1
|
Qu Y, Guo B, Zhao S, Sun J, Cao J, Xia M, Zhong Z, Meng F. Photothermal treatment of prostate tumor with micellar indocyanine green and napabucasin to co-ablate cancer cells and cancer stem cells. J Control Release 2025; 382:113704. [PMID: 40194599 DOI: 10.1016/j.jconrel.2025.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Advanced prostate cancer is hassled by relapse and metastasis that are closely associated with cancer stem cells (CSCs). Here, we present micellar indocyanine green and napabucasin (mICG-Nap) that co-ablates cancer cells and CSCs via photothermal therapy (PTT) for the treatment of prostate tumor. mICG-Nap with stable loading of both drugs and favorable size effectively reduced CSC population in RM1-PSMA murine prostate cancer cells and inhibited tumor spheroid formation. mICG-Nap showed an enhanced photothermal effect compared with free ICG and eliminated tumor spheroids under near-infrared (NIR) irradiation. The efficacy of mICG-Nap was further enhanced by decorating with Acupa ligand, which targets to RM1-PSMA cells and tumors via PSMA receptor. The enhanced tumor cell uptake of Acupa-mICG-Nap led to significant survival benefits in both subcutaneous RM1-PSMA tumor models and postoperative models. The tumor analyses demonstrated clear downregulation of CSC-related biomarkers such as OCT4, SOX2, CD133 and pSTAT3 as well as PSMA by Acupa-mICG-Nap. Rational formulated micellar indocyanine green and napabucasin plus NIR appears as an appealing strategy to co-ablate cancer cells and CSCs with rapid tumor de-bulking yet no recurrence.
Collapse
Affiliation(s)
- Yanyi Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Jun Cao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Mingyu Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
2
|
Kingstad-Bakke B, Lee W, Yount BL, Cleven T, Park H, Sullivan JA, Baric RC, Suresh M. Effector CD8 T cell differentiation in primary and breakthrough SARS-CoV-2 infection in mice. Commun Biol 2025; 8:392. [PMID: 40057586 PMCID: PMC11890755 DOI: 10.1038/s42003-025-07820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The nature of the effector and memory T cell response in the lungs following acute SARS-CoV-2 infections remains largely unknown. To define the pulmonary T-cell response to COVID-19, we compared effector and memory T-cell responses to SARS-CoV-2 and influenza A virus (IAV) in mice. Both viruses elicited potent effector T cell responses in lungs, but memory T cells showed exaggerated contraction in SARS-CoV-2-infected mice. Specifically, unlike the T-bet/EOMES-driven effector transcription program in IAV lungs, SARS-CoV-2-specific CD8 T cells embarked on a STAT-3-centric transcriptional program, a defining characteristic of a pro-fibro-inflammatory program: limited cytotoxicity, diminished expression of tissue-protective inhibitory receptors (PD-1, LAG-3, and TIGIT), and augmented mucosal imprinting (CD103). Circulating CD45RO+HLA-DR+ CD8 T cells in hospitalized COVID-19 patients expressed elevated levels of STAT-3 and low levels of TIGIT. IL-6 blockade experiments implicated IL-6 in STAT-3 induction and downregulation of PD-1 expression on SARS-CoV-2-specific primary effector CD8 T cells. Memory CD8 T cells specific to a single epitope, induced by mucosal vaccination, differentiated into cytotoxic effectors and expressed high levels of CD103, effectively reducing viral burden in lungs following a breakthrough SARS-CoV-2 infection. Our findings have implications for developing targeted immunotherapies to mitigate immunopathology and promote protective T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph C Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Gallitto M, Zhang X, De Los Santos G, Wei HJ, Fernández EC, Duan S, Sedor G, Yoh N, Kokossis D, Angel JC, Wang YF, White E, Kinslow CJ, Berg X, Tomassoni L, Zandkarimi F, Chio IIC, Canoll P, Bruce JN, Feldstein NA, Gartrell RD, Cheng SK, Garvin JH, Zacharoulis S, Wechsler-Reya RJ, Pavisic J, Califano A, Zhang Z, Wu CC. Targeted delivery of napabucasin with radiotherapy improves outcomes in diffuse midline glioma. Neuro Oncol 2025; 27:795-810. [PMID: 39394920 PMCID: PMC11889722 DOI: 10.1093/neuonc/noae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Diffuse midline glioma (DMG) is the most aggressive primary brain tumor in children. All previous studies examining the role of systemic agents have failed to demonstrate a survival benefit; the only standard of care is radiation therapy (RT). Successful implementation of radiosensitization strategies in DMG remains an essential and promising avenue of investigation. We explore the use of Napabucasin, an NAD(P)H quinone dehydrogenase 1 (NQO1)-bioactivatable reactive oxygen species (ROS)-inducer, as a potential therapeutic radiosensitizer in DMG. METHODS In this study, we conduct in vitro and in vivo assays using patient-derived DMG cultures to elucidate the mechanism of action of Napabucasin and its radiosensitizing properties. As penetration of systemic therapy through the blood-brain barrier (BBB) is a significant limitation to the success of DMG therapies, we explore focused ultrasound (FUS) and convection-enhanced delivery (CED) to overcome the BBB and maximize therapeutic efficacy. RESULTS Napabucasin is a potent ROS-inducer and radiosensitizer in DMG, and treatment-mediated ROS production and cytotoxicity are dependent on NQO1. In subcutaneous xenograft models, combination therapy with RT improves local control. After optimizing targeted drug delivery using CED in an orthotopic mouse model, we establish the novel feasibility and survival benefit of CED of Napabucasin concurrent with RT. CONCLUSIONS As nearly all DMG patients will receive RT as part of their treatment course, our validation of the efficacy of radiosensitizing therapy using CED to prolong survival in DMG opens the door for exciting novel studies of alternative radiosensitization strategies in this devastating disease while overcoming limitations of the BBB.
Collapse
Affiliation(s)
- Matthew Gallitto
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Xu Zhang
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA
| | - Genesis De Los Santos
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Hong-Jian Wei
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, 24016, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Ester Calvo Fernández
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shoufu Duan
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Geoffrey Sedor
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Nina Yoh
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Danae Kokossis
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - J Carlos Angel
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, New York, USA
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Erin White
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Connor J Kinslow
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Xander Berg
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- DarwinHealth Inc., New York, NYUSA
| | | | - Iok In Christine Chio
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Neil A Feldstein
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Simon K Cheng
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - James H Garvin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Stergios Zacharoulis
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert J Wechsler-Reya
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Jovana Pavisic
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Chan Zuckerberg Biohub New York, New York, New York, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
- Department of Medicine, Columbia University, New York, New YorkUSA
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Zhiguo Zhang
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York, USA
| | - Cheng-Chia Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
- The Brain Tumor Institute, Children's National Hospital, Washington, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, 20010, USA
| |
Collapse
|
4
|
Ghosh R, Bhowmik A, Biswas S, Samanta P, Sarkar R, Pakhira S, Mondal M, Hajra S, Saha P. Natural flavonoid Orientin restricts 5-Fluorouracil induced cancer stem cells mediated angiogenesis by regulating HIF1α and VEGFA in colorectal cancer. Mol Med 2025; 31:85. [PMID: 40045186 PMCID: PMC11881437 DOI: 10.1186/s10020-024-01032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Cancer stem cells are a small subpopulation of cells which are responsible for tumor metastasis, angiogenesis, drug resistance etc. 5-Fluorouracil (5FU), a common therapeutic drug used in colorectal cancer treatment is reported to enrich CSCs, tumor recurrence and induces severe organ toxicities resulting in poor clinical outcome in patients. Therefore, we introduced a natural flavonoid Orientin in combination with 5FU to mitigate the CSC mediated angiogenesis and induced toxicities. METHODS Tumorosphere generation, flow cytometry, immunofluorescence assay, and western blotting were performed by using 5FU and Orientin individually and both treated colorectal cells and CSCs. In silico study was carried out to check the interaction between HIF1α and Orientin. In ovo chorioallantoic membrane (CAM) assay and tube formation assay using HUVECs were performed to monitor CSC mediated angiogenesis. In vivo CT26 syngeneic mice model was used to validate in silico and ex vivo results. RESULTS We found that 5FU treatment significantly increased the CD44+/CD133+ CSC population. In contrast, this CSC population in CSC enriched spheres (CES) derived from HCT116 cells were decreased by combination of Orientin and 5FU. Decrease of CSC's stemness properties was also noted, as evidenced by the downregulation of NANOG, SOX2 and OCT4. This new therapeutic strategy also inhibited CSC mediated angiogenesis by downregulating 5FU induced ROS, NO and LPO in those tumorospheres. Combination of Orientin and 5FU significantly reduced CSC mediated angiogenesis in HUVEC and CAM. Additionally, in silico study predicted that Orientin can bind to the PAS domain of HIF1α, a crucial factor for promoting angiogenesis. Expression of HIF1α and VEGFA were also decreased when the CESs were exposed to the combinatorial treatment. Additionally, we found that treatment with 5FU alone resulted reduction in tumor volume but it enriched CSCs and produced nephrotoxicity and hepatotoxicity in vivo. Combined treatment also considerably reduced the CD44+/CD133+ CSC population and hindered angiogenesis in a therapeutic in vivo model in BALB/c mice. CONCLUSIONS This novel treatment strategy of "Orientin with 5FU" is likely to improve the efficiency of conventional chemotherapy and may suppress disease recurrence in colorectal cancer by limiting CSC mediated angiogenesis.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
5
|
King Z, Desai SR, Frank DA, Shastri A. STAT signaling in the pathogenesis and therapy of acute myeloid leukemia and myelodysplastic syndromes. Neoplasia 2025; 61:101137. [PMID: 39933227 PMCID: PMC11869857 DOI: 10.1016/j.neo.2025.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent complex hematopoietic malignancies characterized by ineffective hematopoiesis and dysregulated myeloid differentiation. Recent research has underscored the critical role of aberrant STAT signaling pathways, particularly involving STAT3 and STAT5, in the pathogenesis of these disorders. Aberrant activation of STAT proteins has been implicated as a mediator of oncogenesis in several malignancies. In this review, we discuss the role of STAT proteins in both regulated and dysregulated hematopoiesis, the consequences of dysregulation in acute myeloid leukemia and myelodysplastic syndromes, therapeutic strategies, and recent advancements in STAT-targeted therapy. By integrating findings from recent preclinical and clinical studies, this review provides insights into the evolving landscape of STAT-targeted therapies, highlighting the promise of these approaches in enhancing treatment efficacy and improving patient outcomes in high-risk hematologic malignancies.
Collapse
MESH Headings
- Humans
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/pathology
- Signal Transduction/drug effects
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- STAT Transcription Factors/metabolism
- STAT Transcription Factors/genetics
- Animals
- Molecular Targeted Therapy
- Hematopoiesis
Collapse
Affiliation(s)
- Zoe King
- Department of Pediatric Hematology and Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David A Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Aditi Shastri
- Department of Oncology, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
8
|
Shi M, Yang Y, Huang N, Zeng D, Mo Z, Wang J, Zhang X, Liu R, Wang C, Rong X, Wu Z, Huang Q, Shang H, Tang J, Wang Z, Cai J, Huang G, Guan Y, Guo J, Mu Q, Wang J, Liao W. Genetic and microenvironmental evolution of colorectal liver metastases under chemotherapy. Cell Rep Med 2024; 5:101838. [PMID: 39631402 PMCID: PMC11722126 DOI: 10.1016/j.xcrm.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Drug resistance limits the efficacy of chemotherapy for colorectal cancer liver metastasis (CRLM). However, the evolution of CRLM during drug treatment remains poorly elucidated. Multi-omics and treatment response data from 115 samples of 49 patients with CRLM undergoing bevacizumab (BVZ)-based chemotherapy show little difference in genomic alterations in 92% of cases, while remarkable differences are observed at the transcriptomic level. By decoupling intrinsic and acquired resistance, we find that hepatocyte and myeloid cell infiltration contribute to 38.5% and 23.1% of acquired resistance, respectively. Importantly, SMAD4 mutations and chr20q copy-number gain are associated with intrinsic chemoresistance. Gene interference experiments suggest that SMAD4R361H/C mutations confer BVZ and 5-fluorouracil (5-FU) resistance through STAT3 signaling. Notably, supplementing BVZ and 5-FU with the STAT3 inhibitor GB201 restores therapeutic efficacy in SMAD4R361H/C cancer cells. Our study uncovers the evolutionary dynamics of CRLM and its microenvironment during treatment and offers strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaomeng Zhang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ran Liu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenzhen Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Shang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhaojun Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianan Cai
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yijin Guan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, P.R. China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| |
Collapse
|
9
|
Cortés-Ballinas L, López-Pérez TV, Rocha-zavaleta L. STAT3 and the STAT3‑regulated inhibitor of apoptosis protein survivin as potential therapeutic targets in colorectal cancer (Review). Biomed Rep 2024; 21:175. [PMID: 39355529 PMCID: PMC11443488 DOI: 10.3892/br.2024.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 10/03/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading types of cancer worldwide. CRC development has been associated with the constitutive activation of signal transducer and activator of transcription 3 (STAT3). STAT3 is a master regulator of inflammation during cancer-associated colitis, and becomes upregulated in CRC. In CRC, STAT3 is activated by IL-6, among other pro-inflammatory cytokines, inducing the expression of target genes that stimulate proliferation, angiogenesis and the inhibition of apoptosis. One of the main STAT3-regulated inhibitors of apoptosis is survivin, which is a bifunctional protein that regulates apoptosis and participates in cell mitosis. Survivin expression is normally limited to foetal tissue; however, survivin is also upregulated in tumours. In silico and experimental analyses have shown that the STAT3 interactome is relevant during CRC progression, and the constitutive STAT3-survivin axis participates in development of the tumour microenvironment and response to therapy. The presence of a STAT3-survivin axis has been documented in CRC cohorts, and the expression of these molecules is associated with poor prognosis and a higher mortality rate in patients with CRC. Thus, STAT3, survivin, and the upstream activators IL-6 and IL-6 receptor, are considered therapeutic targets for CRC. Efforts to develop drugs targeting the STAT3-survivin axis include the evaluation of phytochemical compounds, small molecules and monoclonal antibodies. In the present review, the expression, function and participation of the STAT3-survivin axis in the progression of CRC were investigated. In addition, an update on the pre-clinical and clinical trials evaluating potential treatments targeting the STAT3-survivin axis is presented.
Collapse
Affiliation(s)
- Liliana Cortés-Ballinas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Tania V. López-Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico
| | - Leticia Rocha-zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Shi D, Tao J, Man S, Zhang N, Ma L, Guo L, Huang L, Gao W. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189207. [PMID: 39500413 DOI: 10.1016/j.bbcan.2024.189207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Cancer remains one of the most difficult human diseases to overcome because of its complexity and diversity. Signal transducers and transcriptional activators 3 (STAT3) protein has been found to be overexpressed in a wide range of cancer types. Hyperactivation of STAT3 is particularly associated with low survival in cancer patients. This review summarizes the specific molecular mechanisms of STAT3 in cancer development. STAT3 is activated by extracellular signals in the cytoplasm, interacts with different enzymes in the nucleus, mitochondria or endoplasmic reticulum, and subsequently participates in cancer development. The phosphorylated STAT3 at tyrosine 705 site (YP-STAT3) enters the nucleus and regulates a number of tumor-related biological processes such as angiogenesis, migration invasion, cell proliferation and cancer cell stemness. In contrast, the phosphorylated STAT3 at serine 727 site (SP-STAT3) is found on the mitochondria, affects electron respiration transport chain activity and thereby prevents tumor cell apoptosis. SP-STAT3 also appears on the mitochondria-associated endoplasmic reticulum membrane, influences the flow of Ca2+, and affects tumor progression. In addition, we summarize the direct and indirect inhibitors of STAT3 which are currently undergoing clinical studies. Some of them such as TTI101 and BBI608 have been approved by the FDA for the treatment of certain cancers. All in all, STAT3 plays an important role in cancer progression and becomes a potential target for cancer treatment.
Collapse
Affiliation(s)
- Dandan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiejing Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ning Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
12
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
13
|
Ünlü İ, Tuncer MC, Özdemir İ. Effect of napabucasin and doxorubicin via the Jak2/Stat3 signaling pathway in suppressing the proliferation of neuroblastoma cells. Acta Cir Bras 2024; 39:e396624. [PMID: 39356934 PMCID: PMC11441154 DOI: 10.1590/acb396624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE Napabucasin (NP) is a natural compound that can suppress cancer cell proliferation and cell cycle by inhibition of the signal transducer and activator of transcription 3 (STAT3) gene. We examined the effects of NP on the proliferation and invasion of neuroblastoma cells (SH-SY5Y). METHODS Human neuroblastoma SH-SY5Y cell line was used in this study. NP was administered to groups at the doses of 0.3-1 µM. Cell viability was analyzed by MTT assay. Real-time quantitative reverse transcription polymerase chain reaction and western blot analysis assessed the expressions of interleukin (IL)-6 dependent Jak2/Stat3 signaling pathway. The MTT cell viability method was applied to determine the antagonistic-synergistic effects and inhibitory concentration (IC50) doses of doxorubicin (DX) and NP. RESULTS It was determined that 0.3-1 µM doses of NP killed the cells almost completely after 48 hours, and also that Jak2/Stat3 expressions decreased dose-dependently via IL-6. At the protein level, NP and DX were found to reduce Jak2 and Stat3 levels. CONCLUSIONS NP showed that it suppresses the proliferation of neuroblastoma cells. Due to its inhibitory effect on Jak2 and Stat3, it can be used to prevent invasion of SH-SY5Y cells. NP, which can inactivate Jak2/Stat3, can be used as a treatment agent by combining with DX in proliferation pathway in neuroblastoma.
Collapse
Affiliation(s)
- İlker Ünlü
- Beykent University – Faculty of Medicine – Department of Brain Surgery – Istanbul – Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Faculty of Medicine – Department of Anatomy – Diyarbakir – Turkey
| | - İlhan Özdemir
- Atatürk University – Department of Gynecology and Obstetrics – Faculty of Medicine – Erzurum – Turkey
| |
Collapse
|
14
|
Luo L, Wang F, Xu X, Ma M, Kuang G, Zhang Y, Wang D, Li W, Zhang N, Zhao K. STAT3 promotes NLRP3 inflammasome activation by mediating NLRP3 mitochondrial translocation. Exp Mol Med 2024; 56:1980-1990. [PMID: 39218978 PMCID: PMC11446920 DOI: 10.1038/s12276-024-01298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Recognition of the translocation of NLRP3 to various organelles has provided new insights for understanding how the NLRP3 inflammasome is activated by different stimuli. Mitochondria have already been demonstrated to be the site of NLRP3 inflammasome activation, and the latest research suggests that NLRP3 is first recruited to mitochondria, then disassociated, and subsequently recruited to the Golgi network. Although some mitochondrial factors have been found to contribute to the recruitment of NLRP3 to mitochondria, the detailed process of NLRP3 mitochondrial translocation remains unclear. Here, we identify a previously unknown role for Signal transducer and activator of transcription-3 (STAT3) in facilitating the translocation of NLRP3 to mitochondria. STAT3 interacts with NLRP3 and undergoes phosphorylation at Ser727 in response to several NLRP3 agonists, enabling the translocation of STAT3 and thus the bound NLRP3 to mitochondria. Disruption of the interaction between STAT3 and NLRP3 impairs the mitochondrial localization of NLRP3, specifically suppressing NLRP3 inflammasome activation both in vitro and in vivo. In summary, we demonstrate that STAT3 acts as a transporter for mitochondrial translocation of NLRP3 and provide new insight into the spatial regulation of NLRP3.
Collapse
Affiliation(s)
- Ling Luo
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Fupeng Wang
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Xueming Xu
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Mingliang Ma
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Guangyan Kuang
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Yening Zhang
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Dan Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Wei Li
- Department of Rheumatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000 P, PR China
| | - Ningjie Zhang
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China.
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province, 410000 P, PR China.
| |
Collapse
|
15
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
16
|
Jiang Y, Zhao M, Tang W, Zheng X. Comparison of systemic treatments for previously treated patients with unresectable colorectal liver metastases: a systematic review and network meta-analysis. Front Oncol 2024; 14:1293598. [PMID: 39050571 PMCID: PMC11266080 DOI: 10.3389/fonc.2024.1293598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background There is limited evidence of comparative results among different treatments for patients with unresectable colorectal liver metastases (CRLM) who have failed at least one line of previous systemic therapy. We aimed to compare the efficacy of systemic treatments among these patients through this investigation. Methods We collected randomized controlled trials (RCTs) reported in English up until July 2023, from databases including PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and prominent conference databases, for this Bayesian network meta-analysis. Phase II or III trials that evaluated at least two therapeutic regimens were included. Primary outcome was overall survival (OS), secondary outcome was progression-free survival (PFS). Hazards ratios (HRs) with 95% confidence intervals (CIs) were used as effect size. Subgroup analysis was performed based on metastatic sites. The current systematic review protocol was registered on PROSPERO (CRD42023420498). Results 30 RCTs were included, with a total of 13,511 patients. Compared to chemotherapy, multi-targeted therapy (HR 0.57, 95% CI 0.37-0.87) and targeted therapy plus chemotherapy (HR 0.78, 95% CI 0.67-0.91) show significant advantages. Targeted therapy (HR 0.92, 95% CI 0.54-1.57) and local treatment plus chemotherapy (HR 1.03, 95% CI 0.85-1.23) had comparable performance. For patients with liver metastases, TAS-102 plus bevacizumab, aflibercept plus fluorouracil-based combination chemotherapy (CTFU), and bevacizumab plus capecitabine-based combination chemotherapy (CTCA) showed the best outcomes in terms of OS. Bevacizumab plus intensified CTFU, bevacizumab plus CTCA, and HAI followed by single-agent chemotherapy (SingleCT) performed the best regarding PFS. For patients with liver-limited metastases, aflibercept plus CTFU is the optimal choice in OS. For PFS, the best options were HAI followed by SingleCT, aflibercept plus CTFU, and panitumumab plus CTFU. For patients with multiple-site metastases, the best treatments were TAS-102 plus bevacizumab, bevacizumab plus CTCA, bevacizumab plus CTFU, and aflibercept plus CTFU. Conclusion Multi-targeted therapy and targeted therapy plus chemotherapy are the best treatment mechanisms. TAS-102 plus bevacizumab is superior in OS, the combination of anti-VEGF drugs like bevacizumab and aflibercept with standard chemotherapy is the preferred option for CRLM patients.
Collapse
Affiliation(s)
- Yunlin Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingye Zhao
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxi Tang
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xueping Zheng
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
18
|
Martínez-Pérez J, Torrado C, Domínguez-Cejudo MA, Valladares-Ayerbes M. Targeted Treatment against Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:6220. [PMID: 38892410 PMCID: PMC11172446 DOI: 10.3390/ijms25116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The cancer stem cell (SC) theory proposes that a population of SCs serves as the driving force behind fundamental tumor processes, including metastasis, recurrence, and resistance to therapy. The standard of care for patients with stage III and high-risk stage II colorectal cancer (CRC) includes surgery and adjuvant chemotherapy. Fluoropyrimidines and their combination with oxaliplatin increased the cure rates, being able to eradicate the occult metastatic SC in a fraction of patients. The treatment for unresectable metastatic CRC is based on chemotherapy, antibodies to VEGF and EGFR, and tyrosine-kinase inhibitors. Immunotherapy is used in MSI-H tumors. Currently used drugs target dividing cells and, while often effective at debulking tumor mass, these agents have largely failed to cure metastatic disease. SCs are generated either due to genetic and epigenetic alterations in stem/progenitor cells or to the dedifferentiation of somatic cells where diverse signaling pathways such as Wnt/β-catenin, Hedgehog, Notch, TGF-β/SMAD, PI3K/Akt/mTOR, NF-κB, JAK/STAT, DNA damage response, and Hippo-YAP play a key role. Anti-neoplastic treatments could be improved by elimination of SCs, becoming an attractive target for the design of novel agents. Here, we present a review of clinical trials assessing the efficacy of targeted treatment focusing on these pathways in CRC.
Collapse
Affiliation(s)
- Julia Martínez-Pérez
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - María A. Domínguez-Cejudo
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Manuel Valladares-Ayerbes
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| |
Collapse
|
19
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
20
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
22
|
Bose M, Sanders A, Handa A, Vora A, Cardona MR, Brouwer C, Mukherjee P. Molecular crosstalk between MUC1 and STAT3 influences the anti-proliferative effect of Napabucasin in epithelial cancers. Sci Rep 2024; 14:3178. [PMID: 38326371 PMCID: PMC10850135 DOI: 10.1038/s41598-024-53549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| | - Alexa Sanders
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aashna Handa
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aabha Vora
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Manuel R Cardona
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Cory Brouwer
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
23
|
Adesoye T, Tripathy D, Hunt KK, Keyomarsi K. Exploring Novel Frontiers: Leveraging STAT3 Signaling for Advanced Cancer Therapeutics. Cancers (Basel) 2024; 16:492. [PMID: 38339245 PMCID: PMC10854592 DOI: 10.3390/cancers16030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a significant role in diverse physiologic processes, including cell proliferation, differentiation, angiogenesis, and survival. STAT3 activation via phosphorylation of tyrosine and serine residues is a complex and tightly regulated process initiated by upstream signaling pathways with ligand binding to receptor and non-receptor-linked kinases. Through downstream deregulation of target genes, aberrations in STAT3 activation are implicated in tumorigenesis, metastasis, and recurrence in multiple cancers. While there have been extensive efforts to develop direct and indirect STAT3 inhibitors using novel drugs as a therapeutic strategy, direct clinical application remains in evolution. In this review, we outline the mechanisms of STAT3 activation, the resulting downstream effects in physiologic and malignant settings, and therapeutic strategies for targeting STAT3. We also summarize the pre-clinical and clinical evidence of novel drug therapies targeting STAT3 and discuss the challenges of establishing their therapeutic efficacy in the current clinical landscape.
Collapse
Affiliation(s)
- Taiwo Adesoye
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Bui I, Bonavida B. Polarization of M2 Tumor-Associated Macrophages (TAMs) in Cancer Immunotherapy. Crit Rev Oncog 2024; 29:75-95. [PMID: 38989739 DOI: 10.1615/critrevoncog.2024053830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We have witnessed in the last decade new milestones in the treatment of various resistant cancers with new immunotherapeutic modalities. These advances have resulted in significant objective durable clinical responses in a subset of cancer patients. These findings strongly suggested that immunotherapy should be considered for the treatment of all subsets of cancer patients. Accordingly, the mechanisms underlying resistance to immunotherapy must be explored and develop new means to target these resistant factors. One of the pivotal resistance mechanisms in the tumor microenvironment (TME) is the high infiltration of tumor-associated macrophages (TAMs) that are highly immunosuppressive and responsible, in large part, of cancer immune evasion. Thus, various approaches have been investigated to target the TAMs to restore the anti-tumor immune response. One approach is to polarize the M2 TAMS to the M1 phenotype that participates in the activation of the anti-tumor response. In this review, we discuss the various and differential properties of the M1 and M2 phenotypes, the molecular signaling pathways that participate in the polarization, and various approaches used to target the polarization of the M2 TAMs into the M1 anti-tumor phenotype. These approaches include inhibitors of histone deacetylases, PI3K inhibitors, STAT3 inhibitors, TLR agonists, and metabolic reprogramming. Clearly, due to the distinct features of various cancers and their heterogeneities, a single approach outlined above might only be effective against some cancers and not others. In addition, targeting by itself may not be efficacious unless used in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Indy Bui
- University of California Los Angeles
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
27
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Tarpgaard LS, Winther SB, Pfeiffer P. Treatment Options in Late-Line Colorectal Cancer: Lessons Learned from Recent Randomized Studies. Cancers (Basel) 2023; 16:126. [PMID: 38201553 PMCID: PMC10777930 DOI: 10.3390/cancers16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Systemic treatment of metastatic colorectal cancer (mCRC) has improved considerably over the past 20 years. First- and second-line combinations of 5FU, oxaliplatin, and irinotecan, with or without anti-angiogenic and/or anti-EGFR antibodies, were approved shortly after the turn of the millennium. Further triumphs were not seen for almost 10 years, until the approval of initially regorafenib and shortly after trifluridine/tipiracil. A growing understanding of tumor biology through molecular profiling has led to further treatment options. Here, we review the most recent clinical data for late-line treatment options in mCRC, focusing on randomized trials if available. We include recommendations for options in unselected patients and therapies that should only be offered in patients with distinct tumor profiles (e.g., BRAF mutations, KRAS G12C mutations, HER2 amplification, deficient MMR, or NTRK gene fusions).
Collapse
Affiliation(s)
- Line Schmidt Tarpgaard
- Department of Oncology, Odense University Hospital, 5000 Odense C, Denmark; (S.B.W.); (P.P.)
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | | | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, 5000 Odense C, Denmark; (S.B.W.); (P.P.)
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
29
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
30
|
Feng Q, Chen J, Huang J, Li X, Liu X, Xiao C, Zheng X, Chen X, Li J, Gu Z, Luo K, Xiao K, Li W. A redox-responsive nanosystem to suppress chemoresistant lung cancer through targeting STAT3. J Control Release 2023; 363:349-360. [PMID: 37748583 DOI: 10.1016/j.jconrel.2023.09.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) have been demonstrated to be involved in tumor initiation and relapse, and the presence of CSCs in the tumor tissue often leads to therapeutic failure. BBI608 has been identified to eliminate CSCs by inhibiting signal transducer and activator of transcription 3 (STAT3). In this study, we confirm that BBI608 can efficiently suppress the proliferation and migration of non-small cell lung cancer (NSCLC) cells, and specifically kill the stemness-high population in chemoresistant NSCLC cells. To improve its bioavailability and tumor accumulation, BBI608 is successfully encapsulated into redox-responsive PEGylated branched N-(2-hydroxypropyl) methacrylamide (HPMA)-deoxy cholic acid (DA) polymeric nanoparticles (BBI608-SS-NPs). The BBI608-SS-NPs can release the drug in response to high concentrations of intracellular glutathione, and exhibit cytotoxicity against lung cancer cells and CSCs comparable to the free drug BBI608. Furthermore, the BBI608-SS-NPs preferentially accumulate in tumor sites, resulting in a superior anti-tumor efficacy in both cisplatin-resistant cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models of NSCLC. Mechanistic studies demonstrate that BBI608-SS-NPs not only directly inhibit the downstream genes of the STAT3 pathway, but also indirectly inhibit the Wnt pathway. Overall, this stimuli-responsive polymeric nanoformulation of BBI608 shows great potential in the treatment of chemoresistant NSCLC by targeting CSCs.
Collapse
Affiliation(s)
- Qiyi Feng
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinxing Huang
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojie Li
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyi Liu
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxiu Xiao
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuli Zheng
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xuanming Chen
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jue Li
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| | - Kai Xiao
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
31
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Yoshino T, Shi Q, Misumi T, Bando H, Wakabayashi M, Raeisi M, Andre T, de Gramont A. A synthetic control arm for refractory metastatic colorectal cancer: the no placebo initiative. Nat Med 2023; 29:2389-2390. [PMID: 37507606 DOI: 10.1038/s41591-023-02488-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Affiliation(s)
- Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Data Science, National Cancer Center Hospital East, Chiba, Japan.
| | - Qian Shi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Toshihiro Misumi
- Department of Data Science, National Cancer Center Hospital East, Chiba, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Data Science, National Cancer Center Hospital East, Chiba, Japan
| | - Masashi Wakabayashi
- Department of Data Science, National Cancer Center Hospital East, Chiba, Japan
| | - Morteza Raeisi
- Fondation A.R.CA.D, Aide et Recherche en CAncérologie Digestive, Levallois-Perret, France
| | - Thierry Andre
- Fondation A.R.CA.D, Aide et Recherche en CAncérologie Digestive, Levallois-Perret, France
- Sorbonne University and Department of Medical Oncology, Saint-Antoine Hospital, Paris, France
| | - Aimery de Gramont
- Fondation A.R.CA.D, Aide et Recherche en CAncérologie Digestive, Levallois-Perret, France
- Department of Medical Oncology, Franco-British Hospital, Levallois-Perret, France
| |
Collapse
|
33
|
Qiu X, Zhou J, Xu H, Li Y, Ma S, Qiao H, Zeng K, Wang Q, Ouyang J, Liu Y, Ding J, Liu Y, Zhang J, Shi M, Liao Y, Liao W, Lin L. Alcohol reshapes a liver premetastatic niche for cancer by extra- and intrahepatic crosstalk-mediated immune evasion. Mol Ther 2023; 31:2662-2680. [PMID: 37469143 PMCID: PMC10492032 DOI: 10.1016/j.ymthe.2023.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer metastatic organotropism is still a mystery. The liver is known to be susceptible to cancer metastasis and alcoholic injury. However, it is unclear whether and how alcohol facilitates liver metastasis and how to intervene. Here, we show that alcohol preferentially promotes liver metastasis in colon-cancer-bearing mice and post-surgery pancreatic cancer patients. The mechanism is that alcohol triggers an extra- and intrahepatic crosstalk to reshape an immunosuppressive liver microenvironment. In detail, alcohol upregulates extrahepatic IL-6 and hepatocellular IL-6 receptor expression, resulting in hepatocyte STAT3 signaling activation and downstream lipocalin-2 (Lcn2) upregulation. Furthermore, LCN2 promotes T cell-exhaustion neutrophil recruitment and cancer cell epithelial plasticity. In contrast, knocking out hepatocellular Stat3 or systemic Il6 in alcohol-treated mice preserves the liver microenvironment and suppresses liver metastasis. This mechanism is reflected in hepatocellular carcinoma patients, in that alcohol-associated signaling elevation in noncancerous liver tissue indicates adverse prognosis. Accordingly, we discover a novel application for BBI608, a small molecular STAT3 inhibitor that can prevent liver metastasis. BBI608 pretreatment protects the liver and suppresses alcohol-triggered premetastatic niche formation. In conclusion, under extra- and intrahepatic crosstalk, the alcoholic injured liver forms a favorable niche for cancer cell metastasis, while BBI608 is a promising anti-metastatic agent targeting such microenvironments.
Collapse
Affiliation(s)
- Xiaofang Qiu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Xu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hang Qiao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangxin Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiongqiong Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiahe Ouyang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanhan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Ding
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
34
|
Tan S, Tang H, Wang Y, Xie P, Li H, Zhang Z, Zhou J. Tumor cell-derived exosomes regulate macrophage polarization: Emerging directions in the study of tumor genesis and development. Heliyon 2023; 9:e19296. [PMID: 37662730 PMCID: PMC10474436 DOI: 10.1016/j.heliyon.2023.e19296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
As an extracellular vesicle, exosomes play an important role in intercellular information transmission, delivering cargos of the parent cell, such as RNA, DNA, proteins, and lipids, activating different signaling pathways in the target cell and regulating inflammation, angiogenesis, and tumor progression. In particular, exosomes secreted by tumor cells can change the function of surrounding cells, creating a microenvironment conducive to tumor growth and metastasis. For example, after macrophages phagocytose exosomes and accept their cargos, they activate macrophage polarization-related signaling pathways and polarize macrophages into M1 or M2 types to exert antitumor or protumor functions. Currently, the study of exosomes affecting the polarization of macrophages has attracted increasing attention. Therefore, this paper reviews relevant studies in this field to better understand the mechanism of exosome-induced macrophage polarization and provide evidence for exploring novel targets for tumor therapy and new diagnostic markers in the future.
Collapse
Affiliation(s)
- Siyuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haodong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yang Wang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| |
Collapse
|
35
|
Yu J, Zhong B, Zhao L, Hou Y, Ai N, Lu JJ, Ge W, Chen X. Fighting drug-resistant lung cancer by induction of NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated ferroptosis. Drug Resist Updat 2023; 70:100977. [PMID: 37321064 DOI: 10.1016/j.drup.2023.100977] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Drug resistance is a major challenge in cancer treatment. The substrates of NAD(P)H:quinone oxidoreductase 1 (NQO1) show a promising anticancer effect in clinical trials. We previously identified a natural NQO1 substrate 2-methoxy-6-acetyl-7-methyljuglone (MAM) with a potent anticancer effect. The present study was designed to explore the efficacy of MAM in fighting against drug-resistant non-small cell lung cancer (NSCLC). The anticancer effect of MAM was evaluated in cisplatin-resistant A549 and AZD9291-resistant H1975 cells. The interaction of MAM with NQO1 was measured by cellular thermal shift assay and drug affinity responsive target stability assay. The NQO1 activity and expression were measured using NQO1 recombinant protein, Western blotting, and immunofluorescence staining assay. The roles of NQO1 were examined by NQO1 inhibitor, small interfering RNA (siRNA), and short hairpin RNA (shRNA). The roles of reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation were determined. MAM induced significant cell death in drug-resistant cells with similar potency to that of parental cells, which were completely abolished by NQO1 inhibitor, NQO1 siRNA, and iron chelators. MAM activates and binds to NQO1, which triggers ROS generation, LIP increase, and lipid peroxidation. MAM significantly suppressed tumor growth in the tumor xenograft zebrafish model. These results showed that MAM induced ferroptosis by targeting NQO1 in drug-resistant NSCLC cells. Our findings provided a novel therapeutic strategy for fighting against drug resistance by induction of NQO1-mediated ferroptosis.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Lin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China; Department of Pharmaceutical Sciences, Faculty of Health Scien ces, University of Macau, Taipa, Macao Special Administrative Region of China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
36
|
Naumov SS, Kulbakin DE, Krakhmal NV, Vtorushin SV. Molecular and biological factors in the prognosis of head and neck squamous cell cancer. Mol Biol Rep 2023; 50:7839-7849. [PMID: 37493876 DOI: 10.1007/s11033-023-08611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
The objective of the review is to summarize available literary data on the role and prognostic value of molecular biological markers p53, UBE2C, CD147, STAT3, VEGF in the carcinogenesis of head and neck squamous cell carcinoma (HNSCC). To date, researches have been studying HNSCC molecular and genetic characteristics and obtaining information about new molecular biological markers that have different functional significance in tumor progression. This review presents current data on protein molecules involved in the HNSCC development, as well as in the formation of drug resistance mechanisms in tumors. The considered markers can be used not only for prognosis but also for developing a new approach to treatment, including patients resistant to therapy or recurrent HNSCC. However, the introduction of these markers into practice requires further examination of their functions and larger-scale studies.
Collapse
Affiliation(s)
- Sergei S Naumov
- Pathology Department, Siberian State Medical University, 2 Moskovsky trakt, Tomsk, 634050, Russia.
| | - Denis E Kulbakin
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Nadezhda V Krakhmal
- Pathology Department, Siberian State Medical University, 2 Moskovsky trakt, Tomsk, 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Sergey V Vtorushin
- Pathology Department, Siberian State Medical University, 2 Moskovsky trakt, Tomsk, 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences Tomsk, 5 Kooperativny Street, Tomsk, 634009, Russia
| |
Collapse
|
37
|
Reina-Ortiz C, Mozas MP, Ovelleiro D, Gao F, Villalba M, Anel A. Dynamic Changes in miRNA Expression during the Generation of Expanded and Activated NK Cells. Int J Mol Sci 2023; 24:13556. [PMID: 37686362 PMCID: PMC10488243 DOI: 10.3390/ijms241713556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Therapies based on allogenic Natural Killer (NK) cells are becoming increasingly relevant, and our laboratory has produced expanded and activated NK (eNK) cells that are highly cytotoxic against several hematological cancers when used alone or in combination with currently approved therapeutic monoclonal antibodies. In order to produce eNK cells, healthy human donor NK cells undergo a 20-day expansion protocol with IL-2, IL-15 and Epstein-Barr virus (EBV)-transformed lymphoblastoid feeder cells. In order to produce an even more potent eNK-based therapy, we must elucidate the changes our protocol produces within healthy NK cells. To understand the post-transcriptional changes responsible for the increased cytolytic abilities of eNK cells, we performed microRNA (miRNA) expression analysis on purified NK cells from day 0 and day 20 of the protocol using quantitative reverse transcription PCR (RT-qPCR). Of the 384 miRNAs profiled, we observed changes in the expression of 64 miRNAs, with especially significant changes in 7 of them. The up-regulated miRNAs of note were miRs-146a, -124, -34a, and -10a, which are key in the regulation of cell survival through the modulation of pro-apoptotic genes such as PUMA. The down-regulation of miRs-199a, -223, and -340 was also detected and is associated with the promotion of NK cell cytotoxicity. We validated our analysis using immunoblot and flow cytometry studies on specific downstream targets of both up- and down-regulated miRNAs such as PUMA and Granzyme B. These results corroborate the functional importance of the described miRNA expression patterns and show the wide variety of changes that occur in eNK cells at day 20.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| | - Mª Pilar Mozas
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| | - David Ovelleiro
- Peripheral Nervous System, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
| | - Fei Gao
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France; (F.G.); (M.V.)
- Immuno-Oncology Laboratory, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Martín Villalba
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France; (F.G.); (M.V.)
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (C.R.-O.); (M.P.M.)
| |
Collapse
|
38
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
39
|
Wei N, Burnett J, Crocker DL, Huang Y, Li S, Wipf P, Chu E, Schmitz JC. Quassinoid analogs exert potent antitumor activity via reversible protein biosynthesis inhibition in human colorectal cancer. Biochem Pharmacol 2023; 212:115564. [PMID: 37116665 PMCID: PMC11225567 DOI: 10.1016/j.bcp.2023.115564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Cellular protein synthesis is accelerated in human colorectal cancer (CRC), and high expression of protein synthesis regulators in CRC patients is associated with poor prognosis. Thus, inhibition of protein synthesis may be an effective therapeutic strategy for CRC. We previously demonstrated that the quassinoid bruceantinol (BOL) had antitumor activity against CRC. Herein, potent tumor growth suppression (>80%) and STAT3 inhibition was observed in two different mouse models following BOL administration. Loss of body and spleen weight was observed but was eliminated upon nanoparticle encapsulation while maintaining strong antitumor activity. STAT3 siRNA knockdown exhibited modest suppression of cell proliferation. Surprisingly, STAT3 inhibition using a PROTAC degrader (SD-36) had little effect on cancer cell proliferation suggesting the possibility of additional mechanism(s) of action for quassinoids. BOL-resistant (BR) cell lines, HCT116BR and HCA7BR, were equally sensitive to standard CRC therapeutic agents and known STAT3 inhibitors but resistant to homoharringtonine (HHT), a known protein synthesis inhibitor. The ability of quassinoids to inhibit protein synthesis was dependent on the structure of the C15 sidechain. Of note, BOL did not inhibit protein synthesis in normal human colon epithelial cells whereas HHT and napabucasin remained effective in these normal cells. Novel quassinoids were designed, synthesized, and evaluated in pre-clinical CRC models. Treatment with the most potent analog, 5c, resulted in significant inhibition of cell proliferation and protein synthesis at nanomolar concentrations. These quassinoid analogs may represent a novel class of protein synthesis inhibitors for the treatment of human CRC.
Collapse
Affiliation(s)
- Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Montefiore Einstein Cancer Center, Cancer Therapeutics Program, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - James Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Desirae L Crocker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yixian Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edward Chu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Montefiore Einstein Cancer Center, Cancer Therapeutics Program, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John C Schmitz
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States.
| |
Collapse
|
40
|
Okusaka T, Morimoto M, Eguchi Y, Nakamura S, Iino S, Kageyama R. A Phase I Study to Investigate the Safety, Tolerability and Pharmacokinetics of Napabucasin Combined with Sorafenib in Japanese Patients with Unresectable Hepatocellular Carcinoma. Drugs R D 2023; 23:99-107. [PMID: 37188895 PMCID: PMC10293504 DOI: 10.1007/s40268-023-00416-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE For patients with advanced hepatocellular carcinoma (HCC), the standard of care for many years has been sorafenib. Preliminary data have suggested that the combination of the NAD(P)H:quinone oxidoreductase 1 bioactivatable agent napabucasin plus sorafenib may improve clinical outcomes in patients with HCC. In this phase I, multicenter, uncontrolled, open-label study, we evaluated napabucasin (480 mg/day) plus sorafenib (800 mg/day) in Japanese patients with unresectable HCC. METHODS Adults with unresectable HCC and an Eastern Cooperative Oncology Group performance status of 0 or 1 were enrolled in a 3 + 3 trial design. The occurrence of dose-limiting toxicities was assessed through 29 days from the start of napabucasin administration. Additional endpoints included safety, pharmacokinetics, and preliminary antitumor efficacy. RESULTS In the six patients who initiated treatment with napabucasin, no dose-limiting toxicities occurred. The most frequently reported adverse events were diarrhea (83.3%) and palmar-plantar erythrodysesthesia syndrome (66.7%), all of which were grade 1 or 2. The pharmacokinetic results for napabucasin were consistent with prior publications. The best overall response (per Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) was stable disease in four patients. Using Kaplan-Meier methodology, the 6-month progression-free survival rate was 16.7% per RECIST 1.1 and 20.0% per modified RECIST for HCC. The 12-month overall survival rate was 50.0%. CONCLUSIONS These findings confirm the viability of napabucasin plus sorafenib treatment, and there were no safety or tolerability concerns in Japanese patients with unresectable HCC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02358395, registered on 9 February 2015.
Collapse
Affiliation(s)
- Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.
| | - Manabu Morimoto
- Hepatobiliary and Pancreatic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yuichiro Eguchi
- Liver Center, Saga University Hospital, Faculty of Medicine Saga University, Saga, Japan
- Loco Medical General Institute, Ogi, Japan
| | - Shinichiro Nakamura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | |
Collapse
|
41
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
He N, Li L, Li R, Zhang SQ, Wu LH, Guan X, Zhang QY, Jiang T, Yang JB. A Novel Ageladine A Derivative Acts as a STAT3 Inhibitor and Exhibits Potential Antitumor Effects. Int J Mol Sci 2023; 24:ijms24108859. [PMID: 37240202 DOI: 10.3390/ijms24108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The Janus kinase/signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway controls multiple biological processes, including cell survival, proliferation, and differentiation. Abnormally activated STAT3 signaling promotes tumor cell growth, proliferation, and survival, as well as tumor invasion, angiogenesis, and immunosuppression. Hence, JAK/STAT3 signaling has been considered a promising target for antitumor therapy. In this study, a number of ageladine A derivative compounds were synthesized. The most effective of these was found to be compound 25. Our results indicated that compound 25 had the greatest inhibitory effect on the STAT3 luciferase gene reporter. Molecular docking results showed that compound 25 could dock into the STAT3 SH2 structural domain. Western blot assays demonstrated that compound 25 selectively inhibited the phosphorylation of STAT3 on the Tyr705 residue, thereby reducing STAT3 downstream gene expression without affecting the expression of the upstream proteins, p-STAT1 and p-STAT5. Compound 25 also suppressed the proliferation and migration of A549 and DU145 cells. Finally, in vivo research revealed that 10 mg/kg of compound 25 effectively inhibited the growth of A549 xenograft tumors with persistent STAT3 activation without causing significant weight loss. These results clearly indicate that compound 25 could be a potential antitumor agent by inhibiting STAT3 activation.
Collapse
Affiliation(s)
- Na He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Li Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao 266237, China
| | - Rui Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Si-Qi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Li-Hong Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao 266237, China
| | - Qian-Yue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao 266237, China
| | - Jin-Bo Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
43
|
Dorard C, Madry C, Buhard O, Toifl S, Didusch S, Ratovomanana T, Letourneur Q, Dolznig H, Garnett MJ, Duval A, Baccarini M. RAF1 contributes to cell proliferation and STAT3 activation in colorectal cancer independently of microsatellite and KRAS status. Oncogene 2023; 42:1649-1660. [PMID: 37020037 PMCID: PMC10181936 DOI: 10.1038/s41388-023-02683-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
More than 30% of all human cancers are driven by RAS mutations and activating KRAS mutations are present in 40% of colorectal cancer (CRC) in the two main CRC subgroups, MSS (Microsatellite Stable) and MSI (Microsatellite Instable). Studies in RAS-driven tumors have shown essential roles of the RAS effectors RAF and specifically of RAF1, which can be dependent or independent of RAF's ability to activate the MEK/ERK module. In this study, we demonstrate that RAF1, but not its kinase activity, plays a crucial role in the proliferation of both MSI and MSS CRC cell line-derived spheroids and patient-derived organoids, and independently of KRAS mutation status. Moreover, we could define a RAF1 transcriptomic signature which includes genes that contribute to STAT3 activation, and could demonstrate that RAF1 ablation decreases STAT3 phosphorylation in all CRC spheroids tested. The genes involved in STAT3 activation as well as STAT3 targets promoting angiogenesis were also downregulated in human primary tumors expressing low levels of RAF1. These results indicate that RAF1 could be an attractive therapeutic target in both MSI and MSS CRC regardless of their KRAS status and support the development of selective RAF1 degraders rather than RAF1 inhibitors for clinical use in combination therapies.
Collapse
Affiliation(s)
- Coralie Dorard
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France.
| | - Claire Madry
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Olivier Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Stefanie Toifl
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sebastian Didusch
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Toky Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Quentin Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | | | - Alex Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
44
|
Bekaii-Saab T, Okusaka T, Goldstein D, Oh DY, Ueno M, Ioka T, Fang W, Anderson EC, Noel MS, Reni M, Choi HJ, Goldberg JS, Oh SC, Li CP, Tabernero J, Li J, Foos E, Oh C, Van Cutsem E. Napabucasin plus nab-paclitaxel with gemcitabine versus nab-paclitaxel with gemcitabine in previously untreated metastatic pancreatic adenocarcinoma: an adaptive multicentre, randomised, open-label, phase 3, superiority trial. EClinicalMedicine 2023; 58:101897. [PMID: 36969338 PMCID: PMC10036520 DOI: 10.1016/j.eclinm.2023.101897] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Compared with normal cells, tumour cells contain elevated levels of reactive oxygen species (ROS). Increased levels of the antioxidant protein NAD(P)H:quinone oxidoreductase 1 (NQO1) and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) correlate negatively with the survival of patients with pancreatic cancer. Napabucasin is an investigational, orally administered ROS generator bioactivated by NQO1. METHODS In the open-label, phase 3 CanStem111P study (NCT02993731), adults with previously untreated metastatic pancreatic adenocarcinoma (mPDAC) were randomised (1:1) to napabucasin plus nab-paclitaxel with gemcitabine or nab-paclitaxel with gemcitabine alone. The primary endpoint was overall survival (OS). In exploratory analyses, OS was evaluated in the subgroup of patients with tumours positive for pSTAT3 (biomarker-positive). FINDINGS Between 30 January 2017 and 20 February 2019, a total of 1779 patients were screened across 165 study sites in Austria, Australia, Belgium, Canada, China, Czech Republic, France, Germany, Italy, Japan, Korea, Netherlands, Poland, Portugal, Russia, Singapore, Spain, Taiwan, Ukraine, and the US. Of the 565 and 569 patients randomised to the napabucasin and control treatment arms, respectively, 206 and 176 were biomarker-positive. Median (95% confidence interval [CI]) OS in the napabucasin and control treatment arms was 11.4 (10.5-12.2) and 11.7 (10.7-12.7) months, respectively (hazard ratio, 1.07; 95% CI, 0.93-1.23). Due to the lack of OS improvement in the napabucasin arm, CanStem111P was terminated due to futility. In the biomarker-positive subgroup, no difference between treatment arms was found for OS. Grade ≥3 adverse events were reported in 85.4% and 83.9% of napabucasin-treated and control-treated patients, respectively. The incidence of gastrointestinal-related grade ≥3 events was higher with napabucasin (diarrhoea: 11.6% vs 4.9%; abdominal pain: 10.0% vs 4.8%). INTERPRETATION Our findings suggested that although the addition of napabucasin to nab-paclitaxel with gemcitabine did not improve efficacy in patients with previously untreated mPDAC, the safety profile of napabucasin was consistent with previous reports. CanStem111P represents the largest cohort of patients with mPDAC administered nab-paclitaxel with gemcitabine in the clinical trial setting. Our data reinforce the value of nab-paclitaxel plus gemcitabine as a platform for novel therapeutics approaches in mPDAC. FUNDING The Sumitomo Pharma Oncology, Inc.
Collapse
Affiliation(s)
- Tanios Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Corresponding author. Medical Oncology, Mayo Clinic Cancer Center, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Weijia Fang
- Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Eric C. Anderson
- Division of Hematology/Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Marcus S. Noel
- Department of Medicine, Division of Medical Oncology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Michele Reni
- Department of Oncology, Pancreas Center, IRCCS Ospedale, San Raffaele Scientific Institute, Milan, Italy
| | - Hye Jin Choi
- Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Sang Cheul Oh
- Department of Medical Oncology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chung-Pin Li
- Division of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | - Jian Li
- Clinical Development, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Emma Foos
- Biostatistics, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Cindy Oh
- Clinical Operations, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Gasthuisberg, Leuven & KULeuven, Leuven, Belgium
| |
Collapse
|
45
|
Shah MA, Yoshino T, Tebbutt NC, Grothey A, Tabernero J, Xu RH, Cervantes A, Oh SC, Yamaguchi K, Fakih M, Falcone A, Wu C, Chiu VK, Tomasek J, Bendell J, Fontaine M, Hitron M, Xu B, Taieb J, Van Cutsem E. Napabucasin Plus FOLFIRI in Patients With Previously Treated Metastatic Colorectal Cancer: Results From the Open-Label, Randomized Phase III CanStem303C Study. Clin Colorectal Cancer 2023; 22:100-110. [PMID: 36503738 DOI: 10.1016/j.clcc.2022.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Napabucasin is an investigational, orally administered reactive oxygen species generator bioactivated by intracellular antioxidant NAD(P)H:quinone oxidoreductase 1 that has been evaluated in various solid tumors, including metastatic colorectal cancer (mCRC). Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) is hypothesized to predict response in napabucasin-treated patients with mCRC. PATIENT AND METHODS In the multi-center, open-label, phase III CanStem303C (NCT02753127) study, adults with histologically confirmed mCRC that progressed on first-line fluoropyrimidine plus oxaliplatin ± bevacizumab were randomized to twice-daily napabucasin plus FOLFIRI (napabucasin) or FOLFIRI alone (control). The primary endpoint was overall survival (OS) in the general study population and in patients with pSTAT3-positive tumors (biomarker-positive). RESULTS In the general study population (napabucasin, n = 624; control, n = 629), median OS was 14.3 months for napabucasin and 13.8 months for control (hazard ratio [HR], 0.976, one-sided P = .74). Overall, 44% of patients were biomarker-positive (napabucasin, n = 275; control, n = 272). In the biomarker-positive population, median OS was 13.2 months for napabucasin and 12.1 months for control (HR, 0.969; one-sided P > .99). In the control arm, median OS was shorter for biomarker-positive versus biomarker negative patients (12.1 vs. 18.5 months; HR, 1.518; nominal 2-sided P = .0002). The most common treatment-emergent adverse events (TEAEs) were diarrhea (napabucasin, 84.6%; control, 53.9%), nausea (60.5%, 50.5%), vomiting (41.2%, 29.3%), and abdominal pain (41.0%, 25.2%). Grade ≥3 TEAEs occurred in 73.8% of napabucasin-treated and 66.7% of control-treated patients, most commonly diarrhea (21.2%, 7.0%), neutrophil count decreased (13.7%, 19.2%), and neutropenia (13.3%, 15.2%). Safety was similar in biomarker-positive patients. CONCLUSION In patients with previously treated mCRC, adding napabucasin to FOLFIRI did not improve OS. Results from the control arm indicate that pSTAT3 is an adverse prognostic factor in mCRC.
Collapse
Affiliation(s)
- Manish A Shah
- Weill Cornell Medicine, New York, NY; New York-Presbyterian Hospital, New York, NY.
| | | | - Niall C Tebbutt
- Department of Medical Oncology, Austin Health, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Axel Grothey
- West Cancer Center and Research Institute, Germantown, TN
| | - Josep Tabernero
- Vall d'Hebron Hospital, Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic- UCC, Barcelona, Spain
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Andres Cervantes
- Incliva Biomedical Research Institute, Valencia, Spain; University of Valencia, Valencia, Spain
| | - Sang Cheul Oh
- Korea University College of Medicine, Seoul, South Korea
| | - Kensei Yamaguchi
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alfredo Falcone
- University of Pisa, Pisa, Italy; Department of Translational Research, University of Pisa, Pisa, Italy
| | - Christina Wu
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Vi K Chiu
- The Angeles Clinic & Research Institute, a Cedars-Sinai affiliate, Los Angeles, CA
| | - Jiri Tomasek
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johanna Bendell
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN
| | | | | | - Bo Xu
- Sumitomo Dainippon Pharma Oncology, Inc., Cambridge, MA
| | - Julien Taieb
- Hôpital Europeen Georges Pompidou, APHP, Paris, France; Université de Paris, Paris, France; CARPEM Cancer Institute, Paris, France
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg, Leuven & KULeuven, Leuven, Belgium
| |
Collapse
|
46
|
Maring JG, Eijsink JFH, Tichelaar FD, Veluwenkamp-Worawutputtapong P, Postma MJ, Touw DJ, de Groot JWB. Role of Patient-Reported Outcomes in Clinical Trials in Metastatic Colorectal Cancer: A Scoping Review. Cancers (Basel) 2023; 15:1135. [PMID: 36831478 PMCID: PMC9953919 DOI: 10.3390/cancers15041135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE To perform a scoping review on the use of Patient-Reported Outcome Measures (PROMs) in randomized trials on systemic therapy in patients with metastatic colorectal cancer (mCRC) between 2010 and 2021. METHODS First, a search on clinicaltrials.gov was performed, looking for randomized trials in mCRC. The use of PROMs was analyzed quantitatively. Subsequently, we assessed the completeness of PROM reporting based on the CONSORT PRO extension in publications related to the selected trials acquired using Embase and PubMed. RESULTS A total of 46/176 trials were registered on clinicaltrials.gov used PROMs. All these trials used validated PROM instruments. The EORTC QLQ-C30 was most frequently used (37 times), followed by the EQ-5D (21 times) and the EORTC QLQ-CR29 (six times). A total of 56/176 registered trials were published. In 35% (n = 20), the results of the PROMs were available. Overall, 7/20 (35%) trials documented all items of the CONSORT PRO extension and quality of reporting according to the CONSORT PRO extension was higher than in the period 2004-2012. In 3/20 (15%) of the published trials, the results of PROMs were not discussed nor included in the positioning of the new treatment compared to the reference treatment. CONCLUSION When PROMs are used, the quality of reporting on patient-reported outcomes is improving, but this must continue in order to optimize the translation of trial results to individual patient values.
Collapse
Affiliation(s)
- Jan Gerard Maring
- Department of Clinical Pharmacy, Isala, NL 8025 AB Zwolle, The Netherlands
| | - Job F. H. Eijsink
- Department of Clinical Pharmacy, Isala, NL 8025 AB Zwolle, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, NL 9713 GZ Groningen, The Netherlands
| | - Friso D. Tichelaar
- Department of Health Sciences, University Medical Centre Groningen, University of Groningen, NL 9713 GZ Groningen, The Netherlands
| | | | - Maarten J. Postma
- Department of Health Sciences, University Medical Centre Groningen, University of Groningen, NL 9713 GZ Groningen, The Netherlands
- Department of Economics, Econometrics & Finance, Faculty of Economics & Business, University of Groningen, NL 9713 GZ Groningen, The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, NL 9713 GZ Groningen, The Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, NL 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
47
|
Proteomic time course of breast cancer cells highlights enhanced sensitivity to Stat3 and Src inhibitors prior to endocrine resistance development. Cancer Gene Ther 2023; 30:324-334. [PMID: 36266450 PMCID: PMC9935392 DOI: 10.1038/s41417-022-00548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
To prevent the development of endocrine-resistant breast cancer, additional targeted therapies are increasingly being trialled in combination with endocrine therapy. The molecular mechanisms facilitating cancer cell survival during endocrine treatment remain unknown but could help direct selection of additional targeted therapies. We present a novel proteomic timecourse dataset, profiling potential drug targets in a population of MCF7 cells during 1 year of tamoxifen treatment. Reverse phase protein arrays profiled >70 proteins across 30 timepoints. A biphasic response to tamoxifen was evident, which coincided with changes in growth rate. Tamoxifen strongly impeded cell growth for the first 160 days, followed by gradual growth recovery and eventual resistance development. The growth-impeded phase was distinguished by the phosphorylation of Stat3 (y705) and Src (y527). Tumour tissue from patients treated with neo-adjuvant endocrine therapy (<4 months) also displayed increased Stat3 and Src signalling. Inhibitors of Stat3 (napabucasin) and Src (dasatinib), were effective at killing tamoxifen-treated MCF7 and T47D cells. Sensitivity to both drugs was significantly enhanced once tamoxifen had induced the growth-impeded phase. This novel proteomic resource identifies key mechanisms enabling cell survival during tamoxifen treatment. It provides valuable insight into potential drug combinations and timing that may prevent the development of endocrine resistance.
Collapse
|
48
|
Zhu M, Li S, Cao X, Rashid K, Liu T. The STAT family: Key transcription factors mediating crosstalk between cancer stem cells and tumor immune microenvironment. Semin Cancer Biol 2023; 88:18-31. [PMID: 36410636 DOI: 10.1016/j.semcancer.2022.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins compose a family of transcription factors critical for cancer stem cells (CSCs), and they are involved in maintaining stemness properties, enhancing cell proliferation, and promoting metastasis. Recent studies suggest that STAT proteins engage in reciprocal communication between CSCs and infiltrate immune cell populations in the tumor microenvironment (TME). Emerging evidence has substantiated the influence of immune cells, including macrophages, myeloid-derived suppressor cells, and T cells, on CSC survival through the regulation of STAT signaling. Conversely, dysregulation of STATs in CSCs or immune cells contributes to the establishment of an immunosuppressive TME. Thus, STAT proteins are promising therapeutic targets for cancer treatment, especially when used in combination with immunotherapy. From this perspective, we discuss the complex roles of STATs in CSCs and highlight their functions in the crosstalk between CSCs and the immune microenvironment. Finally, cutting-edge clinical trial progress with STAT signaling inhibitors is summarized.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Khalid Rashid
- Department of Cancer Biology, Faculty of Medicine, University of Cincinnati, OH, USA.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Glover A, Zhang Z, Shannon-Lowe C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol 2023; 14:1161848. [PMID: 37033972 PMCID: PMC10076641 DOI: 10.3389/fimmu.2023.1161848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.
Collapse
|
50
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|