1
|
Sahranavard M, Hosseinjani H, Emadzadeh M, Jamialahmadi T, Sahebkar A. Effect of trehalose on mortality and disease severity in ICU-admitted patients: Protocol for a triple-blind, randomized, placebo-controlled clinical trial. Contemp Clin Trials Commun 2024; 40:101324. [PMID: 39021672 PMCID: PMC11252791 DOI: 10.1016/j.conctc.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2023] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Improvement in organ failure in intensive care unit (ICU) patients is accompanied by lower mortality rate. A disaccharide, trehalose is a candidate to improve organ failure and survival by autophagy induction and enhancing oxidative stress defense. The aim of this study is to assess the effectiveness of trehalose in improving clinical outcome and reducing mortality in ICU patients. Methods a triple-blind, randomized, placebo-controlled, two arm, parallel-group, superiority clinical trial will enroll 200 ICU-admitted patients at Imam Reza hospital, Mashhad, Iran. The patients will be randomly allocated to receive either a 100 ml solution of 15 % trehalose or normal saline intravenously. Primary outcomes include ICU mortality and 60-day mortality, while secondary outcomes focus on blood parameters on day 5 and length of hospital/ICU stay. Conclusion Trehalose has demonstrated beneficial effects in diverse patients; however, no study has evaluated its effect in all ICU-admitted patients. Consequently, this study provides an opportunity to investigate whether trehalose's anti-inflammatory effects, mediated by inducing autophagy and enhancing oxidative stress defense, can play a role in reducing mortality and improving clinical outcomes in the critically ill patients. If successful, trehalose could offer a potential therapeutic approach in the ICU setting.
Collapse
Affiliation(s)
- Mehrdad Sahranavard
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesamoddin Hosseinjani
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Liao H, Zhu S, Li Y, Huang D. The Synergistic Effect of Compound Sugar with Different Glycemic Indices Combined with Creatine on Exercise-Related Fatigue in Mice. Foods 2024; 13:489. [PMID: 38338624 PMCID: PMC10855471 DOI: 10.3390/foods13030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, a compound sugar (CS) with different glycemic index sugars was formulated via hydrolysis characteristics and postprandial glycemic response, and the impact of CS and creatine emulsion on exercise-related fatigue in mice was investigated. Thirty-five C57BL/6 mice were randomly divided into five groups to supply different emulsions for 4 weeks: initial emulsion (Con), glucose emulsion (62 mg/10 g MW glucose; Glu), CS emulsion (62 mg/10 g MW compound sugar; CS), creatine emulsion (6 mg/10 g MW creatine; Cr), and CS and creatine emulsion (62 mg/10 g MW compound sugar, 6 mg/10 g MW creatine, CS-Cr). Then, the exhaustion time of weight-bearing swimming and forelimb grip strength were measured to evaluate the exercise capacity of mice, and some fatigue-related biochemical indexes of blood were determined. The results demonstrated that the ingestion of CS significantly reduced the peak of postprandial blood glucose levels and prolonged the energy supply of mice compared to ingesting an equal amount of glucose. Mouse exhaustion time was 1.22-fold longer in the CS group than in the glucose group. Additionally, the supplementation of CS increased the liver glycogen content and total antioxidant capacity of mice. Moreover, the combined supplementation of CS and creatine increased relative forelimb grip strength and decreased blood creatine kinase activity. The findings suggested that the intake of CS could enhance exercise capacity, and the combined supplementation of CS and creatine has a synergistic effect in improving performance.
Collapse
Affiliation(s)
- Hui Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
3
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
4
|
Ćorković I, Rajchl A, Škorpilová T, Pichler A, Šimunović J, Kopjar M. Evaluation of Chokeberry/Carboxymethylcellulose Hydrogels with the Addition of Disaccharides: DART-TOF/MS and HPLC-DAD Analysis. Int J Mol Sci 2022; 24:ijms24010448. [PMID: 36613889 PMCID: PMC9820810 DOI: 10.3390/ijms24010448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
With the growing awareness of the importance of a healthy diet, the need for the development of novel formulations is also on the rise. Chokeberry products are popular among consumers since they are a rich source of polyphenols that are responsible for antioxidant activity and other positive effects on human health. However, other natural food ingredients, such as disaccharides, can affect their stability. The aim of this study was to investigate the influence of disaccharides addition on the polyphenol composition of chokeberry hydrogels. Hydrogels were prepared from chokeberry juice and 2% of carboxymethylcellulose (CMC) with the addition of 30%, 40%, or 50% of disaccharides (sucrose or trehalose). Samples were analyzed using DART-TOF/MS. The method was optimized, and the fingerprints of the mass spectra have been statistically processed using PCA analysis. Prepared samples were evaluated for total polyphenols, monomeric anthocyanins, and antioxidant activity (FRAP, CUPRAC, DPPH, ABTS assays) using spectrophotometric methods. Individual polyphenols were evaluated using HPLC-DAD analysis. Results showed the addition of disaccharides to 2% CMC hydrogels caused a decrease of total polyphenols. These findings confirm proper formulation is important to achieve appropriate retention of polyphenols.
Collapse
Affiliation(s)
- Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Aleš Rajchl
- Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Dejvice, 166 28 Prague, Czech Republic
| | - Tereza Škorpilová
- Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Dejvice, 166 28 Prague, Czech Republic
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-3122-4309
| |
Collapse
|
5
|
Darikvand F, Ghavami M, Honarvar M. An extensive study on the cake containing trehalose: physiochemical, textural, sensory, microbial, and morphological properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
6
|
L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women: a double-blind, randomised crossover trial. Br J Nutr 2022; 128:1072-1081. [PMID: 34657640 PMCID: PMC9381304 DOI: 10.1017/s0007114521004153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Dietary interventions to delay carbohydrate digestion or absorption can effectively prevent hyperglycaemia in the early postprandial phase. L-arabinose can specifically inhibit sucrase. It remains to be assessed whether co-ingestion of L-arabinose with sucrose delays sucrose digestion, attenuates subsequent glucose absorption and impacts hepatic glucose output. In this double-blind, randomised crossover study, we assessed blood glucose kinetics following ingestion of a 200-ml drink containing 50 g of sucrose with 7·5 g of L-arabinose (L-ARA) or without L-arabinose (CONT) in twelve young, healthy participants (24 ± 1 years; BMI: 22·2 ± 0·5 kg/m2). Plasma glucose kinetics were determined by a dual stable isotope methodology involving ingestion of (U-13C6)-glucose-enriched sucrose, and continuous intravenous infusion of (6,6-2H2)-glucose. Peak glucose concentrations reached 8·18 ± 0·29 mmol/l for CONT 30 min after ingestion. In contrast, the postprandial rise in plasma glucose was attenuated for L-ARA, because peak glucose concentrations reached 6·62 ± 0·18 mmol/l only 60 min after ingestion. The rate of exogenous glucose appearance for L-ARA was 67 and 57 % lower compared with CONT at t = 15 min and 30 min, respectively, whereas it was 214 % higher at t = 150 min, indicating a more stable absorption of exogenous glucose for L-ARA compared with CONT. Total glucose disappearance during the first hour was lower for L-ARA compared with CONT (11 ± 1 v. 17 ± 1 g, P < 0·0001). Endogenous glucose production was not differentially affected at any time point (P = 0·27). Co-ingestion of L-arabinose with sucrose delays sucrose digestion, resulting in a slower absorption of sucrose-derived glucose without causing adverse effects in young, healthy adults.
Collapse
|
7
|
Dharmalingam M, Das R, Jain S, Gupta S, Gupta M, Kudrigikar V, Bachani D, Mehta S, Joglekar S. Impact of Partial Meal Replacement on Glycemic Levels and Body Weight in Indian Patients with Type 2 Diabetes (PRIDE): A Randomized Controlled Study. Diabetes Ther 2022; 13:1599-1619. [PMID: 35834107 PMCID: PMC9281377 DOI: 10.1007/s13300-022-01294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Partial meal replacement (PMR) offers potential glycemic and weight control benefits in type 2 diabetes mellitus (T2DM) patients. We evaluated the clinical impact of PMR (diabetes-specific nutritional supplement [DSNS]) in overweight/obese Indian patients with T2DM. METHODS PRIDE, a 12-week, phase IV, open-label, multicenter study randomized (1:1) newly diagnosed T2DM patients (≤ 1 year) to either DSNS plus standard of care (SOC; diabetes treatment with dietary counseling) group (PMR) or SOC alone group (SOC). The primary endpoint was mean change in glycated hemoglobin (HbA1c) from baseline to week 12. Secondary endpoints were changes in glucose profiles, body weight, waist circumference, lipid profile, and factors impacting quality-of-life (QoL) at week 6 and 12 from baseline. Safety was assessed throughout the study. RESULTS Of the 176 patients enrolled, 171 (n = 85 in PMR group; n = 86 in SOC group) were included in the modified intent-to-treat population. The mean reduction in HbA1c at week 12 from baseline in PMR group was significant compared to the SOC group (- 0.59 vs. - 0.21%, p = 0.002). At week 12, the PMR group showed significant reduction in mean body weight (- 2.19 vs. - 0.22 kg; p = 0.001) and waist circumference (- 2.34 vs. - 0.48 cm; p = 0.001) compared to SOC group. Mean fasting plasma glucose and post-prandial glucose significantly reduced from baseline at week 6 and 12 in each group (p < 0.05). No significant change was observed in lipid profile. QoL parameters (treatment adherence, general well-being, and energy fulfilment) in the PMR were significantly better than SOC group (p < 0.05). Patients were satisfied with the taste of DSNS. No serious adverse events were reported. CONCLUSIONS DSNS is an encouraging option for PMR strategy, as it significantly improved HbA1c, body weight, waist circumference, and overall well-being among overweight/obese Indian T2DM patients. TRIAL IDENTIFICATION NO CTRI/2019/10/021595.
Collapse
Affiliation(s)
- Mala Dharmalingam
- Endocrinology and Diabetes Research Center and Laboratory, Bangalore, 560003, India
| | - Rupam Das
- Downtown Hospital, Guwahati, 781006, India
| | - Sandeep Jain
- Marudhar Hospital, Jaipur, Rajasthan, 302012, India
| | - Sachin Gupta
- Shubham Multispeciality Hospital, Amraiwadi, Ahmedabad, 380026, India
| | - Manoj Gupta
- Health Point Hospital, Kolkata, 700025, India
| | - Vinay Kudrigikar
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India.
| | - Deepak Bachani
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India
| | - Suyog Mehta
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India
| | - Sadhna Joglekar
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India
| |
Collapse
|
8
|
Pasmans K, Meex RCR, van Loon LJC, Blaak EE. Nutritional strategies to attenuate postprandial glycemic response. Obes Rev 2022; 23:e13486. [PMID: 35686720 PMCID: PMC9541715 DOI: 10.1111/obr.13486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Maintaining good glycemic control to prevent complications is crucial in people with type 2 diabetes and in people with prediabetes and in the general population. Different strategies to improve glycemic control involve the prescription of blood glucose-lowering drugs and the modulation of physical activity and diet. Interestingly, lifestyle intervention may be more effective in lowering hyperglycemia than pharmaceutical intervention. Regulation of postprandial glycemia is complex, but specific nutritional strategies can be applied to attenuate postprandial hyperglycemia. These strategies include reducing total carbohydrate intake, consuming carbohydrates with a lower glycemic index, the addition of or substitution by sweeteners and fibers, using food compounds which delay or inhibit gastric emptying or carbohydrate digestion, and using food compounds which inhibit intestinal glucose absorption. Nevertheless, it must be noted that every individual may respond differently to certain nutritional interventions. Therefore, a personalized approach is of importance to choose the optimal nutritional strategy to improve postprandial glycemia for each individual, but this requires a better understanding of the mechanisms explaining the differential responses between individuals.
Collapse
Affiliation(s)
- Kenneth Pasmans
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ruth C R Meex
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers (Basel) 2022; 14:polym14112179. [PMID: 35683852 PMCID: PMC9182803 DOI: 10.3390/polym14112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For this purpose, apple fiber/blackberry microparticles were prepared as the control, as well as microparticles additionally containing disaccharides, i.e., sucrose or trehalose. Fiber:disaccharide ratios were 1:0.5, 1:1, and 1:2. Formulated microparticles were characterized for total phenolics, proanthocyanidins, individual phenolics, antioxidant activity, flavor profiles, and color parameters. Both applied disaccharides affected the encapsulation of phenolics and volatiles by the apple fibers. Control microparticles had a higher content of phenolics than microparticles with disaccharides. Comparing disaccharides, the microparticles with trehalose had a higher content of phenolics than the ones containing sucrose. The amount of proanthocyanidins in the control microparticles was 47.81 mg PB2/100 g; in trehalose, the microparticles ranged from 39.88 to 42.99 mg PB2/100 g, and in sucrose, the microparticles ranged from 12.98 to 26.42 mg PB2/100 g, depending on the fiber:disaccharide ratio. Cyanidin-3-glucoside was the dominant anthocyanin. Its amount in the control microparticles was 151.97 mg/100 g, while in the trehalose microparticles, this ranged from 111.97 to 142.56 mg /100 g and in sucrose microparticles, from 100.28 to 138.74 mg /100 g. On the other hand, microparticles with disaccharides had a higher content of volatiles than the control microparticles. Trehalose microparticles had a higher content of volatiles than sucrose ones. These results show that the formulation of microparticles, i.e., the selection of carriers, had an important role in the final quality of the encapsulates.
Collapse
|
10
|
Xie J, Li J, Qin Q, Ning H, Long Z, Gao Y, Yu Y, Han Z, Wang F, Wang M. Effect of Isomaltulose on Glycemic and Insulinemic Responses: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv Nutr 2022; 13:1901-1913. [PMID: 35595510 PMCID: PMC9526864 DOI: 10.1093/advances/nmac057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
Evidence regarding the effect of isomaltulose on glycemic and insulinemic responses is still conflicting, which limits isomaltulose's application in glycemic management. The purpose of this study was to comprehensively evaluate its effectiveness and evidence quality. We systematically searched PubMed, Embase, and the Cochrane Library for randomized controlled trials (RCTs) prior to October 2021. RCTs were eligible for inclusion if they enrolled adults to oral intake of isomaltulose or other carbohydrates dissolved in water after an overnight fast and compared their 2-h postprandial glucose and insulin concentrations. The DerSimonian-Laird method was used to pool the means of the circulating glucose and insulin concentrations. Both random-effects and fixed-effects models were used to calculate the weighted mean difference in postprandial glucose and insulin concentrations in different groups. Subgroup, sensitivity, and meta-regression analyses were also conducted. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. Finally, 11 RCTs (n = 175 participants) were included. The trials were conducted in 4 countries (Japan, Brazil, Germany, and the Netherlands), and all of the enrolled participants were >18 y of age with various health statuses (healthy, type 2 diabetes, impaired glucose tolerance, and hypertension). Moderate evidence suggested that oral isomaltulose caused an attenuated glycemic response compared with sucrose at 30 min. Low evidence suggested that oral isomaltulose caused an attenuated but more prolonged glycemic response than sucrose and an attenuated insulinemic response. Low-to-moderate levels of evidence suggest there may be more benefit of isomaltulose for people with type 2 diabetes, impaired glucose tolerance, or hypertension; older people; overweight or obese people; and Asian people. The study was registered on PROSPERO (International Prospective Register of Systematic Reviews) as CRD42021290396 (available at https://www.crd.york.ac.uk/prospero/).
Collapse
Affiliation(s)
- Jinchi Xie
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jingkuo Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hua Ning
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yu Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yue Yu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Fan Wang
- Address correspondence to FW (e-mail: )
| | | |
Collapse
|
11
|
Hamada N, Wadazumi T, Hirata Y, Watanabe H, Hongu N, Arai N. Effects of Trehalose Solutions at Different Concentrations on High-Intensity Intermittent Exercise Performance. Nutrients 2022; 14:nu14091776. [PMID: 35565744 PMCID: PMC9101545 DOI: 10.3390/nu14091776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Trehalose solution ingested during exercise induces gradual increases in blood glucose levels and the insulin response compared with glucose solution. Trehalose solution aids in the maintenance of performance in the later stages of prolonged exercise. The purpose of this study was to identify the lowest concentration at which the properties of trehalose could be exploited. Groups of 12 healthy men (21.3 ± 1.3 years) and 10 healthy men (21.1 ± 0.7 years) with recreational training were included in experiments 1 and 2, respectively. Both experiments followed the same protocol. After fasting for 12 h, the participants performed a 60 min constant-load exercise at 40% V˙O2 peak using a bicycle ergometer and ingested 500 mL of a trial drink (experiment 1: water, 8% glucose, and 6 or 8% trehalose; experiment 2: 4 or 6% trehalose). They performed four sets of the Wingate test combined with a 30 min constant-load exercise at 40% V˙O2 peak. The experiment was conducted using a randomized cross-over design; trial drink experiments were conducted over intervals of 7 to 12 days. The exercise performance was evaluated based on mean power in the Wingate test. Blood was collected from the fingertip at 12 points during each experiment to measure blood glucose levels. During the high-intensity 5 h intermittent exercise, no differences were found between the groups in exercise performance in the later stages with concentrations of 8, 6, and 4% trehalose solution. The results suggest that trehalose could be useful for making a new type of mixed carbohydrate solution. Further studies to determine the trehalose response of individual athletes during endurance exercise are needed.
Collapse
Affiliation(s)
- Naomi Hamada
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
- Department of Applied Food Science, Higashiosaka Junior College, 3-1-1, Nishizutsumigakuen-cho, Higashiosaka 577-8567, Osaka, Japan
- Correspondence: ; Tel.: +81-6-6782-2824
| | - Tsuyoshi Wadazumi
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
| | - Yoko Hirata
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
- Department of Food and Nutritional Science, Kobe Women’s Junior College, 4-7-2, Nakamachi, Minatojima, Chuo-ku, Kobe 650-0046, Hyogo, Japan
| | - Hitoshi Watanabe
- Research Center for Urban Health and Sports, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku 558-8585, Osaka, Japan;
| | - Nobuko Hongu
- Graduate School of Human Life Science, Department of Food and Human Life Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku 558-8585, Osaka, Japan;
| | - Norie Arai
- Hayashibara, Co., Ltd., 675-1, Fujisaki, Naka-ku 702-8006, Okayama, Japan;
| |
Collapse
|
12
|
Chen YZ, Gu J, Chuang WT, Du YF, Zhang L, Lu ML, Xu JY, Li HQ, Liu Y, Feng HT, Li YH, Qin LQ. Slowly Digestible Carbohydrate Diet Ameliorates Hyperglycemia and Hyperlipidemia in High-Fat Diet/Streptozocin-Induced Diabetic Mice. Front Nutr 2022; 9:854725. [PMID: 35495933 PMCID: PMC9051025 DOI: 10.3389/fnut.2022.854725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Given that the prevalence rate of type 2 diabetes mellitus (T2DM) continues to increase, it is important to find an effective method to prevent or treat this disease. Previous studies have shown that dietary intervention with a slowly digestible carbohydrate (SDC) diet can improve T2DM with almost no side effects. However, the underlying mechanisms of SDC protect against T2DM remains to be elucidated. Methods The T2DM mice model was established with a high-fat diet and streptozocin injection. Then, SDC was administered for 6 weeks. Bodyweight, food intake, organ indices, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), homeostasis model assessment for insulin resistance (HOMA-IR), and other biochemical parameters were measured. Histopathological and lipid accumulation analyses were performed, and the glucose metabolism-related gene expressions in the liver and skeletal muscle were determined. Lastly, colonic microbiota was also analyzed. Results SDC intervention alleviated the weight loss in the pancreas, lowered blood glucose and glycosylated hemoglobin levels, and improved glucose tolerance and HOMA-IR. SDC intervention improved serum lipid profile, adipocytokines levels, and lowered the lipid accumulation in the liver, subcutaneous adipose tissue, and epididymal visceral adipose tissue. In addition, SDC intervention increased the expression levels of IRS-2 and GLUT-2 in liver tissues and elevated GLUT-4 expression levels in skeletal muscle tissues. Notably, SDC intervention decreased the Bacteroidetes/Firmicutes ratio, increased Desulfovibrio and Lachnospiraceae genus levels, and inhibited the relative abundance of potentially pathogenic bacteria. Conclusions SDC intervention can improve hyperglycemia and hyperlipidemia status in diabetic mice, suggesting that this intervention might be beneficial for T2DM.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei-Ting Chuang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Ya-Fang Du
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Meng-Lan Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hao-Qiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Hao-Tian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- *Correspondence: Hao-Tian Feng
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- Yun-Hong Li
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- Li-Qiang Qin
| |
Collapse
|
13
|
van Laar A, Grootaert C, Van Nieuwerburgh F, Deforce D, Desmet T, Beerens K, Van Camp J. Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients 2022; 14:nu14030611. [PMID: 35276968 PMCID: PMC8839664 DOI: 10.3390/nu14030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide and is impacted by an unhealthy diet with excessive calories, although the role of sugars in NAFLD etiology remains largely unexplored. Rare sugars are natural sugars with alternative monomers and glycosidic bonds, which have attracted attention as sugar replacers due to developments in enzyme engineering and hence an increased availability. We studied the impact of (rare) sugars on energy production, liver cell physiology and gene expression in human intestinal colorectal adenocarcinoma (Caco-2) cells, hepatoma G2 (HepG2) liver cells and a coculture model with these cells. Fat accumulation was investigated in the presence of an oleic/palmitic acid mixture. Glucose, fructose and galactose, but not mannose, l-arabinose, xylose and ribose enhanced hepatic fat accumulation in a HepG2 monoculture. In the coculture model, there was a non-significant trend (p = 0.08) towards higher (20–55% increased) median fat accumulation with maltose, kojibiose and nigerose. In this coculture model, cellular energy production was increased by glucose, maltose, kojibiose and nigerose, but not by trehalose. Furthermore, glucose, fructose and l-arabinose affected gene expression in a sugar-specific way in coculture HepG2 cells. These findings indicate that sugars provide structure-specific effects on cellular energy production, hepatic fat accumulation and gene expression, suggesting a health potential for trehalose and l-arabinose, as well as a differential impact of sugars beyond the distinction of conventional and rare sugars.
Collapse
Affiliation(s)
- Amar van Laar
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Charlotte Grootaert
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - John Van Camp
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
- Correspondence:
| |
Collapse
|
14
|
Ahmed A, Khan TA, Dan Ramdath D, Kendall CWC, Sievenpiper JL. Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials. Nutr Rev 2022; 80:255-270. [PMID: 34339507 PMCID: PMC8754252 DOI: 10.1093/nutrit/nuab012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Rare sugars are monosaccharides and disaccharides (found in small quantities in nature) that have slight differences in their chemical structure compared with traditional sugars. Little is known about their unique physiological and cardiometabolic effects in humans. OBJECTIVE The objective of this study was to conduct a systematic review and synthesis of controlled intervention studies of rare sugars in humans, using PRISMA guidelines. DATA SOURCES MEDLINE and EMBASE were searched through October 1, 2020. Studies included both post-prandial (acute) and longer-term (≥1 week duration) human feeding studies that examined the effect of rare sugars (including allulose, arabinose, tagatose, trehalose, and isomaltulose) on cardiometabolic and physiological risk factors. DATA EXTRACTION In all, 50 studies in humans focusing on the 5 selected rare sugars were found. A narrative synthesis of the selected literature was conducted, without formal quality assessment or quantitative synthesis. DATA SYNTHESIS The narrative summary included the food source of each rare sugar, its effect in humans, and the possible mechanism of effect. Overall, these rare sugars were found to offer both short- and long-term benefits for glycemic control and weight loss, with effects differing between healthy individuals, overweight/obese individuals, and those with type 2 diabetes. Most studies were of small size and there was a lack of large randomized controlled trials that could confirm the beneficial effects of these rare sugars. CONCLUSION Rare sugars could offer an opportunity for commercialization as an alternative sweetener, especially for those who are at high cardiometabolic risk. SYSTEMATIC REVIEW REGISTRATION OSF registration no. 10.17605/OSF.IO/FW43D.
Collapse
Affiliation(s)
- Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - D Dan Ramdath
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Canada
| | - Cyril W C Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine St. Michael's Hospital, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
15
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Thies F, Tsabouri S, Vinceti M, Bresson J, Siani A. Isomaltulose and normal energy-yielding metabolism: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2021; 19:e06849. [PMID: 34707719 PMCID: PMC8527366 DOI: 10.2903/j.efsa.2021.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
Following an application from BENEO GmbH submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Germany, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to isomaltulose and normal energy-yielding metabolism. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. The food proposed by the applicant as the subject of the health claim is isomaltulose. The Panel considers that isomaltulose is sufficiently characterised. The claimed effect proposed by the applicant is 'normal energy-yielding metabolism'. The Panel considers that contribution to normal energy-yielding metabolism is a beneficial physiological effect. A number of human studies applying indirect calorimetry measurements or stable isotope methodologies have shown the postprandial metabolic utilisation of isomaltulose as energy source. However, all energy-containing macronutrients (i.e. carbohydrates, proteins, and lipids) supply the body with energy and this property is not specific to isomaltulose. The Panel concludes that a cause and effect relationship has been established between the intake of isomaltulose and contribution to energy-yielding metabolism. The following wording reflects the scientific evidence: 'isomaltulose contributes to normal energy-yielding metabolism'. Since the contribution to energy-yielding metabolism is not specific to isomaltulose but applies to all energy containing macronutrients (i.e. carbohydrates, proteins, and lipids) that supply the body with metabolisable energy and any amount would contribute to the claimed effect, the Panel cannot set conditions of use for this claim. The applicant proposes that isomaltulose should replace other sugars in foods and/or beverages. The target population is the general population.
Collapse
|
16
|
Improved Glycemic Control and Variability: Application of Healthy Ingredients in Asian Staples. Nutrients 2021; 13:nu13093102. [PMID: 34578981 PMCID: PMC8468310 DOI: 10.3390/nu13093102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
A reduction in carbohydrate intake and low-carbohydrate diets are often advocated to prevent and manage diabetes. However, limiting or eliminating carbohydrates may not be a long-term sustainable and maintainable approach for everyone. Alternatively, diet strategies to modulate glycemia can focus on the glycemic index (GI) of foods and glycemic load (GL) of meals. To assess the effect of a reduction in glycemic load of a 24 h diet by incorporating innovative functional ingredients (β-glucan, isomaltulose) and alternative low GI Asian staples (noodles, rice)on glycemic control and variability, twelve Chinese men (Age: 27.0 ± 5.1 years; BMI:21.6 ± 1.8kg/m2) followed two isocaloric, typically Asian, 24h diets with either a reduced glycemic load (LGL) or high glycemic load (HGL) in a randomized, single-blind, controlled, cross-over design. Test meals included breakfast, lunch, snack and dinner and the daily GL was reduced by 37% in the LGL diet. Continuous glucose monitoring provided 24 h glycemic excursion and variability parameters: incremental area under the curve (iAUC), max glucose concentration (Max), max glucose range, glucose standard deviation (SD), and mean amplitude of glycemic excursion (MAGE), time in range (TIR). Over 24h, the LGL diet resulted in a decrease in glucose Max (8.12 vs. 6.90 mmol/L; p = 0.0024), glucose range (3.78 vs. 2.21 mmol/L; p = 0.0005), glucose SD (0.78 vs. 0.43 mmol/L; p = 0.0002), mean amplitude of glycemic excursion (2.109 vs. 1.008; p < 0.0001), and increase in 4.5-6.5mmol/L TIR (82.2 vs. 94.6%; p = 0.009), compared to the HGL diet. The glucose iAUC, MAX, range and SD improved during the 2 h post-prandial window of each LGL meal, and this effect was more pronounced later in the day. The current results validate the dietary strategy of incorporating innovative functional ingredients (β-glucan, isomaltulose) and replacing Asian staples with alternative low GI carbohydrate sources to reduce daily glycemic load to improve glycemic control and variability as a viable alternative to the reduction in carbohydrate intake alone. These observations provide substantial public health support to encourage the consumption of staples of low GI/GL to reduce glucose levels and glycemic variability. Furthermore, there is growing evidence that the role of chrononutrition, as reported in this paper, requires further examination and should be considered as an important addition to the understanding of glucose homeostasis variation throughout the day.
Collapse
|
17
|
Yang ZD, Guo YS, Huang JS, Gao YF, Peng F, Xu RY, Su HH, Zhang PJ. Isomaltulose Exhibits Prebiotic Activity, and Modulates Gut Microbiota, the Production of Short Chain Fatty Acids, and Secondary Bile Acids in Rats. Molecules 2021; 26:molecules26092464. [PMID: 33922589 PMCID: PMC8122910 DOI: 10.3390/molecules26092464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
In vitro experiments have indicated prebiotic activity of isomaltulose, which stimulates the growth of probiotics and the production of short chain fatty acids (SCFAs). However, the absence of in vivo trials undermines these results. This study aims to investigate the effect of isomaltulose on composition and functionality of gut microbiota in rats. Twelve Sprague–Dawley rats were divided into two groups: the IsoMTL group was given free access to water containing 10% isomaltulose (w/w), and the control group was treated with normal water for five weeks. Moreover, 16S rRNA sequencing showed that ingestion of isomaltulose increased the abundances of beneficial microbiota, such as Faecalibacterium and Phascolarctobacterium, and decreased levels of pathogens, including Shuttleworthia. Bacterial functional prediction showed that isomaltulose affected gut microbial functionalities, including secondary bile acid biosynthesis. Targeted metabolomics demonstrated that isomaltulose supplementation enhanced cholic acid concentration, and reduced levels of lithocholic acid, deoxycholic acid, dehydrocholic acid, and hyodeoxycholic acid. Moreover, the concentrations of propionate and butyrate were elevated in the rats administered with isomaltulose. This work suggests that isomaltulose modulates gut microbiota and the production of SCFAs and secondary bile acids in rats, which provides a scientific basis on the use of isomaltulose as a prebiotic.
Collapse
Affiliation(s)
- Zhan-Dong Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Yi-Shan Guo
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Jun-Sheng Huang
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Ya-Fei Gao
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Fei Peng
- School of Food Science and Engineering, Nanchang University, Nanchang 330000, China;
| | - Ri-Yi Xu
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Hui-Hui Su
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
- Correspondence: (H.-H.S.); (P.-J.Z.); Tel.: +86-020-8416-8316 (H.-H.S.)
| | - Ping-Jun Zhang
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
- Correspondence: (H.-H.S.); (P.-J.Z.); Tel.: +86-020-8416-8316 (H.-H.S.)
| |
Collapse
|
18
|
Brouns F, Blaak E. Can one teaspoon of trehalose a day mitigate metabolic syndrome and diabetes risks? Nutr J 2021; 20:28. [PMID: 33722234 PMCID: PMC7962266 DOI: 10.1186/s12937-021-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fred Brouns
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, NUTRIM- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands, Post Box 616, MD, 6200, Maastricht, Netherlands.
| | - Ellen Blaak
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, NUTRIM- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands, Post Box 616, MD, 6200, Maastricht, Netherlands
| |
Collapse
|
19
|
Sinha P, Verma B, Ganesh S. Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Mol Neurobiol 2021; 58:1088-1101. [PMID: 33094475 DOI: 10.1007/s12035-020-02170-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
20
|
Vukoja J, Buljeta I, Ivić I, Šimunović J, Pichler A, Kopjar M. Disaccharide Type Affected Phenolic and Volatile Compounds of Citrus Fiber-Blackberry Cream Fillings. Foods 2021; 10:foods10020243. [PMID: 33530336 PMCID: PMC7912440 DOI: 10.3390/foods10020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The food industry is continuously developing ingredients, processing methods and packaging materials to improve the quality of fruit products. The aim of this work was to study the possibility of using citrus fiber in the preparation of blackberry cream fillings in combination with disaccharides (sucrose, maltose and trehalose). Evaluations of the phenolics, proanthocyanidins, antioxidant activity, color and volatiles of blackberry cream fillings were conducted after preparation and after three months of storage. Blackberry cream fillings were prepared from citrus fiber (5%), blackberry juice and disaccharides (50%). Disaccharide type had an effect on all investigated parameters. The highest phenol content was in fillings with trehalose (4.977 g/100 g) and the lowest was in fillings prepared with sucrose (4.249 g/100 g). The same tendency was observed after storage. Fillings with maltose had the highest proanthocyanidins content (473.05 mg/100 g) while fillings with sucrose had the lowest amount (299.03 mg/100 g) of these compounds. Regarding volatile compounds, terpenes and aldehydes and ketones were evaluated in the highest concentration. Terpenes were determined in the highest concentration in fillings with trehalose (358.05 µg/kg), while aldehydes and ketones were highest in fillings with sucrose (250.87 µg/kg). After storage, concentration of volatiles decreased. These results indicate that the selection of adequate disaccharides is very important since it can influence the final quality of the product.
Collapse
Affiliation(s)
- Josipa Vukoja
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Ivana Ivić
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Anita Pichler
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
- Correspondence:
| |
Collapse
|
21
|
Radbakhsh S, Momtazi-Borojeni AA, Mahmoudi A, Sarborji MR, Jamialahmadi T, Sathyapalan T, Sahebkar A. Investigation of the Effects of Trehalose on Glycemic Indices in Streptozotocin-Induced Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:481-488. [DOI: 10.1007/978-3-030-73234-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
22
|
Yau JW, Thor SM, Ramadas A. Nutritional Strategies in Prediabetes: A Scoping Review of Recent Evidence. Nutrients 2020; 12:E2990. [PMID: 33003593 PMCID: PMC7650618 DOI: 10.3390/nu12102990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nutritional therapy has been conventionally recommended for people with prediabetes as a method to delay or halt progression to type 2 diabetes. However, recommended nutritional strategies evolve over time. Hence, we performed a scoping review on recently reported nutritional interventions for individuals with prediabetes. Ovid MEDLINE, PubMed, Embase, Scopus, CINAHL and PsycINFO databases were searched to identify relevant research articles published within the past 10 years. Ninety-five articles involving a total of 11,211 participants were included in this review. Nutritional strategies were broadly classified into four groups: low calorie diet, low glycemic index diet, specific foods, and a combination of diet and exercise. The most frequently assessed outcomes were plasma glucose, serum insulin, serum lipid profile, body mass index and body weight. More than 50% of reported interventions resulted in significant improvements in these parameters. Nutritional interventions have demonstrated feasibility and practicality as an effective option for prediabetes management. However, the intervention variability demonstrates the challenges of a 'one-size-fits-all' approach. Investigations in genetically diverse populations and objective assessment of progression rate to diabetes are necessary to better comprehend the impact of these nutritional strategies in prediabetes.
Collapse
Affiliation(s)
| | | | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (J.W.Y.); (S.M.T.)
| |
Collapse
|
23
|
The effect on satiety of ingesting isosweet and isoenergetic sucrose- and isomaltulose-sweetened beverages: a randomised crossover trial. Br J Nutr 2020; 124:225-231. [DOI: 10.1017/s0007114520000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
AbstractGenerating feelings of satiety may be important in maintaining weight control. It has been hypothesised that the circulating concentration of glucose is a major determinant of satiety, yet the relationship between postprandial glycaemia and satiety is inconclusive. Our aim was to assess satiety following ingestion of beverages differing in glycaemic index (GI) containing either 50 g of sucrose (GI 65) or isomaltulose (PalatinoseTM) (GI 32). The beverages were matched for sweetness using a triangle sensory test. Seventy-seven participants were randomised to the order in which they received each beverage, 2 weeks apart. A standard lunch was given at 12.00 hours. Satiety was measured using 100-mm visual analogue scales (VAS) administered at 14.00 hours (baseline) and at 30, 60, 90, 120, 150 and 180 min after ingesting the beverage. Weighed diet records were kept from 17.00 to 24.00 hours. Mean differences for isomaltulose compared with sucrose AUC VAS were ‘How hungry do you feel?’ 109 (95 % CI –443, 661) mm × min; ‘How satisfied do you feel?’ 29 (95 % CI –569, 627) mm × min; ‘How full do you feel?’ −91 (95 % CI –725, 544) mm × min and ‘How much do you think you can eat?’ 300 (95 % CI –318, 919) mm × min. There was no between-treatment difference in satiety question responses or in dietary energy intake −291 (95 % CI −845, 267) kJ over the remainder of the day. In this experiment, feelings of satiety were independent of the GI of the test beverages. Any differences in satiety found between foods chosen on the basis of GI could be attributable to food properties other than the glycaemic-inducing potential of the food.
Collapse
|
24
|
Santana MM, Paixão S, Cunha-Santos J, Silva TP, Trevino-Garcia A, Gaspar LS, Nóbrega C, Nobre RJ, Cavadas C, Greif H, Pereira de Almeida L. Trehalose alleviates the phenotype of Machado-Joseph disease mouse models. J Transl Med 2020; 18:161. [PMID: 32272938 PMCID: PMC7144062 DOI: 10.1186/s12967-020-02302-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2019] [Accepted: 03/14/2020] [Indexed: 02/11/2023] Open
Abstract
Background Machado–Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is the most common of the dominantly inherited ataxias worldwide and is characterized by mutant ataxin-3 aggregation and neuronal degeneration. There is no treatment available to block or delay disease progression. In this work we investigated whether trehalose, a natural occurring disaccharide widely used in food and cosmetic industry, would rescue biochemical, behavioral and neuropathological features of an in vitro and of a severe MJD transgenic mouse model. Methods Two MJD animal models, a lentiviral based and a transgenic model, were orally treated with 2% trehalose solution for a period of 4 and 30 weeks, respectively. Motor behavior (rotarod, grip strength and footprint patterns) was evaluated at different time points and neuropathological features were evaluated upon in-life phase termination. Results Trehalose-treated MJD mice equilibrated for a longer time in the rotarod apparatus and exhibited an improvement of ataxic gait in footprint analysis. Trehalose-mediated improvements in motor behaviour were associated with a reduction of the MJD-associated neuropathology, as MJD transgenic mice treated with trehalose presented preservation of cerebellar layers thickness and a decrease in the size of ataxin-3 aggregates in Purkinje cells. In agreement, an improvement of neuropathological features was also observed in the full length lentiviral-based mouse model of MJD submitted to 2% trehalose treatment. Conclusions The present study suggests trehalose as a safety pharmacological strategy to counteract MJD-associated behavioural and neuropathological impairments.
Collapse
Affiliation(s)
- Magda M Santana
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana Paixão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Janete Cunha-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa Pereira Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Allyson Trevino-Garcia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Laetitia S Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, Centre for Biomedical Research (CBMR), Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal. .,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
25
|
Kopjar M, Ivić I, Vukoja J, Šimunović J, Pichler A. Retention of linalool and eugenol in hydrogels. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology Osijek Josip Juraj Strosmayer University in Osijek F. Kuhača 20 31000 Osijek Croatia
| | - Ivana Ivić
- Faculty of Food Technology Osijek Josip Juraj Strosmayer University in Osijek F. Kuhača 20 31000 Osijek Croatia
| | - Josipa Vukoja
- Faculty of Food Technology Osijek Josip Juraj Strosmayer University in Osijek F. Kuhača 20 31000 Osijek Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences North Carolina State University 400 Dan Allen Drive Raleigh NC USA
| | - Anita Pichler
- Faculty of Food Technology Osijek Josip Juraj Strosmayer University in Osijek F. Kuhača 20 31000 Osijek Croatia
| |
Collapse
|
26
|
Van Laar ADE, Grootaert C, Van Camp J. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr 2020; 61:713-741. [PMID: 32212974 DOI: 10.1080/10408398.2020.1743966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are major health problems affecting hundreds of millions of people. Caloric overfeeding with calorie-dense food ingredients like sugars may contribute to these chronic diseases. Sugar research has also identified mechanisms via which conventional sugars like sucrose and fructose can adversely influence metabolic health. To replace these sugars, numerous sugar replacers including artificial sweeteners and sugar alcohols have been developed. Rare sugars became new candidates to replace conventional sugars and their health effects are already reported in individual studies, but overviews and critical appraisals of their health effects are missing. This is the first paper to provide a detailed review of the metabolic health effects of rare sugars as a group. Especially allulose has a wide range of health effects. Tagatose and isomaltulose have several health effects as well, while other rare sugars mainly provide health benefits in mechanistic studies. Hardly any health claims have been approved for rare sugars due to a lack of evidence from human trials. Human trials with direct measures for disease risk factors are needed to allow a final appraisal of promising rare sugars. Mechanistic cell culture studies and animal models are required to enlarge our knowledge on understudied rare sugars.
Collapse
Affiliation(s)
- Amar D E Van Laar
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - John Van Camp
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Angarita Dávila L, Bermúdez V, Aparicio D, Céspedes V, Escobar MC, Durán-Agüero S, Cisternas S, de Assis Costa J, Rojas-Gómez D, Reyna N, López-Miranda J. Effect of Oral Nutritional Supplements with Sucromalt and Isomaltulose versus Standard Formula on Glycaemic Index, Entero-Insular Axis Peptides and Subjective Appetite in Patients with Type 2 Diabetes: A Randomised Cross-Over Study. Nutrients 2019; 11:E1477. [PMID: 31261732 PMCID: PMC6683048 DOI: 10.3390/nu11071477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Oral diabetes-specific nutritional supplements (ONS-D) induce favourable postprandial responses in subjects with type 2 diabetes (DM2), but they have not been correlated yet with incretin release and subjective appetite (SA). This randomised, double-blind, cross-over study compared postprandial effects of ONS-D with isomaltulose and sucromalt versus standard formula (ET) on glycaemic index (GI), insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and SA in 16 individuals with DM2. After overnight fasting, subjects consumed a portion of supplements containing 25 g of carbohydrates or reference food. Blood samples were collected at baseline and at 30, 60, 90, 120, 150 and 180 min; and SA sensations were assessed by a visual analogue scale on separate days. Glycaemic index values were low for ONS-D and intermediate for ET (p < 0.001). The insulin area under the curve (AUC0-180 min) (p < 0.02) and GIP AUC (p < 0.02) were lower after ONS-D and higher GLP-1 AUC when compared with ET (p < 0.05). Subjective appetite AUC was greater after ET than ONS-D (p < 0.05). Interactions between hormones, hunger, fullness and GI were found, but not within the ratings of SA; isomaltulose and sucromalt may have influenced these factors.
Collapse
Affiliation(s)
- Lisse Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile.
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| | - Daniel Aparicio
- Centro de Investigaciones Endocrino-Metabólicas "Dr. Félix Gómez", Escuela de Medicina. Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Virginia Céspedes
- Departamento de Medicina Física y Rehabilitación, Hospital "12 de Octubre", Madrid 28041, Spain
| | - Ma Cristina Escobar
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile
| | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7500000, Chile
| | - Silvana Cisternas
- Escuela de Salud, Universidad Tecnológica de Chile, INACAP, Sede Concepción, Talcahuano 4260000, Chile
| | - Jorge de Assis Costa
- Faculty of Medicine/UniFAGOC, Ubá 36506-022, Minas Gerais, Brazil
- Universidade do Estado de Minas Gerais (UEMG), Barbacena 36202-284, Minas Gerais, Brazil
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| | - Nadia Reyna
- Centro de Investigaciones Endocrino-Metabólicas "Dr. Félix Gómez", Escuela de Medicina. Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Jose López-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
Yaribeygi H, Yaribeygi A, Sathyapalan T, Sahebkar A. Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes Metab Syndr 2019; 13:2214-2218. [PMID: 31235159 DOI: 10.1016/j.dsx.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is the most prevalent metabolic disorder contributing to significant morbidity and mortality in humans. Many preventative and therapeutic agents have been developed for normalizing glycemic profile in patients with diabetes. In addition to various pharmacologic strategies, many non-pharmacological agents have also been suggested to improve glycemic control in patients with diabetes. Trehalose is a naturally occurring disaccharide which is not synthesized in human but is widely used in food industries. Some studies have provided evidence indicating that it can potentially modulate glucose metabolism and help to stabilize glucose homeostasis in patients with diabetes. Studies have shown that trehalose can significantly modulate insulin sensitivity via at least 7 molecular pathways leading to better control of hyperglycemia. In the current study, we concluded about possible anti-hyperglycemic effects of trehalose suggesting trehalose as a potentially potent non-pharmacological agent for the management of diabetes.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Alijan Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Gangoiti J, Corwin SF, Lamothe LM, Vafiadi C, Hamaker BR, Dijkhuizen L. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2018; 60:123-146. [PMID: 30525940 DOI: 10.1080/10408398.2018.1516621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sarah F Corwin
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lisa M Lamothe
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | | | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Boonyavarakul A, Leelawattana R, Pongchaiyakul C, Buranapin S, Phanachet P, Pramyothin P. Effects of meal replacement therapy on metabolic outcomes in Thai patients with type 2 diabetes: A randomized controlled trial. Nutr Health 2018; 24:261-268. [PMID: 30270717 PMCID: PMC6340108 DOI: 10.1177/0260106018800074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
Background: A meal replacement (MR) with a low glycemic index (GI) is possibly beneficial for
glycemic control. However, the effects of MR on diabetes mellitus have not been studied
among Thai patients with type 2 diabetes (T2DM). Aim: To compare metabolic outcomes between T2DM patients receiving the new MR formula (ONCE
PRO) and normal controlled diets. Methods: A multicenter, open-labeled, randomized controlled trial was conducted. Eligible
patients received either ONCE PRO for one meal daily with controlled diets or only
controlled diets for 3 months. The differences in metabolic profile between the baseline
and end point of each group and between groups were measured. Results: 110 participants were enrolled; the mean difference and standard deviation in
hemoglobin A1C (HbA1c) (%) from baseline were –0.21 ± 0.78 (p = 0.060)
and –0.27 ± 0.60 (p = 0.001) in the MR and control groups,
respectively; however, there was no significant difference between groups
(p = 0.637). Patients consuming a MR instead of breakfast had a
significant decrease in HbA1c (p = 0.040). Body weight (BW) and body
mass index (BMI) were significantly reduced in both groups. There were no significant
change in waist circumference, fasting plasma glucose, total cholesterol and
triglycerides. Low-density lipoprotein cholesterol (LDL-C) was significantly decreased
in the MR group compared with the control group (p = 0.049). Conclusions: Short-term conventional diet control and the low-GI MR product were associated with a
decreased BW and BMI. Changes in the other metabolic outcomes, HbA1c, total cholesterol
and triglycerides, were comparable despite ONCE PRO as the MR having a better effect on
LDL-C lowering.
Collapse
Affiliation(s)
- Apussanee Boonyavarakul
- Division of Endocrinology, Department of Internal Medicine, Phramongkutklao Hospital, Thailand
| | - Rattana Leelawattana
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Thailand
| | - Chatlert Pongchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khonkaen University, Thailand
| | - Supawan Buranapin
- Division of Endocrinology, Department of Internal medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Pariya Phanachet
- Division of Nutrition and Biochemical Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Thailand
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
31
|
|
32
|
Zlatic E, Pichler A, Vidrih R, Hribar J, Piližota V, Kopjar M. Volatile profile of sour cherry puree as affected by sucrose and trehalose. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1374289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emil Zlatic
- Biotechnical Faculty, University in Ljubljana, Ljubljana, Slovenia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| | - Rajko Vidrih
- Biotechnical Faculty, University in Ljubljana, Ljubljana, Slovenia
| | - Janez Hribar
- Biotechnical Faculty, University in Ljubljana, Ljubljana, Slovenia
| | - Vlasta Piližota
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| |
Collapse
|
33
|
Laksir H, Lansink M, Regueme SC, de Vogel-van den Bosch J, Pfeiffer AFH, Bourdel-Marchasson I. Glycaemic response after intake of a high energy, high protein, diabetes-specific formula in older malnourished or at risk of malnutrition type 2 diabetes patients. Clin Nutr 2017; 37:2084-2090. [PMID: 29050650 DOI: 10.1016/j.clnu.2017.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2016] [Revised: 08/10/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND & AIMS Several studies with diabetes-specific formulas (DSFs) for hyperglycaemic patients in need of nutritional support have been conducted in non-malnourished patients, mainly comparing products with varying macronutrient compositions. Here, the effect of a high energy, high protein DSF on postprandial responses was compared to a product with a similar macronutrient composition in malnourished or at risk of malnutrition patients with type 2 diabetes. METHODS In this randomised, double-blind cross-over study, 20 patients were included. After overnight fasting, patients consumed 200 mL of a DSF or standard supplement (control) (19.6 g protein, 31.2 g carbohydrates and 10.6 g fat), while continuing their anti-diabetic medication. The formulas differed in type of carbohydrates and presence of fibre. The postprandial glucose, insulin and glucagon responses were monitored over 4 h. Data were analysed with a Linear Mixed Model, and results of the modified ITT population (n = 19) are shown. RESULTS Postprandial glucose response as incremental area under the curve (iAUC), was lower after consumption of DSF compared with control (489.7 ± 268.5 (mean ± SD) vs 581.3 ± 273.9 mmol/L min, respectively; p = 0.008). Also, the incremental maximum concentration of glucose (iCmax) was lower for DSF vs control (3.5 ± 1.4 vs 4.0 ± 1.4 mmol/L; p = 0.007). Postprandial insulin and glucagon levels, expressed as iAUC or iCmax, were not significantly different between groups. CONCLUSIONS Consumption of a high energy, high protein DSF by older malnourished or at risk of malnutrition type 2 diabetes patients resulted in a significantly lower glucose response compared to control. These data suggest that the use of a DSF is preferred for patients with diabetes in need of nutritional support.
Collapse
Affiliation(s)
| | - Mirian Lansink
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | | | | | - Andreas F H Pfeiffer
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; Charité University Medicine, Berlin, Germany
| | | |
Collapse
|
34
|
|
35
|
Henry CJ, Kaur B, Quek RYC, Camps SG. A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians. Nutrients 2017; 9:nu9050473. [PMID: 28486426 PMCID: PMC5452203 DOI: 10.3390/nu9050473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Low glycaemic index (GI) foods minimize large blood glucose fluctuations and have been advocated to enhance fat oxidation and may contribute to weight management. We determined whether the inclusion of isomaltulose compared to sucrose in a low/high GI meal sequence can modulate the glycaemic response and substrate oxidation in an Asian population. Twenty Chinese men (body mass index (BMI): 17–28 kg/m2) followed a 24 h low GI (isomaltulose, PalatinoseTM) or high GI (sucrose) diet in a randomized double-blind, controlled cross-over design. Treatment meals included dinner (day 1), breakfast, lunch, and snack (day 2). Continuous glucose monitoring provided incremental area under the curve (iAUC) and mean amplitude of glycaemic excursion (MAGE) and 10 h indirect calorimetry (whole body calorimeter) (day 2) provided energy expenditure and substrate oxidation. Our results demonstrated that the low GI diet resulted in lower 24 h glucose iAUC (502.5 ± 231.4 vs. 872.6 ± 493.1 mmol/L; p = 0.002) and lower 24 h glycaemic variability (MAGE: 1.67 ± 0.53 vs. 2.68 ± 1.13 mmol/L; p < 0.001). Simultaneously, 10 h respiratory quotient increased more during high GI (p = 0.014) and fat oxidation was higher after low GI breakfast (p = 0.026), lunch (p < 0.001) and snack (p = 0.013). This indicates that lower GI mixed meals incorporating isomaltulose are able to acutely reduce the glycaemic response and variability and promote fat oxidation.
Collapse
Affiliation(s)
- Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore.
| | - Bhupinder Kaur
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| | - Rina Yu Chin Quek
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| | - Stefan Gerardus Camps
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| |
Collapse
|
36
|
Tan WSK, Tan SY, Henry CJ. Ethnic Variability in Glycemic Response to Sucrose and Isomaltulose. Nutrients 2017; 9:nu9040347. [PMID: 28368311 PMCID: PMC5409686 DOI: 10.3390/nu9040347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to compare the glycemic response of Caucasians and Asians to two disaccharides of different glycemic index (GI), and to examine if ethnic groups that showed the largest glycemic response to sucrose would benefit the most when it is replaced with isomaltulose. Forty healthy participants (10 Chinese; 10 Malays; 10 Caucasians; and 10 Indians) consumed beverages containing 50 g of sucrose or isomaltulose on two separate occasions using a randomized crossover design. Capillary blood glucose was measured in a fasted state and at 15, 30, 45, 60, 90, and 120 min after beverage ingestion. Glycemic response to sucrose was significantly higher in Malays compared to Caucasians (p = 0.041), but did not differ between Caucasians vs. Chinese (p = 0.145) or vs. Indians (p = 0.661). When sucrose was replaced with isomaltulose, glycemic responses were significantly reduced in all ethnic groups, with the largest reduction in glycemic response being observed in Malays. Malays, who had the greatest glycemic response to sucrose, also showed the greatest improvement in glycemic response when sucrose was replaced with isomaltulose. This implies that Malays who are more susceptible to type 2 diabetes mellitus may benefit from strategies that replace high GI carbohydrate with lower GI alternatives to assist in glycemic control.
Collapse
Affiliation(s)
- Wei Shuan Kimberly Tan
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| | - Sze-Yen Tan
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore.
| |
Collapse
|
37
|
Yoshizane C, Mizote A, Yamada M, Arai N, Arai S, Maruta K, Mitsuzumi H, Ariyasu T, Ushio S, Fukuda S. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr J 2017; 16:9. [PMID: 28166771 PMCID: PMC5292800 DOI: 10.1186/s12937-017-0233-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2016] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
Background Trehalose is hydrolyzed by a specific intestinal brush-border disaccharidase (trehalase) into two glucose molecules. In animal studies, trehalose has been shown to prevent adipocyte hypertrophy and mitigate insulin resistance in mice fed a high-fat diet. Recently, we found that trehalose improved glucose tolerance in human subjects. However, the underlying metabolic responses after trehalose ingestion in humans are not well understood. Therefore, we examined the glycemic, insulinemic and incretin responses after trehalose ingestion in healthy Japanese volunteers. Methods In a crossover study, 20 fasted healthy volunteers consumed 25 g trehalose or glucose in 100 mL water. Blood samples were taken frequently over the following 3 h, and blood glucose, insulin, active gastric inhibitory polypeptide (GIP) and active glucagon-like peptide-1 (GLP-1) levels were measured. Results Trehalose ingestion did not evoke rapid increases in blood glucose levels, and had a lower stimulatory potency of insulin and active GIP secretion compared with glucose ingestion. Conversely, active GLP-1 showed higher levels from 45 to 180 min after trehalose ingestion as compared with glucose ingestion. Specifically, active GIP secretion, which induces fat accumulation, was markedly lower after trehalose ingestion. Conclusions Our findings indicate that trehalose may be a useful saccharide for good health because of properties that do not stimulate rapid increases in blood glucose and excessive secretion of insulin and GIP promoting fat accumulation.
Collapse
Affiliation(s)
- Chiyo Yoshizane
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan.
| | - Akiko Mizote
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Mika Yamada
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Norie Arai
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Shigeyuki Arai
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Kazuhiko Maruta
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hitoshi Mitsuzumi
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Toshio Ariyasu
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Shimpei Ushio
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Shigeharu Fukuda
- HAYASHIBARA CO. LTD., 675 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| |
Collapse
|
38
|
Kopjar M, Pichler A, Turi J, Piližota V. Influence of trehalose addition on antioxidant activity, colour and texture of orange jelly during storage. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| | - Anita Pichler
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| | - Josipa Turi
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| | - Vlasta Piližota
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| |
Collapse
|
39
|
König D, Zdzieblik D, Holz A, Theis S, Gollhofer A. Substrate Utilization and Cycling Performance Following Palatinose™ Ingestion: A Randomized, Double-Blind, Controlled Trial. Nutrients 2016; 8:nu8070390. [PMID: 27347996 PMCID: PMC4963866 DOI: 10.3390/nu8070390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 01/18/2023] Open
Abstract
(1) Objective: To compare the effects of isomaltulose (Palatinose™, PSE) vs. maltodextrin (MDX) ingestion on substrate utilization during endurance exercise and subsequent time trial performance; (2) Methods: 20 male athletes performed two experimental trials with ingestion of either 75 g PSE or MDX 45 min before the start of exercise. The exercise protocol consisted of 90 min cycling (60% VO2max) followed by a time trial; (3) Results: Time trial finishing time (−2.7%, 90% CI: ±3.0%, 89% likely beneficial; p = 0.147) and power output during the final 5 min (+4.6%, 90% CI: ±4.0%, 93% likely beneficial; p = 0.053) were improved with PSE compared with MDX. The blood glucose profile differed between trials (p = 0.013) with PSE resulting in lower glycemia during rest (95%–99% likelihood) and higher blood glucose concentrations during exercise (63%–86% likelihood). In comparison to MDX, fat oxidation was higher (88%–99% likelihood; p = 0.005) and carbohydrate oxidation was lower following PSE intake (85%–96% likelihood; p = 0.002). (4) Conclusion: PSE maintained a more stable blood glucose profile and higher fat oxidation during exercise which resulted in improved cycling performance compared with MDX. These results could be explained by the slower availability and the low-glycemic properties of Palatinose™ allowing a greater reliance on fat oxidation and sparing of glycogen during the initial endurance exercise.
Collapse
Affiliation(s)
- Daniel König
- Section for Nutrition and Sports, Department of Sports and Sports Science, University of Freiburg, Schwarzwaldstrasse 175, Freiburg 79117, Germany.
| | - Denise Zdzieblik
- Section for Nutrition and Sports, Department of Sports and Sports Science, University of Freiburg, Schwarzwaldstrasse 175, Freiburg 79117, Germany.
| | - Anja Holz
- BENEO-Institute, Wormserstrasse 11, Obrigheim 67283, Germany.
| | - Stephan Theis
- BENEO-Institute, Wormserstrasse 11, Obrigheim 67283, Germany.
| | - Albert Gollhofer
- Section for Nutrition and Sports, Department of Sports and Sports Science, University of Freiburg, Schwarzwaldstrasse 175, Freiburg 79117, Germany.
| |
Collapse
|
40
|
Mori A, Ueda K, Lee P, Oda H, Ishioka K, Arai T, Sako T. Effect of Acarbose, Sitagliptin and combination therapy on blood glucose, insulin, and incretin hormone concentrations in experimentally induced postprandial hyperglycemia of healthy cats. Res Vet Sci 2016; 106:131-4. [PMID: 27234550 DOI: 10.1016/j.rvsc.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2015] [Revised: 03/11/2016] [Accepted: 04/03/2016] [Indexed: 11/29/2022]
Abstract
Acarbose (AC) and Sitagliptin (STGP) are oral hypoglycemic agents currently used either alone or in conjunction with human diabetic (Type 2) patients. AC has been used with diabetic cats, but not STGP thus far. Therefore, the objective of this study was to determine the potential use of AC or STGP alone and in combination for diabetic cats, by observing their effect on short-term post-prandial serum glucose, insulin, and incretin hormone (active glucagon-like peptide-1 (GLP-1) and total glucose dependent insulinotropic polypeptide (GIP)) concentrations in five healthy cats, following ingestion of a meal with maltose. All treatments tended (p<0.10; 5-7.5% reduction) to reduce postprandial glucose area under the curve (AUC), with an accompanying significant reduction (p<0.05, 35-45%) in postprandial insulin AUC as compared to no treatment. Meanwhile, a significant increase (p<0.05) in postprandial active GLP-1 AUC was observed with STGP (100% higher) and combined treatment (130% greater), as compared to either AC or no treatment. Lastly, a significant reduction (p<0.05) in postprandial total GIP AUC was observed with STGP (21% reduction) and combined treatment (7% reduction) as compared to control. Overall, AC, STGP, or combined treatment can significantly induce positive post-prandial changes to insulin and incretin hormone levels of healthy cats. Increasing active GLP-1 and reducing postprandial hyperglycemia appear to be the principal mechanisms of combined treatment. Considering the different, but complementary mechanisms of action by which AC and STGP induce lower glucose and insulin levels, combination therapy with both these agents offers great potential for treating diabetic cats in the future.
Collapse
Affiliation(s)
- Akihiro Mori
- School of Veterinary Nursing & Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan.
| | - Kaori Ueda
- School of Veterinary Nursing & Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Peter Lee
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Hitomi Oda
- School of Veterinary Nursing & Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Katsumi Ishioka
- School of Veterinary Nursing & Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Toshiro Arai
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Toshinori Sako
- School of Veterinary Nursing & Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
41
|
Effect of low-glycemic-sugar-sweetened beverages on glucose metabolism and macronutrient oxidation in healthy men. Int J Obes (Lond) 2016; 40:990-7. [PMID: 26869244 DOI: 10.1038/ijo.2016.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/06/2015] [Revised: 11/17/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Sugar-sweetened-beverages (SSB) provide high amounts of rapidly absorbable sugar and have been shown to impair insulin sensitivity and promote weight gain. We hypothesized that when compared with high-glycemic index (GI) SSB low-GI SSB lead to lower insulin secretion and thus an improved preservation of insulin sensitivity and fat oxidation during an inactive phase. SUBJECTS/METHODS In a controlled cross-over dietary intervention 13 healthy men (age: 23.7±2.2 years, body mass index: 23.6±1.9 kg m(-)(2)) consumed low-GI (isomaltulose) or high-GI (75% maltodextrin+25% sucrose, adapted for sweetness) SSBs providing 20% of energy requirement for 7 days. During this phase, participant's habitual high physical activity (11 375±3124 steps per day) was reduced (2363±900 steps per day). The provided ad libitum diet comprised 55% CHO, 30% fat and 15% protein. Glycemic and insulinemic responses were assessed: Day-long (7-day continuous interstitial glucose monitoring, 24-h-urinary c-peptide excretion), during meal test (37 g isomaltulose vs 28 g maltodextrin+9g sucrose) and measures of insulin sensitivity (basal: homeostasis model assessment of insulin resistance (HOMA-IR), postprandial: Matsuda-ISI). Macronutrient oxidation was assessed by non-protein respiratory quotient (npRQ) in the fasted state (npRQfasting) and postprandial as the area under the npRQ-curve during meal test (npRQtAUC-meal). RESULTS Day-long glycemia was lower with low-GI compared with high-GI SSB (-5%, P<0.05). Low-GI SSB led to lower insulin secretion during meal test (-28%, P<0.01) and throughout the day (-31%, P<0.01), whereas postprandial glucose levels did not differ between low-GI and high-GI SSBs. Insulin sensitivity deteriorated on inactivity with both SSBs, but was better preserved with low-GI isomaltulose compared with high-GI maltodextrin-sucrose (ΔHOMA-IR: +0.37±0.52 vs +0.85±0.86; ΔMatsuda-ISI: -5.1±5.5 vs -9.6±5.1, both P<0.05). Both, fasting and postprandial fat oxidation declined on inactivity, with no difference between high-GI and low-GI SSBs. CONCLUSIONS Compared with high-GI SSB, 7-day consumption of beverages sweetened with low-GI isomaltulose had beneficial effects on inactivity-induced impairment of glucose metabolism without effecting fuel selection.
Collapse
|
42
|
Ang M, Linn T. Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: a randomized trial. Am J Clin Nutr 2014; 100:1059-68. [PMID: 25030779 DOI: 10.3945/ajcn.113.076638] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Isomaltulose attenuates postprandial glucose and insulin concentrations compared with sucrose in patients with type 2 diabetes mellitus (T2DM). However, the mechanism by which isomaltulose limits postprandial hyperglycemia has not been clarified. OBJECTIVE The objective was therefore to assess the effects of bolus administration of isomaltulose on glucose metabolism compared with sucrose in T2DM. DESIGN In a randomized, double-blind, crossover design, 11 participants with T2DM initially underwent a 3-h euglycemic-hyperinsulinemic (0.8 mU · kg(-1) · min(-1)) clamp that was subsequently combined with 1 g/kg body wt of an oral (13)C-enriched isomaltulose or sucrose load. Hormonal responses and glucose kinetics were analyzed during a 4-h postprandial period. RESULTS Compared with sucrose, absorption of isomaltulose was prolonged by ∼50 min (P = 0.004). Mean plasma concentrations of insulin, C-peptide, glucagon, and glucose-dependent insulinotropic peptide were ∼10-23% lower (P < 0.05). In contrast, glucagon-like peptide 1 (GLP-1) was ∼64% higher (P < 0.001) after isomaltulose ingestion, which results in an increased insulin-to-glucagon ratio (P < 0.001) compared with sucrose. The cumulative amount of systemic glucose appearance was ∼35% lower after isomaltulose than after sucrose (P = 0.003) because of the reduction in orally derived and endogenously produced glucose and a higher first-pass splanchnic glucose uptake (SGU). Insulin action was enhanced after isomaltulose compared with sucrose (P = 0.013). CONCLUSIONS Ingestion of slowly absorbed isomaltulose attenuates postprandial hyperglycemia by reducing oral glucose appearance, inhibiting endogenous glucose production (EGP), and increasing SGU compared with ingestion of rapidly absorbed sucrose in patients with T2DM. In addition, GLP-1 secretion contributes to a beneficial shift in the insulin-to-glucagon ratio, suppression of EGP, and enhancement of SGU after isomaltulose consumption. This trial was registered at clinicaltrials.gov as NCT01070238.
Collapse
Affiliation(s)
- Meidjie Ang
- From Medical Clinic and Policlinic 3, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- From Medical Clinic and Policlinic 3, Justus Liebig University, Giessen, Germany
| |
Collapse
|
43
|
Barea-Alvarez M, Benito MT, Olano A, Jimeno ML, Moreno FJ. Synthesis and characterization of isomaltulose-derived oligosaccharides produced by transglucosylation reaction of Leuconostoc mesenteroides dextransucrase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9137-9144. [PMID: 25175804 DOI: 10.1021/jf5033735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/03/2023]
Abstract
This paper reports the efficient enzymatic synthesis of a homologous series of isomaltulose-derived oligosaccharides with degrees of polymerization ranging from 3 to 9 through the transglucosylation reaction using a dextransucrase from Leuconostoc mesenteroides B-512F. The total oligosaccharide yield obtained under optimal conditions was 41-42% (in weight with respect to the initial amount of isomaltulose) after 24-48 h of reaction. Nuclear magnetic resonance (NMR) structural characterization indicated that dextransucrase specifically transferred glucose moieties of sucrose to the C-6 of the nonreducing glucose residue of isomaltulose. Likewise, monitoring the progression of the content of each individual oligosaccharide indicated that oligosaccharide acceptor products of low molecular weight acted in turn as acceptors for further transglucosylation to yield oligosaccharides of a higher degree of polymerization. The produced isomaltulose-derived oligosaccharides can be considered as isomalto-oligosaccharides (IMOs) because they are linked by only α-(1→6) bonds. In addition, having isomaltulose as the core structure, these IMO-like structures could possess appealing bioactive properties that could find potential applications as functional food ingredients.
Collapse
Affiliation(s)
- Montserrat Barea-Alvarez
- Departamento Bioactividad y Análisis de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC) , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Appl Microbiol Biotechnol 2014; 98:6569-82. [DOI: 10.1007/s00253-014-5816-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|