1
|
Qiu T, Fang Q, Tian X, Cao Y, Fan X, Li Y, Tu Y, Liu L, Chen Z, Wei Y, Bai J, Huang J, Liu Y. Time-varying ambient air pollution exposure is associated with gut microbiome variation in the first 2 years of life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124705. [PMID: 39134171 DOI: 10.1016/j.envpol.2024.124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The infant gut microbiome matures greatly in the first year of life. Ambient air pollution (AAP) exposure is associated with the infant gut microbiome. However, whether time-varying AAP influences infant gut microbiome variation is rarely investigated. This study aimed to investigate the effects of PM2.5, PM10, and O3 on infant gut microbiome variation longitudinally. Demographic information, stool samples, and AAP exposure concentrations were collected at 6, 12, 24 months from infants. Gut microbiome was processed and analyzed using 16S rRNA V3-V4 gene regions. AAP exposure concentrations were calculated using the China High Air Pollutants (CHAP) database. Multiple pollutant models were used to assess the mixed effects of PM2.5, PM10, and O3 on infant gut microbiome variation. Infants' gut microbiomes at 6, 12, 24 months old had significant differences in alpha diversity, beta diversity, and community composition. PM2.5 and O3 respectively explained 6.3% and 5.3% of the differences in community composition for 24-month-old infants. Single pollutant exposure and multiple pollutant exposure in different periods were both associated with alpha diversity indices and specific gut microbial phyla and genera. AAP was more associated with infant gut microbial alpha diversity indices, phyla variations, and genera variations at 12-24 months than 6-12 months. Multiple pollutant exposure in 0-2 lag months showed negative correlations with 12-24 months variation in Escherichia-Shigella (β = -0.854, 95%CI: 1.398 to -0.310) and Enterococcus (β = -0.979, 95%CI: 1.429 to -0.530). This study highlighted that time-varying PM2.5, PM10, and O3 synergistically influenced the variation of alpha diversity and abundance of gut microbial taxa in infants. Further research is needed to explore the effects and mechanisms of other environmental exposures on infant gut microbiome variation.
Collapse
Affiliation(s)
- Tianlai Qiu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Qingbo Fang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xuqi Tian
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanan Cao
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanting Li
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yiming Tu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Linxia Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Zitong Chen
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yi Wei
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
2
|
Mårild K, Lerchova T, Östensson M, Imberg H, Størdal K, Ludvigsson J. Early-Life Infections, Antibiotics and Later Risk of Childhood and Early Adult-Onset Inflammatory Bowel Disease: Pooled Analysis of Two Scandinavian Birth Cohorts. Aliment Pharmacol Ther 2024. [PMID: 39450871 DOI: 10.1111/apt.18358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Childhood antibiotic use has been associated with inflammatory bowel disease (IBD), although the potential contribution of infection frequency remains uncertain. AIMS To explore the association between early-life infections, antibiotics and IBD development. METHODS We used population-based data from ABIS (Sweden) and MoBa (Norway) cohorts following children from birth (1997-2009) until 2021. Prospectively collected questionnaires identified infection frequency (any, gastrointestinal and respiratory) and antibiotics (any, penicillin and non-penicillin) until age 3. IBD diagnosis required ≥ 2 records in national health registries. Cohort-specific hazard ratios (aHR), adjusted for parental education, smoking and IBD were estimated and pooled using a random-effects model. Antibiotic analyses were adjusted for infection frequency. RESULTS There were 103,046 children (11,872 ABIS and 91,174 MoBa), contributing to 1,663,898 person-years of follow-up, during which 395 were diagnosed with IBD. The frequency of any infection at 0 to < 1 and 1 to < 3 years showed a pooled aHR of 1.01 (95% confidence interval [CI] = 0.96-1.07) and 1.00 (95% CI = 0.99-1.01) per additional infection for IBD. Adjusting for infections, any versus no antibiotics in the first year was associated with IBD (pooled aHR = 1.33 [95% CI = 1.01-1.76]). The aHR for additional antibiotic course was 1.17 (95% CI = 0.96-1.44), driven by penicillin (per additional course, aHR = 1.28 [95% CI = 1.02-1.60]). Although antibiotics at 1 to < 3 years did not show an association with IBD or Crohn's disease, non-penicillin antibiotics were associated with ulcerative colitis (per additional course, aHR = 1.95 [95% CI = 1.38-2.75]). CONCLUSION Early-life antibiotic use was, a significant risk factor for childhood and early adult-onset IBD, independent of infection frequency.
Collapse
Affiliation(s)
- Karl Mårild
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Pediatric Gastroenterology Unit, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tereza Lerchova
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Imberg
- Statistiska Konsultgruppen Sweden, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ketil Størdal
- Department of Pediatric Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- Children's Center, Oslo University Hospital, Oslo, Norway
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Shao Y, Garcia-Mauriño C, Clare S, Dawson NJR, Mu A, Adoum A, Harcourt K, Liu J, Browne HP, Stares MD, Rodger A, Brocklehurst P, Field N, Lawley TD. Primary succession of Bifidobacteria drives pathogen resistance in neonatal microbiota assembly. Nat Microbiol 2024; 9:2570-2582. [PMID: 39242817 PMCID: PMC11445081 DOI: 10.1038/s41564-024-01804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Human microbiota assembly commences at birth, seeded by both maternal and environmental microorganisms. Ecological theory postulates that primary colonizers dictate microbial community assembly outcomes, yet such microbial priority effects in the human gut remain underexplored. Here using longitudinal faecal metagenomics, we characterized neonatal microbiota assembly for a cohort of 1,288 neonates from the UK. We show that the pioneering neonatal gut microbiota can be stratified into one of three distinct community states, each dominated by a single microbial species and influenced by clinical and host factors, such as maternal age, ethnicity and parity. A community state dominated by Enterococcus faecalis displayed stochastic microbiota assembly with persistent high pathogen loads into infancy. In contrast, community states dominated by Bifidobacterium, specifically B. longum and particularly B. breve, exhibited a stable assembly trajectory and long-term pathogen colonization resistance, probably due to strain-specific functional adaptions to a breast milk-rich neonatal diet. Consistent with our human cohort observation, B. breve demonstrated priority effects and conferred pathogen colonization resistance in a germ-free mouse model. Our findings solidify the crucial role of Bifidobacteria as primary colonizers in shaping the microbiota assembly and functions in early life.
Collapse
Affiliation(s)
- Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| | | | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas J R Dawson
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Andre Mu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Anne Adoum
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Katherine Harcourt
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Junyan Liu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK
| | - Peter Brocklehurst
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
4
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
5
|
Mamun AA, Zou C, Lishman H, Stenlund S, Xie M, Chuang E, Patrick DM. Association between antibiotic usage during infancy and asthma incidence among children: a population-level ecological study in British Columbia, Canada. FRONTIERS IN ALLERGY 2024; 5:1456077. [PMID: 39286476 PMCID: PMC11403638 DOI: 10.3389/falgy.2024.1456077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Background This study follows published associations in BC to 2014 (updated in 2019) to model the predicted incidence of asthma in BC children attributable to antibiotic use within the context of reduced antibiotic use and increased breastfeeding in BC infants from 2000 to 2019. Methods A population-based ecological study was conducted in BC from 2000 to 2019, using outpatient antibiotic prescription data from BC PharmaNet and asthma diagnoses from the Chronic Disease Registry. Breastfeeding estimates were calculated using the Canadian Community Health Survey (CCHS). Population attributable risk (PAR) was calculated using a blended relative risk (RR) of asthma in antibiotic-exposed children who were and were not breastfed. PAR was used to calculate predicted vs. actual asthma incidence in 2019. Negative binomial regression was used to estimate the association between the average antibiotic prescription rate in infants under 1 and asthma incidence in 1-4 year olds, stratified by periods between 2000-2014 and 2015-2019. Results In BC, antibiotic prescribing decreased by 77% in infants under 1 and asthma incidence decreased by 41% in children 1-4 years from 2000 to 2019. BC breastfeeding rates increased from 46% in the 2005 CCHS to 71% in the 2017/18 CCHS. After calculating the PAR using a blended RR, the predicted asthma incidence in 2019 was 18.8/1,000 population. This was comparable to the observed asthma incidence in children 1-4 years of 16.6/1,000 population in 2019. During 2000-2014, adjusted incidence risk ratio (aIRR) for children under Quintile 5 of average antibiotic prescribing was 1.75 (95% CI: 1.63-1.88, P < 0.0001) times higher than that for Quintile 1. However, between 2015 and 2019, this association weakened (as expected because of increasing prevalence of breastfeeding), with the expected asthma incidence for Quintile 5 only 11% (aIRR 1.11, 95% CI: 0.78-1.57) higher than for Quintile 1. Conclusion We identified that over the past 20 years, antibiotic exposure in infants under 1 and asthma incidence in children 1-4 years has decreased significantly. Decreasing antibiotic exposure and increasing breastfeeding (which further mitigates risk associated with antibiotics) are of sufficient scale to explain much of this population trend. Changes in environmental, social and other exposures remain relevant to this complicated etiological pathway.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Carl Zou
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Hannah Lishman
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Säde Stenlund
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Max Xie
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Erica Chuang
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - David M Patrick
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| |
Collapse
|
6
|
Leng J, Moller-Levet C, Mansergh RI, O'Flaherty R, Cooke R, Sells P, Pinkham C, Pynn O, Smith C, Wise Z, Ellis R, Couto Alves A, La Ragione R, Proudman C. Early-life gut bacterial community structure predicts disease risk and athletic performance in horses bred for racing. Sci Rep 2024; 14:17124. [PMID: 39112552 PMCID: PMC11306797 DOI: 10.1038/s41598-024-64657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Gut bacterial communities have a profound influence on the health of humans and animals. Early-life gut microbial community structure influences the development of immunological competence and susceptibility to disease. For the Thoroughbred racehorse, the significance of early-life microbial colonisation events on subsequent health and athletic performance is unknown. Here we present data from a three-year cohort study of horses bred for racing designed to explore interactions between early-life gut bacterial community structure, health events in later life and athletic performance on the racetrack. Our data show that gut bacterial community structure in the first months of life predicts the risk of specific diseases and athletic performance up to three years old. Foals with lower faecal bacterial diversity at one month old had a significantly increased risk of respiratory disease in later life which was also associated with higher relative abundance of faecal Pseudomonadaceae. Surprisingly, athletic performance up to three years old, measured by three different metrics, was positively associated with higher faecal bacterial diversity at one month old and with the relative abundance of specific bacterial families. We also present data on the impact of antibiotic exposure of foals during the first month of life. This resulted in significantly lower faecal bacterial diversity at 28 days old, a significantly increased risk of respiratory disease in later life and a significant reduction in average prize money earnings, a proxy for athletic performance. Our study reveals associations between early-life bacterial community profiles and health events in later life and it provides evidence of the detrimental impact of antimicrobial treatment in the first month of life on health and performance outcomes in later life. For the first time, this study demonstrates a relationship between early-life gut bacterial communities and subsequent athletic performance that has implications for athletes of all species including humans.
Collapse
Affiliation(s)
- J Leng
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - C Moller-Levet
- School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, GU2 7XH, UK
| | - R I Mansergh
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - R O'Flaherty
- Avonvale Vets, 6 Broxell Close, Warwick, CV34 5QF, UK
| | - R Cooke
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - P Sells
- Chasemore Farm, Orbital Veterinary Services, Bookham Road, Downside, Cobham, KT11 3JT, UK
| | - C Pinkham
- Pinkham Equine Veterinary Services, Home Farm Offices, Netherhapton, Salisbury, SP2 8PJ, UK
| | - O Pynn
- Rossdales Equine Practice, Beaufort Cottage Stables, High Street, Newmarket, CB8 8JS, UK
| | - C Smith
- Newmarket Equine Hospital, Cambridge Road, Newmarket, CB8 OFG, UK
| | - Z Wise
- Newmarket Equine Hospital, Cambridge Road, Newmarket, CB8 OFG, UK
| | - R Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, Weybridge, Addlestone, KT15 3NB, UK
| | - A Couto Alves
- School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, GU2 7XH, UK
| | - R La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
- School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, GU2 7XH, UK
| | - C Proudman
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK.
| |
Collapse
|
7
|
Aslam R, Herrles L, Aoun R, Pioskowik A, Pietrzyk A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100289. [PMID: 39105129 PMCID: PMC11298874 DOI: 10.1016/j.jacig.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Asthma, a chronic inflammatory disorder of the airways, is a prevalent childhood chronic disease with a substantial global health burden. The complex etiology and pathogenesis of asthma involve genetic and environmental factors, posing challenges in diagnosis, severity prediction, and therapeutic strategies. Recent studies have highlighted the significant role of the gut microbiota and its interaction with the immune system in the development of asthma. Dysbiosis, an imbalance in microbial composition, has been associated with respiratory diseases through the gut-lung axis. This axis is an interaction between the gut and lungs, allowing microbial metabolites to influence the host immune system. This systematic review examines the association between gut microbiota composition, measured using 16S rRNA sequencing, during infancy and childhood, and the subsequent development of atopic wheeze and asthma. The results suggest that higher alpha diversity of bacteria such as Bifidobacterium, Faecalibacterium, and Roseburia may have protective effects against asthmatic outcomes. Conversely, lower relative abundances of bacteria like Bacteroides and certain fungi, including Malassezia, were associated with asthma. These findings highlight the potential of early screening and risk assessment of gut microbiota to identify individuals at risk of asthma. Furthermore, investigations targeting gut microbiota, such as dietary modifications and probiotic supplementation, may hold promise for asthma prevention and management. Future research should focus on identifying specific microbial signatures associated with asthma susceptibility and further investigate approaches like fecal microbiota transplantation. Understanding the role of gut microbiota in asthma pathogenesis can contribute to early detection and development of interventions to mitigate the risk of asthmatic pathogenesis in childhood.
Collapse
Affiliation(s)
- Rabbiya Aslam
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Laura Herrles
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Raquel Aoun
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pioskowik
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
8
|
Wang S, Yin F, Sun W, Li R, Guo Z, Wang Y, Zhang Y, Sun C, Sun D. The causal relationship between gut microbiota and nine infectious diseases: a two-sample Mendelian randomization analysis. Front Immunol 2024; 15:1304973. [PMID: 39050854 PMCID: PMC11266007 DOI: 10.3389/fimmu.2024.1304973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Evidence from observational studies and clinical trials has associated gut microbiota with infectious diseases. However, the causal relationship between gut microbiota and infectious diseases remains unclear. Methods We identified gut microbiota based on phylum, class, order, family, and genus classifications, and obtained infectious disease datasets from the IEU OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis was then performed to determine whether the gut microbiota were causally associated with different infectious diseases. In addition, we performed reverse MR analysis to test for causality. Results Herein, we characterized causal relationships between genetic predispositions in the gut microbiota and nine infectious diseases. Eight strong associations were found between genetic predisposition in the gut microbiota and infectious diseases. Specifically, the abundance of class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae was found to be positively associated with the risk of lower respiratory tract infections (LRTIs). On the other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli were positively associated with the risk of endocarditis, cellulitis, and osteomyelitis, respectively. We also discovered that the abundance of class Lentisphaeria and order Victivallales lowered the risk of sepsis. Conclusion Through MR analysis, we found that gut microbiota were causally associated with infectious diseases. This finding offers new insights into the microbe-mediated infection mechanisms for further clinical research.
Collapse
Affiliation(s)
- Song Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yuchao Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yiyuan Zhang
- Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| |
Collapse
|
9
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Shama S, Asbury MR, O'Connor DL. From parent to progeny. Cell Host Microbe 2024; 32:947-949. [PMID: 38870905 DOI: 10.1016/j.chom.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
How infants acquire their gut microbial communities and the various factors influencing these dynamics remain unclear. In this issue of Cell Host & Microbe, Selma-Royo et al. and Dubois et al. use shotgun metagenomic sequencing to understand the transmission of microbes from parents to infants and delve into factors modifying this process.
Collapse
Affiliation(s)
- Sara Shama
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michelle R Asbury
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada; Department of Pediatrics, University of Calgary, Calgary, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, Canada.
| |
Collapse
|
11
|
Piloquet H, Vrignaud B, Gillaizeau F, Capronnier O, Berding K, Günther J, Hecht C, Regimbart C. Efficacy and safety of a synbiotic infant formula for the prevention of respiratory and gastrointestinal infections: a randomized controlled trial. Am J Clin Nutr 2024; 119:1259-1269. [PMID: 38462218 DOI: 10.1016/j.ajcnut.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Early life nutrition is crucial for the development of the gut microbiota that, in turn, plays an essential role in the maturation of the immune system and the prevention of infections. OBJECTIVES The aim of this study was to investigate whether feeding synbiotic infants and follow-on formulas during the first year of life reduces the incidence rate (IR) of infectious diarrhea compared with standard formulas. Secondary endpoints included the IR of other infectious diseases as well as fecal milieu parameters. METHODS In this double-blind, controlled trial, 460 healthy, 1-mo-old infants were randomly assigned to receive a synbiotic [galacto-oligosaccharides (GOS)/Limosilactobacillus fermentum CECT 5716] (IF, n = 230) or a control formula (CF, n = 230) until 12 mo of age. A reference group of breastfed infants (HM, n = 80) was included. Data on infections were recorded throughout the study period and stool samples were collected at 4 and 12 mo of age. RESULTS IR of infectious diarrhea during the first year of life was 0.60 (CF), 0.56 (IF), and 0.29 (HM), with no statistically significant difference between groups. The IR of lower respiratory tract infections, 1 of the secondary endpoints, however, was lower in IF than in CF [0.79 compared with 1.01, IR ratio = 0.77 (0.60-1.00)]. Additionally, fecal pH was significantly lower at 4 mo (P < 0.0001), whereas secretory IgA was significantly higher at 12 mo of age (P = 0.015) in IF compared with CF. CONCLUSIONS Although no difference is observed in the incidence of diarrhea, consumption of a synbiotic formula containing L. fermentum CECT5716 and GOS in infancy may reduce the incidence of lower respiratory tract infections and affect the immune system and fecal milieu. Additional research is warranted to further investigate the potential interaction of the gut-lung axis. This trial was registered at clinicaltrials.gov as NCT02221687.
Collapse
Affiliation(s)
- Hugues Piloquet
- Department of Pediatric Chronic Diseases, University Hospital of Nantes, Nantes, France.
| | - Bénédicte Vrignaud
- Department of Pediatric Chronic Diseases, University Hospital of Nantes, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Alba C, Carrera M, Álvarez-Calatayud G, Arroyo R, Fernández L, Rodríguez JM. Evaluation of Safety and Beneficial Health Effects of the Human-Milk Strain Bifidobacterium breve DSM32583: An Infant Pilot Trial. Nutrients 2024; 16:1134. [PMID: 38674825 PMCID: PMC11053739 DOI: 10.3390/nu16081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk promotes the growth of bifidobacteria in the infant gut. Adding bifidobacterial species to infant formula may contribute to increasing their presence in the gut of formula-fed infants. Therefore, the safety and anti-infectious effects of Bifidobacterium breve DSM32583, a breast milk isolate, were assessed in a pilot trial involving 3-month-old infants. The infants were randomly assigned to either the probiotic (PG) or the control (CG) groups. All the infants consumed the same formula, although it was supplemented with the strain (1 × 107 cfu/g of formula) in the PG. Overall, 160 infants (80 per group) finished the intervention. Infants in CG gained more weight compared to PG (p < 0.05), but the weights for age Z-scores at 6 months were within the normal distribution for this age group. The rates of infections affecting the gastrointestinal and respiratory tracts and antibiotic therapy were significantly lower in the PG. The bifidobacterial population and the level of short-chain fatty acids were higher (p < 0.05) in the fecal samples of PG infants. No adverse events related to formula consumption were observed. In conclusion, the administration of an infant formula with B. breve DSM32583 was safe and exerted potential beneficial effects on gut health.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Marta Carrera
- Centro de Atención Primaria Silvano, Comunidad de Madrid, 28043 Madrid, Spain;
| | | | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| |
Collapse
|
13
|
Smulders T, Van Der Schee MP, Maitland-Van Der Zee AH, Dikkers FG, Van Drunen CM. Influence of the gut and airway microbiome on asthma development and disease. Pediatr Allergy Immunol 2024; 35:e14095. [PMID: 38451070 DOI: 10.1111/pai.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
There are ample data to suggest that early-life dysbiosis of both the gut and/or airway microbiome can predispose a child to develop along a trajectory toward asthma. Although individual studies show clear associations between dysbiosis and asthma development, it is less clear what (collection of) bacterial species is mechanistically responsible for the observed effects. This is partly due to issues related to the asthma diagnosis and the broad spectrum of anatomical sites, sample techniques, and analysis protocols that are used in different studies. Moreover, there is limited attention for potential differences in the genetics of individuals that would affect the outcome of the interaction between the environment and that individual. Despite these challenges, the first bacterial components were identified that are able to affect the transcriptional state of human cells, ergo the immune system. Such molecules could in the future be the basis for intervention studies that are now (necessarily) restricted to a limited number of bacterial species. For this transition, it might be prudent to develop an ex vivo human model of a local mucosal immune system to better and safer explore the impact of such molecules. With this approach, we might move beyond association toward understanding of causality.
Collapse
Affiliation(s)
- Tamar Smulders
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Marc P Van Der Schee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-Van Der Zee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Frederik G Dikkers
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis M Van Drunen
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Guo Z, Huang L, Lai S. Global knowledge mapping and emerging research trends in the microbiome and asthma: A bibliometric and visualized analysis using VOSviewer and CiteSpace. Heliyon 2024; 10:e24528. [PMID: 38304829 PMCID: PMC10831755 DOI: 10.1016/j.heliyon.2024.e24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Background Numerous prior studies have extensively highlighted the significance of the microbiome in association with asthma. While several studies have concentrated on the asthma microbiome in previous research, there is currently a lack of publications that employ bibliometric methods to assess this area. Methods In this study, the Web of Science Core Collection database was utilized as the data source, and the SCI-EXPANDED index was employed to ensure that the retrieved data were comprehensive and accurate. All original research articles and review articles related to the correlation between asthma and the microbiome were systematically searched from the inception of the database until June 20, 2023. These articles were subsequently visualized and analyzed using VOSviewer and CiteSpace software. Results A total of 1366 relevant publications were acquired, indicating a consistent annual increase in global publications in the field. The United States and China emerged as the top two contributors to international publications. Among prolific authors, Susan V. Lynch achieved the highest publication record, with Hans Bisgaard and Jakob Stokholm sharing the second position. The majority of publications concentrated on allergy-related and microbiome areas, with a few comprehensive journals standing out. Journals with 40 or more publications included the Journal of Allergy and Clinical Immunology, Allergy, Frontiers in Immunology, and PLOS One. The top 5 cited journals were the Journal of Allergy and Clinical Immunology, PLOS One, American Journal of Respiratory and Critical Care Medicine, Clinical and Experimental Allergy, and Nature. Upon analyzing keywords, high-frequency terms, such as asthma, gut microbiota, microbiome, children, childhood asthma, allergy, risk, exposure, inflammation, diversity, and chain fatty acids emerged as representative terms in the field. Conclusion This study systematically presented a comprehensive overview of the literature regarding the association between asthma and the microbiome over the last two decades. Through a bibliometric perspective, the findings may assist researchers with a better understanding of the essential information in the field.
Collapse
Affiliation(s)
- ZhiFeng Guo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - SuMei Lai
- Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| |
Collapse
|
15
|
Willis KA, Silverberg M, Martin I, Abdelgawad A, Karabayir I, Halloran BA, Myers ED, Desai JP, White CT, Lal CV, Ambalavanan N, Peters BM, Jain VG, Akbilgic O, Tipton L, Jilling T, Cormier SA, Pierre JF, Talati AJ. The fungal intestinal microbiota predict the development of bronchopulmonary dysplasia in very low birthweight newborns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290625. [PMID: 37398134 PMCID: PMC10312873 DOI: 10.1101/2023.05.29.23290625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. METHODS We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. RESULTS We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. CONCLUSIONS The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis.
Collapse
|
16
|
Liu Z, Xie L, Liu X, Chen J, Zhou Y, Zhang J, Su H, Yang Y, Tian M, Li J, Dong Y. Cesarean section and the risk of allergic rhinitis in children: a systematic review and meta-analysis. Sci Rep 2023; 13:18361. [PMID: 37884557 PMCID: PMC10603136 DOI: 10.1038/s41598-023-44932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Multiple evidence indicates that perinatal factors make impact on immune development and affect offspring allergic rhinitis (AR) risk. In this systematic review and meta-analysis, we examined available published studies to clarify the relationship between cesarean section (C-section) and offspring AR in children. To explore the relationship between C-section, especially the special attention was paid to different cesarean delivery mode, and the risk of AR in children. Articles were searched using PubMed, Web of Science, EMBASE, Cochrane Library, China knowledge Network, Wanfang, and China Science and Technology Journal databases. A meta-analysis of 22 studies published before August 1, 2022, which included 1,464,868 participants, was conducted for statistical analysis with RevMan5.4. The correlation strength between C-section and offspring AR was determined by combining odds ratio (OR) and 95% confidence interval (95% CI). Meta-regression and subgroup analyses were used to explore potential sources of heterogeneity. Publication bias was detected using the funnel chart and Egger tests. Meta-analysis revealed that there was a significant correlation between C-section and children AR (OR = 1.19, 95% CI: 1.12-1.27, P < 0.001), especially C-section with a family history of allergy (OR = 1.82, 95% CI: 1.36-2.43, P < 0.001). Moreover, elective C-section (without genital tract microbe exposure) had the higher risk of offspring AR (OR = 1.24, 95% CI: 1.05-1.46, P = 0.010) compared with the whole study. Meta-regression demonstrated that sample size explained 38.0% of the variability between studies, and year of publication explained 18.8%. Delivery by C-section, particularly elective C-section and C-section with a family history of allergy can increase the risk of AR in children.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
- Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Li Xie
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
| | - Xiaohua Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, Hunan, China
| | - JunRong Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
| | - Yaqian Zhou
- Second Xiangya Hospital, Central South University, 139 Renmin Road, 410011, Changsha, Hunan, China
| | - Jialin Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
| | - Honghui Su
- Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yide Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
| | - Mei Tian
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China
| | - Jian Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410013, Hunan, China.
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, Hunan, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, 410013, Changsha, Hunan, China.
| | - Yunpeng Dong
- Department of Otolatyngoloty-Head and Neck Surgery, Yichang Central People's Hospital, Three Gorges University, 443000, Hubei, China.
| |
Collapse
|
17
|
Saxami G, Kerezoudi EN, Eliopoulos C, Arapoglou D, Kyriacou A. The Gut-Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life (Basel) 2023; 13:2023. [PMID: 37895405 PMCID: PMC10608660 DOI: 10.3390/life13102023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The human gut microbiota (GM) is a complex microbial ecosystem that colonises the gastrointestinal tract (GIT) and is comprised of bacteria, viruses, fungi, and protozoa. The GM has a symbiotic relationship with its host that is fundamental for body homeostasis. The GM is not limited to the scope of the GIT, but there are bidirectional interactions between the GM and other organs, highlighting the concept of the "gut-organ axis". Any deviation from the normal composition of the GM, termed "microbial dysbiosis", is implicated in the pathogenesis of various diseases. Only a few studies have demonstrated a relationship between GM modifications and disease phenotypes, and it is still unknown whether an altered GM contributes to a disease or simply reflects its status. Restoration of the GM with probiotics and prebiotics has been postulated, but evidence for the effects of prebiotics is limited. Prebiotics are substrates that are "selectively utilized by host microorganisms, conferring a health benefit". This study highlights the bidirectional relationship between the gut and vital human organs and demonstrates the relationship between GM dysbiosis and the emergence of certain representative diseases. Finally, this article focuses on the potential of prebiotics as a target therapy to manipulate the GM and presents the gaps in the literature and research.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| |
Collapse
|
18
|
Qin J, Wang J. Research progress on the effects of gut microbiome on lung damage induced by particulate matter exposure. ENVIRONMENTAL RESEARCH 2023; 233:116162. [PMID: 37348637 DOI: 10.1016/j.envres.2023.116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Air pollution is one of the top five causes of death in the world and has become a research hotspot. In the past, the health effects of particulate matter (PM), the main component of air pollutants, were mainly focused on the respiratory and cardiovascular systems. However, in recent years, the intestinal damage caused by PM and its relationship with gut microbiome (GM) homeostasis, thereby affecting the composition and function of GM and bringing disease burden to the host lung through different mechanisms, have attracted more and more attention. Therefore, this paper reviews the latest research progress in the effect of PM on GM-induced lung damage and its possible interaction pathways and explores the potential immune inflammatory mechanism with the gut-lung axis as the hub in order to understand the current research situation and existing problems, and to provide new ideas for further research on the relationship between PM pollution, GM, and lung damage.
Collapse
Affiliation(s)
- Jiali Qin
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Liang X, Li Y, Cheng L, Wu Y, Wu T, Wen J, Huang D, Liao Z, Tan C, Luo Y, Liu Y. Gut microbiota dysbiosis characterized by abnormal elevation of Lactobacillus in patients with immune-mediated necrotizing myopathy. Front Cell Infect Microbiol 2023; 13:1243512. [PMID: 37692165 PMCID: PMC10486907 DOI: 10.3389/fcimb.2023.1243512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aim The gut microbiota plays an important role in human health. In this study, we aimed to investigate whether and how gut microbiota communities are altered in patients with immune-mediated necrotizing myopathy (IMNM) and provide new ideas to further explore the pathogenesis of IMNM or screen for its clinical therapeutic targets in the future. Methods The gut microbiota collected from 19 IMNM patients and 23 healthy controls (HCs) were examined by using 16S rRNA gene sequencing. Alpha and beta-diversity analyses were applied to examine the bacterial diversity and community structure. Welch's t test was performed to identify the significantly abundant taxa of bacteria between the two groups. Spearman correlation analysis was performed to analyze the correlation between gut microbiota and clinical indicators. A receiver operator characteristic (ROC) curve was used to reflect the sensitivity and specificity of microbial biomarker prediction of IMNM disease. P < 0.05 was considered statistically significant. Results Nineteen IMNM patients and 23 HCs were included in the analysis. Among IMNM patients, 94.74% (18/19) of them used glucocorticoids, while 57.89% (11/19) of them used disease-modifying antirheumatic drugs (DMARDs), and the disease was accessed by MITAX (18.26 ± 8.62) and MYOACT (20.68 ± 8.65) scores. Participants in the groups were matched for gender and age. The diversity of the gut microbiota of IMNM patients differed and decreased compared to that of HCs (Chao1, Shannon, and Simpson indexes: p < 0.05). In IMNM patients, the relative abundances of Bacteroides, Roseburia, and Coprococcus were decreased, while that of Lactobacillus and Streptococcus were relatively increased. Furthermore, in IMNM patients, Lactobacillus was positively correlated with the levels of anti-signal recognition particle (SRP) antibodies, anti-Ro52 antibodies, and erythrocyte sedimentation rate (ESR), while Streptococcus was positively correlated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibodies and C-reactive protein (CRP). Roseburia was negatively correlated with myoglobin (MYO), cardiac troponin T (cTnT), ESR, CRP, and the occurrence of interstitial lung disease (ILD). Bacteroides was negatively correlated with ESR and CRP, and Coprococcus was negatively correlated with ESR. Finally, the prediction model was built using the top five differential genera, which was verified using a ROC curve (area under the curve (AUC): 87%, 95% confidence interval: 73%-100%). Conclusion We observed a characteristic compositional change in the gut microbiota with an abnormal elevation of Lactobacillus in IMNM patients, which was accompanied by changes in clinical indicators. This suggests that gut microbiota dysbiosis occurs in IMNM patients and is correlated with systemic autoimmune features.
Collapse
Affiliation(s)
- Xiuping Liang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Lu Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Tong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Deying Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Zehui Liao
- Department of Rheumatolopy and Immunolopy, Meishan People’s Hospital, Meishan, Sichuan, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| |
Collapse
|
20
|
Katagiri S, Ohsugi Y, Shiba T, Yoshimi K, Nakagawa K, Nagasawa Y, Uchida A, Liu A, Lin P, Tsukahara Y, Iwata T, Tohara H. Homemade blenderized tube feeding improves gut microbiome communities in children with enteral nutrition. Front Microbiol 2023; 14:1215236. [PMID: 37680532 PMCID: PMC10482415 DOI: 10.3389/fmicb.2023.1215236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Enteral nutrition for children is supplied through nasogastric or gastrostomy tubes. Diet not only influences nutritional intake but also interacts with the composition and function of the gut microbiota. Homemade blenderized tube feeding has been administered to children receiving enteral nutrition, in addition to ready-made tube feeding. The purpose of this study was to evaluate the oral/gut microbial communities in children receiving enteral nutrition with or without homemade blenderized tube feeding. Among a total of 30 children, 6 receiving mainly ready-made tube feeding (RTF) and 5 receiving mainly homemade blenderized tube feeding (HBTF) were analyzed in this study. Oral and gut microbiota community profiles were evaluated through 16S rRNA sequencing of saliva and fecal samples. The α-diversity representing the number of observed features, Shannon index, and Chao1 in the gut were significantly increased in HBTF only in the gut microbiome but not in the oral microbiome. In addition, the relative abundances of the phylum Proteobacteria, class Gammaproteobacteria, and genus Escherichia-Shigella were significantly low, whereas that of the genus Ruminococcus was significantly high in the gut of children with HBTF, indicating HBTF altered the gut microbial composition and reducing health risks. Metagenome prediction showed enrichment of carbon fixation pathways in prokaryotes at oral and gut microbiomes in children receiving HBTF. In addition, more complex network structures were observed in the oral cavity and gut in the HBTF group than in the RTF group. In conclusion, HBTF not only provides satisfaction and enjoyment during meals with the family but also alters the gut microbial composition to a healthy state.
Collapse
Affiliation(s)
- Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kanako Yoshimi
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Nagasawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aritoshi Uchida
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Tsukahara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
21
|
Boulangé CL, Pedersen HK, Martin FP, Siegwald L, Pallejà Caro A, Eklund AC, Jia W, Zhang H, Berger B, Sprenger N, Heine RG, Cinnamon Study Investigator Group. An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:11422. [PMID: 37511184 PMCID: PMC10379726 DOI: 10.3390/ijms241411422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is a prevalent food allergy among infants and young children. We conducted a randomized, multicenter intervention study involving 194 non-breastfed infants with CMPA until 12 months of age (clinical trial registration: NCT03085134). One exploratory objective was to assess the effects of a whey-based extensively hydrolyzed formula (EHF) supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) on the fecal microbiome and metabolome in this population. Thus, fecal samples were collected at baseline, 1 and 3 months from enrollment, as well as at 12 months of age. Human milk oligosaccharides (HMO) supplementation led to the enrichment of bifidobacteria in the gut microbiome and delayed the shift of the microbiome composition toward an adult-like pattern. We identified specific HMO-mediated changes in fecal amino acid degradation and bile acid conjugation, particularly in infants commencing the HMO-supplemented formula before the age of three months. Thus, HMO supplementation partially corrected the dysbiosis commonly observed in infants with CMPA. Further investigation is necessary to determine the clinical significance of these findings in terms of a reduced incidence of respiratory infections and other potential health benefits.
Collapse
Affiliation(s)
- Claire L Boulangé
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | - Francois-Pierre Martin
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | - Léa Siegwald
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | | | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Huizhen Zhang
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | | |
Collapse
|
22
|
Liu Y, Ma J, Zhu B, Liu F, Qin S, Lv N, Feng Y, Wang S, Yang H. A health-promoting role of exclusive breastfeeding on infants through restoring delivery mode-induced gut microbiota perturbations. Front Microbiol 2023; 14:1163269. [PMID: 37492252 PMCID: PMC10363731 DOI: 10.3389/fmicb.2023.1163269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
The establishment of human gut microbiota in early life is closely associated with both short- and long-term infant health. Delivery mode and feeding pattern are two important determinants of infant gut microbiota. In this longitudinal cohort study, we examined the interplay between the delivery mode and feeding pattern on the dynamics of infant gut microbiota from 6 weeks to 6 months post-delivery in 139 infants. We also assessed the relationship between infant respiratory infection susceptibility and gut microbial changes associated with delivery mode and feeding pattern. At 6 weeks postpartum, the composition and structure of gut microbiota of cesarean section-delivered (CSD) infants differed from those of vaginally delivered (VD) infants, with decreased Bacteroides and Escherichia-Shigella and increased Klebsiella, Veillonella, and Enterococcus. At 6 months postpartum, these delivery mode-induced microbial shifts were restored by exclusive breastfeeding, resulting in similar gut microbial profiles between VD and CSD infants who were exclusively breastfed (P = 0.57) and more variable gut microbial profiles between VD and CSD infants who were mixed fed (P < 0.001). We identified that the VD-associated genera were enriched in healthy infants, while the CSD-associated genera were enriched in infants who suffered from respiratory infections. Our findings indicate that exclusive breastfeeding may play a health-promoting role by reducing infant respiratory infection susceptibility through the restoration of gut microbiota perturbations caused by cesarean section.
Collapse
Affiliation(s)
- Yu Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Jingmei Ma
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology and Immunology/Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Fei Liu
- Key Laboratory of Pathogenic Microbiology and Immunology/Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Shengtang Qin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Na Lv
- Key Laboratory of Pathogenic Microbiology and Immunology/Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Ye Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Shuxian Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
23
|
Christopoulou I, Kostopoulou E, Matzarapi K, Chasapi SA, Spyroulias GA, Varvarigou A. Identification of Novel Biomarkers in Late Preterm Neonates with Respiratory Distress Syndrome (RDS) Using Urinary Metabolomic Analysis. Metabolites 2023; 13:metabo13050644. [PMID: 37233686 DOI: 10.3390/metabo13050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Urine metabolomics is gaining traction as a means of identifying metabolic signatures associated with health and disease states. Thirty-one (31) late preterm (LP) neonates admitted to the neonatal intensive care unit (NICU) and 23 age-matched healthy LPs admitted to the maternity ward of a tertiary hospital were included in the study. Proton nuclear magnetic resonance (1H NMR) spectroscopy was employed for urine metabolomic analysis on the 1st and 3rd days of life of the neonates. The data were analyzed using univariate and multivariate statistical analysis. A unique metabolic pattern of enhanced metabolites was identified in the NICU-admitted LPs from the 1st day of life. Metabolic profiles were distinct in LPs presenting with respiratory distress syndrome (RDS). The discrepancies likely reflect differences in the gut microbiota, either due to variations in nutrient intake or as a result of medical interventions, such as the administration of antibiotics and other medications. Altered metabolites could potentially serve as biomarkers for identifying critically ill LP neonates or those at high risk for adverse outcomes later in life, including metabolic risks. The discovery of novel biomarkers may uncover potential targets for drug discovery and optimal periods for effective intervention, offering a personalized approach.
Collapse
Affiliation(s)
- Irene Christopoulou
- Department of Paediatrics, University of Patras Medical School, General University Hospital, 26500 Patras, Greece
| | - Eirini Kostopoulou
- Department of Paediatrics, University of Patras Medical School, General University Hospital, 26500 Patras, Greece
| | | | | | | | - Anastasia Varvarigou
- Department of Paediatrics, University of Patras Medical School, General University Hospital, 26500 Patras, Greece
| |
Collapse
|
24
|
Biagioni B, Cecchi L, D'Amato G, Annesi-Maesano I. Environmental influences on childhood asthma: Climate change. Pediatr Allergy Immunol 2023; 34:e13961. [PMID: 37232282 DOI: 10.1111/pai.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Climate change is a key environmental factor for allergic respiratory diseases, especially in childhood. This review describes the influences of climate change on childhood asthma considering the factors acting directly, indirectly and with their amplifying interactions. Recent findings on the direct effects of temperature and weather changes, as well as the influences of climate change on air pollution, allergens, biocontaminants and their interplays, are discussed herein. The review also focusses on the impact of climate change on biodiversity loss and on migration status as a model to study environmental effects on childhood asthma onset and progression. Adaptation and mitigation strategies are urgently needed to prevent further respiratory diseases and human health damage in general, especially in younger and future generations.
Collapse
Affiliation(s)
- Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence, Italy
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Gennaro D'Amato
- Division of Respiratory Diseases and Allergy AORN Cardarelli and University of Naples, Federico II, Naples, Italy
| | - Isabella Annesi-Maesano
- Department of Allergic and Respiratory Diseases, Montpellier University Hospital, Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| |
Collapse
|
25
|
Chen Z, He S, Wei Y, Liu Y, Xu Q, Lin X, Chen C, Lin W, Wang Y, Li L, Xu Y. Fecal and serum metabolomic signatures and gut microbiota characteristics of allergic rhinitis mice model. Front Cell Infect Microbiol 2023; 13:1150043. [PMID: 37180443 PMCID: PMC10167002 DOI: 10.3389/fcimb.2023.1150043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background The etiology of allergic rhinitis (AR) is complicated. Traditional therapy of AR still has challenges, such as low long-term treatment compliance, unsatisfactory therapeutic outcomes, and a high financial burden. It is urgent to investigate the pathophysiology of allergic rhinitis from different perspectives and explore brand-new possible preventative or treatment initiatives. Objective The aim is to apply a multi-group technique and correlation analysis to explore more about the pathogenesis of AR from the perspectives of gut microbiota, fecal metabolites, and serum metabolism. Methods Thirty BALB/c mice were randomly divided into the AR and Con(control) groups. A standardized Ovalbumin (OVA)-induced AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. We detected the serum IL-4, IL-5, and IgE by enzyme-linked immunosorbent assay (ELISA), evaluated the histological characteristics of the nasal tissues by the hematoxylin and eosin (H&E) staining, and observed the nasal symptoms (rubs and sneezes) to evaluate the reliability of the AR mouse model. The colonic NF-κB protein was detected by Western Blot, and the colonic histological characteristics were observed by the H&E staining to evaluate inflammation of colon tissue. We analyzed the V3 and V4 regions of the 16S ribosomal DNA (rDNA) gene from the feces (colon contents) through 16S rDNA sequencing technology. Untargeted metabolomics was used to examine fecal and serum samples to find differential metabolites. Finally, through comparison and correlation analysis of differential gut microbiota, fecal metabolites, and serum metabolites, we further explore the overall impact of AR on gut microbiota, fecal metabolites, and host serum metabolism and its correlation. Results In the AR group, the IL-4, IL-5, IgE, eosinophil infiltration, and the times of rubs and sneezes were significantly higher than those in the Con group, indicating the successful establishment of the AR model. No differences in diversity were detected between the AR and Con groups. However, there were modifications in the microbiota's structure. At the phylum level, the proportion of Firmicutes and Proteobacteria in the AR group increased significantly, while the proportion of Bacteroides decreased significantly, and the ratio of Firmicutes/Bacteroides was higher. The key differential genera, such as Ruminococcus, were increased significantly in the AR group, while the other key differential genera, such as Lactobacillus, Bacteroides, and Prevotella, were significantly decreased in the Con group. Untargeted metabolomics analysis identified 28 upregulated and 4 downregulated differential metabolites in feces and 11 upregulated and 16 downregulated differential metabolites in serum under AR conditions. Interestingly, one of the significant difference metabolites, α-Linoleic acid (ALA), decreased consistently in feces and serum of AR. KEGG functional enrichment analysis and correlation analysis showed a close relationship between differential serum metabolites and fecal metabolites, and changes in fecal and serum metabolic patterns are associated with altered gut microbiota in AR. The NF-κB protein and inflammatory infiltration of the colon increased considerably in the AR group. Conclusion Our study reveals that AR alters fecal and serum metabolomic signatures and gut microbiota characteristics, and there is a striking correlation between the three. The correlation analysis of the microbiome and metabolome provides a deeper understanding of AR's pathogenesis, which may provide a theoretical basis for AR's potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shancai He
- Department of Otorhinolaryngology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Yihan Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqing Xu
- Department of Otorhinolaryngology, Fujian Children's Hospital, Fuzhou, China
| | - Xing Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yingge Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanteng Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology-Head and Neck Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Aldriwesh MG, Al-Mutairi AM, Alharbi AS, Aljohani HY, Alzahrani NA, Ajina R, Alanazi AM. Paediatric Asthma and the Microbiome: A Systematic Review. Microorganisms 2023; 11:microorganisms11040939. [PMID: 37110362 PMCID: PMC10142236 DOI: 10.3390/microorganisms11040939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Evidence from the literature suggests an association between the microbiome and asthma development. Here, we aimed to identify the current evidence for the association between asthma and the upper airway, lower airway and/or the gut microbiome. An electronic systemic search of PubMed, EBSCO, Science Direct and Web of Science was conducted until February 2022 to identify the eligible studies. The Newcastle–Ottawa Scale and the Systematic Review Centre for Laboratory Animal Experimentation risk of the bias tools were used to assess quality of included studies. Twenty-five studies met the inclusion criteria. Proteobacteria and Firmicutes were identified as being significantly higher in the asthmatic children compared with the healthy controls. The high relative abundance of Veillonella, Prevotella and Haemophilus in the microbiome of the upper airway in early infancy was associated with a higher risk of asthma development later in life. The gut microbiome analyses indicated that a high relative abundance of Clostridium in early childhood might be associated with asthma development later in life. The findings reported here serve as potential microbiome signatures associated with the increased risk of asthma development. There is a need for large longitudinal studies to further identify high-risk infants, which will help in design strategies and prevention mechanisms to avoid asthma early in life.
Collapse
Affiliation(s)
- Marwh G. Aldriwesh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abrar M. Al-Mutairi
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
- Research Unit, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Azzah S. Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Jeddah 21362, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Hassan Y. Aljohani
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Nabeel A. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reham Ajina
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abdullah M. Alanazi
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
27
|
Valverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023; 15:nu15030486. [PMID: 36771193 PMCID: PMC9921812 DOI: 10.3390/nu15030486] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The importance of the microbiome, and of the gut-lung axis in the origin and persistence of asthma, is an ongoing field of investigation. The process of microbial colonisation in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others. Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low α-diversity and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes, could be related with increased risk of asthma. Upper airway microbial dysbiosis, especially early colonisation by Moraxella spp., is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites that may modify the inception of asthma and is progression. The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is the increased bacterial load and the predominance of proteobacteria, especially Haemophilus spp. and Moraxella catarrhalis. In this review we shall update the knowledge on the association between microbial dysbiosis and the origins of asthma, as well as its persistence, phenotypes, and severity.
Collapse
Affiliation(s)
- José Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia and IMIB Biomedical Research Institute, 20120 Murcia, Spain
- Correspondence:
| |
Collapse
|
28
|
Integrated Network Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Sijunzi Decoction Involved in Alleviating Airway Inflammation in a Mouse Model of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1130893. [PMID: 36636604 PMCID: PMC9831717 DOI: 10.1155/2023/1130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Background Asthma is a chronic inflammatory disease of the airways with recurrent attacks, which seriously affects the patients' quality of life and even threatens their lives. The disease can even threaten the lives of patients. Sijunzi decoction (SJZD), a classical Chinese medicine formula with a long history of administration, is a basic formula used for the treatment of asthma and demonstrates remarkable efficacy. However, the underlying mechanism has not been elucidated. Materials and Methods We aimed to integrate network pharmacology and intestinal flora sequencing analysis to study the mechanism of SJZD in the treatment of allergic asthmatic mice. The active compounds of SJZD and their asthma-related targets were predicted by various databases. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potentially relevant pathways for target genes. Furthermore, the active compound-target and target-signaling pathway network maps were constructed by using Cytoscape 3.8.2. These results were combined with those of the intestinal flora sequencing analysis to study the influence of SJZD on airway inflammation in allergic asthmatic mice. Result We obtained 137 active compounds from SJZD and associated them with 1445 asthma-related targets acquired from the databases. A total of 109 common targets were identified. We visualized active compound-target and target-signaling pathway network maps. The pathological analysis and inflammation score results suggested that SJZD could alleviate airway inflammation in asthmatic mice. Sequencing analysis of intestinal flora showed that SJZD could increase the relevant abundance of beneficial bacterial genus and maintain the balance of the intestinal flora. The core toll-like receptor (TLR) signaling pathway was identified based on network pharmacology analysis, and the important role TLRs play in intestinal flora and organismal immunity was also recognized. The analysis of the correlation between environmental factors and intestinal flora revealed that beneficial bacterial genera were negatively correlated with TLR2 and positively correlated with the TLR7 expression. Furthermore, they were positively correlated with IFN-γ and IL-10 levels and negatively correlated with IL-4 and IL-17 levels. Conclusion SJZD alleviated the airway inflammation state in asthmatic mice. The findings suggest that increasing the relevant abundance of beneficial intestinal bacteria in mice with asthma, regulating intestinal flora, interfering with the level of TLR2 and TLR7 expression to adjust the secretion of inflammatory factors, and alleviating asthmatic airway inflammation may be the possible mechanism involved in the treatment of asthma by SJZD, providing a basis for further studies on SJZD.
Collapse
|