1
|
Yan Q, Zhao Z, Liu D, Li J, Pan S, Duan J, Liu Z. Novel immune cross-talk between inflammatory bowel disease and IgA nephropathy. Ren Fail 2024; 46:2337288. [PMID: 38628140 PMCID: PMC11025414 DOI: 10.1080/0886022x.2024.2337288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The mechanisms underlying the complex correlation between immunoglobulin A nephropathy (IgAN) and inflammatory bowel disease (IBD) remain unclear. This study aimed to identify the optimal cross-talk genes, potential pathways, and mutual immune-infiltrating microenvironments between IBD and IgAN to elucidate the linkage between patients with IBD and IgAN. The IgAN and IBD datasets were obtained from the Gene Expression Omnibus (GEO). Three algorithms, CIBERSORTx, ssGSEA, and xCell, were used to evaluate the similarities in the infiltrating microenvironment between the two diseases. Weighted gene co-expression network analysis (WGCNA) was implemented in the IBD dataset to identify the major immune infiltration modules, and the Boruta algorithm, RFE algorithm, and LASSO regression were applied to filter the cross-talk genes. Next, multiple machine learning models were applied to confirm the optimal cross-talk genes. Finally, the relevant findings were validated using histology and immunohistochemistry analysis of IBD mice. Immune infiltration analysis showed no significant differences between IBD and IgAN samples in most immune cells. The three algorithms identified 10 diagnostic genes, MAPK3, NFKB1, FDX1, EPHX2, SYNPO, KDF1, METTL7A, RIDA, HSDL2, and RIPK2; FDX1 and NFKB1 were enhanced in the kidney of IBD mice. Kyoto Encyclopedia of Genes and Genomes analysis showed 15 mutual pathways between the two diseases, with lipid metabolism playing a vital role in the cross-talk. Our findings offer insights into the shared immune mechanisms of IgAN and IBD. These common pathways, diagnostic cross-talk genes, and cell-mediated abnormal immunity may inform further experimental studies.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
| | - Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Jia Li
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Van Slambrouck J, Loopmans S, Prisciandaro E, Barbarossa A, Kortleven P, Feys S, Vandervelde CM, Jin X, Cenik I, Moermans K, Fieuws S, Provoost AL, Willems A, De Leyn P, Van Veer H, Depypere L, Jansen Y, Pirenne J, Neyrinck A, Weynand B, Vanaudenaerde B, Carmeliet G, Vos R, Van Raemdonck D, Ghesquière B, Van Weyenbergh J, Ceulemans LJ. The effect of rewarming ischemia on tissue transcriptome and metabolome signatures: a clinical observational study in lung transplantation. J Heart Lung Transplant 2024:S1053-2498(24)01905-3. [PMID: 39486771 DOI: 10.1016/j.healun.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND In lung transplantation (LuTx), various ischemic phases exist, yet the rewarming ischemia time (RIT) during implantation has often been overlooked. During RIT, lungs are deflated and exposed to the body temperature in the recipient's chest cavity. Our prior clinical findings demonstrated that prolonged RIT increases the risk of primary graft dysfunction. However, the molecular mechanisms of rewarming ischemic injury in this context remain unexplored. We aimed to characterize the rewarming ischemia phase during LuTx by measuring organ temperature and comparing transcriptome and metabolome profiles in tissue obtained at the end versus the start of implantation. METHODS In a clinical observational study, 34 double-LuTx with ice preservation were analyzed. Lung core and surface temperature (n=65 and 55 lungs) was measured during implantation. Biopsies (n=59 lungs) were wedged from right middle lobe and left lingula at start and end of implantation. Tissue transcriptomic and metabolomic profiling were performed. RESULTS Temperature increased rapidly during implantation, reaching core/surface temperatures of 21.5°C/25.4°C within 30min. Transcriptomics showed increased pro-inflammatory signaling and oxidative stress at the end of implantation. Upregulation of NLRP3 and NFKB1 correlated with RIT. Metabolomics indicated elevated levels of amino acids, hypoxanthine, uric acid, cysteineglutathione disulfide alongside decreased levels of glucose and carnitines. Arginine, tyrosine, and 1-carboxyethylleucine showed correlation with incremental RIT. CONCLUSIONS The final rewarming ischemia phase in LuTx involves rapid organ rewarming, accompanied by transcriptomic and metabolomic changes indicating pro-inflammatory signaling and disturbed cell metabolism. Limiting implantation time and lung cooling represent potential interventions to alleviate rewarming ischemic injury.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Shauni Loopmans
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium; Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Elena Prisciandaro
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Annalisa Barbarossa
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Phéline Kortleven
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium; Department of Medical Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Christelle M Vandervelde
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Xin Jin
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Ismail Cenik
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Karen Moermans
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Department of Public Health, Interuniversity Center for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
| | - An-Lies Provoost
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Anton Willems
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium; Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Paul De Leyn
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Hans Van Veer
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Lieven Depypere
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Yanina Jansen
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, Anesthesiology and Algology, KU Leuven, Belgium; Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium; Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium. https://twitter.com/CeulemansLJ
| |
Collapse
|
4
|
Liu B, Dai W, Wei J, Sun S, Chen W, Deng Y. Knowledge framework and emerging trends of invasive pulmonary fungal infection: A bibliometric analysis (2003-2023). Medicine (Baltimore) 2024; 103:e40068. [PMID: 39432658 PMCID: PMC11495717 DOI: 10.1097/md.0000000000040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
The rising number of immunocompromised people has increased concerns about fungal infections as a severe public health issue. Invasive pulmonary fungal infections (IPFIs) are prevalent and often fatal, particularly for those with weakened immune systems. Understanding IPFIs is crucial. The work aims to offer a concise overview of the field's characteristics, main research areas, development paths, and trends. This study searched the Web of Science Core Collection on June 5, 2024, collecting relevant academic works from 2003 to 2023. Analysis was conducted using CiteSpace, VOSviewer, Bibliometrix Package in R, Microsoft Excel 2019, and Scimago Graphica. The study indicated that the USA, the University of Manchester, and Denning DW led in productivity and impact, while the Journal of Fungi topped the list in terms of publication volume and citations. High-frequency terms include "fungal infection," "invasive," "diagnosis," and "epidemiology." Keyword and trend analysis identified "influenza," "COVID-19," "invasive pulmonary aspergillosis," and "metagenomic next-generation sequencing" as emerging research areas. Over the last 2 decades, research on IPFI has surged, with topics becoming more profound. These insights offer key guidance on current trends, gaps, and the trajectory of IPFI studies.
Collapse
Affiliation(s)
- Ben Liu
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Wenling Dai
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Jie Wei
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Siyuan Sun
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Wei Chen
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Yijun Deng
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- President’s Office, The First People’s Hospital of Yancheng, Yancheng, China
| |
Collapse
|
5
|
Seldeslachts L, Staels F, Gkountzinopoulou M, Jacobs C, Tielemans B, Vanhoffelen E, Reséndiz-Sharpe A, De Herdt L, Haughton J, Prezzemolo T, Burton O, Feys S, van de Veerdonk FL, Carvalho A, Naesens L, Matthys P, Lagrou K, Verbeken E, Chamilos G, Wauters J, Humblet-Baron S, Vande Velde G. Damping excessive viral-induced IFN-γ rescues the impaired anti-Aspergillus host immune response in influenza-associated pulmonary aspergillosis. EBioMedicine 2024; 108:105347. [PMID: 39353282 PMCID: PMC11472711 DOI: 10.1016/j.ebiom.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Influenza-associated pulmonary aspergillosis (IAPA) is a severe fungal superinfection in critically ill influenza patients that is of incompletely understood pathogenesis. Despite the use of contemporary therapies with antifungal and antivirals, mortality rates remain unacceptably high. We aimed to unravel the IAPA immunopathogenesis as a means to develop adjunctive immunomodulatory therapies. METHODS We used a murine model of IAPA to investigate how influenza predisposes to the development of invasive pulmonary aspergillosis. Immunocompetent mice were challenged with an intranasal instillation of influenza on day 0 followed by an orotracheal inoculation with Aspergillus 4 days later. Mice were monitored daily for overall health status, lung pathology with micro-computed tomography (μCT) and fungal burden with bioluminescence imaging (BLI). At endpoint, high parameter immunophenotyping, spatial transcriptomics, histopathology, dynamic phagosome biogenesis assays with live imaging, immunofluorescence staining, specialized functional phagocytosis and killing assays were performed. FINDINGS We uncovered an early exuberant influenza-induced interferon-gamma (IFN-γ) production as the major driver of immunopathology in IAPA and delineated the molecular mechanisms. Specifically, excessive IFN-γ production resulted in a defective Th17-immune response, depletion of macrophages, and impaired killing of Aspergillus conidia by macrophages due to the inhibition of NADPH oxidase-dependent activation of LC3-associated phagocytosis (LAP). Markedly, mice with partial or complete genetic ablation of IFN-γ had a restored Th17-immune response, LAP-dependent mechanism of killing and were fully protected from invasive fungal infection. INTERPRETATION Together, these results identify exuberant viral induced IFN-γ production as a major driver of immune dysfunction in IAPA, paving the way to explore the use of excessive viral-induced IFN-γ as a biomarker and new immunotherapeutic target in IAPA. FUNDING This research was funded by the Research Foundation Flanders (FWO), project funding under Grant G053121N to JW, SHB and GVV; G057721N, G0G4820N to GVV; 1506114 N to KL and GVV; KU Leuven internal funds (C24/17/061) to GVV, clinical research funding to JW, Research Foundation Flanders (FWO) aspirant mandate under Grant 1186121N/1186123 N to LS, 11B5520N to FS, 1SF2222N to EV and 11M6922N/11M6924N to SF, travel grants V428023N, K103723N, K217722N to LS. FLvdV was supported by a Vidi grant of the Netherlands Association for Scientific Research. FLvdV, JW, AC and GC were supported by the Europeans Union's Horizon 2020 research and innovation program under grant agreement no 847507 HDM-FUN. AC was also supported by the Fundação para a Ciência e a Tecnologia (FCT), with the references UIDB/50026/2020, UIDP/50026/2020, PTDC/MED-OUT/1112/2021 (https://doi.org/10.54499/PTDC/MED-OUT/1112/2021), and 2022.06674.PTDC (http://doi.org/10.54499/2022.06674.PTDC); and the "la Caixa" Foundation under the agreement LCF/PR/HR22/52420003 (MICROFUN).
Collapse
Affiliation(s)
- Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Marina Gkountzinopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece; Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece
| | - Cato Jacobs
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Agustin Reséndiz-Sharpe
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Herdt
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium
| | - Jeason Haughton
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Oliver Burton
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525, Nijmegen, Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Immunobiology, KU Leuven, 3000, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, 3000, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals, Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece; Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, 3000, Leuven, Belgium.
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Kollath DR, Grill FJ, Itogawa AN, Fabio-Braga A, Morales MM, Shepardson KM, Bryant ML, Yi J, Ramsey ML, Luberto ET, Celona KR, Keim PS, Settles EW, Lake D, Barker BM. Developing a Coccidioides posadasii and SARS-CoV-2 Co-infection Model in the K18-hACE2 Transgenic Mouse. COMMUNICATIONS MEDICINE 2024; 4:186. [PMID: 39349727 PMCID: PMC11442577 DOI: 10.1038/s43856-024-00610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Early reports showed that patients with COVID-19 had recrudescence of previously resolved coccidioidomycosis (Valley fever, VF), and there were indications that coinfection had more severe outcomes. We therefore investigated serial infection of Coccidioides posadasii and SARS-CoV-2 in a K18-hACE2 mouse model to assess disease outcomes. METHODS In our model, we challenged K18-hACE2 mice sequentially with a sub-lethal dose of SARS-CoV-2 and 24 hours later with low virulence strain of Coccidioides posadasii, and vice versa, compared to mice that only received a single infection challenge. We performed survival and pathogenesis mouse studies as well as looked at the systemic immune response differences between treatment groups. RESULTS Here we show that co-infected groups have a more severe disease progression as well as a decrease in survival. Importantly, results differ depending on the SARS-CoV-2 variant (WA-1, Delta, or Omicron) and infection timing (SARS-CoV-2 first, C. posadasii second or vice versa). We find that groups that are infected with the virus first had a decrease in survival, increased morbidity and weight loss, increased fungal and viral burdens, differences in immune responses, and the amount and size of fungal spherules. We also find that groups coinfected with C. posadasii first have a decrease fungal burden and inflammatory responses. CONCLUSIONS This is the first in vivo model investigation of a coinfection of SARS-CoV-2 and Coccidioides. Because of the potential for increased severity of disease in a coinfection, we suggest populations that live in areas of high coccidioidomycosis endemicity may experience higher incidence of complicated disease progression with COVID-19.
Collapse
Affiliation(s)
- Daniel R Kollath
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Ashley N Itogawa
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Ana Fabio-Braga
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Matthew M Morales
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly M Shepardson
- University of California, Merced, Department of Molecular Cell Biology, Merced, CA, USA
| | - Mitchell L Bryant
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Marieke L Ramsey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily T Luberto
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul S Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Erik W Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Douglas Lake
- School of Life Sciences at Arizona State University, Tempe, AZ, USA
| | - Bridget M Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
7
|
Feys S, Carvalho A, Clancy CJ, Gangneux JP, Hoenigl M, Lagrou K, Rijnders BJA, Seldeslachts L, Vanderbeke L, van de Veerdonk FL, Verweij PE, Wauters J. Influenza-associated and COVID-19-associated pulmonary aspergillosis in critically ill patients. THE LANCET. RESPIRATORY MEDICINE 2024; 12:728-742. [PMID: 39025089 DOI: 10.1016/s2213-2600(24)00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are increasingly recognised as important complications in patients requiring intensive care for severe viral pneumonia. The diagnosis can typically be made in 10-20% of patients with severe influenza or COVID-19, but only when appropriate diagnostic tools are used. Bronchoalveolar lavage sampling for culture, galactomannan testing, and PCR forms the cornerstone of diagnosis, whereas visual examination of the tracheobronchial tract during bronchoscopy is required to detect invasive Aspergillus tracheobronchitis. Azoles are the first-choice antifungal drugs, with liposomal amphotericin B as an alternative in settings where azole resistance is prevalent. Despite antifungal therapy, IAPA and CAPA are associated with poor outcomes, with fatality rates often exceeding 50%. In this Review, we discuss the mechanistic and clinical aspects of IAPA and CAPA. Moreover, we identify crucial knowledge gaps and formulate directions for future research.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium.
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's Associate Laboratory, Braga/ Guimarães, Portugal
| | - Cornelius J Clancy
- Division of Infectious Diseases, University of Pittsburgh, PA, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Jean-Pierre Gangneux
- Université de Rennes, CHU Rennes, INSERM, EHESP, IRSET, UMR_S 1085, Rennes, France; Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, French National Reference Center on Mycoses and Antifungals (CNRMA-LA AspC), Rennes, France
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center in Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria; Bio TechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Lore Vanderbeke
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands; Center of Expertise for Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
9
|
Umadevi K, Sundeep D, Varadharaj EK, Sastry CC, Shankaralingappa A, Chary RN, Vighnesh AR. Precision Detection of Fungal Co-Infections for Enhanced COVID-19 Treatment Strategies Using FESEM Imaging. Indian J Microbiol 2024; 64:1084-1098. [PMID: 39282206 PMCID: PMC11399527 DOI: 10.1007/s12088-024-01246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
The treatment of fungal infections presents significant challenges due to the lack of standardized diagnostic procedures, a restricted range of antifungal treatments, and the risk of harmful interactions between antifungal medications and the immunosuppressive drugs used in anti-inflammatory treatment for critically ill patients with COVID-19. Mucormycosis and aspergillosis are the primary invasive fungal infections in patients with severe COVID-19, occurring singly or in combination. Histopathological examination is a vital diagnostic technique that details the presence and invasion of fungi within tissues and blood vessels, and the body's response to the infection. However, the pathology report omits information on the most common fungi associated with the observed morphology, as well as other potential fungi and parasites that ought to be included in the differential diagnosis. This research marks significance in diagnosing fungal infections, such as mucormycosis and aspergillosis associated to COVID-19 by field emission scanning electron microscopy (FESEM) imaging to examine unstained histopathology slides, allowing for a detailed morphological analysis of the fungus. FESEM provides an unprecedented resolution and detail, surpassing traditional Hematoxylin & Eosin (H&E) and Grocott's Methenamine Silver (GMS) staining methods in identifying and differentiating dual fungal infections and diverse fungal species. The findings underscore the critical need for individualized treatment plans for patients severely affected by COVID-19 and compounded by secondary fungal infections. The high-magnification micrographs reveal specific fungal morphology and reproductive patterns. Current treatment protocols largely depend on broad-spectrum antifungal therapies. However this FESEM guided diagnostic approach can help in targeted patient specific anti fungal therapies. Such precision could lead to more effective early interventions, addressing the complex management required for severe COVID-19 cases with coexisting fungal infections. This approach significantly advances disease management and patient recovery, advocating for personalized, precision medicine in tackling this multifaceted clinical challenge. Graphical Abstract
Collapse
Affiliation(s)
- Kovuri Umadevi
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Dola Sundeep
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Eswaramoorthy K Varadharaj
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Chebbiyam Chandrasekhara Sastry
- Biomedical Research Laboratory, Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | | | - Rajarikam Nagarjuna Chary
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Alluru Raghavendra Vighnesh
- Department of Mechanical Engineering, Indian Institute of Technology (IIT-BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
10
|
Ahmad A, Singh RB, Nickolich K, Pilewski M, Ngeow C, Frempong-Manso K, Robinson K. Restoration of Type 17 immune signaling is not sufficient for protection during influenza-associated pulmonary aspergillosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601559. [PMID: 39185245 PMCID: PMC11343153 DOI: 10.1101/2024.07.01.601559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) is a severe complication of influenza infection that occurs in critically ill patients and results in higher mortality compared to influenza infection alone. Interleukin-17 (IL-17) and the Type 17 immune signaling pathway cytokine family are recognized for their pivotal role in fostering protective immunity against various pathogens. In this study, we investigate the role of IL-17 and Type 17 immune signaling components during IAPA. Wild-type mice were challenged with influenza A H1N1 (Flu) and then exposed to Aspergillus fumigatus ATCC42202 resting conidia on day 6 post-influenza infection, followed by the quantification of cytokines and chemokines at 48 hours post-fungal infection. Gene and protein expression levels revealed that IL-17 and Type 17 immune cytokines and antimicrobial peptides are downregulated during IAPA compared to mice singularly infected solely with A. fumigatus. Restoration of Type 17 immunity was not sufficient to provide protection against the increased fungal burden observed during IAPA. These findings contrast those observed during post-influenza bacterial super-infection, in which restoration of Type 17 immune signaling protects against exacerbation seen during super-infection. Our study highlights the need for future studies to understand the immune mechanisms that increase susceptibility to fungal infection.
Collapse
Affiliation(s)
- Aijaz Ahmad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ravineel Bhan Singh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kara Nickolich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew Pilewski
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Caden Ngeow
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kwame Frempong-Manso
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Wang P, Liu S, Yang J. Physiologically Based Pharmacokinetic Modeling to Investigate the Disease-Drug-Drug Interactions between Voriconazole and Nirmatrelvir/Ritonavir in COVID-19 Patients with CYP2C19 Phenotypes. Clin Pharmacol Ther 2024; 116:363-371. [PMID: 38429919 DOI: 10.1002/cpt.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis superinfection with cytokine storm is associated with increased mortality. This study aimed to establish a physiologically-based pharmacokinetic (PK) model to investigate the disease-drug-drug interactions between voriconazole and nirmatrelvir/ritonavir in patients with COVID-19 with elevated interleukin-6 (IL-6) levels carrying various CYP2C19 phenotypes. The model was constructed and validated using PK data on voriconazole, ritonavir, and IL-6, and was subsequently verified against clinical data from 78 patients with COVID-19. As a result, the model predicted voriconazole, ritonavir, and IL-6 PK parameters and drug-drug interaction-related fold changes in healthy subjects and patients with COVID-19 with acceptable prediction error, demonstrating its predictive capability. Simulations indicated ritonavir could increase voriconazole exposure to CYP2C19 intermediate and poor metabolizers rather than decrease it, in contrast to what is indicated in the drug package insert. However, the predicted ritonavir exposures were comparable across subjects. In patients with COVID-19, both ritonavir and IL-6 increased voriconazole trough concentrations, which may lead to CYP2C19 phenotype-dependent overexposure. In conclusion, COVID-19-induced IL-6 elevation and ritonavir increased voriconazole exposure, and the magnitude of interactions was influenced by CYP2C19 phenotype. Thus, caution is warranted when prescribing voriconazole concomitantly with Paxlovid in patients with COVID-19.
Collapse
Affiliation(s)
- Peile Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuaibing Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Sahin M, Yilmaz M, Mert A, Emecen AN, Rahman S. Al Maslamani MA, Mahmoud A. Hashim S, Ittaman AV, Wadi Al Ramahi J, Gergely Szabo B, Konopnicki D, Baskol Elik D, Lakatos B, Sipahi OR, Khedr R, Jalal S, Pshenichnaya N, Magdalena DI, El-Kholy A, Khan EA, Alkan S, Hakamifard A, Sincan G, Esmaoglu A, Makek MJ, Gurbuz E, Liskova A, Albayrak A, Stebel R, Unver Ulusoy T, Ripon RK, Moroti R, Dascalu C, Rashid N, Cortegiani A, Bahadir Z, Erdem H. Factors affecting mortality in COVID-19-associated pulmonary aspergillosis: An international ID-IRI study. Heliyon 2024; 10:e34325. [PMID: 39082033 PMCID: PMC11284427 DOI: 10.1016/j.heliyon.2024.e34325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Background This study aimed to identify factors that influence the mortality rate of patients with coronavirus disease (COVID-19)-associated pulmonary aspergillosis (CAPA). Methods In this cross-sectional study, data from 23 centers across 15 countries, spanning the period of March 2020 to December 2021, were retrospectively collected. The study population comprised patients who developed invasive pulmonary aspergillosis while being treated for COVID-19 in the intensive care unit. Cox regression and decision tree analyses were used to identify factors associated with mortality in patients with CAPA. Results A total of 162 patients (males, 65.4 %; median age: 64 [25th-75th: 54.0-73.8] years) were included in the study, of whom 113 died during the 90-day follow-up period. The median duration from CAPA diagnosis to death was 12 (25th-75th: 7-19) days. In the multivariable Cox regression model, an age of ≥65 years (hazard ratio [HR]: 2.05, 95 % confidence interval [CI]: 1.37-3.07), requiring vasopressor therapy at the time of CAPA diagnosis (HR: 1.80, 95 % CI: 1.17-2.76), and receiving renal replacement therapy at the time of CAPA diagnosis (HR: 2.27, 95 % CI: 1.35-3.82) were identified as predictors of mortality. Decision tree analysis revealed that patients with CAPA aged ≥65 years who received corticosteroid treatment for COVID-19 displayed higher mortality rates (estimated rate: 1.6, observed in 46 % of patients). Conclusion This study concluded that elderly patients with CAPA who receive corticosteroids are at a significantly higher risk of mortality, particularly if they experience multiorgan failure.
Collapse
Affiliation(s)
- Meyha Sahin
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Mesut Yilmaz
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ali Mert
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ahmet Naci Emecen
- Dokuz Eylul University, Research and Application Hospital, Izmir, Turkey
| | | | - Samar Mahmoud A. Hashim
- Communicable Disease Center / Infectious Disease – Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Balint Gergely Szabo
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Deborah Konopnicki
- Université Libre de Bruxelles, Saint-Pierre University Hospital, Infectious Diseases Department, Bruxelles, Belgium
| | - Dilsah Baskol Elik
- Ege University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Oguz Resat Sipahi
- Ege University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Reham Khedr
- National Cancer Institute - Cairo University / Children's Cancer Hospital Egypt, Department of Pediatric Oncology, Cairo, Egypt
| | | | - Natalia Pshenichnaya
- Central Research Institute of Epidemiology, Department of Infectious Diseases, Moscow, Russia
| | | | - Amani El-Kholy
- Cairo University, Faculty of Medicine, Department of Clinical Pathology, Cairo, Egypt
| | - Ejaz Ahmed Khan
- Shifa Tameer-e-Millat University and Shifa International Hospital, Infectious Diseases Division, Islamabad, Pakistan
| | - Sevil Alkan
- Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Canakkale, Turkey
| | - Atousa Hakamifard
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gulden Sincan
- Ataturk University, Faculty of Medicine, Department of Haematology, Erzurum, Turkey
| | - Aliye Esmaoglu
- Erciyes University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Kayseri, Turkey
| | - Mateja Jankovic Makek
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinic for Lung Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Esra Gurbuz
- University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | - Anna Liskova
- Hospital Nitra, Department of Clinical Microbiology, St. Elizabeth University of Health and Social Sciences Bratislava, Slovakia
| | - Ayse Albayrak
- Ataturk University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Erzurum, Turkey
| | - Roman Stebel
- University Hospital Brno and Faculty of Medicine, Masaryk University, Department of Infectious Diseases, Brno, Czech Republic
| | - Tulay Unver Ulusoy
- University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Rezaul Karim Ripon
- Jahangirnagar University, Department of Public Health and Informatics, Savar, Dhaka, Bangladesh
| | - Ruxandra Moroti
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases Matei Bals, Bucharest, Romania
| | - Cosmin Dascalu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Naveed Rashid
- Shifa Tameer-e-Millat University and Shifa International Hospital, Infectious Diseases Division, Islamabad, Pakistan
| | - Andrea Cortegiani
- Department of Surgical Oncological and Oral Science (Di.Chir.On.S.), University of Palermo. Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico “Paolo Giaccone”, Palermo, Italy
| | - Zeynep Bahadir
- Istanbul Medipol University Medical School, Istanbul, Turkey
| | - Hakan Erdem
- University of Health Sciences, Gulhane School of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| |
Collapse
|
13
|
Permpalung N, Chiang TPY, Manothummetha K, Ostrander D, Datta K, Segev DL, Durand CM, Mostafa HH, Zhang SX, Massie AB, Marr KA, Avery RK. Invasive Fungal Infections in Inpatient Solid Organ Transplant Recipients With COVID-19: A Multicenter Retrospective Cohort. Transplantation 2024; 108:1613-1622. [PMID: 38419156 DOI: 10.1097/tp.0000000000004947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The prevalence and outcomes of COVID-19-associated invasive fungal infections (CAIFIs) in solid organ transplant recipients (SOTRs) remain poorly understood. METHODS A retrospective cohort study of SOTRs with COVID-19 admitted to 5 hospitals within Johns Hopkins Medicine was performed between March 2020 and March 2022. Cox regression multilevel mixed-effects ordinal logistic regression was used. RESULTS In the cohort of 276 SOTRs, 22 (8%) developed IFIs. The prevalence of CAIFIs was highest in lung transplant recipients (20%), followed by recipients of heart (2/28; 7.1%), liver (3/46; 6.5%), and kidney (7/149; 4.7%) transplants. In the overall cohort, only 42 of 276 SOTRs (15.2%) required mechanical ventilation; these included 11 of 22 SOTRs (50%) of the CAIFI group and 31 of 254 SOTRs (12.2%) of the no-CAIFI group. Compared with those without IFIs, SOTs with IFIs had worse outcomes and required more advanced life support (high-flow oxygen, vasopressor, and dialysis). SOTRs with CAIFIs had higher 1-y death-censored allograft failure (hazard ratio 1.6 5.1 16.4 , P = 0.006) and 1-y mortality adjusting for oxygen requirement (adjusted hazard ratio 1.1 2.4 5.1 , P < 0.001), compared with SOTRs without CAIFIs. CONCLUSIONS The prevalence of CAIFIs in inpatient SOTRs with COVID-19 is substantial. Clinicians should be alert to the possibility of CAIFIs in SOTRs with COVID-19, particularly those requiring supplemental oxygen, regardless of their intubation status.
Collapse
Affiliation(s)
- Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Teresa Po-Yu Chiang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Darin Ostrander
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Dorry L Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allan B Massie
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Pearl Diagnostics, Baltimore, MD
| | - Robin K Avery
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
15
|
Koulenti D, Paramythiotou E, Almyroudi MP, Karvouniaris M, Markou N, Paranos P, Routsi C, Meletiadis J, Blot S. Severe mold fungal infections in critically ill patients with COVID-19. Future Microbiol 2024; 19:825-840. [PMID: 38700287 PMCID: PMC11290760 DOI: 10.2217/fmb-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
The SARS-CoV-2 pandemic put an unprecedented strain on modern societies and healthcare systems. A significantly higher incidence of invasive fungal co-infections was noted compared with the pre-COVID-19 era, adding new diagnostic and therapeutic challenges in the critical care setting. In the current narrative review, we focus on invasive mold infections caused by Aspergillus and Mucor species in critically ill COVID-19 patients. We discuss up-to-date information on the incidence, pathogenesis, diagnosis and treatment of these mold-COVID-19 co-infections, as well as recommendations on preventive and prophylactic interventions. Traditional risk factors were often not recognized in COVID-19-associated aspergillosis and mucormycosis, highlighting the role of other determinant risk factors. The associated patient outcomes were worse compared with COVID-19 patients without mold co-infection.
Collapse
Affiliation(s)
- Despoina Koulenti
- Department of Critical Care Medicine, King's College Hospital NHS Foundation Trust, London, UK
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Maria Panagiota Almyroudi
- Emergency Department, Attikon University Hospital, National & Kapodistrian University of Athens, Greece
| | | | - Nikolaos Markou
- Intensive Care Unit of Latseio Burns Centre, Thriasio General Hospital of Elefsina, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Christina Routsi
- First Department of Intensive Care, School of Medicine, National & Kapodistrian University of Athens, Evangelismos General Hospital, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine & Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
17
|
Jenks JD, Hoenigl M, Thompson GR. Study protocol: A randomized, double-blind, placebo-controlled trial of isavuconazole prophylaxis for the prevention of covid-19-associated pulmonary aspergillosis. Contemp Clin Trials Commun 2024; 39:101310. [PMID: 38832095 PMCID: PMC11144754 DOI: 10.1016/j.conctc.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Background During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, those with severe COVID-19 infection were at risk for a number of opportunistic infections including COVID-19-associated pulmonary aspergillosis (CAPA). We initiated a randomized clinical trial to evaluate whether isavuconazole, a triazole antifungal, could prevent CAPA and improve survival in patients admitted to the ICU with severe COVID-19 infection. Methods We designed a phase III/IV randomized, double-blind, two-arm, placebo-controlled trial evaluating standard of care (SOC) plus isavuconazole versus SOC plus placebo and were to enroll participants admitted to the ICU with severe COVID-19 infection at three medical centers in California, United States. The projected sample size was 162 participants. Results Due to poor enrollment and the declining number of COVID-19 cases over time, the study was terminated after 7 participants were enrolled, all enrolled at one study site (UC San Diego Health). CAPA was suspected in two participants and they were started on open-label isavuconazole. One was withdrawn due to possible isavuconazole-related adverse side effects. Conclusion Enrollment was slower-than-expected due to multiple factors, including competing COVID-19-related studies and hesitancy from potential study participants or their families to join the study. Our experience highlights some of the difficulties in planning and running a clinical trial focused on fungal superinfections involving severely ill patients during the height of the COVID-19 pandemic. Lessons learned from this study will help in the design of proposed studies examining antifungal prophylaxis against aspergillosis following other severe respiratory viral infections.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
18
|
Bay P, Audureau E, Préau S, Favory R, Guigon A, Heming N, Gault E, Pham T, Chaghouri A, Turpin M, Morand-Joubert L, Jochmans S, Pitsch A, Meireles S, Contou D, Henry A, Joseph A, Chaix ML, Uhel F, Roux D, Descamps D, Emery M, Garcia-Sanchez C, Levy D, Burrel S, Mayaux J, Kimmoun A, Hartard C, Pène F, Rozenberg F, Gaudry S, Brichler S, Guillon A, Handala L, Tamion F, Moisan A, Daix T, Hantz S, Delamaire F, Thibault V, Souweine B, Henquell C, Picard L, Botterel F, Rodriguez C, Dessap AM, Pawlotsky JM, Fourati S, de Prost N. COVID-19 associated pulmonary aspergillosis in critically-ill patients: a prospective multicenter study in the era of Delta and Omicron variants. Ann Intensive Care 2024; 14:65. [PMID: 38658426 PMCID: PMC11043290 DOI: 10.1186/s13613-024-01296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND During the first COVID-19 pandemic wave, COVID-19-associated pulmonary aspergillosis (CAPA) has been reported in up to 11-28% of critically ill COVID-19 patients and associated with increased mortality. As new SARS-CoV-2 variants emerged, the characteristics of critically ill COVID-19 patients have evolved, particularly in the era of Omicron. The purpose of this study is to investigate the characteristics of CAPA in the era of new variants. METHODS This is a prospective multicenter observational cohort study conducted in France in 36 participating intensive care units (ICU), between December 7th, 2021 and April 26th 2023. Diagnosis criteria of CAPA relied on European Confederation of Medical Mycology (ECMM)/International Society for Human & Animal Mycology (ISHAM) consensus criteria. RESULTS 566 patients were included over the study period. The prevalence of CAPA was 5.1% [95% CI 3.4-7.3], and rose to 9.1% among patients who required invasive mechanical ventilation (IMV). Univariable analysis showed that CAPA patients were more frequently immunosuppressed and required more frequently IMV support, vasopressors and renal replacement therapy during ICU stay than non-CAPA patients. SAPS II score at ICU admission, immunosuppression, and a SARS-CoV-2 Delta variant were independently associated with CAPA in multivariable logistic regression analysis. Although CAPA was not significantly associated with day-28 mortality, patients with CAPA experienced a longer duration of mechanical ventilation and ICU stay. CONCLUSION This study contributes valuable insights into the prevalence, characteristics, and outcomes of CAPA in the era of Delta and Omicron variants. We report a lower prevalence of CAPA (5.1%) among critically-ill COVID-19 patients than previously reported, mainly affecting intubated-patients. Duration of mechanical ventilation and ICU stay were significantly longer in CAPA patients.
Collapse
Affiliation(s)
- Pierre Bay
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010, Créteil, France.
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France.
- Université Paris-Est-Créteil (UPEC), Créteil, France.
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France.
| | - Etienne Audureau
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team CEpiA, Créteil, France
- Unité de Recherche Clinique, Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Sébastien Préau
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, 59000, Lille, France
| | - Raphaël Favory
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, 59000, Lille, France
| | - Aurélie Guigon
- Service de Virologie, CHU de Lille, 59000, Lille, France
| | - Nicholas Heming
- Médecine Intensive Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Elyanne Gault
- Laboratoire de Virologie, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France
| | - Tài Pham
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, DMU 4 CORREVE Maladies du Cœur et des Vaisseaux, FHU Sepsis, Le Kremlin-Bicêtre, France
- Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, 94807, Villejuif, France
| | - Amal Chaghouri
- Laboratoire de Virologie, Hôpital Paul Brousse, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | - Matthieu Turpin
- Centre de Recherche Saint-Antoine INSERM, Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Laurence Morand-Joubert
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
- Laboratoire de Virologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75012, Paris, France
| | | | - Aurélia Pitsch
- Laboratoire de Microbiologie, Hôpital Marc Jacquet, Melun, France
| | - Sylvie Meireles
- Service de Réanimation Médico-Chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Boulogne, France
| | - Damien Contou
- Service de Réanimation, Hôpital Victor Dupouy, Argenteuil, France
| | - Amandine Henry
- Service de Virologie, Hôpital Victor Dupouy, Argenteuil, France
| | - Adrien Joseph
- Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie-Laure Chaix
- Inserm HIPI, Université Paris Cité, 75010, Paris, France
- Laboratoire de Virologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010, Paris, France
| | - Fabrice Uhel
- DMU ESPRIT, Service de Médecine Intensive Réanimation, Université Paris Cité, APHP, Hôpital Louis Mourier, Colombes, France
- INSERM U1151, CNRS UMR 8253, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris, France
| | - Damien Roux
- DMU ESPRIT, Service de Médecine Intensive Réanimation, Université Paris Cité, APHP, Hôpital Louis Mourier, Colombes, France
- INSERM U1151, CNRS UMR 8253, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris, France
| | - Diane Descamps
- IAME INSERM UMR 1137, Service de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Malo Emery
- Service de Réanimation, Hôpital Saint-Camille, Bry-Sur-Marne, France
| | | | - David Levy
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Réanimation Médicale, Sorbonne Université, Paris, France
| | - Sonia Burrel
- Service de Virologie, CHU de Bordeaux et CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
- Département de Virologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julien Mayaux
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Médecine Intensive Réanimation, Sorbonne Université, Paris, France
| | - Antoine Kimmoun
- CHRU de Nancy, Médecine Intensive et Réanimation Brabois, Université de Lorraine, Vandœuvre-Lès-Nancy, France
- INSERM U942 and U1116, F-CRIN-INIC RCT, Vandœuvre-Lès-Nancy, France
| | - Cédric Hartard
- Service de Virologie, CHRU de Nancy, Vandœuvre-Lès-Nancy, France
| | - Frédéric Pène
- Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Flore Rozenberg
- Laboratoire de Virologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stéphane Gaudry
- Service de Réanimation, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Ségolène Brichler
- Laboratoire de Virologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Antoine Guillon
- Intensive Care Unit, Tours University Hospital, Research Center for Respiratory Diseases (CEPR), INSERM U1100, University of Tours, Tours, France
| | - Lynda Handala
- INSERM U1259, Université de Tours, Tours, France
- CHRU de Tours, National Reference Center for HIV-Associated Laboratory, Tours, France
| | - Fabienne Tamion
- Service de Médecine Intensive-Réanimation, CHU De Rouen, Rouen, France
| | - Alice Moisan
- INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, Univ Rouen Normandie, Université de Caen Normandie, 76000, Rouen, France
| | - Thomas Daix
- Réanimation Polyvalente, INSERM CIC 1435 and UMR 1092, CHU Limoges, Limoges, France
| | - Sébastien Hantz
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, CHU Limoges, 87000, Limoges, France
- INSERM, RESINFIT, U1092, 87000, Limoges, France
| | - Flora Delamaire
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Vincent Thibault
- Laboratoire de Virologie, CHU Rennes, 35000, Rennes, France
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) UMR_S 1085, Univ Rennes, 35000, Rennes, France
| | - Bertrand Souweine
- Service de Médecine Intensive et Réanimation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Cecile Henquell
- 3IHP, Service de Virologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Lucile Picard
- Département d'Anesthésie Réanimations Chirurgicales, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Françoise Botterel
- Université Paris-Est-Créteil (UPEC), Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Christophe Rodriguez
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Armand Mekontso Dessap
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010, Créteil, France
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Jean-Michel Pawlotsky
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Slim Fourati
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Nicolas de Prost
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010, Créteil, France
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Université Paris-Est-Créteil (UPEC), Créteil, France
| |
Collapse
|
19
|
Zhang X, Nurxat N, Aili J, Yasen Y, Wang Q, Liu Q. The characteristics of microbiome in the upper respiratory tract of COVID-19 patients. BMC Microbiol 2024; 24:138. [PMID: 38658823 PMCID: PMC11040800 DOI: 10.1186/s12866-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.
Collapse
Affiliation(s)
- Xilong Zhang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jueraiti Aili
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yakupu Yasen
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qichen Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
20
|
Jiang Z, Gai W, Zhang X, Zheng Y, Jin X, Han Z, Ao G, He J, Shu D, Liu X, Zhou Y, Hua Z. Clinical performance of metagenomic next-generation sequencing for diagnosis of pulmonary Aspergillus infection and colonization. Front Cell Infect Microbiol 2024; 14:1345706. [PMID: 38606292 PMCID: PMC11007027 DOI: 10.3389/fcimb.2024.1345706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Investigations assessing the value of metagenomic next-generation sequencing (mNGS) for distinguish Aspergillus infection from colonization are currently insufficient. Methods The performance of mNGS in distinguishing Aspergillus infection from colonization, along with the differences in patients' characteristics, antibiotic adjustment, and lung microbiota, were analyzed. Results The abundance of Aspergillus significantly differed between patients with Aspergillus infection (n=36) and colonization (n=32) (P < 0.0001). Receiver operating characteristic (ROC) curve result for bronchoalveolar lavage fluid (BALF) mNGS indicated an area under the curve of 0.894 (95%CI: 0.811-0.976), with an optimal threshold value of 23 for discriminating between Aspergillus infection and colonization. The infection group exhibited a higher proportion of antibiotic adjustments in comparison to the colonization group (50% vs. 12.5%, P = 0.001), with antibiotic escalation being more dominant. Age, length of hospital stay, hemoglobin, cough and chest distress were significantly positively correlated with Aspergillus infection. The abundance of A. fumigatus and Epstein-Barr virus (EBV) significantly increased in the infection group, whereas the colonization group exhibited higher abundance of A. niger. Conclusion BALF mNGS is a valuable tool for differentiating between colonization and infection of Aspergillus. Variations in patients' age, length of hospital stay, hemoglobin, cough and chest distress are observable between patients with Aspergillus infection and colonization.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Wei Gai
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xiaojing Zhang
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Yafeng Zheng
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhiqiang Han
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Geriletu Ao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Jiahuan He
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Danni Shu
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xianbing Liu
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yingying Zhou
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhidan Hua
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
21
|
Tu Z, Zhu Y, Gao W, Liu M, Wei Y, Xu C, Xiao Y, Wen Y, Li J, Leong KW, Wen W. Tackling Severe Neutrophilic Inflammation in Airway Disorders with Functionalized Nanosheets. ACS NANO 2024; 18:7084-7097. [PMID: 38377352 DOI: 10.1021/acsnano.3c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Severe airway inflammatory disorders impose a significant societal burden, and the available treatments are unsatisfactory. High levels of neutrophil extracellular trap (NET) and cell-free DNA (cfDNA) were detected in the inflammatory microenvironment of these diseases, which are closely associated with persistent uncontrolled neutrophilic inflammation. Although DNase has proven to be effective in mitigating neutrophilic airway inflammation in mice by reducing cfDNA and NET levels, its clinical use is hindered by severe side effects. Here, we synthesized polyglycerol-amine (PGA) with a series of hydroxyl/amine ratios and covered them with black phosphorus (BP) nanosheets. The BP nanosheets functionalized with polyglycerol-50% amine (BP-PGA50) efficiently lowered cfDNA levels, suppressed toll-like receptor 9 (TLR9) activation and inhibited NET formation in vitro. Importantly, BP-PGA50 nanosheets demonstrated substantial accumulation in inflamed airway tissues, excellent biocompatibility, and potent inflammation modulation ability in model mice. The 2D sheet-like structure of BP-PGA50 was identified as a crucial factor for the therapeutic efficacy, and the hydroxyl/amine ratio was revealed as a significant parameter to regulate the protein resistance, cfDNA-binding efficacy, and cytotoxicity. This study shows the promise of the BP-PGA50 nanosheet for tackling uncontrolled airway inflammation, which is also significant for the treatment of other neutrophilic inflammatory diseases. In addition, our work also highlights the importance of proper surface functionalization, such as hydroxyl/amine ratio, in therapeutic nanoplatform construction for inflammation modulation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenlong Gao
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Ming Liu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Changyi Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yongqiang Xiao
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai 201114, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| |
Collapse
|
22
|
Feys S, Vanmassenhove S, Kraisin S, Yu K, Jacobs C, Boeckx B, Cambier S, Cunha C, Debaveye Y, Gonçalves SM, Hermans G, Humblet-Baron S, Jansen S, Lagrou K, Meersseman P, Neyts J, Peetermans M, Rocha-Pereira J, Schepers R, Spalart V, Starick MR, Thevissen K, Van Brussel T, Van Buyten T, Van Mol P, Vandenbriele C, Vanderbeke L, Wauters E, Wilmer A, Van Weyenbergh J, Van De Veerdonk FL, Carvalho A, Proost P, Martinod K, Lambrechts D, Wauters J. Lower respiratory tract single-cell RNA sequencing and neutrophil extracellular trap profiling of COVID-19-associated pulmonary aspergillosis: a single centre, retrospective, observational study. THE LANCET. MICROBE 2024; 5:e247-e260. [PMID: 38280387 DOI: 10.1016/s2666-5247(23)00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Sam Vanmassenhove
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sirima Kraisin
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cato Jacobs
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sander Jansen
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marijke Peetermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rogier Schepers
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Valérie Spalart
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marick R Starick
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tina Van Buyten
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Pierre Van Mol
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Els Wauters
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Alexander Wilmer
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Gioia F, Walti LN, Orchanian-Cheff A, Husain S. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2024; 12:207-216. [PMID: 38185135 DOI: 10.1016/s2213-2600(23)00408-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been reported to be an emerging and potentially fatal complication of severe COVID-19. However, risk factors for CAPA have not been systematically addressed to date. METHODS In this systematic review and meta-analysis to identify factors associated with CAPA, we comprehensively searched five medical databases: Ovid MEDLINE; Ovid Embase; the Cochrane Database of Systematic Reviews; the Cochrane Central Register of Controlled Trials; and the WHO COVID-19 Database. All case-control and cohort studies in adults (aged >18 years) that described at least six cases of CAPA and evaluated any risk factors for CAPA, published from Dec 1, 2019, to July 27, 2023, were screened and assessed for inclusion. Only studies with a control population of COVID-19-positive individuals without aspergillosis were included. Two reviewers independently screened search results and extracted outcome data as summary estimates from eligible studies. The primary outcome was to identify the factors associated with CAPA. Meta-analysis was done with random-effects models, with use of the Mantel-Haenszel method to assess dichotomous outcomes as potential risk factors, or the inverse variance method to assess continuous variables for potential association with CAPA. Publication bias was assessed with funnel plots for factors associated with CAPA. The study is registered with PROSPERO, CRD42022334405. FINDINGS Of 3561 records identified, 27 articles were included in the meta-analysis. 6848 patients with COVID-19 were included, of whom 1324 (19·3%) were diagnosed with CAPA. Diagnosis rates of CAPA ranged from 2·5% (14 of 566 patients) to 47·2% (58 of 123). We identified eight risk factors for CAPA. These factors included pre-existing comorbidities of chronic liver disease (odds ratio [OR] 2·70 [95% CI 1·21-6·04], p=0·02; I2=53%), haematological malignancies (OR 2·47 [1·27-4·83], p=0·008; I2=50%), chronic obstructive pulmonary disease (OR 2·00 [1·42-2·83], p<0·0001; I2=26%), and cerebrovascular disease (OR 1·31 [1·01-1·71], p=0·05; I2=46%). Use of invasive mechanical ventilation (OR 2·83; 95% CI 1·88-4·24; p<0·0001; I2=69%), use of renal replacement therapy (OR 2·26 [1·76-2·90], p<0·0001; I2=14%), treatment of COVID-19 with interleukin-6 inhibitors (OR 2·88 [1·52-5·43], p=0·001; I2=89%), and treatment of COVID-19 with corticosteroids (OR 1·88 [1·28-2·77], p=0·001; I2=66%) were also associated with CAPA. Patients with CAPA were typically older than those without CAPA (mean age 66·6 years [SD 3·6] vs 63·5 years [5·3]; mean difference 2·90 [1·48-4·33], p<0·0001; I2=86%). The duration of mechanical ventilation in patients with CAPA was longer than in those without CAPA (n=7 studies; mean duration 19·3 days [8·9] vs 13·5 days [6·8]; mean difference 5·53 days [1·30-9·77], p=0·01; I2=88%). In post-hoc analysis, patients with CAPA had higher all-cause mortality than those without CAPA (n=20 studies; OR 2·65 [2·04-3·45], p<0·0001; I2=51%). INTERPRETATION The identified risk factors for CAPA could eventually be addressed with targeted antifungal prophylaxis in patients with severe COVID-19. FUNDING None.
Collapse
Affiliation(s)
- Francesca Gioia
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Infectious Diseases Department, Hospital Ramón y Cajal, Consorcio Centro de Investigación Biomédica en Red (CB21/13/00084), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Laura N Walti
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
König S, Schroeder J, Nietzsche S, Heinekamp T, Brakhage AA, Zell R, Löffler B, Ehrhardt C. The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes Infect 2024; 26:105264. [PMID: 38008399 DOI: 10.1016/j.micinf.2023.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Seasonal influenza A virus (IAV) infections still pose a major burden for public health worldwide. Severe disease progression or even death is often related to superinfections of the virus and a secondary bacterial pathogen. However, fungi, especially Aspergillus fumigatus, are also frequently diagnosed during IAV infection. Although, clinical studies have reported the severity of influenza-associated pulmonary aspergillosis, the molecular mechanisms underlying this type of disease are poorly understood. Here, a new in vitro model is introduced that allows the investigation of complex pathogen-host and pathogen-pathogen interactions during coinfection of lung epithelial cells with IAV and A. fumigatus. Our data reveal a reduced IAV load and IAV-induced cytokine and chemokine expression in the presence of A. fumigatus. At the same time, IAV infection promotes the growth of A. fumigatus. Even in the absence of the human host cell, purified IAV particles are able to induce hyphal growth, due to a direct interaction of the virus particles with the fungal surface. Thus, our study gives first insights into the complex interplay between IAV, A. fumigatus and the host cell as well as the two pathogens alone.
Collapse
Affiliation(s)
- Sarah König
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Ziegelmühlenweg 1, D-07743 Jena, Germany.
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany.
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany.
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| |
Collapse
|
25
|
Feys S, Lagrou K, Lauwers HM, Haenen K, Jacobs C, Brusselmans M, Debaveye Y, Hermans G, Hoenigl M, Maertens J, Meersseman P, Peetermans M, Spriet I, Vandenbriele C, Vanderbeke L, Vos R, Van Wijngaerden E, Wilmer A, Wauters J. High Burden of COVID-19-Associated Pulmonary Aspergillosis in Severely Immunocompromised Patients Requiring Mechanical Ventilation. Clin Infect Dis 2024; 78:361-370. [PMID: 37691392 PMCID: PMC10874259 DOI: 10.1093/cid/ciad546] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a frequent superinfection in critically ill patients with COVID-19 and is associated with increased mortality rates. The increasing proportion of severely immunocompromised patients with COVID-19 who require mechanical ventilation warrants research into the incidence and impact of CAPA during the vaccination era. METHODS We performed a retrospective, monocentric, observational study. We collected data from adult patients with severe COVID-19 requiring mechanical ventilation who were admitted to the intensive care unit (ICU) of University Hospitals Leuven, a tertiary referral center, between 1 March 2020 and 14 November 2022. Probable or proven CAPA was diagnosed according to the 2020 European Confederation for Medical Mycology/International Society for Human and Animal Mycology (ECMM/ISHAM) criteria. RESULTS We included 335 patients. Bronchoalveolar lavage sampling was performed in 300 (90%), and CAPA was diagnosed in 112 (33%). The incidence of CAPA was 62% (50 of 81 patients) in European Organisation for Research and Treatment of Cancer (EORTC)/Mycosis Study Group Education and Research Consortium (MSGERC) host factor-positive patients, compared with 24% (62 of 254) in host factor-negative patients. The incidence of CAPA was significantly higher in the vaccination era, increasing from 24% (57 of 241) in patients admitted to the ICU before October 2021 to 59% (55 of 94) in those admitted since then. Both EORTC/MSGERC host factors and ICU admission in the vaccination era were independently associated with CAPA development. CAPA remained an independent risk factor associated with mortality risk during the vaccination era. CONCLUSIONS The presence of EORTC/MSGERC host factors for invasive mold disease is associated with increased CAPA incidence and worse outcome parameters, and it is the main driver for the significantly higher incidence of CAPA in the vaccination era. Our findings warrant investigation of antifungal prophylaxis in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Moon Lauwers
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Koen Haenen
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Cato Jacobs
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Marius Brusselmans
- Leuven Biostatistics and Statistical Bioinformatics Center (L-BioStat), KU Leuven, Leuven, Belgium
| | - Yves Debaveye
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Bio TechMed, Graz, Austria
- Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marijke Peetermans
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Eric Van Wijngaerden
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Alexander Wilmer
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Aerts R, Feys S, Mercier T, Lagrou K. Microbiological Diagnosis of Pulmonary Aspergillus Infections. Semin Respir Crit Care Med 2024; 45:21-31. [PMID: 38228164 DOI: 10.1055/s-0043-1776777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As microbiological tests play an important role in our diagnostic algorithms and clinical approach towards patients at-risk for pulmonary aspergillosis, a good knowledge of the diagnostic possibilities and especially their limitations is extremely important. In this review, we aim to reflect critically on the available microbiological diagnostic modalities for diagnosis of pulmonary aspergillosis and formulate some future prospects. Timely start of adequate antifungal treatment leads to a better patient outcome, but overuse of antifungals should be avoided. Current diagnostic possibilities are expanding, and are mainly driven by enzyme immunoassays and lateral flow device tests for the detection of Aspergillus antigens. Most of these tests are directed towards similar antigens, but new antibodies towards different targets are under development. For chronic forms of pulmonary aspergillosis, anti-Aspergillus IgG antibodies and precipitins remain the cornerstone. More studies on the possibilities and limitations of molecular testing including targeting resistance markers are ongoing. Also, metagenomic next-generation sequencing is expanding our future possibilities. It remains important to combine different test results and interpret them in the appropriate clinical context to improve performance. Test performances may differ according to the patient population and test results may be influenced by timing, the tested matrix, and prophylactic and empiric antifungal therapy. Despite the increasing armamentarium, a simple blood or urine test for the diagnosis of aspergillosis in all patient populations at-risk is still lacking. Research on diagnostic tools is broadening from a pathogen focus on biomarkers related to the patient and its immune system.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Oncology-Hematology, AZ Sint-Maarten, Mechelen, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Jensen HE, Becker CB. Pathological Diagnosis of Pulmonary Aspergillosis. Semin Respir Crit Care Med 2024; 45:41-49. [PMID: 38266999 DOI: 10.1055/s-0043-1776757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Pulmonary aspergillosis constitutes an increasingly prevalent and potentially fatal complex of mycotic diseases, caused by different species of Aspergillus. The broad spectrum of pathological manifestations associated with pulmonary aspergillosis necessitates a differentiation of commensalism from saprophytic colonization, hypersensitivity reactions, and true invasive infections, which highlights the importance of histopathology as a gold standard in a diagnostic setting. For the past decades, changes in terminology and contradicting contributions from different diagnostic disciplines have made the classification of pulmonary aspergillosis rather confusing. This review offers a categorization of aspergillosis lesions based on what can be histopathologically identified and distinguished, differentiating between acute invasive infection and forms of subacute, chronic, and allergic diseases and coinfections, and summarizes important manifestations of lesions associated with the different forms of pulmonary aspergillosis.
Collapse
Affiliation(s)
- Henrik E Jensen
- Section for Pathobiological Sciences, Division of Pathology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie B Becker
- Section for Pathobiological Sciences, Division of Pathology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Frost J, Gornicec M, Reisinger AC, Eller P, Hoenigl M, Prattes J. COVID-19 associated Pulmonary Aspergillosis in Patients Admitted to the Intensive Care Unit: Impact of Antifungal Prophylaxis. Mycopathologia 2024; 189:3. [PMID: 38217742 PMCID: PMC10787678 DOI: 10.1007/s11046-023-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/07/2023] [Indexed: 01/15/2024]
Abstract
Early after the beginning of the coronavirus disease 2019 (COVID-19)-pandemic, it was observed that critically ill patients in the intensive care unit (ICU) were susceptible to developing secondary fungal infections, particularly COVID-19 associated pulmonary aspergillosis (CAPA). Here we report our local experience on the impact of mold active antifungal prophylaxis on CAPA occurrence in critically ill COVID-19 patients. This is a monocentric, prospective cohort study including all consecutive patients with COVID-19 associated acute respiratory failure who were admitted to our local medical ICU. Based on the treating physician's discretion, patients may have received antifungal prophylaxis or not. All patients were retrospectively characterized as having CAPA according to the 2020 ECMM/ISHAM consensus definitions. Seventy-seven patients were admitted to our medical ICU during April 2020 and May 2021 and included in the study. The majority of patients received invasive-mechanical ventilation (61%). Fifty-three patients (68.8%) received posaconazole prophylaxis. Six cases of probable CAPA were diagnosed within clinical routine management. All six cases were diagnosed in the non-prophylaxis group. The incidence of CAPA in the overall study cohort was 0.57 events per 100 ICU days and 2.20 events per 100 ICU days in the non-prophylaxis group. No difference of cumulative 84-days survival could be observed between the two groups (p = 0.115). In this monocentric cohort, application of posaconazole prophylaxis in patients with COVID-19 associated respiratory failure did significantly reduce the rate of CAPA.
Collapse
Affiliation(s)
- Jonas Frost
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Maximilian Gornicec
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Alexander C Reisinger
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
29
|
Ulloque-Badaracco JR, Copaja-Corzo C, Hernandez-Bustamante EA, Cabrera-Guzmán JC, Huayta-Cortez MA, Carballo-Tello XL, Seminario-Amez RA, Hueda-Zavaleta M, Benites-Zapata VA. Fungal infections in patients after recovering from COVID-19: a systematic review. Ther Adv Infect Dis 2024; 11:20499361241242963. [PMID: 38706456 PMCID: PMC11070125 DOI: 10.1177/20499361241242963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
Background and aims The presence of fungal infections has been described in patients after recovering from COVID-19. This study aims to conduct a systematic review of studies that reported fungal infections (Mucor spp., Pneumocystis jirovecii, or Aspergillus spp.) in adults after recovering from COVID-19. Methods We performed a systematic review through PubMed, Web of Science, OVID-Medline, Embase, and Scopus. The study selection process was performed independently and by at least two authors. We performed a risk of bias assessment using the Newcastle-Ottawa Scale for cohort and case-control studies, and the Joanna Briggs Institute's Checklists for Case Series and Case Reports. Results The systematic search found 33 studies meeting all inclusion criteria. There was a total population of 774 participants, ranging from 21 to 87 years. From them, 746 developed a fungal infection. In 19 studies, Mucor spp. was reported as the main mycosis. In 10 studies, P. jirovecii was reported as the main mycosis. In seven studies, Aspergillus spp. was reported as the main mycosis. Regarding the quality assessment, 12 studies were classified as low risk of bias and the remaining studies as high risk of bias. Conclusion Patients' clinical presentation and prognosis after recovering from COVID-19 with fungal infection differ from those reported patients with acute COVID-19 infection and those without COVID-19 infection.
Collapse
Affiliation(s)
| | | | - Enrique A. Hernandez-Bustamante
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
| | | | | | | | | | | | - Vicente A. Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
30
|
Kosmidis C, Hoenigl M. COVID-19-associated pulmonary aspergillosis in mechanically ventilated patients: a deadly complication. Thorax 2023; 79:9-10. [PMID: 37940199 DOI: 10.1136/thorax-2023-220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Chris Kosmidis
- National Aspergillosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
31
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Wulff SM, Perch M, Helweg-Larsen J, Bredahl P, Arendrup MC, Lundgren J, Helleberg M, Crone CG. Associations between invasive aspergillosis and cytomegalovirus in lung transplant recipients: a nationwide cohort study. APMIS 2023; 131:574-583. [PMID: 37022293 DOI: 10.1111/apm.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
Cytomegalovirus (CMV) and invasive aspergillosis (IA) cause morbidity among lung transplant recipients (LTXr). Early diagnosis and treatment could improve outcomes. We examined rates of CMV after IA and vice versa to assess whether screening for one infection is warranted after detecting the other. All Danish LTXr, 2010-2019, were followed for IA and CMV for 2 years after transplantation. IA was defined using ISHLT criteria. Adjusted incidence rate ratios (aIRR) were estimated by Poisson regression adjusted for time after transplantation. We included 295 LTXr, among whom CMV and IA were diagnosed in 128 (43%) and 48 (16%). The risk of CMV was high the first 3 months after IA, IR 98/100 person-years of follow-up (95% CI 47-206). The risk of IA was significantly increased in the first 3 months after CMV, aIRR 2.91 (95% CI 1.32-6.44). Numbers needed to screen to diagnose one case of CMV after IA, and one case of IA after CMV was approximately seven and eight, respectively. Systematic screening for CMV following diagnosis of IA, and vice versa, may improve timeliness of diagnosis and outcomes for LTXr.
Collapse
Affiliation(s)
- Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Bredahl
- Department of Thoracic Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maiken Cavling Arendrup
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
33
|
Dellière S, Aimanianda V. Humoral Immunity Against Aspergillus fumigatus. Mycopathologia 2023; 188:603-621. [PMID: 37289362 PMCID: PMC10249576 DOI: 10.1007/s11046-023-00742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
Aspergillus fumigatus is one the most ubiquitous airborne opportunistic human fungal pathogens. Understanding its interaction with host immune system, composed of cellular and humoral arm, is essential to explain the pathobiology of aspergillosis disease spectrum. While cellular immunity has been well studied, humoral immunity has been poorly acknowledge, although it plays a crucial role in bridging the fungus and immune cells. In this review, we have summarized available data on major players of humoral immunity against A. fumigatus and discussed how they may help to identify at-risk individuals, be used as diagnostic tools or promote alternative therapeutic strategies. Remaining challenges are highlighted and leads are given to guide future research to better grasp the complexity of humoral immune interaction with A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, 75015, Paris, France.
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, 75010, Paris, France.
| | - Vishukumar Aimanianda
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, 75015, Paris, France.
| |
Collapse
|
34
|
Singh A, Kaur A, Chowdhary A. Fungal pathogens and COVID-19. Curr Opin Microbiol 2023; 75:102365. [PMID: 37625261 DOI: 10.1016/j.mib.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
COVID-19 pandemic highlighted the complications of secondary fungal infections that occurred globally in severe cases of coronavirus disease managed in the intensive care units. Furthermore, varied underlying host factors, such as preexisting immunosuppression, the use of immunomodulatory agents, and invasive procedures predisposing lung tissues to fungal colonization and proliferation, caused increased susceptibility to fungal infections in COVID-19 patient populations. These invasive fungal infections directly impact the overall length of hospitalization and mortality. The most commonly reported fungal infections in patients with COVID-19 include aspergillosis, invasive candidiasis, and mucormycosis. An overall worldwide increase in the prevalence of candidiasis and aspergillosis was observed in COVID-19 patients , whereas outbreaks of mucormycosis were mainly recorded from India. Diagnostic challenges and limited antifungal treatment options make secondary fungal infections among COVID-19 patients more burdensome, which results in improper management and increased mortality.
Collapse
Affiliation(s)
- Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Amtoj Kaur
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| |
Collapse
|
35
|
Boyer J, Feys S, Zsifkovits I, Hoenigl M, Egger M. Treatment of Invasive Aspergillosis: How It's Going, Where It's Heading. Mycopathologia 2023; 188:667-681. [PMID: 37100963 PMCID: PMC10132806 DOI: 10.1007/s11046-023-00727-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Despite improvements in treatment and diagnostics over the last two decades, invasive aspergillosis (IA) remains a devastating fungal disease. The number of immunocompromised patients and hence vulnerable hosts increases, which is paralleled by the emergence of a rise in IA cases. Increased frequencies of azole-resistant strains are reported from six continents, presenting a new challenge for the therapeutic management. Treatment options for IA currently consist of three classes of antifungals (azoles, polyenes, echinocandins) with distinctive advantages and shortcomings. Especially in settings of difficult to treat IA, comprising drug tolerance/resistance, limiting drug-drug interactions, and/or severe underlying organ dysfunction, novel approaches are urgently needed. Promising new drugs for the treatment of IA are in late-stage clinical development, including olorofim (a dihydroorotate dehydrogenase inhibitor), fosmanogepix (a Gwt1 enzyme inhibitor), ibrexafungerp (a triterpenoid), opelconazole (an azole optimized for inhalation) and rezafungin (an echinocandin with long half-life time). Further, new insights in the pathophysiology of IA yielding immunotherapy as a potential add-on therapy. Current investigations show encouraging results, so far mostly in preclinical settings. In this review we discuss current treatment strategies, give an outlook on possible new pharmaceutical therapeutic options, and, lastly, provide an overview of the ongoing research in immunotherapy for IA.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
| | - Isabella Zsifkovits
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
36
|
Pineau V, Guilloteau A, Binquet C, Quenot JP, Bouhemad B, Bonniaud P, Dalle F, Piroth L, Valot S, Blot M. Aspergillus colonisation in severe community-acquired pneumonia: not just a mere colonisation. ERJ Open Res 2023; 9:00221-2023. [PMID: 37701363 PMCID: PMC10493708 DOI: 10.1183/23120541.00221-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
In patients with severe community-acquired pneumonia, detection of Aspergillus is associated with a mortality rate surpassing 50%, irrespective of whether it is defined as invasion or colonisation https://bit.ly/46PMk1f.
Collapse
Affiliation(s)
- Valentin Pineau
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
| | - Adrien Guilloteau
- Côte d'Or Hemopathy Registry, Dijon-Bourgogne University Hospital, Dijon, France
| | - Christine Binquet
- CHU Dijon-Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- LabEx LipSTIC, University of Burgundy, Dijon, France
| | - Jean-Pierre Quenot
- CHU Dijon-Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- LabEx LipSTIC, University of Burgundy, Dijon, France
- Department of Intensive Care, Dijon-Bourgogne University Hospital, Dijon, France
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France
| | - Belaid Bouhemad
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France
- Department of Intensive Care, Dijon-Bourgogne University Hospital, Dijon, France
| | - Philippe Bonniaud
- Pulmonary Medicine and Intensive Care Unit, Dijon-Bourgogne University Hospital, Dijon, France
- HSPpathies Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France
| | - Frederic Dalle
- Parasitology–Mycology Laboratory, Biology Platform, Dijon-Bourgogne University Hospital, Dijon, France
| | - Lionel Piroth
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
- CHU Dijon-Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- LabEx LipSTIC, University of Burgundy, Dijon, France
| | - Stéphane Valot
- Parasitology–Mycology Laboratory, Biology Platform, Dijon-Bourgogne University Hospital, Dijon, France
| | - Mathieu Blot
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
- CHU Dijon-Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- LabEx LipSTIC, University of Burgundy, Dijon, France
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France
| |
Collapse
|
37
|
Tokamani M, Figgou E, Papamichail L, Sakka E, Toros A, Bouchorikou A, Giannakakis A, Matthaiou EI, Sandaltzopoulos R. A Multiplex PCR Melting-Curve-Analysis-Based Detection Method for the Discrimination of Five Aspergillus Species. J Fungi (Basel) 2023; 9:842. [PMID: 37623613 PMCID: PMC10455196 DOI: 10.3390/jof9080842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Aspergillus mold is a ubiquitously found, airborne pathogen that can cause a variety of diseases from mild to life-threatening in severity. Limitations in diagnostic methods combined with anti-fungal resistance render Aspergillus a global emerging pathogen. In industry, Aspergilli produce toxins, such as aflatoxins, which can cause food spoilage and pose public health risk issues. Here, we report a multiplex qPCR method for the detection and identification of the five most common pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans. Our approach exploits species-specific nucleotide polymorphisms within their ITS genomic regions. This novel assay combines multiplex single-color real time qPCR and melting curve analysis and provides a straight-forward, rapid, and cost-effective detection method that can identify five Aspergillus species simultaneously in a single reaction using only six unlabeled primers. Due to their unique fragment lengths, the resulting amplicons are directly linked to certain Aspergillus species like fingerprints, following either electrophoresis or melting curve analysis. Our method is characterized by high analytical sensitivity and specificity, so it may serve as a useful and inexpensive tool for Aspergillus diagnostic applications both in health care and the food industry.
Collapse
Affiliation(s)
- Maria Tokamani
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Eleftheria Figgou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Lito Papamichail
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Eleni Sakka
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Athanasios Toros
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Anastasia Bouchorikou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| | - Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (E.F.); (L.P.); (E.S.); (A.T.); (A.B.); (A.G.)
| |
Collapse
|
38
|
Sánchez-Castellano MÁ, Marcelo C, Marco J, Figueira-Iglesias JC, García-Rodríguez J. A Tale of Two Hospitals: Comparing CAPA Infections in Two ICUs During the Spanish Fourth Pandemic Wave. Mycopathologia 2023; 188:335-344. [PMID: 37256502 PMCID: PMC10230482 DOI: 10.1007/s11046-023-00750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE COVID-19 associated pulmonary aspergillosis (CAPA) is a new clinical entity linked to SARS-CoV-2 infection that is causing a rise on the risk of complications and mortality, particularly in critical patients. METHODS We compared diagnostic and clinical features in two cohorts of patients with severe COVID-19 admitted in the intensive care units (ICU) of two different hospitals in Madrid, Spain, between February and June 2021. Clinical and microbiological relevant aspects for CAPA diagnosis were collected for further classification. CAPA was classified as colonization, possible, probable, proven, and tracheobronchial aspergillosis according to the ECMM/ISHAM consensus, with some modifications to consider tracheobronchial aspirate as sample comparable to non-bronchoscopic lavages (NBL). RESULTS 56 patients admitted in HULP (Hospital Universitario La Paz) ICU and 61 patients admitted in HEEIZ (Hospital de Emergencias Isabel Zendal) ICU had clinical suspicion of invasive fungal disease in the context of COVID-19 infection. Cultures were positive for Aspergillus spp. in 32 patients. According to 2020 European Confederation of Medical Mycology and the International Society for Human and Animal Mycology (ECMM/ISHAM) consensus, 11 patients were diagnosed with possible CAPA and 10 patients with probable CAPA. Global incidence for CAPA was 6.3%. Global median days between ICU admission and diagnosis was 14 day. Aspergillus fumigatus complex was the main isolated species. Antifungal therapy was used in 75% of patients with CAPA suspicion, with inter-hospital differences in the administered antifungals. Global overall mortality rate for CAPA patients was 66.6% (14/21). All-cause mortality in non-CAPA cohorts were of 26.3% in HULP group (34/129) and 56.8% (104/183) in HEEIZ group. CONCLUSIONS There were no significant differences in incidence between the two hospitals, and differences in antifungal therapy did not correlate with differences in mortality, reflecting that both first-line azoles and Amphotericin B could be effective in treating CAPA infections, according to the current guideline indications.
Collapse
Affiliation(s)
| | - Cristina Marcelo
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario La Paz, Madrid, Spain
| | - Javier Marco
- Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | | | | |
Collapse
|
39
|
Van Slambrouck J, Khan M, Verbeken E, Choi S, Geudens V, Vanluyten C, Feys S, Vanhulle E, Wollants E, Vermeire K, De Fays C, Aversa L, Kaes J, Van Raemdonck D, Vos R, Vanaudenaerde B, De Hertogh G, Wauters E, Wauters J, Ceulemans LJ, Mombaerts P. Visualising SARS-CoV-2 infection of the lung in deceased COVID-19 patients. EBioMedicine 2023; 92:104608. [PMID: 37224768 PMCID: PMC10202122 DOI: 10.1016/j.ebiom.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Erik Verbeken
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Vincent Geudens
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Cedric Vanluyten
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Emiel Vanhulle
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Kurt Vermeire
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Charlotte De Fays
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Lucia Aversa
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Els Wauters
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| |
Collapse
|
40
|
Roquilly A, Francois B, Huet O, Launey Y, Lasocki S, Weiss E, Petrier M, Hourmant Y, Bouras M, Lakhal K, Le Bel C, Flattres Duchaussoy D, Fernández-Barat L, Ceccato A, Flet L, Jobert A, Poschmann J, Sebille V, Feuillet F, Koulenti D, Torres A. Interferon gamma-1b for the prevention of hospital-acquired pneumonia in critically ill patients: a phase 2, placebo-controlled randomized clinical trial. Intensive Care Med 2023; 49:530-544. [PMID: 37072597 PMCID: PMC10112824 DOI: 10.1007/s00134-023-07065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE We aimed to determine whether interferon gamma-1b prevents hospital-acquired pneumonia in mechanically ventilated patients. METHODS In a multicenter, placebo-controlled, randomized trial conducted in 11 European hospitals, we randomly assigned critically ill adults, with one or more acute organ failures, under mechanical ventilation to receive interferon gamma-1b (100 µg every 48 h from day 1 to 9) or placebo (following the same regimen). The primary outcome was a composite of hospital-acquired pneumonia or all-cause mortality on day 28. The planned sample size was 200 with interim safety analyses after enrolling 50 and 100 patients. RESULTS The study was discontinued after the second safety analysis for potential harm with interferon gamma-1b, and the follow-up was completed in June 2022. Among 109 randomized patients (median age, 57 (41-66) years; 37 (33.9%) women; all included in France), 108 (99%) completed the trial. Twenty-eight days after inclusion, 26 of 55 participants (47.3%) in the interferon-gamma group and 16 of 53 (30.2%) in the placebo group had hospital-acquired pneumonia or died (adjusted hazard ratio (HR) 1.76, 95% confidence interval (CI) 0.94-3.29; P = 0.08). Serious adverse events were reported in 24 of 55 participants (43.6%) in the interferon-gamma group and 17 of 54 (31.5%) in the placebo group (P = 0.19). In an exploratory analysis, we found that hospital-acquired pneumonia developed in a subgroup of patients with decreased CCL17 response to interferon-gamma treatment. CONCLUSIONS Among mechanically ventilated patients with acute organ failure, treatment with interferon gamma-1b compared with placebo did not significantly reduce the incidence of hospital-acquired pneumonia or death on day 28. Furthermore, the trial was discontinued early due to safety concerns about interferon gamma-1b treatment.
Collapse
Affiliation(s)
- Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France.
| | - Bruno Francois
- ICU Department and Inserm CIC 1435 & UMR 1092, University Hospital of Limoges, Limoges, France
| | - Olivier Huet
- Département d'anesthésie réanimation et medecine peri-operatoire, CHRU de Brest, Université de Bretagne Occidentale, 29000, Brest, France
| | - Yoann Launey
- Department of Anaesthesia, Critical Care and Perioperative Medicine, Univ Rennes, CHU Rennes, 35000, Rennes, France
| | - Sigismond Lasocki
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Angers, 49000, Angers, France
| | - Emmanuel Weiss
- Department of Anesthesiology and Critical Care, Université Paris Cité, INSERM UMR_S1149, and AP-HP Nord, Hôpital Beaujon, Clichy, France
| | - Melanie Petrier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Yannick Hourmant
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | - Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Karim Lakhal
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | - Cecilia Le Bel
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | | | - Laia Fernández-Barat
- CELLEX research laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, Barcelona, Universitat de Barcelona, CIBERES, Icrea, IDIBAPS, Barcelona, Spain
| | - Adrian Ceccato
- Servei de Pneumologia, Hospital Clinic, Barcelona, Universitat de Barcelona, CIBERES, Icrea, IDIBAPS, Barcelona, Spain
| | - Laurent Flet
- Nantes Université, CHU Nantes, Pharmacie, 44000, Nantes, France
| | - Alexandra Jobert
- Nantes Université, CHU Nantes, DRI, Département promotion, cellule vigilances recherche, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Veronique Sebille
- Nantes Université, CHU Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, 44000, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Fanny Feuillet
- Nantes Université, CHU Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, 44000, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Despoina Koulenti
- 2nd Critical Care Department, Attikon University Hospital, Athens, Greece
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Antoni Torres
- CELLEX research laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
41
|
Sinha BP, Mehta P, Hoque MA, Bandopadhyay P, Nandi A, Saha I, Nandi Mitra A, Mondal A, Bhattacharjee B, Chamilos G, Pandey R, Basu K, Ganguly D. Deficient Phagocytosis in Circulating Monocytes from Patients with COVID-19-Associated Mucormycosis. mBio 2023:e0059023. [PMID: 37052373 DOI: 10.1128/mbio.00590-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Cases of rhino-orbital mucormycosis in patients suffering from severe coronavirus disease 2019 (COVID-19) were reported in different parts of the world, especially in India. However, specific immune mechanisms that are linked to susceptibility to COVID-19-associated mucormycosis (CAM) remain largely unexplored. We aimed to explore whether the differential regulation of circulating cytokines in CAM patients had any potential pathogenic links with myeloid phagocyte function and susceptibility to mucormycosis. A small cohort of Indian patients suffering from CAM (N = 9) as well as COVID-19 patients with no evidence of mucormycosis (N = 5) were recruited in the study. Venous blood was collected from the patients as well as from healthy volunteers (N = 8). Peripheral blood mononuclear cells and plasma were isolated. Plasma samples were used to measure a panel of 48 cytokines. CD14+ monocytes were isolated and used for a flow cytometric phagocytosis assay as well as a global transcriptome analysis via RNA-sequencing. A multiplex cytokine analysis of the plasma samples revealed reduction in a subset of cytokines in CAM patients, which is known to potentiate the activation, migration, or phagocytic activity of myeloid cells, compared to the COVID-19 patients who did not contract mucormycosis. Compared to monocytes from healthy individuals, peripheral blood CD14+ monocytes from CAM patients were significantly deficient in phagocytic function. The monocyte transcriptome also revealed that pathways related to endocytic pathways, phagosome maturation, and the cytoskeletal regulation of phagocytosis were significantly downregulated in CAM patients. Thus, the study reports a significant deficiency in the phagocytic activity of monocytes, which is a critical effector mechanism for the antifungal host defense, in patients with CAM. This result is in concordance with results regarding the specific cytokine signature and monocyte transcriptome. IMPORTANCE A number of cases of mucormycosis, often fatal, were reported among severe COVID-19 patients from India as well as from some other parts of the world. However, specific immunocellular mechanisms that underlie susceptibility to this fungal infection in COVID-19 remain largely unexplored. Our study reports a deficiency in phagocytosis by monocytes in COVID-19 patients who are concomitantly afflicted with mucormycosis, with this deficiency being linked to a characteristic monocyte transcriptome as well as a circulating cytokine signature. The functional phenotype and cytokine signature of the monocytes may provide useful biomarkers for detecting potential susceptibility to mucormycosis in COVID-19 as well as in other viral infections.
Collapse
Affiliation(s)
- Bishnu Prasad Sinha
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Md Asmaul Hoque
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ayandip Nandi
- Department of Pathology, Medical College, Kolkata, India
| | - Ipsita Saha
- Department of Pathology, Medical College, Kolkata, India
| | | | - Asish Mondal
- Department of General Medicine, Medical College, Kolkata, India
| | | | - Georgios Chamilos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas (IMBB FoRTH), Heraklion, Greece
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kaushik Basu
- Department of General Medicine, Medical College, Kolkata, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
42
|
Hoenigl M, Egger M, Price J, Krause R, Prattes J, White PL. Metagenomic Next-Generation Sequencing of Plasma for Diagnosis of COVID-19-Associated Pulmonary Aspergillosis. J Clin Microbiol 2023; 61:e0185922. [PMID: 36809121 PMCID: PMC10035327 DOI: 10.1128/jcm.01859-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Timely diagnosis remains an unmet need in non-neutropenic patients at risk for aspergillosis, including those with COVID-19-associated pulmonary aspergillosis (CAPA), which in its early stages is characterized by tissue-invasive growth of the lungs with limited angioinvasion. Currently available mycological tests show limited sensitivity when testing blood specimens. Metagenomic next-generation sequencing (mNGS) to detect microbial cell-free DNA (mcfDNA) in plasma might overcome some of the limitations of conventional diagnostics. A two-center cohort study involving 114 COVID-19 intensive care unit patients evaluated the performance of plasma mcfDNA sequencing for the diagnosis of CAPA. Classification of CAPA was performed using the European Confederation for Medical Mycology (ECMM)/International Society for Human and Animal Mycoses (ISHAM) criteria. A total of 218 plasma samples were collected between April 2020 and June 2021 and tested for mcfDNA (Karius test). Only 6 patients were classified as probable CAPA, and 2 were classified as possible, while 106 patients did not fulfill CAPA criteria. The Karius test detected DNA of mold pathogens in 12 samples from 8 patients, including Aspergillus fumigatus in 10 samples from 6 patients. Mold pathogen DNA was detected in 5 of 6 (83% sensitivity) cases with probable CAPA (A. fumigatus in 8 samples from 4 patients and Rhizopus microsporus in 1 sample), while the test did not detect molds in 103 of 106 (97% specificity) cases without CAPA. The Karius test showed promising performance for diagnosis of CAPA when testing plasma, being highly specific. The test detected molds in all but one patient with probable CAPA, including cases where other mycological tests from blood resulted continuously negative, outlining the need for validation in larger studies.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Jessica Price
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Cardiff, United Kingdom
| | - Robert Krause
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- University of Cologne, Cologne, Germany
- University Hospital of Cologne, Department 1 for Internal Medicine, Infectious Diseases, Excellence Center for Medical Mycology, Cologne, Germany
| | - P Lewis White
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Cardiff, United Kingdom
- Division of Infection and Immunity, Center for Trials Research, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
43
|
Sarden N, Yipp BG. Virus-associated fungal infections and lost immune resistance. Trends Immunol 2023; 44:305-318. [PMID: 36890064 DOI: 10.1016/j.it.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Invasive fungal infections are an increasing threat to human health. Of recent concern is the emergence of influenza- or SARS-CoV-2-virus-associated invasive fungal infections. Understanding acquired susceptibilities to fungi requires consideration of the collective and newly explored roles of adaptive, innate, and natural immunity. Neutrophils are known to provide host resistance, but new concepts are emerging that implicate innate antibodies, the actions of specialized B1 B cell subsets, and B cell-neutrophil crosstalk in mediating antifungal host resistance. Based on emerging evidence, we propose that virus infections impact on neutrophil and innate B cell resistance against fungi, leading to invasive infections. These concepts provide novel approaches to developing candidate therapeutics with the aim of restoring natural and humoral immunity and boosting neutrophil resistance against fungi.
Collapse
Affiliation(s)
- Nicole Sarden
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
44
|
Gangneux JP, Hoenigl M, Papon N. How to lose resistance to Aspergillus infections. Trends Microbiol 2023; 31:222-224. [PMID: 36754763 DOI: 10.1016/j.tim.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
The distinct risk factors to deadly infections by Aspergillus fumigatus (Af) in intensive care unit (ICU) patients are well known; however, so far, the mechanistic link between these predisposing conditions has been unknown. Sarden et al. recently unraveled a shared B1a lymphocyte-natural antibody-neutrophil defense pathway to Af, opening new perspectives in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France; Laboratoire de Parasitologie et Mycologie Médicale, LA-AspC Centre National de Référence des Mycoses et Antifongiques, European Excellence Center for Medical Mycology (ECMM), Centre hospitalier Universitaire de Rennes, F-35000 Rennes, France.
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Translational Medical Mycology Research Unit, European Confederation of Medical Mycology (ECMM) Excellence Center, Medical University of Graz, Graz, Austria
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
45
|
Feys S, Heylen J, Carvalho A, Van Weyenbergh J, Wauters J, Cunha C, Debaveye Y, Hermans G, Humblet-Baron S, Jacobs C, Lambrechts D, Mombaerts P, Lagrou K, Meersseman P, Menezes SM, Peetermans M, Rocha-Pereira J, Seldeslachts L, Starick MR, Thevissen K, Vandenbriele C, Vanderbeke L, Vande Velde G, Van De Veerdonk FL, Wilmer A. A signature of differential gene expression in bronchoalveolar lavage fluid predicts mortality in influenza-associated pulmonary aspergillosis. Intensive Care Med 2023; 49:254-257. [PMID: 36592204 PMCID: PMC9943988 DOI: 10.1007/s00134-022-06958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium. .,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | - Jannes Heylen
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium. .,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu KW, Grau MS, Jones JT, Wang X, Vesely EM, James MR, Gutierrez-Perez C, Cramer RA, Obar JJ. Postinfluenza Environment Reduces Aspergillus fumigatus Conidium Clearance and Facilitates Invasive Aspergillosis In Vivo. mBio 2022; 13:e0285422. [PMID: 36377895 PMCID: PMC9765436 DOI: 10.1128/mbio.02854-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus fumigatus is a human fungal pathogen that is most often avirulent in immunecompetent individuals because the innate immune system is efficient at eliminating fungal conidia. However, recent clinical observations have shown that severe influenza A virus (IAV) infection can lead to secondary A. fumigatus infections with high mortality. Little is currently known about how IAV infection alters the innate antifungal immune response. Here, we established a murine model of IAV-induced A. fumigatus (IAV-Af) superinfection by inoculating mice with IAV followed 6 days later by A. fumigatus conidia challenge. We observed increased mortality in the IAV-Af-superinfected mice compared to mice challenged with either IAV or A. fumigatus alone. A. fumigatus conidia were able to germinate and establish a biofilm in the lungs of the IAV-Af superinfection group, which was not seen following fungal challenge alone. While we did not observe any differences in inflammatory cell recruitment in the IAV-Af superinfection group compared to single-infection controls, we observed defects in Aspergillus conidial uptake and killing by both neutrophils and monocytes after IAV infection. pHrodo Green zymosan bioparticle (pHrodo-zymosan) and CM-H2DCFDA [5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate] staining, indicators of phagolysosome maturation and reactive oxygen species (ROS) production, respectively, revealed that the fungal killing defect was due in part to reduced phagolysosome maturation. Collectively, our data demonstrate that the ability of neutrophils and monocytes to kill and clear Aspergillus conidia is strongly reduced in the pulmonary environment of an IAV-infected lung, which leads to invasive pulmonary aspergillosis and increased overall mortality in our mouse model, recapitulating what is observed clinically in humans. IMPORTANCE Influenza A virus (IAV) is a common respiratory virus that causes seasonal illness in humans, but can cause pandemics and severe infection in certain patients. Since the emergence of the 2009 H1N1 pandemic strains, there has been an increase in clinical reports of IAV-infected patients in the intensive care unit (ICU) developing secondary pulmonary aspergillosis. These cases of flu-Aspergillus superinfections are associated with worse clinical outcomes than secondary bacterial infections in the setting of IAV. To date, we have a limited understanding of the cause(s) of secondary fungal infections in immunocompetent hosts. IAV-induced modulation of cytokine production and innate immune cellular function generates a unique immune environment in the lung, which could make the host vulnerable to a secondary fungal infection. Our work shows that defects in phagolysosome maturation in neutrophils and monocytes after IAV infection impair the ability of these cells to kill A. fumigatus, thus leading to increased fungal germination and growth and subsequent invasive aspergillosis. Our work lays a foundation for future mechanistic studies examining the exact immune modulatory events occurring in the respiratory tract after viral infection leading to secondary fungal infections.
Collapse
Affiliation(s)
- Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Madeleine S. Grau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jane T. Jones
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
47
|
Huang SF, Ying-Jung Wu A, Shin-Jung Lee S, Huang YS, Lee CY, Yang TL, Wang HW, Chen HJ, Chen YC, Ho TS, Kuo CF, Lin YT. COVID-19 associated mold infections: Review of COVID-19 associated pulmonary aspergillosis and mucormycosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022:S1684-1182(22)00285-7. [PMID: 36586744 PMCID: PMC9751001 DOI: 10.1016/j.jmii.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
COVID-19-associated mold infection (CAMI) is defined as development of mold infections in COVID-19 patients. Co-pathogenesis of viral and fungal infections include the disruption of tissue barrier following SARS CoV-2 infection with the damage in the alveolar space, respiratory epithelium and endothelium injury and overwhelming inflammation and immune dysregulation during severe COVID-19. Other predisposing risk factors permissive to fungal infections during COVID-19 include the administration of immune modulators such as corticosteroids and IL-6 antagonist. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) is increasingly reported during the COVID-19 pandemic. CAPA usually developed within the first month of COVID infection, and CAM frequently arose 10-15 days post diagnosis of COVID-19. Diagnosis is challenging and often indistinguishable during the cytokine storm in COVID-19, and several diagnostic criteria have been proposed. Development of CAPA and CAM is associated with a high mortality despiteappropriate anti-mold therapy. Both isavuconazole and amphotericin B can be used for treatment of CAPA and CAM; voriconazole is the primary agent for CAPA and posaconazole is an alternative for CAM. Aggressive surgery is recommended for CAM to improve patient survival. A high index of suspicion and timely and appropriate treatment is crucial to improve patient outcome.
Collapse
Affiliation(s)
- Shiang-Fen Huang
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Medical College, New Taipei City, Taiwan
| | - Susan Shin-Jung Lee
- School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Liang Yang
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho- Su Memorial Hospital, Taipei, Taiwan
| | - Hung Jui Chen
- Department of Infectious Diseases, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi Ching Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan,College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan,Corresponding author
| | - Yi-Tsung Lin
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Corresponding author
| | | |
Collapse
|
48
|
Application of the NanoString nCounter System as an Alternative Method to Investigate Molecular Mechanisms Involved in Host Plant Responses to Plasmodiophora brassicae. Int J Mol Sci 2022; 23:ijms232415581. [PMID: 36555223 PMCID: PMC9779335 DOI: 10.3390/ijms232415581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Clubroot, caused by the soilborne pathogen Plasmodiophora brassicae, is an important disease of canola (Brassica napus) and other crucifers. The recent application of RNA sequencing (RNA-seq) technologies to study P. brassicae−host interactions has generated large amounts of gene expression data, improving knowledge of the molecular mechanisms of pathogenesis and host resistance. Quantitative PCR (qPCR) analysis has been widely applied to examine the expression of a limited number of genes and to validate the results of RNA-seq studies, but may not be ideal for analyzing larger suites of target genes or increased sample numbers. Moreover, the need for intermediate steps such as cDNA synthesis may introduce variability that could affect the accuracy of the data generated by qPCR. Here, we report the validation of gene expression data from a previous RNA-seq study of clubroot using the NanoString nCounter System, which achieves efficient gene expression quantification in a fast and simple manner. We first confirm the robustness of the NanoString system by comparing the results with those generated by qPCR and RNA-seq and then discuss the importance of some candidate genes for resistance or susceptibility to P. brassicae in the host. The results show that the expression of genes measured using NanoString have a high correlation with the values obtained using the other two technologies, with R > 0.90 and p < 0.01, and the same expression patterns for most genes. The three methods (qPCR, RNA-seq, and NanoString) were also compared in terms of laboratory procedures, time, and cost. We propose that the NanoString nCounter System is a robust, sensitive, highly reproducible, and simple technology for gene expression analysis. NanoString could become a common alternative to qPCR to validate RNA-seq data or to create panels of genes for use as markers of resistance/susceptibility when plants are challenged with different P. brassicae pathotypes.
Collapse
|
49
|
de Carvalho Patricio BF, da Silva Lopes Pereira JO, Sarcinelli MA, de Moraes BPT, Rocha HVA, Gonçalves-de-Albuquerque CF. Could the Lung Be a Gateway for Amphotericin B to Attack the Army of Fungi? Pharmaceutics 2022; 14:2707. [PMID: 36559201 PMCID: PMC9784761 DOI: 10.3390/pharmaceutics14122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Fungal diseases are a significant cause of morbidity and mortality worldwide, primarily affecting immunocompromised patients. Aspergillus, Pneumocystis, and Cryptococcus are opportunistic fungi and may cause severe lung disease. They can develop mechanisms to evade the host immune system and colonize or cause lung disease. Current fungal infection treatments constitute a few classes of antifungal drugs with significant fungi resistance development. Amphotericin B (AmB) has a broad-spectrum antifungal effect with a low incidence of resistance. However, AmB is a highly lipophilic antifungal with low solubility and permeability and is unstable in light, heat, and oxygen. Due to the difficulty of achieving adequate concentrations of AmB in the lung by intravenous administration and seeking to minimize adverse effects, nebulized AmB has been used. The pulmonary pathway has advantages such as its rapid onset of action, low metabolic activity at the site of action, ability to avoid first-pass hepatic metabolism, lower risk of adverse effects, and thin thickness of the alveolar epithelium. This paper presented different strategies for pulmonary AmB delivery, detailing the potential of nanoformulation and hoping to foster research in the field. Our finds indicate that despite an optimistic scenario for the pulmonary formulation of AmB based on the encouraging results discussed here, there is still no product registration on the FDA nor any clinical trial undergoing ClinicalTrial.gov.
Collapse
Affiliation(s)
- Beatriz Ferreira de Carvalho Patricio
- Pharmacology Laboratory, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
- Postgraduate Program in Molecular and Cell Biology, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
| | | | - Michelle Alvares Sarcinelli
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs, Oswaldo Cruz Foundation, Brazil Av., 4036, Rio de Janeiro 213040-361, Brazil
| | - Bianca Portugal Tavares de Moraes
- Postgraduate Program in Biotechnology, Biology Institute, Federal Fluminense University, Rua Prof. Marcos Waldemar de Freitas Reis, Niterói 24210-201, Brazil
- Immunopharmacology Laboratory, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
| | - Helvécio Vinicius Antunes Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs, Oswaldo Cruz Foundation, Brazil Av., 4036, Rio de Janeiro 213040-361, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Postgraduate Program in Molecular and Cell Biology, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
- Postgraduate Program in Biotechnology, Biology Institute, Federal Fluminense University, Rua Prof. Marcos Waldemar de Freitas Reis, Niterói 24210-201, Brazil
- Immunopharmacology Laboratory, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
| |
Collapse
|
50
|
Hoenigl M. When disaster strikes fungi take control. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1104-1106. [PMID: 36029798 PMCID: PMC9401974 DOI: 10.1016/s2213-2600(22)00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Medical University of Graz, Graz 8036, Austria; BioTechMed Graz, Graz, Austria; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|