1
|
Thakur M, Andola HC, Silva AS. Unveiling techniques and exploring the potential of Myconutraceticals: Analyzing current applications and future prospects. Food Chem 2025; 466:142162. [PMID: 39615350 DOI: 10.1016/j.foodchem.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
The escalating demand for natural, nutritionally rich food products underscores the significance of exploring the fungal kingdom, comprising yeast, lichens, molds, and mushrooms, as an abundant reservoir of nutritionalcompounds, secondary metabolites and bioactive components. This paper delves into the nutritional profiles of lichen, yeast, and mushrooms, emphasizing their role as prominent sources of myco-nutraceuticals and functional foods. The growing popularity of eco-friendly extraction techniques for mycochemicals is noted, alongside the exploration of established methods for qualitative and quantitative mycochemical analysis. Notably, studies have affirmed that the incorporation of mushroom and yeast extracts, and their derived compounds, enhances the nutritional profile of meals without compromising desirable dietary attributes. The biological health-promoting properties inherent in extracts and chemicals are also discussed. Anticipated trends the incorporation of myconutrients into functional foods and dietary supplements are highlighted. Finally, challenges hindering the optimal utilization of myconutraceuticals are scrutinized.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India.
| | - Harish Chandra Andola
- School of Environment and Natural Resources (SENR), Doon University, Uttrakhand, India
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Jagannath S, Vinayak W, Amol M, Sandhya P, V M C, Vaibhav S, Kulkarni R. Molecular dynamics directed neuroprotective activity of alcoholic extract of Garuga pinnata Roxb. in experimental rats. J Ayurveda Integr Med 2025; 16:101032. [PMID: 39729741 PMCID: PMC11748729 DOI: 10.1016/j.jaim.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Garuga pinnata Roxb., a member of family Burseraceae, is a commonly grown plant in south east Asia including India in tropical rain forests predominately. Apart from folkloric use, important anti-inflammatory and antiasthamatic activity of this plant has been revealed. OBJECTIVE This study is aimed to know neuroprotective effects of ethanolic extracts which is based on the computationally determined NMDA as molecular target. MATERIAL AND METHODS Well dried ethanolic extract of leaves was examined for the presence of amentoflavone with LC-MS/MS which offered the fragments those mimicked the fragmentation of amentoflavone. Effect of ethanolic extract was studies by dividing experimental rat groups each consisting of six animals into sham group, control group, GPE 200 mg/kg and GPE 400 mg/kg groups and were operated for hassle free administration of colchicine. The pharmacological study involved Morris water maze test, Elevated plus maze test and Open Field Box Test. RESULTS In Morris water maze test, both the selected doses of extracts showed significant decrease in the mean escape latencies upon colchicine challenge. Similarly, in both the doses of the extract showed improved motor and grooming effects in elevated plus maze test upon colchicine injection and also significant ambulatory movements were recorded in open field box test too. CONCLUSION The ethanolic extracts of Garuga pinnata on the experimental animals showed significant restoration of the memory capacity of the tested animals, thus the computationally explored insights and pharmco-behavioral screening were quite closure to each other.
Collapse
Affiliation(s)
- Shinge Jagannath
- Department of Pharmaceutics, Shri Vitthal Education & Research Institutes, College of Pharmacy, Pandharpur, India; Department of Pharmacology, D.S.T.S. Mandal's College of Pharmacy, Solapur, India
| | - Walhekar Vinayak
- Department of Pharmaceutical Chemistry, BVDUs Poona College of Pharmacy, Pune, India
| | - Muthal Amol
- Department of Pharmacology, BVDUs Poona College of Pharmacy, Pune, India
| | - Pamu Sandhya
- Department of Pharmaceutics, Shadan Women's College of Pharmacy, Hyderabad, India
| | - Chandrashekar V M
- BVVS's Hanagal Shri Kumareshwar College of Pharmacy, BVVS Campus, Bagalkot, India
| | - Shinde Vaibhav
- Department of Pharmacology, BVDUs Poona College of Pharmacy, Pune, India
| | - Ravindra Kulkarni
- Department of Pharmaceutical Chemistry, BVDUs Poona College of Pharmacy, Pune, India.
| |
Collapse
|
3
|
Wang T, Tang C, Xiao M, Cao Z, He H, He M, Li Y, Li X. Analysis of metabolic spectrum characteristics of naturally and cultivated Ophiocordyceps sinensis based on non-targeted metabolomics. Sci Rep 2024; 14:17425. [PMID: 39075220 PMCID: PMC11286869 DOI: 10.1038/s41598-024-68306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The analysis of the differences in metabolic profiles between naturally Ophiocordyceps sinensis (NO) and cultivated Ophiocordyceps sinensis (CO) is an essential process for the medicinal value mining of Ophiocordyceps sinensis. Non-targeted metabolomics was used to compare the differences in metabolite composition and abundance between NO and CO. Total metabolite composition found that NO is rich in organic acids and derivatives, and CO is rich in lipids and lipid-like molecules. HCA found that organooxygen compounds, cinchona alkaloid, and fatty acyls had different abundances in NO and CO. The variable importance in projection value and quantitative analysis of metabolites found that NO was rich in l-iditol, malate, linoleic acid, and oleic acid; CO is rich in sucrose, perseitol, hydroquinidine, nonanoic acid, 1-hydroxy-2-naphthoic acid, hymol-β-d-glucoside, and gly-his-lys. these compounds have the potential to be biomarkers of NO and CO. KEGG enrichment analysis showed that ascorbate and aldarate metabolism, carbon metabolism, pyrimidine metabolism, and fatty acid biosynthesis were the most different metabolic pathways between NO and CO. Therefore, the analysis of the characteristics of NO and CO metabolites has reference value for finding their different medicinal functions.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Zhengfei Cao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Hui He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Yuling Li
- Qinghai Academy of Animal and Veterinary Science, Xining, 810016, China.
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China.
| |
Collapse
|
4
|
Rijia A, Krishnamoorthi R, Rasmi M, Mahalingam PU, Kim KS. Comprehensive Analysis of Bioactive Compounds in Wild Ganoderma applanatum Mushroom from Kerala, South India: Insights into Dietary Nutritional, Mineral, Antimicrobial, and Antioxidant Activities. Pharmaceuticals (Basel) 2024; 17:509. [PMID: 38675473 PMCID: PMC11054536 DOI: 10.3390/ph17040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The present study focused on the mushroom Ganoderma, which has been used in Eastern countries for centuries as a food and medicinal source. Specifically, the fruiting bodies of Ganoderma applanatum from the Kerala Forest Research Institute in Thirussur, Kerala, India, were analyzed for their nutritional and medicinal properties. The methanolic extracts of G. applanatum were used to examine secondary metabolites and proximate profiles, revealing the presence of various phytochemicals such as terpenoids, phenolics, glycosides, alkaloids, flavonoids, and saponins. Further analysis revealed the presence of significant amounts of calcium, sodium, phosphorus, and manganese. The compounds were characterized using chromatographic analysis, FTIR, and GC-MS, which revealed potential therapeutic compounds with C-H and C-O bonds in the amide group, β-glycosides, and C-C/C-O vibrations of phenolic substances. Mushroom extract at a concentration of 100 µg mL-1 exhibited potent antimicrobial activity against various pathogens. This study suggests that G. applanatum has a rich biochemical composition and pharmacological potential, making it a promising candidate for drug development and traditional medicine, and contributes valuable insights into its diverse therapeutic applications.
Collapse
Affiliation(s)
- Akbar Rijia
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul 624302, Tamil Nadu, India;
| | - Raman Krishnamoorthi
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan;
| | - Madhusoodhanan Rasmi
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul 624302, Tamil Nadu, India;
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Di Lorenzo R, Falanga D, Ricci L, Colantuono A, Greco G, Angelillo M, Nugnes F, Di Serio T, Costa D, Tito A, Laneri S. NAD-Driven Sirtuin Activation by Cordyceps sinensis Extract: Exploring the Adaptogenic Potential to Promote Skin Longevity. Int J Mol Sci 2024; 25:4282. [PMID: 38673866 PMCID: PMC11049886 DOI: 10.3390/ijms25084282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, there has been increasing interest in utilizing Traditional Chinese Medicine principles and natural bioactive compounds to combat age-related ailments and enhance longevity. A Cordyceps sinensis mycelium hydroethanolic extract (CsEx), which was standardized in cordycepin and adenosine using UHPLC-DAD, was investigated for its adaptogenic properties using in vitro assays and a double-blind, placebo-controlled clinical trial involving 40 subjects. The CsEx demonstrated activity at a concentration of 0.0006%, significantly increasing sirtuin expression (SirT1: +33%, SirT3: +10%, SirT6: +72%, vs. CTR, p < 0.05) and NAD+ synthesis in HaCat cells (+20% vs. CTR, p < 0.001). Moreover, the CsEx boosted ATP production by 68% in skin cells, correlating with higher skin energy values (+52.0% at D28, p < 0.01) in the clinical trial. Additionally, CsEx notably reduced cytosolic reactive oxygen species (ROS) by 30% in HaCaT cells (p < 0.05) and enhanced collagen production both in vitro (+69% vs. CTR, p < 0.01) and in vivo (+10% vs. D0, p < 0.01), confirmed by ultrasound examination. Furthermore, CsEx's stimulation of fibroblasts, coupled with its antioxidant and energizing properties, led to a significant reduction in wrinkles by 28.0% (D28, p < 0.001). This study underscores Cordyceps sinensis hydroethanolic extract's potential in regulating skin cell energy metabolism and positively influencing the mechanisms associated with skin longevity control.
Collapse
Affiliation(s)
- Ritamaria Di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | - Danila Falanga
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Lucia Ricci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | - Antonio Colantuono
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Giovanni Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | | | - Fiorella Nugnes
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Teresa Di Serio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| | | | - Annalisa Tito
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Naples, Italy; (D.F.); (A.C.); (F.N.); (A.T.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (T.D.S.); (S.L.)
| |
Collapse
|
6
|
Hassan M, Shahzadi S, Ransom RF, Kloczkowski A. Nature's Own Pharmacy: Mushroom-Based Chemical Scaffolds and Their Therapeutic Implications. Int J Mol Sci 2023; 24:15596. [PMID: 37958579 PMCID: PMC10647524 DOI: 10.3390/ijms242115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Mushrooms are new potential sources of valuable medicines, long neglected because of difficulties experienced in their cultivation. There is a large variety of medicinal mushrooms which possess significant therapeutic properties and are used as medications for various diseases because they contain several novel highly bioactive components. Medicinal mushrooms can be identified based on their morphology, size, mass, and the color of the stalk, cap and spore, and attachment to the stalk. Medicinal mushrooms possess a variety of important biological activities and are used as antioxidants, hepatoprotectors, anticancer, antidiabetic, anti-inflammatory, antiaging, antiviral, antiparasitic, and antimicrobial agents, among others. This review provides a basic overview of the chemical scaffolds present in mushrooms and their therapeutic implications in the human body.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | | | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
8
|
Wang S, Chen R, Yuan L, Zhang C, Liang D, Qiao J. Molecular and Functional Analyses of Characterized Sesquiterpene Synthases in Mushroom-Forming Fungi. J Fungi (Basel) 2023; 9:1017. [PMID: 37888273 PMCID: PMC10608071 DOI: 10.3390/jof9101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Sesquiterpenes are a type of abundant natural product with widespread applications in several industries. They are biosynthesized by sesquiterpene synthases (STSs). As valuable and abundant biological resources, mushroom-forming fungi are rich in new sesquiterpenes and STSs, which remain largely unexploited. In the present study, we collected information on 172 STSs from mushroom-forming fungi with experimentally characterized products from the literature and sorted them to develop a dataset. Furthermore, we analyzed and discussed the phylogenetic tree, catalytic products, and conserved motifs of STSs. Phylogenetic analysis revealed that the STSs were clustered into four clades. Furthermore, their cyclization reaction mechanism was divided into four corresponding categories. This database was used to predict 12 putative STS genes from the edible fungi Flammulina velutipes. Finally, three FvSTSs were selected to experimentally characterize their functions. FvSTS03 predominantly produced Δ-cadinol and FvSTS08 synthesized β-barbatene as the main product; these findings were consistent with those of the functional prediction analysis. A product titer of 78.8 mg/L β-barbatene was achieved in Saccharomyces cerevisiae via metabolic engineering. Our study findings will help screen or design STSs from fungi with specific product profiles as functional elements for applications in synthetic biology.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Chenyang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
| | - Dongmei Liang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| |
Collapse
|
9
|
Han B, Luo J, Xu B. Insights into the Chemical Compositions and Health Promoting Effects of Wild Edible Mushroom Chroogomphus rutilus. Nutrients 2023; 15:4030. [PMID: 37764813 PMCID: PMC10537009 DOI: 10.3390/nu15184030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chroogomphus rutilus is an edible mushroom that has been an important food source since ancient times. It is increasingly sought after for its unique flavor and medicinal value. It is one of the most important wild mushrooms for its medicinal and economic value. C. rutilus contains a variety of active ingredients such as vitamins, proteins, minerals, polysaccharides, and phenolics. C. rutilus and its active compounds have significant anti-oxidant, anti-tumor, immunomodulatory, anti-fatigue, hypoglycemic, gastroprotective, hypolipemic, and neuronal protective properties. This paper summarizes the fungal chemical compositions and health-promoting effects of C. rutilus by collecting the literature on the role of C. rutilus through its active ingredients from websites such as Google Scholar, Scopus, PubMed, and Web of Science. Current research on C. rutilus is limited to the cellular and animal levels, and further clinical trials are needed to conduct and provide theoretical support for further development.
Collapse
Affiliation(s)
- Bincheng Han
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Jinhai Luo
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| |
Collapse
|
10
|
Compositional analysis and immunomodulatory activity of blue pigment fraction (BPF) from Laba garlic. Food Chem 2023; 406:134976. [PMID: 36455311 DOI: 10.1016/j.foodchem.2022.134976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Laba garlic is a kind of garlic (Allium sativum L.) product and blue pigment fraction (BPF) is the characteristic fraction of Laba garlic. The objective of the study was to isolate BPF from Laba garlic and explore its stability, composition, antioxidant activity, and immunomodulatory activity. The results suggested BPF was unstable under alkaline conditions. Twenty-four constituents including 9 peptides and 10 saponins were detected in BPF by Q Exactive HF LC/MS anlaysis. BPF showed antioxidant activity in a dose-dependent manner. It also showed effective immunomodulatory activity at a concentration of 5 μg/mL at the cellular level and the morphology of RAW 264.7 cells changed to a polygonal and dendritic-like structure. BPF could significantly increase NO production (P < 0.05), and up-regulate the mRNA levels of TNF-α, IL-6, iNOS and NF-κB in the RT-QPCR analysis. The present study systematically analyzed the compositions of BPF for the first time, and the results suggested that BPF might be a potential immunomodulator candidate, which is beneficial for the development and application of garlic products and natural pigments.
Collapse
|
11
|
Risoli S, Nali C, Sarrocco S, Cicero AFG, Colletti A, Bosco F, Venturella G, Gadaleta A, Gargano ML, Marcotuli I. Mushroom-Based Supplements in Italy: Let's Open Pandora's Box. Nutrients 2023; 15:nu15030776. [PMID: 36771482 PMCID: PMC9919834 DOI: 10.3390/nu15030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mushrooms and derivates are well known to the scientific community for having different health benefits and exhibit a wide range of pharmacological activities, including lipid-lowering, antihypertensive, antidiabetic, antimicrobic, antiallergic, anti-inflammatory, anticancer, immunomodulating, neuroprotective and osteoprotective actions. In Europe, medical mushrooms are mainly marketed in the form of food supplements as single components or combined with other nutraceuticals. In this context, the first peculiarity that distinguishes it is the safety established through the "history of consumption" that characterizes that mushroom. However, the cultivation of medicinal mushrooms on a large scale is performed mainly in China, where most of the production facilities do not have internationally recognized good manufacturing practices, despite that many European companies that sell myotherapies are supplied by Chinese manufacturers. This is particularly evident in Italy, where an arsenal of mushroom products is marketed in the form of powders and extracts not always of ascertained origin and sometimes of doubtful taxonomic identification, and thus not meeting the quality criteria required. The growing interest in mycotherapy involves a strong commitment from the scientific community to propose supplements of safe origin and genetic purity as well as to promote clinical trials to evaluate its real effects on humans. The purpose of this research is to analyze different mushroom-based dietary supplements used in medicine as monotherapy on the Italian market and to evaluate their composition and quality. The molecular identification of the sequences with those deposited in GenBank allowed for identifying 6 out of 19 samples, matching with those deposited belonging to the species indicated in the label, i.e., Lentinula edodes (samples 1, 4, 12 and 18) and Ganoderma lucidum (samples 5 and 10). Samples containing Ganoderma, labeled in the commercial product as G. lucidum, showed sequences that showed homology of 100% and 99% with G. resinaceum and G. sichuanense. An additional investigation was carried out in order to determine the active fungal ingredients, such as ergosterol, aflatoxins, heavy metals, nicotine and total glucan. The results obtained and shown in the manuscript highlight how the data were not only in line with what is expected with respect to what is indicated in the labels.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Arrigo Francesco Giuseppe Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy
- IRCCS AOU S. Orsola di Bologna, 40126 Bologna, Italy
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-345-589-8928
| | - Filippo Bosco
- U.O. Anesthesia and Intensive Care MiSC, AOUP Complementary Medicine Oncology Integrated, University Hospital Trust of Pisa, 56126 Pisa, Italy
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Agata Gadaleta
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Ilaria Marcotuli
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
12
|
Hypsizygus marmoreus as a Source of Indole Compounds and Other Bioactive Substances with Health-Promoting Activities. Molecules 2022; 27:molecules27248917. [PMID: 36558049 PMCID: PMC9785099 DOI: 10.3390/molecules27248917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypsizygus marmoreus is an edible medicinal mushroom species with a high dietary value. In this study, the fruiting bodies of commercial and self-cultivated crops and mycelium from in vitro H. marmoreus cultures (both white and brown varieties) were evaluated. This study aimed to analyze the presence of indole compounds and other biologically active substances and determine the effect that the addition of zinc and magnesium ions to the culture medium has on the content of the tested compounds in mycelial cultures. The content of indole compounds and other organic compounds was determined using high-performance liquid chromatography, the content of bioelements was determined using flame atomic absorption spectrometry, the glucan content was determined spectrophotometrically, and the antioxidant activity of extracts was estimated using DPPH, FRAP, and ABTS methods. The results showed that H. marmoreus mycelium from in vitro cultures is a good source of indole compounds, bioelements, glucans, and lovastatin. Mycelia from in vitro cultures showed the most diverse composition of indole compounds (L-tryptophan, 5-hydroxy-L-tryptophan, tryptamine, 5-methyltryptamine, and melatonin). Additionally, in vitro cultures of H. marmoreus enriched with Zn and Mg salts increased the contents of Na, Ca, Zn, 5-methyltryptamine, melatonin, protocatechuic acid, sterols, and total glucans. Only in the case of the white variety of mycelial enriched cultures, ergothioneine and Mg levels also increased. To summarize, the content of the active compounds differed depending on the H. marmoreus variety and the tested material.
Collapse
|
13
|
Aslaminabad R, Rahimianshahreza N, Hosseini SA, Armagan G, Khan AK, Özbolat G, Ahmed OS, Mardi Azar A, Adili A, Dağcı T, Konyalıoğlu S, Özgönül AM. Regulation of Nrf2 and Nrf2-related proteins by ganoderma lucidum ın hepatocellular carcinoma. Mol Biol Rep 2022; 49:9605-9612. [PMID: 36038810 DOI: 10.1007/s11033-022-07862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND HCC is among the most common cancer. Ganoderma lucidum (G.lucidum) has been essential in preventing and treating cancer. The Nrf2 signaling cascade is a cell protective mechanism against further damage, such as cancer development. This signaling pathway upregulates the cytoprotective genes and is vital in eliminating xenobiotics and reactive oxygen. This study aimed to show the potential cytotoxic activity of G. lucidum aqueous extract in HCC. METHODS AND RESULTS MTT assay was used to detect cell viability. Nrf2-related proteins were measured by western blotting, and the flow cytometry method assayed cell population in different cycle phases. Cell viability was 49% and 47% following G. lucidum extract at 100 µg/ml at 24 and 48 h treatments, respectively. G. lucidum extract (aqueous, 100 or 50 µg/ml) treatments for 24, 48, or 72 h were able to significantly change the cytoplasmic/nuclear amount of Nrf2 and HO-1, NQO1 protein levels. Moreover, at both concentrations, arrest of the G0/G1 cell cycle was stimulated in HCC. CONCLUSIONS The activation of the Nrf2 signaling pathways seems to be among the mechanisms underlining the protective and therapeutic action of G. lucidum against HCC.
Collapse
Affiliation(s)
- Ramin Aslaminabad
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Negin Rahimianshahreza
- Department of Pharmacology and Toxicology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Amirhossein Hosseini
- Department of Genetics, Faculty of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Kashif Khan
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | | | - Omar Saad Ahmed
- Department of Physical Education and Sports Sciences, Al-Turath University College, Baghdad, Iraq
| | - Amir Mardi Azar
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA.,Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taner Dağcı
- Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sibel Konyalıoğlu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
14
|
Krishnamoorthi R, Srinivash M, Mahalingam PU, Malaikozhundan B. Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
El Sheikha AF. Nutritional Profile and Health Benefits of Ganoderma lucidum "Lingzhi, Reishi, or Mannentake" as Functional Foods: Current Scenario and Future Perspectives. Foods 2022; 11:1030. [PMID: 35407117 PMCID: PMC8998036 DOI: 10.3390/foods11071030] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum has a long history of medicinal uses in the Far East countries of more than 2000 years due to its healing properties. Recently, G. lucidum has come under scientific scrutiny to evaluate its content of bioactive components that affect human physiology, and has been exploited for potent components in the pharmacology, nutraceuticals, and cosmetics industries. For instance, evidence is accumulating on the potential of this mushroom species as a promising antiviral medicine for treating many viral diseases, such as dengue virus, enterovirus 71, and recently coronavirus disease of 2019 (COVID-19). Still, more research studies on the biotherapeutic components of G. lucidum are needed to ensure the safety and efficiency of G. lucidum and promote the development of commercial functional foods. This paper provides an extensive overview of the nutraceutical value of Ganoderma lucidum and the development of commercial functional food. Moreover, the geo-origin tracing strategies of this mushroom and its products are discussed, a highly important parameter to ensure product quality and safety. The discussed features will open new avenues and reveal more secrets to widely utilizing this mushroom in many industrial fields; i.e., pharmaceutical and nutritional ones, which will positively reflect the global economy.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China;
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON K1N 6N5, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom 32511, Egypt
| |
Collapse
|
16
|
In Memory of Professor Kuo-Hsiung Lee (K. H. Lee). J Tradit Complement Med 2022. [DOI: 10.1016/j.jtcme.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Singh MP, Rai SN, Dubey SK, Pandey AT, Tabassum N, Chaturvedi VK, Singh NB. Biomolecules of mushroom: a recipe of human wellness. Crit Rev Biotechnol 2021; 42:913-930. [PMID: 34412526 DOI: 10.1080/07388551.2021.1964431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Indian system of medicine - Ayurveda says "When diet is wrong, medicine is of no use. When diet is correct, medicine is of no use". In this context, mushroom constitutes one of the major resources for nutraceuticals. Biomolecules of mushrooms have attracted the attention of researchers around the globe due to their proven healthy attributes. They have a plenitude of health-giving properties and these range from immunomodulatory, antiviral, antibacterial, antifungal, antioxidant, anti-inflammatory, antitumor, anticancer, anti-HIV, antidiabetic, anticholesterolic to antiarthritic activities.Mushrooms contain both primary and secondary metabolites. The primary metabolites provide energy while the secondary metabolite exhibits medicinal properties. Hence, the mushroom can be a recipe for human wellness and will play a significant role in fighting COVID-19 pandemics and other infectious diseases.The key findings suggested in this paper refer to the exploration of health and the healing traits of biomolecules of mushrooms. This article reviews the current status of the medicinal attributes of mushrooms and their biomolecules in different diseases such as cardiovascular, diabetes, reproductive diseases, cancer, and neurodegenerative diseases. The global malnutrition-related morbidity and mortality among children under five and lactating women presents a frightening picture and also a black spot on the human face. Malnutrition is responsible for more ill-health than any other cause. Mushrooms as a rich source of bioactive compounds can be claimed as "Best from the Waste" since they grow on the most abundant organic wastes of the Earth, the lignocellulosic substrate, and 'Best of the Rest' because they are excellent nutraceutical resources.
Collapse
Affiliation(s)
| | | | | | | | - Nazish Tabassum
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Narsingh Bahadur Singh
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA.,Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
| |
Collapse
|
18
|
Panda MK, Paul M, Singdevsachan SK, Tayung K, Das SK, Thatoi H. Promising Anti-cancer Therapeutics From Mushrooms: Current Findings and Future Perceptions. Curr Pharm Biotechnol 2021; 22:1164-1191. [PMID: 33032507 DOI: 10.2174/1389201021666201008164056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, medicines derived from natural sources have drawn much attention as potential therapeutic agents in the suppression and treatment of cancer because of their low toxicity and fewer side effects. OBJECTIVE The present review aims to assess the currently available knowledge on the ethnomedicinal uses and pharmacological activities of bioactive compounds obtained from medicinal mushrooms towards cancer treatment. METHODS A literature search has been conducted for the collection of research papers from universally accepted scientific databases. These research papers and published book chapters were scrutinized to retrieve information on ethnomedicinal uses of mushrooms, different factors involved in cancer cell proliferation, clinical and in silico pharmaceutical studies made for possible treatments of cancer using mushroom derived compounds. Overall, 241 articles were retrieved and reviewed from the year 1970 to 2020, out of which 98 relevant articles were finally considered for the preparation of this review. RESULTS This review presents an update on the natural bioactive substances derived from medicinal mushrooms and their role in inhibiting the factors responsible for cancer cell proliferation. Along with it, the present review also provides information on the ethnomedicinal uses, solvents used for extraction of anti-cancer metabolites, clinical trials, and in silico studies that were undertaken towards anticancer drug development from medicinal mushrooms. CONCLUSION The present review provides extensive knowledge on various anti-cancer substances obtained from medicinal mushrooms, their biological actions, and in silico drug designing approaches, which could form a basis for the development of natural anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mrunmaya K Panda
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Manish Paul
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Sameer K Singdevsachan
- Spinco Biotech Pvt. Ltd., Spinco Towers, No. 934, 5th A cross, Service Road, HRBR Layout 1st Block, Kalyan Nagar, Bengaluru-560043, Karnataka, India
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati-781014, Assam, India
| | - Swagat K Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar- 751003, Odisha, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| |
Collapse
|
19
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|
20
|
Chen HW, Yu YH. Effect of Ganoderma lucidum extract on growth performance, fecal microbiota, and bursal transcriptome of broilers. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
A Pilot Study to Assess Food Safety and Potential Cholesterol-Lowering Efficacy of Antrodia cinnamomea Solid-State Cultivated Mycelium in Healthy Adults. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5865764. [PMID: 32351598 PMCID: PMC7171625 DOI: 10.1155/2020/5865764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Antrodia cinnamomea is a Taiwanese medicinal mushroom with multiple pharmacological activities. Antrodia cinnamomea solid-state cultivated mycelium (LAC) exerts health-related effects in animal and cell models, but clinical data is limited. This study aimed to determine the safety and effects of LAC on human physiological functions. In an open-label, single-arm study, 32 healthy men and women ingested LAC capsules for three months. The subjects were monitored during the study and one month after the study end-point. LAC consumption did not significantly change fasting blood glucose, blood pressure, and triglyceride levels or liver and renal function indices. No adverse events occurred during the trial. Moreover, a significant change from baseline in total cholesterol levels was observed; men and women had decreases of 5.7% and 5.3%, respectively. Based on these, the ingestion of LAC-capsule has a considerable degree of safety and has the potential to reduce total cholesterol in healthy adults.
Collapse
|
22
|
Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, Zempleni J, Kachman SD, Natarajan SK, Yu J. Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice. Nutrients 2020; 12:nu12020477. [PMID: 32069862 PMCID: PMC7071144 DOI: 10.3390/nu12020477] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatic failure (FHF) is a rare, life-threatening liver disease with a poor prognosis. Administration of D-galactosamine (GalN) and lipopolysaccharide (LPS) triggers acute liver injury in mice, simulating many clinical features of FHF in humans; therefore, this disease model is often used to investigate potential therapeutic interventions to treat FHF. Recently, suppression of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome, was shown to alleviate the severity of GalN/LPS-induced liver damage in mice. Therefore, the goal of this study was to find dietary exosome-like nanoparticles (ELNs) with therapeutic potential in curbing FHF by suppressing the NLRP3 inflammasome. Seven commonly consumed mushrooms were used to extract ELNs. These mushrooms were found to contain ELNs composed of RNAs, proteins, and lipids. Among these mushroom-derived ELNs, only shiitake mushroom-derived ELNs (S-ELNs) substantially inhibited NLRP3 inflammasome activation by preventing inflammasome formation in primary macrophages. S-ELNs also suppressed the secretion of interleukin (IL)-6, as well as both protein and mRNA levels of the Il1b gene. Remarkably, pre-treatment with S-ELNs protected mice from GalN/LPS-induced acute liver injury. Therefore, S-ELNs, identified as potent new inhibitors of the NLRP3 inflammasome, represent a promising class of agents with the potential to combat FHF.
Collapse
Affiliation(s)
- Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Yizhu Lu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Xingyi Chen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Xingzhi Li
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Mahesh Pattabiraman
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Stephen D. Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (B.L.); (Y.L.); (X.C.)
- Correspondence: ; Tel.: +1-402-472-7013
| |
Collapse
|
23
|
|
24
|
Yang H, Bai X, Zhang H, Zhang J, Wu Y, Tang C, Liu Y, Yang Y, Liu Z, Jia W, Wang W. Antrodin C, an NADPH Dependent Metabolism, Encourages Crosstalk between Autophagy and Apoptosis in Lung Carcinoma Cells by Use of an AMPK Inhibition-Independent Blockade of the Akt/mTOR Pathway. Molecules 2019; 24:E993. [PMID: 30870998 PMCID: PMC6429145 DOI: 10.3390/molecules24050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
The current study aims to explore the possible anti-lung carcinoma activity of ADC as well as the underlying mechanisms by which ADC exerts its actions in NSCLC. Findings showed that ADC potently inhibited the viability of SPCA-1, induced apoptosis triggered by ROS, and arrested the cell cycle at the G2/M phase via a P53 signaling pathway. Interestingly, phenomena such as autophagosomes accumulation, conversion of the LC3-I to LC3-II, etc., indicated that autophagy could be activated by ADC. The blockage of autophagy-augmented ADC induced inhibition of cell proliferation, while autophagy activation restored cell death, indicating that autophagy had a protective effect against cell death which was induced by ADC treatment. Meanwhile, ADC treatment suppressed both the Akt/mTOR and AMPK signaling pathways. The joint action of both ADC and the autophagy inhibitor significantly increased the death of SPCA-1. An in vitro phase I metabolic stability assay showed that ADC was highly metabolized in SD rat liver microsomes and moderately metabolized in human liver microsomes, which will assist in predicting the outcomes of clinical pharmacokinetics and toxicity studies. These findings imply that blocking the Akt/mTOR signaling pathway, which was independent of AMPK inhibition, could activate ADC-induced protective autophagy in non-small-cell lung cancer cells.
Collapse
Affiliation(s)
- Hairui Yang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- WuXi App Tec Co, Ltd., Shanghai 200131, China.
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Xu Bai
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Henan Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Chuanhong Tang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yanfang Liu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhendong Liu
- Food Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Wei Jia
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Wenhan Wang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
25
|
Wang G, Wang L, Zhou J, Xu X. The Possible Role of PD-1 Protein in Ganoderma lucidum-Mediated Immunomodulation and Cancer Treatment. Integr Cancer Ther 2019; 18:1534735419880275. [PMID: 31595795 PMCID: PMC6876169 DOI: 10.1177/1534735419880275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background:Ganoderma lucidum has been used in Chinese medicine for thousands years to improve health and to promote longevity. One important function of G lucidum is to modulate the immune system. However, the underlying mechanism is not well understood. Programmed cell death protein 1 (PD-1) is a cell surface protein present in certain immune cells (eg, B- and Tcells) and plays an important role in modulating the immune response. The role of PD-1 protein in G lucidum-mediated immunomodulation is unknown. Methods: Cultured human Blymphocytes and extract prepared from G lucidum spores (GLE) were used to determine PD-1 protein in G lucidum-mediated immunomodulation. Both western blotting and immunofluorescence (IF) microscopy assays were used to determine the effect of GLE treatment on PD-1 protein expression. A reverse transcription-based quantitative polymerase chain reaction (real-time PCR) assay was used to determine the effect of GLE on transcription of pdcd-1 gene. Results: Both our western blotting and IF staining results demonstrated great reduction in PD-1 protein and in proportion of PD-1+ cells in these B-lymphocytes. Our real-time PCR results indicated that this PD-1 protein reduction was not caused by a transcriptional inhibition of the gene. In addition, our western blotting study further revealed that the GLE treatment caused an increase in expression of CCL5 chemokine in the cultured B-lymphocytes. Conclusions: PD-1 protein is an important target of G lucidum-mediated immunomodulation. G lucidum and its bioactive compounds can be developed into novel immunomodulators for prevention and treatment of cancer and many other diseases.
Collapse
Affiliation(s)
- Gan Wang
- Wayne State University, Detroit, MI,
USA
| | - Le Wang
- Wayne State University, Detroit, MI,
USA
| | - Jianlong Zhou
- Longevity Valley Pharmaceuticals Co Ltd,
Wuyi, Zhejiang Province, People’s Republic of China
| | - Xiaoxin Xu
- Lutuo Pharmaceuticals Inc, Jinan,
Shandong Province, People’s Republic of China
| |
Collapse
|
26
|
Comparative genome and transcriptome analysis reveal the medicinal basis and environmental adaptation of artificially cultivated Taiwanofungus camphoratus. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1391-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Sun J, Zhang J, Wang Y. Multivariate characterization of elements accumulated in Wolfiporia extensa mushroom from Yunnan province of China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:206-213. [PMID: 28121272 DOI: 10.1080/03601234.2017.1261552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dried sclerotia of Wolfiporia extensa have been used as medicine in Asia from Eastern Han Dynasty, and also used as traditional snack called "fulingjiabing" in Beijing, China. In this paper, 18 macro and trace elements (Ag, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Se, Sr, V, and Zn) in both flesh and peel of Wolfiporia extensa from seven sites of Yunnan province in China were determined by inductively coupled plasma mass spectrometer. The average recovery rates of certified reference materials for GBW10015 (spinach leaves) ranged from 90.5 to 113%, for GBW10028 (citrus leaves) from 92.8 to 106%, and for GBW07603 (bush branch and leaves) from 83.3 to 114.6%. Generally speaking, the concentration of all elements determined was at common level. The results of this survey indicate that mineral compositions in peel were higher than in flesh. In peel, the contents of investigated trace metals in mushroom samples were found to be in the range of 1,660-13,400 µg·g-1 dry matter (dm) for Fe and 29.6-710 µg·g-1 dm for Mn. The mean contents of Cr, Cu, Rb, V, and Zn in peel were between 10 and 20 µg·g-1 dm, followed by As, Co, Li, Ni, Pb, Se, and Sr with mean contents between 1 and 10 µg·g-1 dm, while Ag, Cd, and Cs had mean contents of <1 µg·g-1 dm. In flesh, the concentration of Fe was in the range of 54-900 µg·g-1 dm, and it was 1.5-49 µg·g-1 dm for Mn, followed by Ba, Cu, Rb, and Zn in the range of 1 to 10 µg·g-1 dm, while for Ag, As, Cd, Co, Cr, Cs, Li, Ni, Pb, Se, Sr, and V it was <1 µg·g-1 dm. The concentration of toxic elements, such as As, Cd, and Pb, in both flesh and peel was below the permissible limits of World Health Organization. However, As and Pb contents in peel were higher than the limits permitted in the Chinese Pharmacopoeia. The results of principal component analysis showed that the flesh of Wolfiporia extensa from all the seven sites of the Yunnan province tend to cluster together, most probably because the origin of mineral elements in both flesh and peel is wood substrate (old and dead pine trees).
Collapse
Affiliation(s)
- Jing Sun
- a Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences , Kunming , China
- b College of Traditional Chinese Medicine , Yunnan University of Traditional Chinese Medicine , Kunming , China
| | - Ji Zhang
- b College of Traditional Chinese Medicine , Yunnan University of Traditional Chinese Medicine , Kunming , China
| | - Yuanzhong Wang
- b College of Traditional Chinese Medicine , Yunnan University of Traditional Chinese Medicine , Kunming , China
| |
Collapse
|
28
|
Wang J, Wan X, Gao Y, Zhong M, Sha L, Liu B, Zhang W, Tian L, Ruan W, Cao S, Huang M. Latcripin-13 domain induces apoptosis and cell cycle arrest at the G1 phase in human lung carcinoma A549 cells. Oncol Rep 2016; 36:441-7. [PMID: 27221765 DOI: 10.3892/or.2016.4830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
Latcripin-13 domain, isolated from the transcriptome of Lentinula edodes C91-3, contains a regulator of chromosome condensation (RCC1) domain/β-lactamase-inhibitor protein II (BLIP-II) and a plant homeodomain (PHD). Latcripin-13 domain has been shown to have antitumor effects. However, the underlying molecular pharmacology is largely unknown. We report here that Latcripin-13 domain induced cell cycle arrest in the G1 phase and caused the apoptosis of human lung carcinoma A549 cells via the GSK3β-cyclin D1 and caspase-8/NF-κB signaling pathways. Western blot analysis showed that Latcripin-13 domain decreased cyclin D1 and cyclin-dependent kinase 4 (CDK4), while it increased the ratio of GSK3β/phosphorylated GSK3β. Importantly, Latcripin-13 domain induced nuclear fragmentation and chromatin condensation in the A549 cells. In addition, treatment of the A549 cells with Latcripin-13 domain resulted in the loss of mitochondrial membrane potential, accompanied by an increase in the Bax/Bcl-2 ratio and activation of caspase-3, -8, and -9. Intriguingly, western blot analysis revealed that NF-κB was significantly downregulated by Latcripin-13 domain. These results demonstrated that Latcripin-13 domain induced apoptosis and cell cycle arrest at G1 phase in the A549 cells, providing a mechanism for the antitumor effects of Latcripin-13 domain.
Collapse
Affiliation(s)
- Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Yifan Gao
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mintao Zhong
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li Sha
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ben Liu
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wei Zhang
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li Tian
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wenjing Ruan
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuyun Cao
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Min Huang
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
29
|
Li F, He X, Niu W, Feng Y, Bian J, Xiao H. Acute and sub-chronic toxicity study of the ethanol extract from leaves of Aralia elata in rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:499-508. [PMID: 26456344 DOI: 10.1016/j.jep.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/27/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aralia elata Seem. (A. elata) is a well-known medicinal plant which has been used as a tonic, anti-arthritic and anti-diabetic agent in traditional Chinese medicine. This investigation aimed to evaluate the potential toxicological properties of the ethanol extract from leaves of A. elata, namely ethanol leaves extract (ELE), in rats by acute and sub-chronic toxicity studies. MATERIALS AND METHODS In the acute toxicity study, rats were orally administrated with ELE at doses of 1.00, 2.15, 4.64, and 10.00 g/kg to determine the oral medial lethal dose (LD50). Abnormal behavior, toxic symptom, and death were observed for 14 consecutive days. In the sub-chronic toxicity study, rats were orally administrated with ELE at doses of 0, 60, 180, and 540 mg/kg for 12 weeks and followed-up a 4-week recovery period. At the end of the treatment and recovery periods, the rats were sacrificed for hematological, biochemical, and histopathology analyses. RESULTS The acute toxicity study showed that oral administration of ELE induced the incidence of adverse effects. The death rate also increased in a dose-dependent manner. The LD50 value was 3.16 g/kg for female rats, and 5.84 g/kg for male rats, respectively. The sub-chronic toxicity study showed that daily oral administration of ELE induced no significant difference in food consumption. However, the body weight of male rats in high dose group increased slowly compared with the control group during the recovery period. The hematological and biochemical analysis showed that compared with the control group, HGB and MCV levels were significantly increased in ELE treatment groups at the end of the treatment period, while TP and GLB levels were significantly decreased at the end of the recovery period. The absolute and relative weight of thymus, brain and adrenal gland showed a significant difference in low or high dose group at the end of the treatment period, although no histological changes were observed in various organs. CONCLUSION The results of this study provided evidence that oral administration of ELE at dose of 540 mg/kg is safe in rats and may not exert severe toxic effects.
Collapse
Affiliation(s)
- Fengjin Li
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoli He
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenying Niu
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuenan Feng
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jingqi Bian
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hongbin Xiao
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
30
|
Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, Koverech G, Luca M, Serra A, Toscano MA, Petralia A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer's disease pathogenesis. Neurotoxicology 2015; 53:350-358. [PMID: 26433056 DOI: 10.1016/j.neuro.2015.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is an early pathological feature in neurodegenerative diseases. As a prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a potential neurohormetic target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and lipoxin A4. Emerging interest is now focusing on molecules capable of activating the vitagene system as novel therapeutic targets to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. Mushroom-derived lipoxin A4 (LXA4) is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as rich source of polysaccharopeptides endowed with significant antitumor, antioxidant, antiviral, antibacterial and cytoprotective effects, thereby capable of stimulating host immune responses. Here we provide evidence of a neuroprotective action of the Coriolus mushroom when administered orally to rat. Expression of LXA4 was measured in different brain regions after oral administration of a Coriolus biomass preparation, given for 30 days. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, heme oxygenase-1 and thioredoxin. In the brain of rats receiving Coriolus, maximum induction of LXA4 was observed in cortex and hippocampus. Hsps induction was associated with no significant changes in IkBα, NFkB and COX-2 brain levels. Conceivably, activation of LXA4 signaling and modulation of stress-responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Collapse
Affiliation(s)
- A Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - R Siracusa
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - R Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - M Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - V Fronte
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - G Koverech
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Luca
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Serra
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - M A Toscano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Petralia
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - S Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - V Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
31
|
Kües U, Nelson DR, Liu C, Yu GJ, Zhang J, Li J, Wang XC, Sun H. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles. PHYTOCHEMISTRY 2015; 114:18-37. [PMID: 25682509 DOI: 10.1016/j.phytochem.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of Ganoderma species. The current review carries out a detailed comparison of the nuclear genomes, mitochondrial genomes and transcriptomes from several Ganoderma species. Genes involved in biosynthetic pathways such as CYP450 genes and in cellular development such as matA and matB genes are characterized and compared in detail, as examples to demonstrate the usefulness of comparative genomic analyses for the identification of critical genes. Resources needed for future data integration and exploitation are also discussed.
Collapse
Affiliation(s)
- Ursula Kües
- University of Göttingen, Büsgen-Institute, Department for Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, D-37077 Göttingen, Germany
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Guo-Jun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
| | - Jianhui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jianqin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xin-Cun Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
| |
Collapse
|