modulator therapy (HEMT)), and genetic therapies. Ribonucleic acid (RNA) therapy, gene transfer, and gene editing are being explored in the hopes of developing a treatment and potential cure for people with CF, particularly for those not responsive to HEMT.
Collapse
Affiliation(s)
- Christine Esposito
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Martin Kamper
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Jessica Trentacoste
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Susan Galvin
- Division of Pediatric Pulmonology, The Steven and Alexandra Cohen Children’s Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, NY 11042, USA;
| | - Halie Pfister
- Manhasset Office of Clinical Research, The Feinstein Institutes for Medical Research, Lake Success, New York, NY 11042, USA;
| | - Janice Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
- Manhasset Office of Clinical Research, The Feinstein Institutes for Medical Research, Lake Success, New York, NY 11042, USA;
| |
Collapse
|
29
|
Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res 2023; 10:32. [PMID: 37460924 PMCID: PMC10351202 DOI: 10.1186/s40779-023-00468-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region 44001 Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region 44001 Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001 Iraq
| | - Fattma Abodi Ali
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, 44001 Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 22100 Malmö, Sweden
| | - Mark C. Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, San Diego, CA 94720 USA
| | - Wojciech Branicki
- Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| |
Collapse
|
30
|
Kaboudin B, Aoyama H, Sugiyama A, Endo-Takahashi Y, Negishi Y. Organic Phase-Soluble Nanomagnetically Cationic Phospholipid: Synthesis, Characterization, and In Vitro Transfection Activity. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410893 DOI: 10.1021/acsami.3c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The presented work describes the synthesis and characterization of a novel magnetic cationic phospholipid (MCP) system with a stable dopamine anchor as well as its transfection activity study. The synthesized architectural system increases the biocompatibility of iron oxide and promises applications of magnetic nanoparticles in living cells. The MCP system is soluble in organic solvents and can be easily adapted to prepare magnetic liposomes. We created complexes with liposomes containing MCP and other functional cationic lipids and pDNA as gene delivery tools, which possessed the ability to enhance the efficiency of transfection, particularly the process of interaction with cells by inducing a magnetic field. The MCP is able to create iron oxide nanoparticles and has the potential for the materials to prepare the system for site-specific gene delivery with the application of an external magnetic field.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Sugiyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
31
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Maze D, Girardin C, Benz N, Montier T, Pichon C, Midoux P. CFTR and dystrophin encoding plasmids carrying both luciferase reporter gene, nuclear import specific sequences and triple helix sites. Plasmid 2023; 127:102686. [PMID: 37207938 DOI: 10.1016/j.plasmid.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Duchenne Muscular Dystrophy and Cystic Fibrosis are two major monogenetic diseases which could be treated by non-viral gene therapy. For this purpose, plasmid DNA (pDNA) coding for the functional genes requires its equipment with signal molecules favouring its intracellular trafficking and delivery in the nucleus of the target cells. Here, two novel constructions of large pDNAs encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and full-length dystrophin (DYS) genes are reported. The expression of CFTR and DYS genes are driven respectively by the hCEF1 airway epithelial cells and spc5-12 muscle cells specific promoter. Those pDNAs encode also the luciferase reporter gene driven by the CMV promoter to evaluate gene delivery in animals by bioluminescence. In addition, oligopurine • oligopyrimidine sequences are inserted to enable equipment of pDNAs with peptides conjugated with a triple helix forming oligonucleotide (TFO). Furthermore, specific κB sequences are also inserted to promote their NFκB-mediated nuclear import. pDNA constructions are reported; transfection efficiency, tissue specific expression of CFTR and dystrophin in target cells, and triple helix formation are demonstrated. These plasmids are tools of interest to develop non-viral gene therapy of Cystic Fibrosis and Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Nathalie Benz
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, Brest F-29200, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, Brest F-29200, France; Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, Brest F-29200, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|
33
|
Jarallah SJ, Aldossary AM, Tawfik EA, Altamimi RM, Alsharif WK, Alzahrani NM, As Sobeai HM, Qamar W, Alfahad AJ, Alshabibi MA, Alqahtani SH, Alshehri AA, Almughem FA. GL67 lipid-based liposomal formulation for efficient siRNA delivery into human lung cancer cells. Saudi Pharm J 2023; 31:1139-1148. [PMID: 37273265 PMCID: PMC10236467 DOI: 10.1016/j.jsps.2023.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023] Open
Abstract
The efficient delivery of small interfering RNA (siRNA) to the targeted cells significantly affects the regulation of the overexpressed proteins involved in the progression of several genetic diseases. SiRNA molecules in naked form suffer from low internalization across the cell membrane, high susceptibility to degradation by nuclease enzyme and low stability, which hinder their efficacy. Therefore, there is an urge to develop a delivery system that can protect siRNA from degradation and facilitate their uptake across the cell membrane. In this study, the cationic lipid (GL67) was exploited, in addition to DC-Chol and DOPE lipids, to design an efficient liposomal nanocarrier for siRNA delivery. The physiochemical characterizations demonstrated that the molar ratio of 3:1 has proper particle size measurements from 144 nm to 332 nm and zeta potential of -9 mV to 47 mV that depends on the ratio of the GL67 in the liposomal formulation. Gel retardation assay exhibited that increasing the percentage of GL67 in the formulations has a good impact on the encapsulation efficiency compared to DC-Chol. The optimal formulations of the 3:1 M ratio also showed high metabolic activity against A549 cells following a 24 h cell exposure. Flow cytometry findings showed that the highest GL67 lipid ratio (100 % GL67 and 0 % DC-Chol) had the highest percentage of cellular uptake. The lipoplex nanocarriers based on GL67 lipid could potentially influence treating genetic diseases owing to the high internalization efficiency and safety profile.
Collapse
Affiliation(s)
- Somayah J. Jarallah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M. Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Wijdan K. Alsharif
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Nouf M. Alzahrani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed J. Alfahad
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Manal A. Alshabibi
- Healthy Aging Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sarah H. Alqahtani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
34
|
Rowe SM, Zuckerman JB, Dorgan D, Lascano J, McCoy K, Jain M, Schechter MS, Lommatzsch S, Indihar V, Lechtzin N, McBennett K, Callison C, Brown C, Liou TG, MacDonald KD, Nasr SZ, Bodie S, Vaughn M, Meltzer EB, Barbier AJ. Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. J Cyst Fibros 2023; 22:656-664. [PMID: 37121795 PMCID: PMC10524666 DOI: 10.1016/j.jcf.2023.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND MRT5005, a codon-optimized CFTR mRNA, delivered by aerosol in lipid nanoparticles, was designed as a genotype-agnostic treatment for CF lung disease. METHODS This was a randomized, double-blind, placebo-controlled Phase 1/2 study performed in the US. Adults with 2 severe class I and/or II CFTR mutations and baseline ppFEV1 values between 50 and 90% were randomized 3:1 (MRT5005: placebo). Six dose levels of MRT5005 (4, 8, 12, 16, 20, and 24 mg) or placebo (0.9% Sodium Chloride) were administered by nebulization. The single ascending dose cohort was treated over a range from 8 to 24 mg; the multiple ascending dose cohort received five weekly doses (range 8-20 mg); and the daily dosing cohort received five daily doses (4 mg). RESULTS A total of 42 subjects were assigned to MRT5005 [31] or placebo [11]. A total of 14 febrile reactions were observed in 10 MRT5005-treated participants, which were mild [3] or moderate [11] in severity; two subjects discontinued related to these events. Additionally, two MRT5005-treated patients experienced hypersensitivity reactions, which were managed conservatively. The most common treatment emergent adverse events were cough and headache. No consistent effects on FEV1 were noted. CONCLUSIONS MRT5005 was generally safe and well tolerated through 28 days of follow-up after the last dose, though febrile and hypersensitivity reactions were noted. The majority of these reactions resolved within 1-2 days with supportive care allowing continued treatment with MRT5005 and careful monitoring. In this small first-in-human study, FEV1 remained stable after treatment, but no beneficial effects on FEV1 were observed.
Collapse
Affiliation(s)
- S M Rowe
- University of Alabama at Birmingham, USA
| | | | - D Dorgan
- Perelman School of Medicine, University of Pennsylvania, USA
| | - J Lascano
- University of Florida, Gainesville, USA
| | - K McCoy
- Nationwide Children's Hospital/the Ohio State University, USA
| | - M Jain
- Northwestern University Feinberg School of Medicine, USA
| | - M S Schechter
- Children's Hospital of Richmond at Virginia Commonwealth University, USA
| | | | | | | | - K McBennett
- University Hospitals, Cleveland Medical Center, USA
| | - C Callison
- University of Tennessee Medical Center, Knoxville, USA
| | - C Brown
- Indiana University School of Medicine, USA
| | - T G Liou
- University of Utah, Salt Lake City, USA
| | | | - S Z Nasr
- University of Michigan, Ann Arbor, USA
| | - S Bodie
- Translate Bio Inc, Lexington, MA, USA
| | - M Vaughn
- Translate Bio Inc, Lexington, MA, USA
| | | | | |
Collapse
|
35
|
Wang G. Genome Editing for Cystic Fibrosis. Cells 2023; 12:1555. [PMID: 37371025 PMCID: PMC10297084 DOI: 10.3390/cells12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the genome. Within the past few years, new technologies, such as CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in a new era of genetic therapy. This review provided an update on this rapidly evolving field and the status of adapting the technology for CF therapy.
Collapse
Affiliation(s)
- Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA 70112, USA
| |
Collapse
|
36
|
Lomunova MA, Gershovich PM. Gene Therapy for Cystic Fibrosis: Recent Advances and Future Prospects. Acta Naturae 2023; 15:20-31. [PMID: 37538805 PMCID: PMC10395777 DOI: 10.32607/actanaturae.11708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
Gene replacement therapies are novel therapeutic approaches that seek to tackle hereditary diseases caused by a congenital deficiency in a particular gene, when a functional copy of a gene can be delivered to the cells and tissues using various delivery systems. To do this, viral particles carrying a functional copy of the gene of interest and various nonviral gene delivery systems, including liposomes, nanoparticles, etc., can be used. In this review, we discuss the state of current knowledge regarding the molecular mechanisms and types of genetic mutations that lead to cystic fibrosis and highlight recent developments in gene therapy that can be leveraged to correct these mutations and to restore the physiological function of the carrier protein transporting sodium and chlorine ions in the airway epithelial cells. Restoration of carrier protein expression could lead to the normalization of ion and water transport across the membrane and induce a decrease in the viscosity of airway surface fluid, which is one of the pathological manifestations of this disease. This review also summarizes recently published preclinical and clinical data for various gene therapies to allow one to make some conclusions about future prospects for gene therapy in cystic fibrosis treatment.
Collapse
|
37
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
38
|
Allaire NE, Griesenbach U, Kerem B, Lueck JD, Stanleigh N, Oren YS. Gene, RNA, and ASO-based therapeutic approaches in Cystic Fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S39-S44. [PMID: 36658041 PMCID: PMC10012168 DOI: 10.1016/j.jcf.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Most people with Cystic Fibrosis (PwCF) harbor Cystic Fibrosis Transmembrane Conductance (CFTR) mutations that respond to highly effective CFTR modulators (HEM); however, a small fraction of non-responsive variants will require alternative approaches for treatment. Furthermore, the long-term goal to develop a cure for CF will require novel therapeutic strategies. Nucleic acid-based approaches offer the potential to address all CF-causing mutations and possibly a cure for all PwCF. In this minireview, we discuss current knowledge, recent progress, and critical questions surrounding the topic of Gene-, RNA-, and ASO-based therapies for the treatment of Cystic Fibrosis (CF).
Collapse
Affiliation(s)
| | - Uta Griesenbach
- National Heart and Lung Institute, Imperial College London and the UK Respiratory Gene Therapy Consortium, UK
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, Hebrew University, Jerusalem, Israel
| | - John D Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Noemie Stanleigh
- Department of Genetics, The Life Sciences Institute, Hebrew University, Jerusalem, Israel
| | - Yifat S Oren
- SpliSenseTherapeutics, Biohouse Labs, Haddasah Ein Karem, Jerusalem, IL
| |
Collapse
|
39
|
Allen L, Allen L, Carr SB, Davies G, Downey D, Egan M, Forton JT, Gray R, Haworth C, Horsley A, Smyth AR, Southern KW, Davies JC. Future therapies for cystic fibrosis. Nat Commun 2023; 14:693. [PMID: 36755044 PMCID: PMC9907205 DOI: 10.1038/s41467-023-36244-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
We are currently witnessing transformative change for people with cystic fibrosis with the introduction of small molecule, mutation-specific drugs capable of restoring function of the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). However, despite being a single gene disorder, there are multiple cystic fibrosis-causing genetic variants; mutation-specific drugs are not suitable for all genetic variants and also do not correct all the multisystem clinical manifestations of the disease. For many, there will remain a need for improved treatments. Those patients with gene variants responsive to CFTR modulators may have found these therapies to be transformational; research is now focusing on safely reducing the burden of symptom-directed treatment. However, modulators are not available in all parts of the globe, an issue which is further widening existing health inequalities. For patients who are not suitable for- or do not have access to- modulator drugs, alternative approaches are progressing through the trials pipeline. There will be challenges encountered in design and implementation of these trials, for which the established global CF infrastructure is a major advantage. Here, the Cystic Fibrosis National Research Strategy Group of the UK NIHR Respiratory Translational Research Collaboration looks to the future of cystic fibrosis therapies and consider priorities for future research and development.
Collapse
Affiliation(s)
| | | | - Siobhan B Carr
- Royal Brompton & Harefield Hospital, Guy's & St Thomas' Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Gwyneth Davies
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Damian Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - Julian T Forton
- Noah's Ark Children's Hospital for Wales, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - Robert Gray
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Western General Hospital, Edinburgh, UK
| | - Charles Haworth
- Royal Papworth Hospital and Department of Medicine, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
- Manchester Adult CF Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alan R Smyth
- School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Institute in the Park, Alder Hey Children's Hospital, Liverpool, UK
| | - Jane C Davies
- Royal Brompton & Harefield Hospital, Guy's & St Thomas' Trust, London, UK.
- National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
40
|
Ghanem R, Berchel M, Haute T, Buin X, Laurent V, Youf R, Bouraoui A, Le Gall T, Jaffrès PA, Montier T. Gene transfection using branched cationic amphiphilic compounds for an aerosol administration in cystic fibrosis context. Int J Pharm 2023; 631:122491. [PMID: 36529361 DOI: 10.1016/j.ijpharm.2022.122491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
For cystic fibrosis gene therapy, the aerosolization of genetic materials is the most relevant delivery strategy to reach the airway epithelium. However, aerosolized formulations have to resist shear forces while maintaining the integrity of plasmid DNA (pDNA) during its journey from the nebulization to the epithelial cells. Herein, we compared the efficiency of gene delivery by aerosolization of two types of formulations: (i) BSV163, a branched cationic amphiphilic compound, co-formulated with different DOPE ratios (mol/mol) and DMPE-PEG5000 and (ii) 25 KDa branched polyethylenimine (b-PEI)-based formulation used as control. This study also aims to determine whether BSV163-based formulations possess the ability to resist the nebulization mechanisms and protect the nucleic acids (pDNA) cargo. Therefore, two CpG free plasmids (pGM144 or pGM169) encoding either the luciferase reporter gene or hCFTR respectively were used. Air-Liquid Interface (ALI) cell-culture was selected as an in-vitro model for aerosol experiments due to its closer analogy with in vivo morphology. Results highlighted that DOPE ratio influences the capacity of the BSV163 based-formulations to mediate high transfection efficacies. Furthermore, we proved that addition of DMPE-PEG5000 upon the formation of the BSV163/DOPE (1/1) lipid film instead of post-insertion led to a higher transgene expression. The aerosolization of this formulation on ALI cell-culture was more efficient than the use of b-PEI-based formulation.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Mathieu Berchel
- Univ Brest, CNRS, CEMCA UMR 65216, Avenue Victor, Le Gorgeu, F-29238 Brest, France
| | - Tanguy Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Xavier Buin
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | | | - Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Amal Bouraoui
- Univ Brest, CNRS, CEMCA UMR 65216, Avenue Victor, Le Gorgeu, F-29238 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Paul-Alain Jaffrès
- Univ Brest, CNRS, CEMCA UMR 65216, Avenue Victor, Le Gorgeu, F-29238 Brest, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France; CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France.
| |
Collapse
|
41
|
Donnelley M, Parsons D, Prichard I. Perceptions of airway gene therapy for cystic fibrosis. Expert Opin Biol Ther 2023; 23:103-113. [PMID: 36408943 DOI: 10.1080/14712598.2022.2150544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Airway gene therapy could produce lasting benefit for cystic fibrosis (CF) lung disease, however patient and public support is critical for successful adoption. RESEARCH DESIGN AND METHODS Two separate quantitative online surveys were conducted to examine perceptions towards airway gene therapy for CF among people with CF, their families, and members of the public. Data was collected from a total of 213 participants across both studies, with 43 having a diagnosis of CF, 122 having a family member with CF, and 135 knowing someone with CF. RESULTS Participants in both studies displayed positive perceptions towards gene therapy and were supportive of involvement in CF gene therapy trials. Around 50% hoped gene therapy could provide a cure. In Study 1 gene therapy was the most important research area, but in Study 2 this was new daily drugs. Almost all thought gene therapy was still required even if modulators already improved quality of life. CONCLUSION The factors that influence acceptance, whether trials would be positively viewed, and whether individuals with CF are receptive to gene therapy, are essential to determine prior to clinical trials. Our findings indicate people have positive opinions about airway gene therapy for CF, but further education is vital.
Collapse
Affiliation(s)
- Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, South Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, South Australia
| | - Ivanka Prichard
- College of Nursing & Health Sciences, Flinders University, Adelaide, South Australia
| |
Collapse
|
42
|
Respiratory mucosal vaccination of peptide-poloxamine-DNA nanoparticles provides complete protection against lethal SARS-CoV-2 challenge. Biomaterials 2023; 292:121907. [PMID: 36436305 PMCID: PMC9673044 DOI: 10.1016/j.biomaterials.2022.121907] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). The pSpike/PP-sNp not only displays superior gene transfection and favorable biocompatibility in the mouse airway, but also promotes a tripartite immunity consisting of systemic, cellular, and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, immunization with pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp is a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.
Collapse
|
43
|
Moni SS, Al Basheer A. Molecular targets for cystic fibrosis and therapeutic potential of monoclonal antibodies. Saudi Pharm J 2022; 30:1736-1747. [PMID: 36601503 PMCID: PMC9805982 DOI: 10.1016/j.jsps.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that affects the exocrine glands and is caused by cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations. Lung disease is the leading cause of morbidity in patients. Target-specific treatment of CF has been achieved using monoclonal antibodies (mAbs). The purpose of this article is to discuss the possibility of treating CF with mAbs through their significant target specificity. We searched electronic databases in Web of Science, PubMed, EMBASE, Scopus, and Google Scholar from 1984 to 2021. We discussed the critical role of targeted therapy in cystic fibrosis, as it will be more effective at suppressing the molecular networks. After conducting a critical review of the available literature, we concluded that it is critical to understand the fundamental molecular mechanisms underlying CF prior to incorporating biologics into the therapy regimen. Omalizumab, Mepolizumab, Benralizumab, Dupilumab and KB001-A have been successfully screened for asthma-complicated CF, and their efficacies have been well reported. Despite the availability of effective targeted biologics, treating CF has remained a difficult task, particularly when it comes to reduction of secondary inflammatory mediators. This review emphasizes the overall views on CF, the immunological mechanism of CF, and the prospective therapeutic use of mAbs as potential targeted biologics for enhancing the overall status of human health.
Collapse
|
44
|
Egan ME. Non-Modulator Therapies: Developing a Therapy for Every Cystic Fibrosis Patient. Clin Chest Med 2022; 43:717-725. [PMID: 36344076 DOI: 10.1016/j.ccm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy brings hope to most patients with cystic fibrosis (CF), but not all. For approximately 12% of CF patients with premature termination codon mutations, large deletions, insertions, and frameshifts, the CFTR modulator therapy is not effective. Many believe that genetic-based therapies such as RNA therapies, DNA therapies, and gene editing technologies will be needed to treat mutations that are not responsive to modulator therapy. Delivery of these therapeutic agents to affected cells is the major challenge that will need to be overcome if we are to harness the power of these emerging therapies for the treatment of CF.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, Pediatric Pulmonary Allergy Immunology and Sleep Medicine, Yale Cystic Fibrosis Center, School of Medicine, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
46
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
47
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
48
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
49
|
Kang K, Song Y, Kim I, Kim TJ. Therapeutic Applications of the CRISPR-Cas System. Bioengineering (Basel) 2022; 9:bioengineering9090477. [PMID: 36135023 PMCID: PMC9495783 DOI: 10.3390/bioengineering9090477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The clustered regularly interspaced palindromic repeat (CRISPR)-Cas system has revolutionized genetic engineering due to its simplicity, stability, and precision since its discovery. This technology is utilized in a variety of fields, from basic research in medicine and biology to medical diagnosis and treatment, and its potential is unbounded as new methods are developed. The review focused on medical applications and discussed the most recent treatment trends and limitations, with an emphasis on CRISPR-based therapeutics for infectious disease, oncology, and genetic disease, as well as CRISPR-based diagnostics, screening, immunotherapy, and cell therapy. Given its promising results, the successful implementation of the CRISPR-Cas system in clinical practice will require further investigation into its therapeutic applications.
Collapse
Affiliation(s)
- Kyungmin Kang
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Youngjae Song
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Inho Kim
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea
- Correspondence: ; Tel.: +82-2-3779-2157
| |
Collapse
|
50
|
McLachlan G, Alton EWFW, Boyd AC, Clarke NK, Davies JC, Gill DR, Griesenbach U, Hickmott JW, Hyde SC, Miah KM, Molina CJ. Progress in Respiratory Gene Therapy. Hum Gene Ther 2022; 33:893-912. [PMID: 36074947 PMCID: PMC7615302 DOI: 10.1089/hum.2022.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.
Collapse
Affiliation(s)
- Gerry McLachlan
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
| | - Eric W F W Alton
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A Christopher Boyd
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Nora K Clarke
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C Davies
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jack W Hickmott
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen C Hyde
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Kamran M Miah
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Claudia Juarez Molina
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|