1
|
Pérez-Lazo G, Sandoval-Ahumada R, Soto-Febres F, Ballena-López J, Morales-Castillo L, Trujillo-Gregorio L, Garay-Quintana R, Arenas-Ramírez B. Clinical and microbiological characteristics of a hospital outbreak of Candida auris in a referral hospital in Lima, Peru. Mycoses 2024; 67:e13765. [PMID: 38988310 DOI: 10.1111/myc.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Candida auris, a multidrug-resistant fungal pathogen, has received considerable attention owing to its recent surge, especially in South America, which coincides with the ongoing global COVID-19 pandemic. Understanding the clinical and microbiological characteristics of outbreaks is crucial for their effective management and control. OBJECTIVE This retrospective observational study aimed to characterize a C. auris outbreak at a Peruvian referral hospital between January 2021 and July 2023. METHODS Data were collected from hospitalized patients with positive C. auris culture results. Microbiological data and antifungal susceptibility test results were analysed. Additionally, infection prevention and control measures have been described. Statistical analysis was used to compare the characteristics between the infected and colonized patients. RESULTS Thirty-three patients were identified, mostly male (66.7%), with a median age of 53 years. Among them, 18 (54.5%) were colonized, and 15 (45.5%) were infected. Fungemia was the predominant presentation (80%), with notable cases of fungemia in tuberculosis patients with long-stay devices for parenteral anti-tuberculosis therapy. Seventy-five percent of the isolates exhibited fluconazole resistance. Echinocandins were the primary treatment, preventing fungemia recurrence within 30 days. Infected patients had significantly longer hospital stays than colonized patients (100 vs. 45 days; p = .023). Hospital mortality rates were 46.7% and 25% in the infected and fungemia patients, respectively. Simultaneous outbreaks of multidrug-resistant bacteria were documented. CONCLUSIONS This study underscores the severity of a C. auris outbreak at a referral hospital in Peru, highlighting its significant impact on patient outcomes and healthcare resources. The high prevalence of fluconazole-resistant isolates, leading to prolonged hospital stay and high mortality rates, particularly in cases of fungemia, underscores the critical need for effective infection prevention and control strategies.
Collapse
Affiliation(s)
- Giancarlo Pérez-Lazo
- Escuela de Medicina, Universidad César Vallejo, Piura, Peru
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - Roxana Sandoval-Ahumada
- Clinical Pathology Department, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - Fernando Soto-Febres
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - José Ballena-López
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - Liliana Morales-Castillo
- Clinical Pathology Department, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - Lucy Trujillo-Gregorio
- Clinical Pathology Department, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - Rocio Garay-Quintana
- Infection Prevention and Control Unit, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| | - Berenice Arenas-Ramírez
- Infection Prevention and Control Unit, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima, Peru
| |
Collapse
|
2
|
Khanum N, Alfaraj SH, Alboqmy KN, Alshakrah F, Dar NG, Abdallah H, Kumar D, Alsalam M, Abu-Salah AHM, Alsunaid AA, Alhamed RAR, Cherian PK, Alharbi OM, Alhemaid NY, Mamayabay MAM, Memish ZA. Implementation of effective strategies to prevent Candida auris transmission in a Quaternary Care Center, Riyadh, Saudi Arabia. J Chemother 2024:1-16. [PMID: 38915243 DOI: 10.1080/1120009x.2024.2370207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
This study outlines the results of an investigation of a large C. auris outbreak at King Saud Medical City (KSMC), a quaternary hospital in Saudi Arabia. We identified 122 cases of C. auris (colonization, 74; infection, 48) from June 2021 to June 2022. The mean patient age was 48.4 years, and the median duration of stay before diagnosis was 32.7 days. A significant proportion of patients (87.70%) were diagnosed with C. auris more than 3 days after admission to KSMC. The source of exposure was either nosocomial (from KSMC, 28.68%; from other hospitals, 16.39%) or unknown (54.91%). The hospitalization mortality rate was 45.90%. This report highlights the challenges in investigating and managing C. auris outbreaks, emphasizing the need for a comprehensive approach incorporating strategies for screening and early identification, effective environmental cleaning, and the implementation of stringent infection control measures such as hand hygiene, isolation of patient, standard and contact precaution and decolonization.
Collapse
Affiliation(s)
- Nazia Khanum
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Sarah H Alfaraj
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Khulood Naser Alboqmy
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Faleh Alshakrah
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Nadeem Gul Dar
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Hassan Abdallah
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Deva Kumar
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Mona Alsalam
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | | | - Antisar Abdulrahman Alsunaid
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Rashed Abdulaziz Rashed Alhamed
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Prince Kochummen Cherian
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Ohoud Mohammed Alharbi
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Nada Yousef Alhemaid
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Mary Ann M Mamayabay
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health & College of Medicine, Al Faisal University, Riyadh, Kingdom of Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Jones CR, Neill C, Borman AM, Budd EL, Cummins M, Fry C, Guy RL, Jeffery K, Johnson EM, Manuel R, Mirfenderesky M, Moore G, Patel B, Schelenz S, Staniforth K, Taori SK, Brown CS. The laboratory investigation, management, and infection prevention and control of Candida auris: a narrative review to inform the 2024 national guidance update in England. J Med Microbiol 2024; 73:001820. [PMID: 38771623 PMCID: PMC11165919 DOI: 10.1099/jmm.0.001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
The emergent fungal pathogen Candida auris is increasingly recognised as an important cause of healthcare-associated infections globally. It is highly transmissible, adaptable, and persistent, resulting in an organism with significant outbreak potential that risks devastating consequences. Progress in the ability to identify C. auris in clinical specimens is encouraging, but laboratory diagnostic capacity and surveillance systems are lacking in many countries. Intrinsic resistance to commonly used antifungals, combined with the ability to rapidly acquire resistance to therapy, substantially restricts treatment options and novel agents are desperately needed. Despite this, outbreaks can be interrupted, and mortality avoided or minimised, through the application of rigorous infection prevention and control measures with an increasing evidence base. This review provides an update on epidemiology, the impact of the COVID-19 pandemic, risk factors, identification and typing, resistance profiles, treatment, detection of colonisation, and infection prevention and control measures for C. auris. This review has informed a planned 2024 update to the United Kingdom Health Security Agency (UKHSA) guidance on the laboratory investigation, management, and infection prevention and control of Candida auris. A multidisciplinary response is needed to control C. auris transmission in a healthcare setting and should emphasise outbreak preparedness and response, rapid contact tracing and isolation or cohorting of patients and staff, strict hand hygiene and other infection prevention and control measures, dedicated or single-use equipment, appropriate disinfection, and effective communication concerning patient transfers and discharge.
Collapse
Affiliation(s)
- Christopher R. Jones
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Claire Neill
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Andrew M. Borman
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Emma L. Budd
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Martina Cummins
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Carole Fry
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Rebecca L. Guy
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M. Johnson
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Rohini Manuel
- Public Health Laboratory London, Science Group, UK Health Security Agency, London, UK
| | | | - Ginny Moore
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, UK
| | - Bharat Patel
- Public Health Laboratory London, Science Group, UK Health Security Agency, London, UK
| | - Silke Schelenz
- Department of Microbiology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Karren Staniforth
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | | | - Colin S. Brown
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| |
Collapse
|
4
|
De Gaetano S, Midiri A, Mancuso G, Avola MG, Biondo C. Candida auris Outbreaks: Current Status and Future Perspectives. Microorganisms 2024; 12:927. [PMID: 38792757 PMCID: PMC11123812 DOI: 10.3390/microorganisms12050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Candida auris has been identified by the World Health Organization (WHO) as a critical priority pathogen on its latest list of fungi. C. auris infections are reported in the bloodstream and less commonly in the cerebrospinal fluid and abdomen, with mortality rates that range between 30% and 72%. However, no large-scale epidemiology studies have been reported until now. The diagnosis of C. auris infections can be challenging, particularly when employing conventional techniques. This can impede the early detection of outbreaks and the implementation of appropriate control measures. The yeast can easily spread between patients and in healthcare settings through contaminated environments or equipment, where it can survive for extended periods. Therefore, it would be desirable to screen patients for C. auris colonisation. This would allow facilities to identify patients with the disease and take appropriate prevention and control measures. It is frequently unsusceptible to drugs, with varying patterns of resistance observed among clades and geographical regions. This review provides updates on C. auris, including epidemiology, clinical characteristics, genomic analysis, evolution, colonisation, infection, identification, resistance profiles, therapeutic options, prevention, and control.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycology Laboratory, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (G.M.); (M.G.A.)
| |
Collapse
|
5
|
Munshi A, Almadani F, Ossenkopp J, Alharbi M, Althaqafi A, Alsaedi A, Al-Amri A, Almarhabi H. Risk factors, antifungal susceptibility, complications, and outcome of Candida auris bloodstream infection in a tertiary care center in the western region of Saudi Arabia. J Infect Public Health 2024; 17:182-188. [PMID: 38039862 DOI: 10.1016/j.jiph.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Candida auris, an emerging multidrug-resistant fungus species that grows as yeast, causes bloodstream infection, and is associated with high mortality rates. In this study, we identified risk factors associated with C. auris bloodstream infection, antifungal susceptibility pattern, complications, and outcome of the infection. METHODS This single-center cross-sectional retrospective study was conducted at King Abdulaziz Medical City, a tertiary care facility in Jeddah, Saudi Arabia, which included all patients 18 years or above who have had one or more blood cultures for C. auris between January 2021 and December 2022. We aimed to identify the risk factors associated with C. auris bloodstream infection, antifungal susceptibility patterns, complications, and outcomes at our center. RESULTS Forty-six patients with C. auris-positive blood cultures were included. All the patients had healthcare-associated infections. The mean age was 64.67 years, and the majority of patients were male (73.9 %). The most common concomitant hospital-acquired infections were skin and soft tissue infections (37 %), followed by hospital-acquired pneumonia (34.8 %) and intra-abdominal infections (26.1 %). The mean total white blood cell count, procalcitonin, and C-reactive protein was 10.5 ± 5.99 × 109/L, 2.63 ± 4.82 μg/L, and 90.3 ± 64.1 mg/L, respectively. Hypertension (73.9 %) was the most common comorbidity, followed by diabetes mellitus (58.7 %) and renal dysfunction (54.3 %). Risk factors associated with C. auris candidemia included antibiotic use (91.3 %), especially for > 14 days (78.3 %), C. auris colonization (60.9 %), use of central venous catheters, especially when the catheter was in place for >30 days (80.4 %), ICU admission in the last 30 days before C. auris-positive blood culture (93.5 %), especially for more than two weeks (76.1 %), mechanical ventilation (89.1 %), total parenteral nutrition (13 %), previous intra-abdominal surgery (30.4 %), and immunosuppressive therapy (56.5 %). A total of 97.8 % of C. auris isolates were resistant to fluconazole and 17.4 % were resistant to amphotericin B. Endocarditis and endophthalmitis were reported in one (2.2 %) patient each. The all-cause mortality at 30 days was 47.8 %. CONCLUSION Our study is one of the few studies available globally on C. auris bloodstream infection that investigated risk factors, antifungal susceptibility, complications, and outcomes. A thorough screening and risk assessment strategy should aid infection control, preventing it from becoming a major concern in the future.
Collapse
Affiliation(s)
- Adeeb Munshi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Department of Infectious Diseases, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.
| | - Fatimah Almadani
- Department of Infectious Diseases, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - John Ossenkopp
- Infection Prevention and Control Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Maher Alharbi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Infection Prevention and Control Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Abulhakeem Althaqafi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Department of Infectious Diseases, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Infection Prevention and Control Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Abdulfatah Al-Amri
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Microbiology & Laboratory Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hassan Almarhabi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Alshahrani FS, Elgujja AA, Alsubaie S, Ezreqat SA, Albarraq AM, Barry M, Binkhamis K, Alabdan L. Description of Candida auris Occurrence in a Tertiary Health Institution in Riyadh, Saudi Arabia. Healthcare (Basel) 2023; 11:3150. [PMID: 38132040 PMCID: PMC10743032 DOI: 10.3390/healthcare11243150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant fungal pathogen that represents a current serious threat to healthcare settings. OBJECTIVE The objective was to determine the prevalence of C. auris in a Riyadh hospital since its initial detection in late 2019. METHODS Using an adapted risk assessment tool, we reviewed the charts and medical files of all suspected and confirmed cases of C. auris infections reported at King Khalid University Hospital, Riyadh, between November 2019 and December 2022. Anonymized data were retrieved in a pre-established datasheet and analyzed to determine the epidemiological characteristics of C. auris infections in our facility. We analyzed prevalence by age, gender, risk factors, and according to sampling source. RESULTS Of the 53 confirmed C. auris-positive cases during the study period, 33 (62%) were males. Their ages ranged between 15 and 98, with most positive cases occurring in those aged 50 and above. Only one of the confirmed cases was hospital-acquired. All patients had at least one risk factor, and urine samples yielded the greatest number of positive cases, while admission to healthcare facilities constituted the highest risk in our study. CONCLUSION Establishing a local prevalence pattern could serve as a baseline/benchmark to compare with regional and international benchmarks.
Collapse
Affiliation(s)
- Fatimah S. Alshahrani
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (F.S.A.); (M.B.)
- Division of Infectious Diseases, Department of Internal Medicine, King Saud University Medical City, King Saud University, Riyadh 11451, Saudi Arabia
- IPAC Department, King Saud University Medical City, Riyadh 11362, Saudi Arabia;
| | - Abba Amsami Elgujja
- IPAC Department, King Saud University Medical City, Riyadh 11362, Saudi Arabia;
| | - Sara Alsubaie
- Pediatric Infectious Diseases Fellowship Program, College of Medicine, Internal Medicine (Pediatric Infectious Diseases) King Saud University Medical City, King Saud University and Consultant, Riyadh 11461, Saudi Arabia;
| | - Salah Ahmed Ezreqat
- IPAC Department, King Saud University Medical City, Riyadh 11362, Saudi Arabia;
| | - Ahmed M. Albarraq
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.B.)
| | - Mazin Barry
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (F.S.A.); (M.B.)
- Division of Infectious Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Khalifa Binkhamis
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.B.)
| | - Lulwa Alabdan
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (F.S.A.); (M.B.)
- Division of Infectious Diseases, Department of Internal Medicine, King Saud University Medical City, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Choe KW, Lim YK, Lee MK. Comparison of new and old BacT/ALERT aerobic bottles for detection of Candida species. PLoS One 2023; 18:e0288674. [PMID: 38019833 PMCID: PMC10686453 DOI: 10.1371/journal.pone.0288674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE A new version of aerobic blood culture media has been developed for the BacT/ALERT (bioMérieux) blood culture system. We evaluated the time to detection and yeast cell counts in positive blood cultures for each Candida spp. according to changes in media. METHODS Isolates from defibrinated horse blood were inoculated into three types of bottles: the old version of aerobic bottle, new version of aerobic bottle, and anaerobic bottle. All bottles were incubated in the BacT/ALERT Virtuo blood culture system. The time to detection was monitored for each bottle, and yeast cell counts were performed immediately after testing positive, determined via the plate count method. Clinical retrospective data of the candidemia samples before and after aerobic bottle change also were analyzed. RESULTS The median time to detection was 52.47 hours in the old aerobic bottles versus 19.92 hours in the new aerobic bottles (P < 0.001) for Candida glabrata, and standard and clinical strains showed similar results. C. albicans (27.6 to 24.95 hours) and C. guilliermondii (28.92 to 26.9 hours) had shorter time to detection. However, C. auris (25.43 to 28.25 hours) had a longer time to detection in the new aerobic bottle. The retrospective clinical analysis showed a significant decrease in time to detection (45.0 to 19.4 hours) for C. glabrata, which is consistent with our simulated study result for C. glabrata. As a result of analysis including all blood specimens, C. tropicalis showed a significant delay in time to detection in new aerobic bottles. In an analysis limited to peripheral blood specimens, the time to detection of C. parapsilosis was longer in new aerobic bottles than in old aerobic bottles. CONCLUSION Most Candida species did not show remarkable TTD differences, but TTD of C. glabrata was markedly reduced in the New FA Plus bottle. The reduction of time to detection enables faster detection and therapeutic approach for C. glabrata infections.
Collapse
Affiliation(s)
- Kye Won Choe
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kaki R. Risk factors and mortality of the newly emerging Candida auris in a university hospital in Saudi Arabia. Mycology 2023; 14:256-263. [PMID: 37583454 PMCID: PMC10424598 DOI: 10.1080/21501203.2023.2227218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 08/17/2023] Open
Abstract
Candida auris presents a global health threat. We investigated risk factors and mortality of Candida auris infections in a retrospective study in Saudi Arabia. We included 27 patients ≥14 with invasive Candida auris from 2015-2022, with median age 58, and 66.7% males. All patients had indwelling devices. The most common infection sources were central line-associated bloodstream infection in 17 (63.0%), and urinary tract infections in four (12%). Fever and shock were observed in nine patients (33.3%) each, and 22 (81%) were admitted to the intensive care unit. Common comorbidities were diabetes and heart disease in 13 (48.1%) patients each. The median hospital stay was 78 days, and the median Charlson index was 4. The C. auris cultures were 100% susceptible to voriconazole, caspofungin, and amphotericin, while three were fully susceptible to fluconazole (11.1%). Despite treatment, 18 (66.7%) patients died. In conclusion, invasive C. auris infection had varied presentations. All patients had indwelling devices, and many had lengthy hospital stays. All isolates were susceptible to amphotericin and echinocandins, while few were fully susceptible to fluconazole.
Collapse
Affiliation(s)
- Reham Kaki
- Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Infectious Disease & Infection Control and Environmental Health, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Khateb AM, Alkhaibari SA. Cross-sectional investigation of mycological diagnosis challenges in Saudi Arabia. Front Cell Infect Microbiol 2023; 13:1203892. [PMID: 37434785 PMCID: PMC10332264 DOI: 10.3389/fcimb.2023.1203892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Background The global incidence of fungal infection has increased dramatically over the last two decades. Fungal diseases threaten both immunocompetent, and immunocompromised patients. The current fungal diagnostics status in Saudi Arabia needs to be evaluated, especially with the increase of the immunosuppressed population. This cross-sectional study investigated the gaps in mycological diagnosis on a national level. Materials and methods The call interview questionnaire responses were collected to evaluate the demand for fungal assays, diagnostic methods' quality, and mycological expertise of laboratory technologists in both public and private medical intuitions. The data were analyzed using (IBM SPSS ® software version 22.0). Results A total of 57 hospitals from all Saudi regions participated in the questionnaire; however, only 32% received or processed mycological samples. Most participants were from the Mecca region (25%), Riyadh region (19%), and Eastern region (14%). The top fungal isolates identified were Candida spp., Aspergillus spp., and dermatophyte. Fungal investigation is highly requested by intensive care, dermatology, and obstetrics and gynecology units. Most laboratories rely on fungal culture and microscopic examination, which mostly identify Candida to the genus level, and use 37°C incubators for culture (67%). Antifungal susceptibility testing (AST) and serological and molecular methods are rarely performed and mostly outsourced. Using accurate identification and AST are the primary factors to improve fungal diagnosis in respect to turnaround time and cost. The three major obstacles identified were availability of facility (47%), reagents and kits (32%), and good training (21%). Conclusions The results indicated that fungal diagnosis demand was relatively higher in high-population regions. This study highlighted the gaps in fungal diagnostics reference laboratories to encourage their improvement in Saudi hospitals.
Collapse
Affiliation(s)
- Aiah Mustafa Khateb
- Department of Medical Laboratory Technology, Collage of Applied Medical Science, Taibah University, Medina, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shatha Ali Alkhaibari
- Department of Medical Laboratory Technology, Collage of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
10
|
Salmanton-García J, Au WY, Hoenigl M, Chai LYA, Badali H, Basher A, Brockhoff RA, Chen SCA, Chindamporn A, Chowdhary A, Heath CH, Jabeen K, Lee J, Matar M, Taj-Aldeen SJ, Tan BH, Uno K, Wahyuningsih R, Zhu L, Chakrabarti A, Cornely OA. The current state of laboratory mycology in Asia/Pacific: A survey from the European Confederation of Medical Mycology (ECMM) and International Society for Human and Animal Mycology (ISHAM). Int J Antimicrob Agents 2023; 61:106718. [PMID: 36640851 DOI: 10.1016/j.ijantimicag.2023.106718] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Invasive fungal infections (IFIs) in Asia/Pacific are a particular threat to patients with malignancies, uncontrolled diabetes mellitus or undiagnosed/untreated human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS). Adequate and early access to diagnostic tools and antifungals is essential for IFI clinical management and patient survival. METHODS Details on institution profile, self-perception on IFI, and access to microscopy, culture, serology, antigen detection, molecular testing, and therapeutic drug monitoring for IFI were collected in a survey. RESULTS As of June 2022, 235 centres from 40 countries/territories in Asia/Pacific answered the questionnaire. More than half the centres were from six countries: India (25%), China (17%), Thailand (5%), Indonesia, Iran, and Japan (4% each). Candida spp. (93%) and Aspergillus spp. (75%) were considered the most relevant pathogens. Most institutions had access to microscopy (98%) or culture-based approaches (97%). Furthermore, 79% of centres had access to antigen detection, 66% to molecular assays, and 63% to antibody tests. Access to antifungals varied between countries/territories. At least one triazole was available in 93% of the reporting sites (voriconazole [89%] was the most common mould-active azole), whereas 80% had at least one amphotericin B formulation, and 72% had at least one echinocandin. CONCLUSION According to the replies provided, the resources available for IFI diagnosis and management vary among Asia/Pacific countries/territories. Economical or geographical factors may play a key role in the incidence and clinical handling of this disease burden. Regional cooperation may be a good strategy to overcome shortcomings.
Collapse
Affiliation(s)
- Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Wing-Yan Au
- Blood-Med Clinic, Central, Hong Kong, Hong Kong SAR
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, United States; Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, United States; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States; Invasive Fungi Research Center (IFRC), Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ariful Basher
- Department of Medicine, Dhaka Infectious Disease Hospital, Dhaka, Bangladesh
| | - Ronja A Brockhoff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead, Sydney, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Sydney, Australia
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Antimicrobial Resistance and Stewardship Research Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand; Mycology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Christopher H Heath
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA, Australia; Department of Microbiology and Infectious Diseases, Royal Perth Hospital, Perth, WA, Australia; The University of Western Australia, Perth, WA, Australia
| | - Kausar Jabeen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jaehyeon Lee
- Jeonbuk National University Medical School, Jeonju, South Korea
| | - Madonna Matar
- Division of Infectious Diseases, Notre Dame des Secours University Hospital, Byblos, Lebanon; School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Byblos, Lebanon
| | - Saad Jaber Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory, Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar; Clinical Pathology and Laboratory Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Kenji Uno
- Department of Infectious Diseases, Minami-Nara General Medical Center, Nara, Japan
| | - Retno Wahyuningsih
- Department of Parasitology, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Liping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
11
|
Gómez-Gaviria M, Martínez-Álvarez JA, Chávez-Santiago JO, Mora-Montes HM. Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance. Infect Drug Resist 2023; 16:1455-1470. [PMID: 36942024 PMCID: PMC10024503 DOI: 10.2147/idr.s402754] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
There is worldwide concern about the constant increase in infections caused by Candida species that are multiresistant to antifungal drugs. The most common candidiasis is caused by Candida albicans, however, the species of the Candida haemulonii complex and Candida auris are emerging opportunistic pathogens, which isolation from clinical samples has significantly increased in the past years. The special interest in the study of these species lies in their ability to evade the action of antifungal drugs, such as amphotericin B, azoles, and echinocandins. In addition, the phenotypic changes of these species have given them the ability to easily adapt to environmental changes, including the host milieu and immunity. In this paper, a detailed review of the current literature on the C. haemulonii complex and C. auris is shown, analyzing aspects such as biology, immune response, putative virulence factors, infection, treatment, and the current strategies for diagnosis.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
- Correspondence: Manuela Gómez-Gaviria; Héctor M Mora-Montes, Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato, Gto, C. P. 36050, México, Tel +52 473-7320006 Ext. 8193, Fax +52 473-7320006 Ext. 8153, Email ;
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Joaquín O Chávez-Santiago
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
12
|
Thatchanamoorthy N, Rukumani Devi V, Chandramathi S, Tay ST. Candida auris: A Mini Review on Epidemiology in Healthcare Facilities in Asia. J Fungi (Basel) 2022; 8:1126. [PMID: 36354893 PMCID: PMC9696804 DOI: 10.3390/jof8111126] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 07/28/2023] Open
Abstract
Candida auris, a newly emerging healthcare-associated yeast pathogen from the Metschnikowiaceae family, was first described in the ear canal of an elderly Japanese patient in 2009. The yeast is one of the causative agents of candidemia, which has been linked with nosocomial outbreaks and high mortality rates in healthcare facilities worldwide. Since its first isolation, the occurrence of C. auris in six continents has becomes a grave concern for the healthcare professionals and scientific community. Recent reports showed the identification of five geographically distinct clades and high rates of antifungal resistance associated with C. auris. Till date, there are no effective treatment options, and standardized measures for prevention and control of C. auris infection in healthcare facilities. This leads to frequent therapeutic failures and complicates the eradication of C. auris infection in healthcare facilities. Thus, this review focuses on the recent understanding of the epidemiology, risk factors, diagnosis, transmission and prevention and control strategies of C. auris infection in healthcare facilities in Asia.
Collapse
Affiliation(s)
- Nishanthinie Thatchanamoorthy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| | - Velayuthan Rukumani Devi
- Department of Medical Microbiology, University Malaya Medical Centre, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 59100, Wilayah Persekutuan, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| |
Collapse
|
13
|
Infection Control Measures against Candidaauris in Healthcare Facilities. Processes (Basel) 2022. [DOI: 10.3390/pr10081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant yeast with high mortality rate, especially in patients with underlying co-morbidities. It has been known to contaminate the environment and colonize human skin for prolonged periods in healthcare settings leading to difficult-to-control outbreaks. However, there is limited literature on the efficacy of different disinfectants/antiseptics, which can effectively decontaminate the environment and decolonize patients to prevent the spread of C. auris. This review highlights recommendations available in the literature for detection and control of C. auris in healthcare settings. Detection of C. auris by biochemical and automated methods has often been misleading. Availability of C. auris-specific PCR can prove to be a more reliable technique for detection of C. auris. Control measures for transmission of C. auris include use of registered hospital grade disinfectant active against Clostridium difficile cleaning the environment and equipment and chlorhexidine for decolonization of patients. Hand hygiene using soap and water, followed by use of alcohol-based hand sanitizer for maximal disinfection, is recommended for healthcare workers.
Collapse
|
14
|
COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon. Microorganisms 2022; 10:microorganisms10051011. [PMID: 35630454 PMCID: PMC9145281 DOI: 10.3390/microorganisms10051011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many healthcare centers around the world have reported the surge of Candida auris (C. auris) outbreaks during the COVID-19 pandemic, especially among intensive care unit (ICU) patients. This is a retrospective study conducted at the American University of Beirut Medical Center (AUBMC) between 1 October 2020 and 15 June 2021, to identify risk factors for acquiring C. auris in patients with severe COVID-19 infection and to evaluate the impact of C. auris on mortality in patients admitted to the ICU during that period. Twenty-four non-COVID-19 (COV−) patients were admitted to ICUs at AUBMC during that period and acquired C. auris (C. auris+/COV−). Thirty-two patients admitted with severe COVID-19 (COV+) acquired C. auris (C. auris+/COV+), and 130 patients had severe COVID-19 without C. auris (C. auris−/COV+). Bivariable analysis between the groups of (C. auris+/COV+) and (C. auris−/COV+) showed that higher quick sequential organ failure assessment (qSOFA) score (p < 0.001), prolonged length of stay (LOS) (p = 0.02), and the presence of a urinary catheter (p = 0.015) or of a central venous catheter (CVC) (p = 0.01) were associated with positive culture for C. auris in patients with severe COVID-19. The multivariable analysis showed that prolonged LOS (p = 0.008) and a high qSOFA score (p < 0.001) were the only risk factors independently associated with positive culture for C. auris. Increased LOS (p = 0.02), high “Candida score” (p = 0.01), and septic shock (p < 0.001) were associated with increased mortality within 30 days of positive culture for C. auris. Antifungal therapy for at least 7 days (p = 0.03) appeared to decrease mortality within 30 days of positive culture for C. auris. Only septic shock was associated with increased mortality in patients with C. auris (p = 0.006) in the multivariable analysis. C. auris is an emerging pathogen that constitutes a threat to the healthcare sector.
Collapse
|
15
|
Desoubeaux G, Coste AT, Imbert C, Hennequin C. Overview about Candida auris: What's up 12 years after its first description? J Mycol Med 2022; 32:101248. [DOI: 10.1016/j.mycmed.2022.101248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
|
16
|
Aldejohann AM, Wiese-Posselt M, Gastmeier P, Kurzai O. Expert recommendations for prevention and management of Candida auris transmission. Mycoses 2022; 65:590-598. [PMID: 35437832 DOI: 10.1111/myc.13445] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Candida auris was first described as a yeast pathogen in 2009. Since then, the new species has emerged worldwide. In contrast to most other Candida spp., C. auris frequently exhibits multi-drug resistance and is readily transmitted in hospital settings. While most isolations so far are from colonized patients, C. auris does cause life-threatening invasive infections. During management of the first documented C. auris transmission in a German hospital, experts from the National Reference Centers for Invasive Fungal Infections (NRZMyk) and the National Reference Center for Surveillance of Nosocomial Infections screened available literature and integrated available knowledge on infection prevention and C. auris epidemiology and biology to enable optimal containment. Relevant recommendations developed during this process are summarized in this guidance document, intended to assist in management of C. auris transmission and potential outbreak situations. Rapid and effective measures to contain C. auris spread require a multidisciplinary approach that includes clinical specialists of the affected unit, nursing staff, hospital hygiene, diagnostic microbiology, cleaning staff, hospital management and experts in diagnostic mycology / fungal infections. Action should be initiated in a step-wise process and relevant interventions differ between management of singular C. auris colonized / infected patients and detection of potential C. auris transmission or nosocomial outbreaks. [word count 205].
Collapse
Affiliation(s)
| | - Miriam Wiese-Posselt
- Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen, Institut für Hygiene und Umweltmedizin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Petra Gastmeier
- Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen, Institut für Hygiene und Umweltmedizin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Oliver Kurzai
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg.,Nationales Referenzzentrum für Invasive Pilzinfektionen, Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut, Jena
| |
Collapse
|
17
|
Population genomic analyses reveal evidence for limited recombination in the superbug Candida auris in nature. Comput Struct Biotechnol J 2022; 20:3030-3040. [PMID: 35782746 PMCID: PMC9218166 DOI: 10.1016/j.csbj.2022.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
Candida auris is a recently emerged, multidrug-resistant pathogenic yeast capable of causing a diversity of human infections worldwide. Genetic analyses based on whole-genome sequences have clustered strains in this species into five divergent clades, with each clade containing limited genetic variation and one of two mating types, MTLa or MTLα. The patterns of genetic variations suggest simultaneous emergence and clonal expansion of multiple clades of this pathogen across the world. At present, it is unclear whether recombination has played any role during the evolution of C. auris. In this study, we analyzed patterns of associations among single nucleotide polymorphisms in both the nuclear and the mitochondrial genomes of 1,285 strains to investigate potential signatures of recombination in natural C. auris populations. Overall, we found that polymorphisms in the nuclear and mitochondrial genomes clustered the strains similarly into the five clades, consistent with a lack of evidence for recombination among the clades after their divergence. However, variable percentages of SNP pairs showed evidence of phylogenetic incompatibility and linkage equilibrium among samples in both the nuclear and the mitochondrial genomes, with the percentages higher in the total population than those within individual clades. Our results are consistent with limited but greater frequency of recombination before the divergence of the clades than afterwards. SNPs at loci related to antifungal resistance showed frequencies of recombination similar to or lower than those observed for SNPs in other parts of the genome. Together, though very limited, evidence for the observed recombination for both before and after the divergence of the clades suggests the possibility for continuous genetic exchange in natural populations of this important yeast pathogen.
Collapse
|
18
|
[AmBisome, three challenges: Candida auris infection, central nervous system infection, and biofilm-associated infection]. Rev Iberoam Micol 2021; 38:84-90. [PMID: 34144836 DOI: 10.1016/j.riam.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment of invasive fungal infections remains a challenge, both for the diagnosis and for the need of providing the appropriate antifungal therapy. Candida auris is a pathogenic yeast that is responsible for hospital outbreaks, especially in intensive care units; it is characterized by a high resistance to the antifungal agents and can become multidrug-resistant. At present, the recommended antifungal agents for the invasive infections with this pathogen are echinocandins, always after carrying out an antifungal susceptibility testing. In case of no clinical response or persistent candidemia, the addition of liposomal amphotericin B or isavuconazole may be considered. Both fungal infection of the central nervous system and that associated with biomedical devices remain rare entities affecting mainly immunocompromised patients. However, an increase in their incidence in recent years, along with high morbidity and mortality, has been shown. The treatment of these infections is conditioned by the limited knowledge of the pharmacokinetic properties of antifungals. A better understanding of the pharmacokinetic and pharmacodynamic parameters of the different antifungals is essential to determine the efficacy of the antifungal agents in the treatment of these infections.
Collapse
|
19
|
Eckbo EJ, Wong T, Bharat A, Cameron-Lane M, Hoang L, Dawar M, Charles M. First reported outbreak of the emerging pathogen Candida auris in Canada. Am J Infect Control 2021; 49:804-807. [PMID: 33485922 DOI: 10.1016/j.ajic.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Candida auris was first described in Japan in 2009 and has since been detected in over 40 countries. The yeast is concerning for multiple reasons, primarily: (1) challenges with accurate identification; (2) reported multidrug resistance; (3) published mortality rates of 30%-60%; and (4) persistence in the environment associated with human transmission. We report the emergence of a healthcare-associated cluster in the Greater Vancouver area in 2018 and describe the measures implemented to contain its transmission. METHODS Cases were identified through passive and ring surveillance of affected wards. Positive isolates were sent to provincial and national reference laboratories for confirmation and genomic characterization. Extensive infection control measures were implemented immediately after the initial case was identified. RESULTS Four cases were identified during the outbreak. In a 4-month period, over 700 swabs were collected in order to screen 180 contacts. Whole genome sequencing concluded that all isolates clustered together and belonged to the South Asian clade. No isolates harbored FKS gene mutations associated with resistance to echinocandins. Infection control measures, including surveillance, education, cleaning and/or disinfection, patient cohorting, isolation, and hand hygiene, effectively contained the outbreak; it was declared over within 2 months. CONCLUSIONS The spread of C auris in healthcare facilities has not spared Canadian institutions. Our experience demonstrates that strict infection control measures combined with microbiological screening can effectively halt transmission in healthcare centers. The necessity of active prospective screening remains unclear.
Collapse
|
20
|
Alashqar MB, Alabdan L, Khan M, Almakadma AH, Almustanyir S. A Case Report of a Candida auris Infection in Saudi Arabia. Cureus 2021; 13:e15240. [PMID: 34178547 PMCID: PMC8224536 DOI: 10.7759/cureus.15240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/05/2022] Open
Abstract
Candida auris is a relatively new species of the Candida genus that is rapidly spreading in healthcare institutions across the globe. It is exceedingly difficult to identify with standard laboratory procedures and is challenging to treat due to its resistance to most antifungals. Moreover, it quickly colonizes on the surfaces in hospitals and ICUs and causes repeated infections, despite regular hospital disinfection. This grim occurrence of multidrug-resistant yeast has now become imperative to report, as its true prevalence remains unclear. Only some reports have been published in Saudi Arabia and here we present a case of C. auris candidemia identified in our hospital.
Collapse
Affiliation(s)
- Mais B Alashqar
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Lulwah Alabdan
- Internal Medicine Department, Prince Mohammad Bin Abdulaziz Hospital, Riyadh, SAU
| | - Mohammad Khan
- Laboratory Department, Prince Mohammad Bin Abdulaziz Hospital, Riyadh, SAU
| | | | | |
Collapse
|
21
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|
22
|
Genomic Epidemiology of Candida auris in Qatar Reveals Hospital Transmission Dynamics and a South Asian Origin. J Fungi (Basel) 2021; 7:jof7030240. [PMID: 33807036 PMCID: PMC8004815 DOI: 10.3390/jof7030240] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Candida auris is an emerging, multidrug-resistant fungal pathogen that has become a public health threat with an increasing incidence of infections worldwide. Candida auris spreads easily among patients within and between hospitals. Infections and outbreaks caused by C. auris have been reported in the Middle East region including Oman, Kuwait, Saudi Arabia, and Qatar; however, the origin of these isolates is largely unknown. Pathogen whole genome sequencing (WGS) was used to determine the epidemiology and drug resistance mutations of C. auris in Qatar. Forty-four samples isolated from patients in three hospitals and the hospital environment were sequenced by Illumina NextSeq. Core genome single nucleotide polymorphisms (SNPs) revealed that all isolates belonged to the South Asian lineage with genetic heterogeneity that suggests previous acquisition from foreign healthcare. The genetic variability among the outbreak isolates in the two hospitals (A and B) was low. Four environmental isolates clustered with the related clinical isolates, and epidemiologically linked isolates clustered together, suggesting that the ongoing transmission of C. auris could be linked to infected/colonized patients and the hospital environment. Prominent mutations Y132F and K143R in ERG11 linked to increased fluconazole resistance were detected.
Collapse
|
23
|
Alfouzan W, Ahmad S, Dhar R, Asadzadeh M, Almerdasi N, Abdo NM, Joseph L, de Groot T, Alali WQ, Khan Z, Meis JF, Al-Rashidi MR. Molecular Epidemiology of Candida Auris Outbreak in a Major Secondary-Care Hospital in Kuwait. J Fungi (Basel) 2020; 6:E307. [PMID: 33233388 PMCID: PMC7712429 DOI: 10.3390/jof6040307] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
The emerging, often multidrug-resistant Candida auris is increasingly being associated with outbreaks in healthcare facilities. Here we describe the molecular epidemiology of a C. auris outbreak during 18 months, which started in 2018 in the high dependency unit (HDU) of a secondary-care hospital in Kuwait. Demographic and clinical data for candidemia and colonized patients were prospectively recorded. Clinical and environmental isolates were subjected to phenotypic and molecular identification; antifungal susceptibility testing by broth microdilution method; PCR-sequencing of ERG11 and FKS1 for resistance mechanisms to triazoles and echinocandins, respectively; and molecular fingerprinting by short tandem repeat (STR) analyses. Seventy-one (17 candidemic and 54 colonized) patients including 26 with candiduria and seven environmental samples yielded C. auris. All isolates were identified as C. auris by Vitek2, MALDI-TOF MS, PCR amplification and/or PCR-sequencing of rDNA. Twelve candidemia and 26 colonized patients were admitted or exposed to HDU. Following outbreak recognition, an intensive screening program was instituted for new patients. Despite treatment of all candidemia and 36 colonized patients, 9 of 17 candidemia and 27 of 54 colonized patients died with an overall crude mortality rate of ~50%. Nearly all isolates were resistant to fluconazole and contained the Y132F mutation in ERG11 except one patient's isolates, which were also distinct by STR typing. Only urine isolates from two patients developed echinocandin resistance with concomitant FKS1 mutations. The transmission of C. auris in this outbreak was linked to infected/colonized patients and the hospital environment. However, despite continuous surveillance and enforcement of infection control measures, sporadic new cases continued to occur, challenging the containment efforts.
Collapse
Affiliation(s)
- Wadha Alfouzan
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait; (R.D.); (N.A.)
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Rita Dhar
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait; (R.D.); (N.A.)
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Noura Almerdasi
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait; (R.D.); (N.A.)
| | - Naglaa M. Abdo
- Department of Infection Control, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait;
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (T.d.G.); (J.F.M.)
| | - Walid Q. Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (T.d.G.); (J.F.M.)
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba 80060-000, Brazil
| | | |
Collapse
|