1
|
Kumorkiewicz-Jamro A, Pachulicz RJ, Fitter S, Górska R, Duggan J, Vandyke K, Pukala TL, Wybraniec S, Zannettino ACW. Atriplex hortensis var. 'rubra' extracts and purified amaranthin-type pigments reduce oxidative stress and inflammatory response in LPS-stimulated RAW264.7 cells. Food Chem 2025; 462:140920. [PMID: 39208732 DOI: 10.1016/j.foodchem.2024.140920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - River J Pachulicz
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Renata Górska
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Jvaughn Duggan
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Ferjani W, Kouki A, Dang PMC, Fetoui H, Chtourou Y, Ghanem-Boughanmi N, Ben-Attia M, El-Benna J, Souli A. Opuntia ficus-indica cladodes extract inhibits human neutrophil pro-inflammatory functions and protects rats from acetic acid-induced ulcerative colitis. Inflammopharmacology 2024:10.1007/s10787-024-01577-x. [PMID: 39369123 DOI: 10.1007/s10787-024-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
The increased production of reactive oxygen species (ROS) by human neutrophils can lead to oxidative imbalances and several diseases, such as inflammatory bowel disease (IBD). Opuntia ficus-indica (O. ficus-indica) is rich in bioactive substances with anti-inflammatory properties. This study aimed to identify the bioactive compounds present in aqueous cladodes extract (ACE) of O. ficus-indica using high-performance liquid chromatography (HPLC) and to test its effects on human neutrophil inflammatory functions and on ulcerative colitis (UC) induced by acetic acid (Aa) in rats. ROS production and degranulation by neutrophils were assessed by luminol-amplified chemiluminescence, enzymatic techniques, and western blotting. In vivo, the experiment involved seven groups of rats: a negative control group (NaCl), the acetic acid group (Aa), and groups treated with oral sulfasalazine (150 mg/kg) or various doses of ACE for 7 days. Colonic lesions were induced by an intra-rectal Aa injection, and inflammation was assessed. HPLC analysis identified gallic acid, catechin, caffeic acid, and ferulic acid as major compounds in ACE. In vitro, ACE inhibited neutrophil ROS production, including superoxide anion produced by NADPH oxidase, and significantly reduced myeloperoxidase activity and neutrophil degranulation. In vivo, ACE protected rats from Aa-induced histopathological damage of the colonic mucosa, significantly increased catalase, superoxide dismutase and reduced glutathione levels, and significantly suppressed the increases of plasma cytokines (TNF-α and IL-1β) observed in the Aa group. In conclusion, O. ficus-indica ACE has significant anti-inflammatory properties by restoring oxidative balance, indicating that it could be a potential source of therapeutic agents for inflammatory diseases, particularly UC.
Collapse
Affiliation(s)
- Wafa Ferjani
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Ahmed Kouki
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (UR17/ES06), Sciences Faculty of Sfax, Soukra Street Km 3.5, 3000, BP1171, Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (UR17/ES06), Sciences Faculty of Sfax, Soukra Street Km 3.5, 3000, BP1171, Sfax, Tunisia
| | - Néziha Ghanem-Boughanmi
- Environmental Stress Risks Unit (UR17/ES20), Sciences Faculty of Bizerta, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
| | - Abdelaziz Souli
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|
3
|
Sendani AA, Farmani M, Jahankhani K, Kazemifard N, Ghavami SB, Houri H, Ashrafi F, Sadeghi A. Exploring the Anti-Inflammatory and Antioxidative Potential of Selenium Nanoparticles Biosynthesized by Lactobacillus casei 393 on an Inflamed Caco-2 Cell Line. Cell Biochem Biophys 2024:10.1007/s12013-024-01356-z. [PMID: 39261390 DOI: 10.1007/s12013-024-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 09/13/2024]
Abstract
Selenium (Se) plays a crucial role in modulating inflammation and oxidative stress within the human system. Biogenic selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei (L. casei) exhibit anti-inflammatory and anti-oxidative properties, positioning them as a promising alternative to traditional supplements characterized by limited bioavailability. With this context in mind, this study investigates the impact of selenium and L. casei in ameliorating inflammation and oxidative stress using a cell line model. The study is centered on the biosynthesis of selenium nanoparticles (SeNPs) by L. casei 393 under anaerobic conditions using a solution of sodium selenite (Na2SeO3) in the bacterial culture medium. The generation of SeNPs ensued from the interaction of L. casei bacteria with selenium ions, a process characterized via transmission electron microscopy (TEM) to confirm the synthesis of SeNPs. To induce inflammation, the human colonic adenocarcinoma cell line, Caco-2 was subjected to interleukin-1 beta (IL-1β) at concentrations of 0.5 and 25 ng/ml. Subsequent analyses encompass the evaluation of SeNPs derived from L. casei, its supernatant, commercial selenium, and L. casei probiotic on Caco2 cell line. Finally, we assessed the inflammatory and oxidative stress markers. The assessment of inflammation involved the quantification of NF-κB and TGF-β gene expression levels, while oxidative stress was evaluated through the measurement of Nrf2, Keap1, NOX1, and SOD2 gene levels. L. casei successfully produced SeNPs, as confirmed by the color change in the culture medium and TEM analysis showing their uniform distribution within the bacteria. In the inflamed Caco-2 cell line, the NF-κB gene was upregulated, but treatment with L. casei-SeNPs and selenium increased TGF-β expression. Moreover, L. casei-SeNPs upregulated SOD2 and Nrf2 genes, while downregulating NOX1, Keap1, and NF-κB genes. These results demonstrated the potential of L. casei-SeNPs for reducing inflammation and managing oxidative stress in the Caco-2 cell line. The study underscores the ability of L. casei-SeNPs to reduce oxidative stress and inflammation in inflamed Caco-2 cell lines, emphasizing the effectiveness of L. casei as a source of selenium. These insights hold significant promise for the development of SeNPs derived from L. casei as potent anti-inflammatory and anti-cancer agents, paving the way for novel therapeutic applications in the field.
Collapse
Affiliation(s)
- Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tian J, Yang C, Wang Y, Zhou C. Evaluation of the Mechanism of Sinomenii Caulis in Treating Ulcerative Colitis based on Network Pharmacology and Molecular Docking. Curr Comput Aided Drug Des 2024; 20:195-207. [PMID: 37078344 PMCID: PMC10641851 DOI: 10.2174/1573409919666230420083102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Studies have indicated that Sinomenii Caulis (SC) has several physiological activities, such as anti-inflammatory, anti-cancer, immunosuppression, and so on. SC is currently widely used in the treatment of rheumatoid arthritis, skin disease, and other diseases. However, the mechanism of SC in the treatment of ulcerative colitis (UC) remains unclear. AIMS To predict the active components of SC and determine the mechanism of SC on UC. METHODS Active components and targets of SC were screened and obtained by TCMSP, PharmMapper, and CTD databases. The target genes of UC were searched from GEO (GSE9452), and DisGeNET databases. Based on the String database, Cytoscape 3.7.2 software, and David 6.7 database, we analyzed the relationship between SC active components and UC potential targets or pathways. Finally, identification of SC targets in anti-UC by molecular docking. GROMACS software was used to perform molecular dynamics simulations of protein and compound complexes and to perform free energy calculations. RESULTS Six main active components, 61 potential anti-UC gene targets, and the top 5 targets with degree value are IL6, TNF, IL1β, CASP3, and SRC. According to GO enrichment analysis, the vascular endothelial growth factor receptor and vascular endothelial growth factor stimulus may be relevant biological processes implicated in the treatment of UC by SC. The KEGG pathway analysis result was mainly associated with the IL-17, AGE-RAGE, and TNF signaling pathways. Based on molecular docking results, beta-sitosterol, 16-epi-Isositsirikine, Sinomenine, and Stepholidine are strongly bound to the main targets. Molecular dynamics simulation results showed that IL1B/beta-sitosterol and TNF/16-epi-Isositsirikine binding was more stable. CONCLUSION SC can play a therapeutic role in UC through multiple components, targets, and pathways. The specific mechanism of action needs to be further explored.
Collapse
Affiliation(s)
- Juan Tian
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Changgeng Yang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Yun Wang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Canlin Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| |
Collapse
|
5
|
Rodrigues Junior JI, de Vasconcelos JKG, Xavier LEMDS, Gomes ADS, Santos JCDF, Campos SBG, Martins ASDP, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Disease: A Systematic Review and a Meta-Analysis of Randomized Clinical Trials. Pharmaceuticals (Basel) 2023; 16:1374. [PMID: 37895845 PMCID: PMC10610019 DOI: 10.3390/ph16101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this study is to assess the effectiveness of treatment for inflammatory bowel diseases in modulating oxidative stress biomarkers and cytokine levels. A systematic review of clinical trials was conducted, searching electronic databases including PubMed, Science Direct, and Scopus. After excluding articles that did not meet the inclusion criteria, 19 studies were included in the systematic review and 8 in the meta-analysis (6 for antioxidant capacity, 6 for superoxide dismutase (SOD), and 5 for lipid peroxidation analyzed through malondialdehyde (MDA) levels). SOD was significantly modulated (RR = 0.3764, 95% CI [0.0262 to 0.7267], p = 0.035) but not antioxidant capacity (RR = 0.3424, 95% CI [0.0334 to 0.7183], p = 0.0742) or MDA (RR = -0.8534, 95% CI [-1.9333 to 0.2265], p = 0.1214). Nonetheless, studies investigating oxidative stress biomarkers and cytokines in the context of alternative therapies for IBD treatment are still scarce. This review highlights the potential of antioxidant supplementation in IBD management and underscores the need for further investigations into its effects on oxidative stress biomarkers and cytokines to improve therapeutic approaches for IBD patients.
Collapse
Affiliation(s)
- José Israel Rodrigues Junior
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (J.I.R.J.); (J.K.G.d.V.); (S.B.G.C.)
| | - Joice Kelly Gomes de Vasconcelos
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (J.I.R.J.); (J.K.G.d.V.); (S.B.G.C.)
| | | | - Amanda da Silva Gomes
- Pós-Graduação em Nutrição (PPGNUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (L.E.M.d.S.X.); (A.d.S.G.)
| | | | - Samara Bomfim Gomes Campos
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (J.I.R.J.); (J.K.G.d.V.); (S.B.G.C.)
| | - Amylly Sanuelly da Paz Martins
- Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (A.S.d.P.M.); (M.O.F.G.)
| | - Marília Oliveira Fonseca Goulart
- Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (A.S.d.P.M.); (M.O.F.G.)
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil
- Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil
| | - Fabiana Andréa Moura
- Pós-Graduação em Nutrição (PPGNUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil; (L.E.M.d.S.X.); (A.d.S.G.)
- Pós-Graduação em Ciências Médicas (PPGCM/UFAL), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, Brazil;
| |
Collapse
|
6
|
He Y, Wang D, Liu K, Deng S, Liu Y. Sodium humate alleviates LPS-induced intestinal barrier injury by improving intestinal immune function and regulating gut microbiota. Mol Immunol 2023; 161:61-73. [PMID: 37499314 DOI: 10.1016/j.molimm.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Sodium humate (HNa), known for its abundant functional active groups, is extensively utilized in food dietary supplements due to its versatile properties. Furthermore, HNa possesses notable anti-inflammatory, antioxidant, and anti-diarrheal properties. This research endeavor aimed to elucidate the protective effects of HNa against intestinal barrier injury induced by lipopolysaccharide (LPS). The findings of this study demonstrated that pretreatment with HNa effectively mitigated intestinal barrier injury in the jejunum. HNa exhibited inhibitory effects on the activation of the NLRP3 inflammasome and the production of inflammatory factors within the intestine. HNa supplementation also contributed to the upregulation of mucin and tight junctions (TJs) expression, consequently enhancing the integrity of the intestinal barrier. Notably, our investigation revealed that HNa shared comparable efficacy with the TLR4 inhibitor TAK-242 in inhibiting the TLR4/NFκB signaling pathway. Furthermore, an in-depth analysis of the gut microbiota demonstrated that HNa exerted a regulatory influence on LPS-induced microflora disturbance. In conclusion, these findings collectively indicate that HNa mitigates LPS-induced mucosal damage in the jejunum and preserves the integrity of the intestinal barrier by modulating intestinal immune function and regulating gut microbiota.
Collapse
Affiliation(s)
- Yanjun He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Dong Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kexin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shouxiang Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Ragusa MA, Naselli F, Cruciata I, Volpes S, Schimmenti C, Serio G, Mauro M, Librizzi M, Luparello C, Chiarelli R, La Rosa C, Lauria A, Gentile C, Caradonna F. Indicaxanthin Induces Autophagy in Intestinal Epithelial Cancer Cells by Epigenetic Mechanisms Involving DNA Methylation. Nutrients 2023; 15:3495. [PMID: 37571432 PMCID: PMC10420994 DOI: 10.3390/nu15153495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Autophagy is an evolutionarily conserved process critical in maintaining cellular homeostasis. Recently, the anticancer potential of autophagy inducers, including phytochemicals, was suggested. Indicaxanthin is a betalain pigment found in prickly pear fruit with antiproliferative and pro-apoptotic activities in colorectal cancer cells associated with epigenetic changes in selected methylation-silenced oncosuppressor genes. Here, we demonstrate that indicaxanthin induces the up-regulation of the autophagic markers LC3-II and Beclin1, and increases autophagolysosome production in Caco-2 cells. Methylomic studies showed that the indicaxanthin-induced pro-autophagic activity was associated with epigenetic changes. In addition to acting as a hypermethylating agent at the genomic level, indicaxanthin also induced significant differential methylation in 39 out of 47 autophagy-related genes, particularly those involved in the late stages of autophagy. Furthermore, in silico molecular modelling studies suggested a direct interaction of indicaxanthin with Bcl-2, which, in turn, influenced the function of Beclin1, a key autophagy regulator. External effectors, including food components, may modulate the epigenetic signature of cancer cells. This study demonstrates, for the first time, the pro-autophagic potential of indicaxanthin in human colorectal cancer cells associated with epigenetic changes and contributes to outlining its potential healthy effect in the pathophysiology of the gastrointestinal tract.
Collapse
Affiliation(s)
- Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Chiara Schimmenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Maurizio Mauro
- Department of Obstetrics & Gynecology and Women’s Health, Michael F. Price Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Mariangela Librizzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Turin, Italy;
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.A.R.); (F.N.); (I.C.); (S.V.); (C.S.); (G.S.); (M.L.); (C.L.); (R.C.); (A.L.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
8
|
Fernando GSN, Sergeeva NN, Vagkidis N, Chechik V, Marshall LJ, Boesch C. Differential Effects of Betacyanin and Betaxanthin Pigments on Oxidative Stress and Inflammatory Response in Murine Macrophages. Mol Nutr Food Res 2023; 67:e2200583. [PMID: 37203590 DOI: 10.1002/mnfr.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/02/2023] [Indexed: 05/20/2023]
Abstract
SCOPE Betalain pigments are increasingly highlighted for their bioactive and anti-inflammatory properties, although research is lacking to demonstrate contributions of individual betalains. The work herein aimed to compare effects of four main betalains on inflammatory and cell-protective markers and to highlight potential structure-related relationships of the two main subgroups: betacyanins vs betaxanthins. METHODS AND RESULTS Murine RAW 264.7 macrophages were stimulated with bacterial lipopolysaccharide following incubation with betacyanins (betanin, neobetanin) and betaxanthins (indicaxanthin, vulgaxanthin I) in concentrations from 1 to 100 µM. All betalains suppressed expression of pro-inflammatory markers IL-6, IL-1β, iNOS, and COX-2 with tendency for stronger effects of betacyanins compared to betaxanthins. In contrast, HO-1 and gGCS showed mixed and only moderate induction, while more emphasized effects were observed for betacyanins. While all betalains suppressed mRNA levels of NADPH oxidase 2 (NOX-2), a superoxide generating enzyme, only betacyanins were able to counteract hydrogen peroxide induced reactive oxygen species (ROS) generation, in alignment with their radical scavenging potential. Furthermore, betaxanthins exerted pro-oxidant properties, elevating ROS production beyond hydrogen peroxide stimulation. CONCLUSION In summary, all betalains display anti-inflammatory properties, although only betacyanins demonstrate radical scavenging capacities, indicating potential differing responses under oxidative stress conditions, which requires further research.
Collapse
Affiliation(s)
- Ganwarige Sumali N Fernando
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
- Department of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81100, Sri Lanka
| | - Natalia N Sergeeva
- School of Design and the Leeds Institute of Textile and Colour, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikolaos Vagkidis
- Department of Chemistry, University of York, York YO10 5DD, Heslington, UK
| | - Victor Chechik
- Department of Chemistry, University of York, York YO10 5DD, Heslington, UK
| | - Lisa J Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Smeriglio A, Iraci N, Denaro M, Mandalari G, Giofrè SV, Trombetta D. Synergistic Combination of Citrus Flavanones as Strong Antioxidant and COX-Inhibitor Agent. Antioxidants (Basel) 2023; 12:antiox12040972. [PMID: 37107347 PMCID: PMC10136195 DOI: 10.3390/antiox12040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, we demonstrated that a Citrus flavanone mix (FM) shows antioxidant and anti-inflammatory activity, even after gastro-duodenal digestion (DFM). The aim of this study was to investigate the possible involvement of the cyclooxygenases (COXs) in the anti-inflammatory activity previously detected, using a human COX inhibitor screening assay, molecular modeling studies, and PGE2 release by Caco-2 cells stimulated with IL-1β and arachidonic acid. Furthermore, the ability to counteract pro-oxidative processes induced by IL-1β was evaluated by measuring four oxidative stress markers, namely, carbonylated proteins, thiobarbituric acid-reactive substances, reactive oxygen species, and reduced glutathione/oxidized glutathione ratio in Caco-2 cells. All flavonoids showed a strong inhibitory activity on COXs, confirmed by molecular modeling studies, with DFM, which showed the best and most synergistic activity on COX-2 (82.45% vs. 87.93% of nimesulide). These results were also corroborated by the cell-based assays. Indeed, DFM proves to be the most powerful anti-inflammatory and antioxidant agent reducing, synergistically and in a statistically significant manner (p < 0.05), PGE2 release than the oxidative stress markers, also with respect to the nimesulide and trolox used as reference compounds. This leads to the hypothesis that FM could be an excellent antioxidant and COX inhibitor candidate to counteract intestinal inflammation.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Effect of two-week red beetroot juice consumption on modulation of gut microbiota in healthy human volunteers - A pilot study. Food Chem 2023; 406:134989. [PMID: 36527987 DOI: 10.1016/j.foodchem.2022.134989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
With very little research exploring intestinal effects of red beetroot consumption, the present pilot study investigated gut microbial changes following red beetroot consumption, via a 14-day intervention trial in healthy adults. Compared to baseline, the study demonstrates transient changes in abundance of some taxa e.g., Romboutsia and Christensenella, after different days of intervention (p < 0.05). Enrichment of Akkermansia muciniphila and decrease of Bacteroides fragilis (p < 0.05) were observed after 3 days of juice consumption, followed by restoration in abundance after 14 days. With native betacyanins and catabolites detected in stool after juice consumption, betacyanins were found to correlate positively with Bifidobacterium and Coprococcus, and inversely with Ruminococcus (p < 0.1), potentiating a significant rise in (iso)butyric acid content (172.7 ± 30.9 µmol/g stool). Study findings indicate the potential of red beetroot to influence gut microbial populations and catabolites associated with these changes, emphasizing the potential benefit of red beetroot on intestinal as well as systemic health.
Collapse
|
11
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
12
|
Zhou J, Cheng J, Liu L, Luo J, Peng X. Lactobacillus acidophilus (LA) Fermenting Astragalus Polysaccharides (APS) Improves Calcium Absorption and Osteoporosis by Altering Gut Microbiota. Foods 2023; 12:foods12020275. [PMID: 36673366 PMCID: PMC9858548 DOI: 10.3390/foods12020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Lactobacillus acidophilus (LA) and Astragalus polysaccharides (APS) have each been shown to have anti-osteoporotic activity, and the aim of this study was to further investigate whether the LA fermenting APS was more effective in improving calcium absorption and osteoporosis than the unfermented mixed solution (MS). We found that the fermentation solution (FS) intervention improved the calcium absorption, BMD, and bone microarchitecture in osteoporotic rats and resulted in better inhibition of osteoclast differentiation markers ACP-5 and pro-inflammatory cytokines TNF-α and IL-6 and promotion of osteoblast differentiation marker OCN. This better performance may be due to the improved restoration of the relative abundance of specific bacteria associated with improved calcium absorption and osteoporosis such as Lactobacillus, Allobaculum, and UCG-005. Several key metabolites, including indicaxanthin, chlorogenic acid, and 3-hydroxymelatonin, may also be the key to the better improvement. In conclusion, the LA fermenting APS can better improve calcium absorption and osteoporosis by increasing active metabolites and altering gut microbiota. This finding should become a solid foundation for the development of LA fermenting APS in functional foods.
Collapse
|
13
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
14
|
Rodríguez-Mendoza CA, González Campos RE, Lorenzo-Leal AC, Bautista Rodríguez E, Paredes Juárez GA, El Kassis EG, Hernández LR, Juárez ZN, Bach H. Phytochemical Screening and Bioactivities of Cactaceae Family Members Endemic to Mexico. PLANTS (BASEL, SWITZERLAND) 2022; 11:2856. [PMID: 36365308 PMCID: PMC9653579 DOI: 10.3390/plants11212856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Mexico is a center of diversification for the Cactaceae family, with 69% of the species recorded as endemic. Certain members of the Cactaceae family have been chemically analyzed to relate their medicinal use with their phytochemistry. Here, the phytochemistry and bioactivity of ethanol extracts of Ferocactus echidne, F. latispinus, and Mammillaria geminispina were evaluated. A preliminary phytochemical analysis was performed, detecting the presence of saponins, tannins, cardiotonic glycosides, and sesquiterpene lactones. The presence of nicotinic acid in F. echidne and F. latispinus was identified by GC-MS. Other compounds found in the extracts of these three species were gentisic acid, diosmetin, chlorogenic acid, N-methyltyramide, and hordenine. The antioxidant activity was estimated with the DPPH free radical scavenging test. To determine the toxicity of the extracts, the in vivo model of Artemia spp. was used. In addition, the cytotoxicity of the extract was tested on C6, HaCaT, THP-1, and U937 cell lines, while the inflammatory activity was tested by measuring the secretion of cytokines using macrophage cells. The three species showed different bioactivities, including antioxidant, antimicrobial, cytotoxic, and anti-inflammatory activities. To the best of our knowledge, the results presented here are the first described for these species.
Collapse
Affiliation(s)
- Clara Angélica Rodríguez-Mendoza
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Rubí Esmeralda González Campos
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Elizabeth Bautista Rodríguez
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Genaro Alberto Paredes Juárez
- Department of degree in Medical Surgeon, Academic Secretary, Universidad de la Salud Puebla, Reforma 722, Puebla 72000, Mexico
| | - Elie Girgis El Kassis
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta, Catarina Mártir S/N, San Andrés Cholula, Puebla 72810, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
15
|
Yin H, Feng Y, Duan Y, Ma S, Guo Z, Wei Y. Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response in mice. J Inflamm (Lond) 2022; 19:16. [PMID: 36253774 PMCID: PMC9575233 DOI: 10.1186/s12950-022-00314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Background Chronic inflammation and oxidant/antioxidant imbalance are two main pathological features associated with lipopolysaccharide (LPS)-induced acute lung injury (ALI). The following study investigated the protective role of hydrogen (H2), a gaseous molecule without known toxicity, in LPS-induced lung injury in mice and explored its potential molecular mechanisms. Methods Mice were randomly divided into three groups: H2 control group, LPS group, and LPS + H2 group. The mice were euthanized at the indicated time points, and the specimens were collected. The 72 h survival rates, cytokines contents, pathological changes, expression of Toll-like receptor 4 (TLR4), and oxidative stress indicators were analyzed. Moreover, under different culture conditions, RAW 264.7 mouse macrophages were used to investigate the potential molecular mechanisms of H2 in vitro. Cells were divided into the following groups: PBS group, LPS group, and LPS + H2 group. The cell viability, intracellular ROS, cytokines, and expression of TLR4 and nuclear factor kappa-B (NF-κB) were observed. Results Hydrogen inhalation increased the survival rate to 80%, reduced LPS-induced lung damage, and decreased inflammatory cytokine release in LPS mice. Besides, H2 showed remarked anti-oxidative activity to reduce the MDA and NO contents in the lung. In vitro data further indicated that H2 down-regulates the levels of ROS, NO, TNF-α, IL-6, and IL-1β in LPS-stimulated macrophages and inhibits the expression of TLR4 and the activation of nuclear factor kappa-B (NF-κB). Conclusion Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response most probably through the TLR4-NF-κB pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00314-x.
Collapse
Affiliation(s)
- Hongling Yin
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Yajing Feng
- grid.24516.340000000123704535Department of Center ICU, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Yi Duan
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Shaolin Ma
- grid.24516.340000000123704535Department of Critical Care Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Zhongliang Guo
- grid.452753.20000 0004 1799 2798Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Youzhen Wei
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
16
|
Lipophilic Compounds and Antibacterial Activity of Opuntia ficus-indica Root Extracts from Algeria. Int J Mol Sci 2022; 23:ijms231911161. [PMID: 36232458 PMCID: PMC9569945 DOI: 10.3390/ijms231911161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
The chemical composition, investigated by gas chromatography-mass spectrometry, and antibacterial activity of lipophilic extractives of three varieties of Opuntia ficus-indica roots from Algeria are reported in this paper for the first time. The results obtained revealed a total of 55 compounds, including fatty acids, sterols, monoglycerides and long chain aliphatic alcohols that were identified and quantified. β-Sitosterol was found as the major compound of the roots of the three varieties. Furthermore, considerable amounts of essential fatty acids (ω3, ω6, and ω9) such as oleic, linoleic, and linolenic acids were also identified. The green variety was the richest among the three studied varieties. The antibacterial activity, evaluated with disc diffusion method, revealed that lipophilic extracts were effective mainly against Gram-positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) (19~23 mm). Gram-negative strains mainly Pseudomonas aeruginosa gave an inhibition zone of 18 mm, which is considered high antibacterial activity. The minimal inhibitory concentrations of the tested bacteria revealed interesting values against the majority of bacteria tested: 75–100 µg mL−1 for Bacillus sp., 250–350 µg/mL for the two Staphylococcus strains, 550–600 µg mL−1 for E. coli, and 750–950 µg mL−1 obtained with Pseudomonas sp. This study allows us to conclude that the lipophilic fractions of cactus roots possess interesting phytochemicals such as steroids, some fatty acids and long chain alcohols that acted as antibiotic-like compounds countering pathogenic strains.
Collapse
|
17
|
Madrigal-Santillán E, Portillo-Reyes J, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Izquierdo-Vega J, Delgado-Olivares L, Vargas-Mendoza N, Álvarez-González I, Morales-González Á, Morales-González JA. Opuntia spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. PLANTS 2022; 11:plants11182333. [PMID: 36145735 PMCID: PMC9505094 DOI: 10.3390/plants11182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Plants of the genus Opuntia spp are widely distributed in Africa, Asia, Australia and America. Specifically, Mexico has the largest number of wild species; mainly O. streptacantha, O. hyptiacantha, O. albicarpa, O. megacantha and O. ficus-indica. The latter being the most cultivated and domesticated species. Its main bioactive compounds include pigments (carotenoids, betalains and betacyanins), vitamins, flavonoids (isorhamnetin, kaempferol, quercetin) and phenolic compounds. Together, they favor the different plant parts and are considered phytochemically important and associated with control, progression and prevention of some chronic and infectious diseases. Part 1 collected information on its preventive actions against atherosclerotic cardiovascular diseases, diabetes and obesity, hepatoprotection, effects on human infertility and chemopreventive capacity. Now, this second review (Part 2), compiles the data from published research (in vitro, in vivo, and clinical studies) on its neuroprotective, anti-inflammatory, antiulcerative, antimicrobial, antiviral potential and in the treatment of skin wounds. The aim of both reviews is to provide scientific evidences of its beneficial properties and to encourage health professionals and researchers to expand studies on the pharmacological and therapeutic effects of Opuntia spp.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| | - Jacqueline Portillo-Reyes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Julieta Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| |
Collapse
|
18
|
Wang Y, Fernando GSN, Sergeeva NN, Vagkidis N, Chechik V, Do T, Marshall LJ, Boesch C. Uptake and Immunomodulatory Properties of Betanin, Vulgaxanthin I and Indicaxanthin towards Caco-2 Intestinal Cells. Antioxidants (Basel) 2022; 11:antiox11081627. [PMID: 36009345 PMCID: PMC9405451 DOI: 10.3390/antiox11081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to compare the absorption and transport patterns of three main betalains, betanin, vulgaxanthin I and indicaxanthin, into intestinal epithelial cells and to assess their distinct molecular effects on inflammatory and redox-related cell signalling in association with their radial scavenging potencies. All three betalains showed anti-inflammatory effects (5–80 μM), reflected by attenuated transcription of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO-synthase. Concomitant increases in antioxidant enzymes such as heme oxygenase-1 were only observed for betanin. Moreover, betanin uniquely demonstrated a potent dose-dependent radical scavenging activity in EPR and cell-based assays. Results also indicated overall low permeability for the three betalains with Papp of 4.2–8.9 × 10−7 cm s−1. Higher absorption intensities of vulgaxanthin and indicaxanthin may be attributed to smaller molecular sizes and greater lipophilicity. In conclusion, betanin, vulgaxanthin I and indicaxanthin have differentially contributed to lowering inflammatory markers and mitigating oxidative stress, implying the potential to ameliorate inflammatory intestinal disease. Compared with two betaxanthins, the greater efficacy of betanin in scavenging radical and promoting antioxidant response might, to some extent, compensate for its poorer absorption efficiency, as demonstrated by the Caco-2 cell model.
Collapse
Affiliation(s)
- Yunqing Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Ganwarige Sumali N. Fernando
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Natalia N. Sergeeva
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Design, Faculty of Art, Humanities and Cultures, University of Leeds, Leeds LS2 9JT, UK
| | | | - Victor Chechik
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Thuy Do
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| | - Lisa J. Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: ; Tel.: +44-1133430268
| |
Collapse
|
19
|
Abstract
In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.
Collapse
Affiliation(s)
- Pasquale Calvi
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy.,Dipartment of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| |
Collapse
|
20
|
Xia F, Li Y, Deng L, Ren R, Ge B, Liao Z, Xiang S, Zhou B. Alisol B 23-Acetate Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction by Inhibiting TLR4-NOX1/ROS Signaling Pathway in Caco-2 Cells. Front Pharmacol 2022; 13:911196. [PMID: 35774596 PMCID: PMC9237229 DOI: 10.3389/fphar.2022.911196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Alisol B 23-Acetate (AB23A) is a naturally occurring triterpenoid, which can be indicated in the rhizome of medicinal and dietary plants from Alisma species. Previous studies have demonstrated that AB23A could inhibit intestinal permeability by regulating tight junction (TJ)-related proteins. Even so, the AB23A protective mechanism against intestinal barrier dysfunction remains poorly understood. This investigation seeks to evaluate the AB23A protective effects on intestinal barrier dysfunction and determine the mechanisms for restoring intestinal barrier dysfunction in LPS-stimulated Caco-2 monolayers. According to our findings, AB23A attenuated the inflammation by reducing pro-inflammatory cytokines production like IL-6, TNF-α, IL-1β, and prevented the paracellular permeability by inhibiting the disruption of TJ in LPS-induced Caco-2 monolayers after treated with LPS. AB23A also inhibited LPS-induced TLR4, NOX1 overexpression and subsequent ROS generation in Caco-2 monolayers. Transfected with NOX1-specific shRNA diminished the up-regulating AB23A effect on ZO-1 and occludin expression. Moreover, transfected with shRNA of TLR4 not only enhanced ZO-1 and occludin expression but attenuated NOX1 expression and ROS generation. Therefore, AB23A ameliorates LPS-induced intestinal barrier dysfunction by inhibiting TLR4-NOX1/ROS signaling pathway in Caco-2 monolayers, suggesting that AB23A may have positive impact on maintaining the intestinal barrier’s integrity.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fan Xia, ; Benjie Zhou,
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Lijun Deng
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ruxia Ren
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bingchen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ziqiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fan Xia, ; Benjie Zhou,
| |
Collapse
|
21
|
Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y, Qiu Y, Li C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti‑inflammatory effects. Mol Med Rep 2022; 25:188. [PMID: 35362542 PMCID: PMC8985202 DOI: 10.3892/mmr.2022.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Evodiamine (Evo) is an alkaloid that can be extracted from the berry fruit Evodia rutaecarpa and has been reported to exert various pharmacological effects, such as antidiarrheal, antiemetic and antiulcer effects. In vivo, the potential effects of Evo were investigated in a mouse model of dextran sodium sulfate (DSS)‑induced ulcerative colitis (UC) and in adenomatous polyposis coli (Apc)MinC/Gpt C57BL/6 mice with colorectal cancer (CRC), where the latter harbours a point‑mutation in the Apc gene. Evo suppressed the degree of weight loss and colon shortening induced by DSS, decreased the disease activity index value and ameliorated the pathological alterations in the colon of mice with UC as examined via H&E staining of colon tissues. In addition, Evo decreased the number and size of colonic tumors in ApcMinC/Gpt mice. Proteomics (colon tissues), ELISA (colon tissues and serum) and western blotting (colon tissues) results revealed that Evo inhibited NF‑κB to mediate the levels of various cytokines, including, in the DSS‑induced UC model, IL‑1β, IL‑2, IL‑6, IL‑8, TNF‑α, IFN‑γ (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα, S100a9, TLR4 and MyD88 (western blotting of colon tissues), and, in the colorectal cancer model, IL‑1β, IL‑2, IL‑6, IL‑15, IL‑17, IL‑22, TNF‑α (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα and S100a9 (western blotting of colon tissues), to achieve its anti‑inflammatory and antitumor effects. In vitro, Evo also reduced the viability of the colon cancer cell line SW480, inhibited mitochondrial membrane potential (MMP detection), caused G2/M‑phase arrest (cell cycle detection) and suppressed the translocation of phosphorylated‑NF‑κB from the cytoplasm into the nucleus (immunofluorescence of p‑NF‑κB). Theoretical evidence (MD simulations) suggest that Evo may bind to the ordered domain (α‑helix) of NF‑κB to influence this protein. The protein secondary structure changes were analyzed by the cpptraj module in Amber. In addition, these data provide experimental evidence that Evo may be an effective agent for treating UC and CRC.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhao
- Department of Pharmacy, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanyue Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130119, P.R. China
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Sánchez-Recillas E, Campos-Vega R, Pérez-Ramírez IF, Luzardo-Ocampo I, Cuéllar-Núñez ML, Vergara-Castañeda HA. Garambullo ( Myrtillocactus geometrizans): effect of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of phytochemicals. Food Funct 2022; 13:4699-4713. [PMID: 35380561 DOI: 10.1039/d1fo04392g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Garambullo (Myrtillocactus geometrizans), endemic fruit from Mexico, contains several bioactive compounds (phenolic compounds, betalains, antioxidant fiber), highlighting it as a good functional food. In this research, the impact of the in vitro gastrointestinal digestion on phytochemical bioaccessibility from garambullo and its antioxidant capacity are studied. The fruit contained previously unidentified phytochemicals in the polar and non-polar extracts (acetone and hexane). The bioaccessibility decreased in the mouth and stomach for flavanones (up to 11.9 and 8.9%, respectively), isoflavones (up to 20.0 and 9.2%, respectively), flavonols (up to 15.2 and 15.7%, respectively), hydroxycinnamic acids (up to 21.7 and 13.1%, respectively), and betalains (up to 10.5 and 4.2%, respectively); hydroxybenzoic acids were increased (up to 752.8 and 552.6%, respectively), while tocopherols increased in the mouth (127.7%) and decreased in the stomach (up to 90.3%). In the intestinal phase, the digestible fraction showed low phytochemicals bioaccessibility, and some compounds were recovered in the non-digestible fraction. The antioxidant capacity decreased in different compartments of the gastrointestinal tract, being higher in the mouth (872.9, 883.6, 385.2, and 631.2 μmol TE per g dw by ABTS, DPPH, ORAC, and FRAP, respectively) and stomach (836.2, 942.1, 289.0, and 494.9 μmol TE per g dw ABTS, DPPH, ORAC, and FRAP, respectively). The results indicate that digestion positively or negatively affects compounds' bioaccessibility depending on their structural family, and the antioxidant capacity decreases but remains higher than other functional foods.
Collapse
Affiliation(s)
- Edelmira Sánchez-Recillas
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro. 76140, Mexico.
| | - Rocio Campos-Vega
- Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro. 76076, Mexico
| | - Iza Fernanda Pérez-Ramírez
- School of Chemistry, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro, Qro. 76076, Mexico
| | - Ivan Luzardo-Ocampo
- Institute of Neurobiology, National Autonomous University of Mexico (UNAM)-Juriquilla, Juriquilla, Qro. 76230, Mexico
| | - Mardey Liceth Cuéllar-Núñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro. 76140, Mexico.
| | | |
Collapse
|
23
|
Indicaxanthin from Opuntia ficus-indica Fruit Ameliorates Glucose Dysmetabolism and Counteracts Insulin Resistance in High-Fat-Diet-Fed Mice. Antioxidants (Basel) 2021; 11:antiox11010080. [PMID: 35052584 PMCID: PMC8773302 DOI: 10.3390/antiox11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity-related dysmetabolic conditions are amongst the most common causes of death globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between inflammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were carried out. Our results showed that indicaxanthin treatment significantly reduced body weight, daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remarkable, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiological values. These effects were associated with a reduction in hepatic and adipose tissue oxidative stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2 and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like structures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related dysmetabolic conditions.
Collapse
|
24
|
Smeriglio A, De Francesco C, Denaro M, Trombetta D. Prickly Pear Betalain-Rich Extracts as New Promising Strategy for Intestinal Inflammation: Plant Complex vs. Main Isolated Bioactive Compounds. Front Pharmacol 2021; 12:722398. [PMID: 34594220 PMCID: PMC8476807 DOI: 10.3389/fphar.2021.722398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, many studies have highlighted the health effects of betalains beyond their use as food dyes. The present study investigated betalain-rich extracts with different colors and their main bioactive compounds in order to provide first evidence as a new promising strategy for intestinal inflammation management. Prickly pear betalain–rich extracts, obtained by a QuEChERS method, have been characterized by LC-DAD-ESI-MS/MS analysis. The potential role of betanin, indicaxanthin, and prickly pear extracts in counteracting the antioxidant and anti-inflammatory events was evaluated by several in vitro cell-free and cell-based assays. Indicaxanthin and betanin represent the most abundant compounds (≥22.27 ± 4.50 and 1.16 ± 0.17 g/100 g dry extract, respectively). Prickly pear extracts showed the strongest antioxidant and anti-inflammatory activities with respect to the pure betalains both on in vitro cell-free and cell-based assays, demonstrating the occurrence of synergistic activity, without any cytotoxicity or alteration of the barrier systems. The release of reactive oxygen species (ROS) and key inflammatory markers (IL-6, IL-8, and NO) was strongly inhibited by both betalains and even more by prickly pear extracts, which showed a similar and sometimes better profile than the reference compounds trolox and dexamethasone in counteracting the IL-1β–induced intestinal inflammation.
Collapse
Affiliation(s)
- A Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - C De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, University of Messina, Messina, Italy
| | - M Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Ko HM, Lee SH, Jee W, Jung JH, Kim KI, Jung HJ, Jang HJ. Gancaonin N from Glycyrrhiza uralensis Attenuates the Inflammatory Response by Downregulating the NF-κB/MAPK Pathway on an Acute Pneumonia In Vitro Model. Pharmaceutics 2021; 13:pharmaceutics13071028. [PMID: 34371720 PMCID: PMC8309055 DOI: 10.3390/pharmaceutics13071028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Acute pneumonia is an inflammatory disease caused by several pathogens, with symptoms such as fever and chest pain, to which children are particularly vulnerable. Gancaonin N is a prenylated isoflavone of Glycyrrhiza uralensis that has been used in the treatment of various diseases in oriental medicine. There are little data on the anti-inflammatory efficacy of Gancaonin N, and its effects and mechanisms on acute pneumonia are unknown. Therefore, this study was conducted as a preliminary analysis of the anti-inflammatory effect of Gancaonin N in lipopolysaccharide (LPS)-induced RAW264.7 cells, and to identify its preventive effect on the lung inflammatory response and the molecular mechanisms underlying it. In this study, Gancaonin N inhibited the production of NO and PGE2 in LPS-induced RAW264.7 cells and significantly reduced the expression of iNOS and COX-2 proteins at non-cytotoxic concentrations. In addition, in LPS-induced A549 cells, Gancaonin N significantly reduced the expression of COX-2 and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Moreover, Gancaonin N reduced MAPK signaling pathway phosphorylation and NF-κB nuclear translocation. Therefore, Gancaonin N relieved the inflammatory response by inactivating the MAPK and NF-κB signaling pathways; thus, it is a potential natural anti-inflammatory agent that can be used in the treatment of acute pneumonia.
Collapse
Affiliation(s)
- Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Korea
| | - Hee-Jae Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (H.-J.J.); (H.-J.J.)
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (H.-J.J.); (H.-J.J.)
| |
Collapse
|
26
|
Bellafiore M, Pintaudi AM, Thomas E, Tesoriere L, Bianco A, Cataldo A, Cerasola D, Traina M, Livrea MA, Palma A. Redox and autonomic responses to acute exercise-post recovery following Opuntia ficus-indica juice intake in physically active women. J Int Soc Sports Nutr 2021; 18:43. [PMID: 34098980 PMCID: PMC8186076 DOI: 10.1186/s12970-021-00444-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate if the supplementation with Opuntia ficus-indica (OFI) juice may affect plasma redox balance and heart rate variability (HRV) parameters following a maximal effort test, in young physically active women. METHODS A randomized, double blind, placebo controlled and crossover study comprising eight women (23.25 ± 2.95 years, 54.13 ± 9.05 kg, 157.75 ± 0.66 cm and BMI of 21.69 ± 0.66 kg/m2) was carried out. A juice containing OFI diluted in water and a Placebo solution were supplied (170 ml; OFI = 50 ml of OFI juice + 120 ml of water; Placebo = 170 ml beverage without Vitamin C and indicaxanthin). Participants consumed the OFI juice or Placebo beverage every day for 3 days, before performing a maximal cycle ergometer test, and for 2 consecutive days after the test. Plasma hydroperoxides and total antioxidant capacity (PAT), Skin Carotenoid Score (SCS) and HRV variables (LF, HF, LF/HF and rMSSD) were recorded at different time points. RESULTS The OFI group showed significantly lower levels of hydroperoxides compared to the Placebo group in pre-test, post-test and 48-h post-test. PAT values of the OFI group significantly increased compared to those of the Placebo group in pre-test and 48-h post-test. SCS did not differ between groups. LF was significantly lower in the OFI group 24-h after the end of the test, whereas rMSSD was significantly higher in the OFI group 48-h post-test. CONCLUSION OFI supplementation decreased the oxidative stress induced by intense exercise and improved autonomic balance in physically active women.
Collapse
Affiliation(s)
- Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy.
| | | | - Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy
| | - Luisa Tesoriere
- STEBICEF Department, Palermo University, 90123, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy
| | - Angelo Cataldo
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy
| | - Dario Cerasola
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy
| | - Marcello Traina
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy
| | | | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Francesco Spallitta, 52, 90141, Palermo, Italy
| |
Collapse
|
27
|
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules 2021; 26:2520. [PMID: 33925891 PMCID: PMC8123435 DOI: 10.3390/molecules26092520] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| |
Collapse
|
28
|
Denaro M, Smeriglio A, Trombetta D. Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants (Basel) 2021; 10:antiox10020140. [PMID: 33498195 PMCID: PMC7908975 DOI: 10.3390/antiox10020140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, several studies have highlighted the role of Citrus flavanones in counteracting oxidative stress and inflammatory response in bowel diseases. The aim of study was to identify the most promising Citrus flavanones by a preliminary antioxidant and anti-inflammatory screening by in vitro cell-free assays, and then to mix the most powerful ones in equimolar ratio in order to investigate a potential synergistic activity. The obtained flavanones mix (FM) was then subjected to in vitro simulated digestion to evaluate the availability of the parent compounds at the intestinal level. Finally, the anti-inflammatory activity was investigated on a Caco-2 cell-based model stimulated with interleukin (IL)-1β. FM showed stronger antioxidant and anti-inflammatory activity with respect to the single flavanones, demonstrating the occurrence of synergistic activity. The LC-DAD-ESI-MS/MS analysis of gastric and duodenal digested FM (DFM) showed that all compounds remained unchanged at the end of digestion. As proof, a superimposable behavior was observed between FM and DFM in the anti-inflammatory assay carried out on Caco-2 cells. Indeed, it was observed that both FM and DFM decreased the IL-6, IL-8, and nitric oxide (NO) release similarly to the reference anti-inflammatory drug dexamethasone.
Collapse
|
29
|
McCarty MF, Lerner A. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function. Adv Nutr 2020; 12:316-324. [PMID: 33126251 PMCID: PMC8243597 DOI: 10.1093/advances/nmaa139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling in enterocytes. 5'-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells-effective pre/probiotics, glycine, and glutamine-as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators-notably berberine and the butyric acid produced by health-promoting microflora-are also beneficial in this regard, as are soy isoflavones, which function as selective agonists for ERβ. The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures, including phycocyanobilin, phase 2-inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function.
Collapse
|
30
|
The Phytochemical Indicaxanthin Synergistically Enhances Cisplatin-Induced Apoptosis in HeLa Cells via Oxidative Stress-Dependent p53/p21 waf1 Axis. Biomolecules 2020; 10:biom10070994. [PMID: 32630700 PMCID: PMC7407573 DOI: 10.3390/biom10070994] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Combining phytochemicals with chemotherapics is an emerging strategy to treat cancer to overcome drug toxicity and resistance with natural compounds. We assessed the effects of indicaxanthin (Ind), a pigment obtained from Opuntia ficus-indica (L. Mill) fruit, combined with cisplatin (CDDP) against cervical cancer cells (HeLa). Measured cell viability via Trypan blue assay; cell morphology via fluorescence microscopy; apoptosis, cell cycle, mitochondrial membrane potential (MMP) and cell redox balance via flow-cytometry; expression levels of apoptosis-related proteins via western blot. Cell viability assays and Chou-Talalay plot demonstrated that the combination of CDDP and Ind had synergistic cytotoxic effects. Combined treatment had significant effects (p < 0.05) on phosphatidylserine externalization, cell morphological changes, cell cycle arrest, fall in MMP, ROS production and GSH decay compared with the individual treatment groups. Bax, cytochrome c, p53 and p21waf1 were over-expressed, while Bcl-2 was downregulated. Pre-treatment with N-acetyl-l-cysteine abolished the observed synergistic effects. We also demonstrated potentiation of CDDP anticancer activity by nutritionally relevant concentrations of Ind. Oxidative stress-dependent mitochondrial cell death is the basis of the chemosensitizing effect of Ind combined with CDDP against HeLa cancer cells. ROS act as upstream signaling molecules to initiate apoptosis via p53/p21waf1 axis. Ind can be a phytochemical of interest in combo-therapy.
Collapse
|
31
|
Ramírez-Rodríguez Y, Martínez-Huélamo M, Pedraza-Chaverri J, Ramírez V, Martínez-Tagüeña N, Trujillo J. Ethnobotanical, nutritional and medicinal properties of Mexican drylands Cactaceae Fruits: Recent findings and research opportunities. Food Chem 2020; 312:126073. [DOI: 10.1016/j.foodchem.2019.126073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
|
32
|
López-García G, Cilla A, Barberá R, Alegría A. Anti-Inflammatory and Cytoprotective Effect of Plant Sterol and Galactooligosaccharides-Enriched Beverages in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1862-1870. [PMID: 31290324 DOI: 10.1021/acs.jafc.9b03025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant sterol (PS) (1 g/100 mL) enriched milk-based fruit beverages with or without galactooligosaccharides (GOS) (1.8 g/100 mL) were used in differentiated Caco-2 cells. Their potential cytopreventive effect against oxidative stress induced by cholesterol oxidation products (COPs) and their anti-inflammatory properties were evaluated. Preincubation (24 h) with bioaccessible fractions from beverages without and with GOS (MfB and MfB-G) completely prevented the COPs (60 μM/4 h) induced oxidative stress independent to GOS presence with exception to calcium influx and GSH content, where a partial protective effect was observed. Besides, MfB produced a significant (p < 0.05) reduction of IL-8 (40%) and IL-6 (50%) after IL-1β-induction (1 ng/mL/24 h) through the inhibition of NF-κB p65 translocation into the nucleus (16%) compared to control cells, while GOS presence compromised their anti-inflammatory effect. Therefore, PS-enriched milk-based fruit beverage could be an interesting strategy to prevent intestinal injury produced by COPs and to attenuate the pro-inflammatory process in intestinal human diseases. GOS addition had no extra beneficial antioxidant effect and even reduced their anti-inflammatory properties.
Collapse
Affiliation(s)
- Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy , University of Valencia , Avenida Vicente Andrés Estellés/n , Burjassot, Valencia 46100 , Spain
| |
Collapse
|
33
|
Gómez-Maqueo A, García-Cayuela T, Fernández-López R, Welti-Chanes J, Cano MP. Inhibitory potential of prickly pears and their isolated bioactives against digestive enzymes linked to type 2 diabetes and inflammatory response. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6380-6391. [PMID: 31283026 DOI: 10.1002/jsfa.9917] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Prickly pears are potential candidates for the development of low-cost functional foods because they grow with low water requirements in arid regions of the world. They are sources of betalains and phenolic compounds, which have been reported to contribute to human health. The study of the biological activity of different varieties and of their isolated bioactive constitutes is fundamental in the design of functional foods. In this context, our objective is the assessment of the ability of Spanish and Mexican prickly-pear cultivars to inhibit enzymes related to type 2 diabetes and the inflammatory response, and the contribution of their bioactive compounds to their nutra-pharmaceutical potential. RESULTS Prickly pear peels presented the highest antioxidant activity due to their high isorhamnetin glycoside content. Isorhamnetin glycosides showed significantly higher antioxidant and anti-inflammatory activity than aglycone, particularly isorhamnetin glucosyl-rhamnosyl-pentoside (IG2), which also reported antihyperglycemic activity. Morada, Vigor, and Sanguinos whole fruits exhibited moderate α-amylase inhibition and higher α-glucosidase inhibition, which is ideal for lowering glucose absorption in hyperglycemia management. Sanguinos peels presented the highest anti-inflammatory activity because of their high indicaxanthin content and isorhamnetin glycoside profile. CONCLUSIONS In the design of prickly pear functional foods, technological processing should prioritize the retention or concentration of these bioactive compounds to preserve (or increase) their natural antioxidant, antihyperglycemic and anti-inflammatory activity. Peels of red and orange varieties should be further evaluated for antioxidant and anti-inflammatory purposes while whole fruits of red and purple varieties could be considered possible candidates for hyperglycemia management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Gómez-Maqueo
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Madrid, Spain
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | | | - Rebeca Fernández-López
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Madrid, Spain
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - M Pilar Cano
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Madrid, Spain
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| |
Collapse
|
34
|
Indicaxanthin, a multi-target natural compound from Opuntia ficus-indica fruit: From its poly-pharmacological effects to biochemical mechanisms and molecular modelling studies. Eur J Med Chem 2019; 179:753-764. [PMID: 31284085 DOI: 10.1016/j.ejmech.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Over the latest years phytochemical consumption has been associated to a decreased risk of both the onset and the development of a number of pathological conditions. In this context indicaxanthin, a betalain pigment from Opuntia ficus-indica fruit, has been the object of sound research. Explored, at first, for its mere antioxidant potential, Indicaxanthin is now regarded as a redox-active compound able to exert significant poly-pharmacological effects against several targets in a number of experimental conditions both in vivo and in vitro. This paper aims to provide an overview on the therapeutical effects of indicaxanthin, ranging from the anti-inflammatory to the neuro-modulatory and anti-tumoral ones and favored by its high bioavailability. Moreover, biochemical and molecular modelling investigations are aimed to identify the pharmacological targets the compound is able to interact with and to address the challenging development in the future research.
Collapse
|
35
|
Macáková K, Afonso R, Saso L, Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic Biol Med 2019; 134:429-444. [PMID: 30703480 DOI: 10.1016/j.freeradbiomed.2019.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alkaloids have always attracted scientific interest due to either their positive or negative effects on human beings. This review aims to summarize their antioxidant effects by both classical in vitro scavenging assay and at the cellular level. Since most in vitro studies used the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, the results from those studies are summed up in the first part of the article. In the second part, available data on the effect of alkaloids on NADPH-oxidase, the key enzyme for reactive oxygen species production, at the cellular level, are summarized. More than 130 alkaloids were tested by DPPH assay. However, due to methodological differences, a direct comparison is hardly possible. It can be at least concluded that some of them were either similar to or even more active than standard antioxidants and the number of aromatic hydroxyl groups seems to be the major determinant for the activity. The data on inhibition of NADPH-oxidase activity by alkaloids demonstrated that there is little relationship to the DPPH assay. The mechanism seems to be based on inhibition of synthesis, activation or translocation of NADPH-oxidase subunits. In some alkaloids, activation of the nuclear factor Nrf2 pathway was documented to be the grounds for inhibition of NADPH-oxidase. Interestingly, many alkaloids can behave both as anti-oxidants and pro-oxidants depending on conditions and pro-oxidation might be the reason for activation of Nrf2. Available data on other "antioxidant" transcription factors FOXOs and PPARs are also mentioned.
Collapse
Affiliation(s)
- Kateřina Macáková
- Department of Pharmaceutical Botany, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rita Afonso
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
36
|
Chew YM, Hung CH, King VAE. Accelerated storage test of betalains extracted from the peel of pitaya ( Hylocereus cacti) fruit. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:1595-1600. [PMID: 30956340 PMCID: PMC6423334 DOI: 10.1007/s13197-019-03673-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Betalains are nitrogen-containing colorants with antioxidant properties that can be found in plant materials such as pitaya peels. However, thermo-stability of these natural colors may vary with different source, yet few study has reported the rate orders of degradation for pitaya-sourced betalains. In this study, accelerated storage test of betalains, namely betacyanin and betaxanthin, extracted from pitaya peel are investigated by heat treatment of the extract at elevated temperatures. The results show that degradation kinetics of betacyanins and betaxanthins can both fit first-order kinetics and Arrhenius equation with activation energies at - 49.2 kJ/mol and - 40.0 kJ/mol, respectively. The result of Student's t-test indicated that the predicted k values are statistically the same as compared to their corresponding experimental values. LSD estimation also showed that k value variation tendency of the two betalains appears to be the same at 60 °C or below, while betacyanins tend to degrade faster above 80 °C than betaxanthins due to higher coefficient value of k value variation. This result also suggests that the pitaya-sourced betalains tend to degrade gradually even though they are stored under refrigerated condition. However, the betalains showed appreciably lower rate of degradation if they are processed at 60 °C or below.
Collapse
Affiliation(s)
- Ying Ming Chew
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City, 402 Taiwan, ROC
| | - Chien-Hsiu Hung
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City, 402 Taiwan, ROC
| | - V. An-Erl King
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City, 402 Taiwan, ROC
| |
Collapse
|
37
|
Indicaxanthin from Opuntia ficus indica (L. Mill) Inhibits Oxidized LDL-Mediated Human Endothelial Cell Dysfunction through Inhibition of NF- κB Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3457846. [PMID: 30911345 PMCID: PMC6398026 DOI: 10.1155/2019/3457846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
Abstract
Oxidized low-density lipoproteins (oxLDL) play a pivotal role in the etiopathogenesis of atherosclerosis through the activation of inflammatory signaling events eventually leading to endothelial dysfunction and senescence. In the present work, we investigated the effects of indicaxanthin, a bioavailable, redox-modulating phytochemical from Opuntia ficus indica fruits, with anti-inflammatory activity, against oxLDL-induced endothelial dysfunction. Human umbilical vein cord cells (HUVEC) were stimulated with human oxLDL, and the effects of indicaxanthin were evaluated in a range between 5 and 20 μM, consistent with its plasma level after a fruit meal (7 μM). Pretreatment with indicaxanthin significantly and concentration-dependently inhibited oxLDL-induced cytotoxicity; ICAM-1, VCAM-1, and ELAM-1 increase; and ABC-A1 decrease of both protein and mRNA levels. From a mechanistic perspective, we also provided evidence that the protective effects of indicaxanthin were redox-dependent and related to the pigment efficacy to inhibit NF-κB transcriptional activity. In conclusion, here we demonstrate indicaxanthin as a novel, dietary phytochemical, able to exert significant protective vascular effects in vitro, at nutritionally relevant concentrations.
Collapse
|
38
|
Rahimi P, Abedimanesh S, Mesbah-Namin SA, Ostadrahimi A. Betalains, the nature-inspired pigments, in health and diseases. Crit Rev Food Sci Nutr 2018; 59:2949-2978. [DOI: 10.1080/10408398.2018.1479830] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Parisa Rahimi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Abedimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alireza Ostadrahimi
- Nutrition Research Center, Nutritional Science Department, Faculty of Health and Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
39
|
Allegra M, De Cicco P, Ercolano G, Attanzio A, Busà R, Cirino G, Tesoriere L, Livrea MA, Ianaro A. Indicaxanthin from Opuntia Ficus Indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:19-24. [PMID: 30466978 DOI: 10.1016/j.phymed.2018.09.171] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/13/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND A strong, reciprocal crosstalk between inflammation and melanoma has rigorously been demonstrated in recent years, showing how crucial is a pro-inflammatory microenvironment to drive therapy resistance and metastasis. PURPOSE We investigated on the effects of Indicaxanthin, a novel, anti-inflammatory and bioavailable phytochemical from Opuntia Ficus Indica fruits, against human melanoma both in vitro and in vivo. STUDY DESIGN AND METHODS The effects of indicaxanthin were evaluated against the proliferation of A375 human melanoma cell line and in a mice model of cutaneous melanoma. Cell proliferation was assessed by MTT assay, apoptosis by Annexin V-Fluorescein Isothiocyanate/Propidium Iodide staining, protein expression by western blotting, melanoma lesions were subcutaneously injected in mice with B16/F10 cells, chemokine release was quantified by ELISA. RESULTS Data herein presented demonstrate that indicaxanthin effectively inhibits the proliferation of the highly metastatic and invasive A375 cells as shown by growth inhibition, apoptosis induction and cell invasiveness reduction. More interestingly, in vitro data were paralleled by those in vivo showing that indicaxanthin significantly reduced tumor development when orally administered to mice. The results of our study also clarify the molecular mechanisms underlying the antiproliferative effect of indicaxanthin, individuating the inhibition of NF-κB pathway as predominant. CONCLUSION In conclusion, we demonstrated that indicaxanthin represents a novel phytochemical able to significantly inhibit human melanoma cell proliferation in vitro and to impair tumor progression in vivo. When considering the resistance of melanoma to the current therapeutical approach and the very limited number of phytochemicals able to partially counteract it, our findings may be of interest to explore indicaxanthin potential in further and more complex melanoma studies in combo therapy, i.e. where different check points of melanoma development are targeted.
Collapse
Key Words
- Apoptosis
- Bcl-2, B cell lymphoma gene-2 (Bcl-2)
- CXCL1, chemokine (C-X-C motif) ligand 1
- Indicaxanthin
- Inflammation
- List of Abbrevations: AxV-FITC, annexin V-fluorescein isothiocyanate
- MTT, 3-[4,5-dimethyltiazol-2-yl]-2,5-diphenyl tetrazolium bromide
- Melanoma
- NF-κB, nuclear factor kappa B
- NHEM, normal human epidermal melanocytes
- Opuntia Ficus Indica (L.Mill)
- PI, propidium iodide PI
- PhC, phytochemicals
- Phytochemical
- c-FLIP, FLICE-inhibitory protein
Collapse
Affiliation(s)
- Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Paola De Cicco
- Dipartimento di Farmacia, Scuola di Medicina, Università di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Giuseppe Ercolano
- Dipartimento di Farmacia, Scuola di Medicina, Università di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Rosalia Busà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Giuseppe Cirino
- Dipartimento di Farmacia, Scuola di Medicina, Università di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Maria A Livrea
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Angela Ianaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy.
| |
Collapse
|
40
|
Tan J, Li L, Shi W, Sun D, Xu C, Miao Y, Fan H, Liu J, Cheng H, Wu M, Shen W. Protective Effect of 2-Hydroxymethyl Anthraquinone from Hedyotis diffusa Willd in Lipopolysaccharide-Induced Acute Lung Injury Mediated by TLR4-NF-κB Pathway. Inflammation 2018; 41:2136-2148. [DOI: 10.1007/s10753-018-0857-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Attanzio A, Tesoriere L, Vasto S, Pintaudi AM, Livrea MA, Allegra M. Short-term cactus pear [ Opuntia ficus-indica (L.) Mill] fruit supplementation ameliorates the inflammatory profile and is associated with improved antioxidant status among healthy humans. Food Nutr Res 2018; 62:1262. [PMID: 30150921 PMCID: PMC6104507 DOI: 10.29219/fnr.v62.1262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background Dietary ingredients and food components are major modifiable factors protecting immune system and preventing the progression of a low-grade chronic inflammation responsible for age-related diseases. Objective Our study explored whether cactus pear (Opuntia ficus-indica, Surfarina cultivar) fruit supplementation modulates plasma inflammatory biomarkers in healthy adults. Correlations between inflammatory parameters and antioxidant status were also assessed in parallel. Design In a randomised, 2-period (2 weeks/period), crossover, controlled-feeding study, conducted in 28 healthy volunteers [mean age 39.96 (±9.15) years, BMI 23.1 (±1.5) kg/m2], the effects of a diet supplemented with cactus pear fruit pulp (200 g, twice a day) were compared with those of an equivalent diet with isocaloric fresh fruit substitution. Results With respect to control, cactus pear diet decreased ( p < 0.05) the pro-inflammatory markers such as tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, interferon-γ (INF)-γ, IL-8, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), whereas it increased ( p < 0.05) the anti-inflammatory marker IL-10. Moreover, the diet decreased ratios between pro-inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α) and anti-inflammatory biomarker (IL-10) ( p < 0.05). Cactus pear supplementation caused an increase ( p < 0.05) in dermal carotenoids (skin carotenoid score, SCS), a biomarker of the body antioxidant status, with correlations between SCS and CRP (r = −0.905, p < 0.0001), IL-8 (r = −0.835, p < 0.0001) and IL-10 (r = 0.889, p < 0.0001). Conclusions The presently observed modulation of both inflammatory markers and antioxidant balance suggests cactus pear fruit as a novel and beneficial component to be incorporated into current healthy dietary habits.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Sonya Vasto
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Anna Maria Pintaudi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Maria A Livrea
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
42
|
Glueck B, Han Y, Cresci GAM. Tributyrin Supplementation Protects Immune Responses and Vasculature and Reduces Oxidative Stress in the Proximal Colon of Mice Exposed to Chronic-Binge Ethanol Feeding. J Immunol Res 2018; 2018:9671919. [PMID: 30211234 PMCID: PMC6120279 DOI: 10.1155/2018/9671919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive ethanol consumption causes adverse effects and contributes to organ dysfunction. Ethanol metabolism triggers oxidative stress, altered immune function, and gut dysbiosis. The gut microbiome is known to contribute to the maintenance of intestinal homeostasis, and disturbances are associated with pathology. A consequence of gut dysbiosis is also alterations in its metabolic and fermentation byproducts. The gut microbiota ferments undigested dietary polysaccharides to yield short-chain fatty acids, predominantly acetate, propionate, and butyrate. Butyrate has many biological mechanisms of action including anti-inflammatory and immunoprotective effects, and its depletion is associated with intestinal injury. We previously showed that butyrate protects gut-liver injury during ethanol exposure. While the intestine is the largest immune organ in the body, little is known regarding the effects of ethanol on intestinal immune function. This work is aimed at investigating the effects of butyrate supplementation, in the form of the structured triglyceride tributyrin, on intestinal innate immune responses and oxidative stress following chronic-binge ethanol exposure in mice. Our work suggests that tributyrin supplementation preserved immune responses and reduced oxidative stress in the proximal colon during chronic-binge ethanol exposure. Our results also indicate a possible involvement of tributyrin in maintaining the integrity of intestinal villi vasculature disrupted by chronic-binge ethanol exposure.
Collapse
Affiliation(s)
- B. Glueck
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Y. Han
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - G. A. M. Cresci
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Pediatric Institute, Gastroenterology, Cleveland Clinic, Cleveland, OH, USA
- Digestive Disease & Surgery Institute, Gastroenterology, Hepatology & Nutrition Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
43
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
44
|
Zafirlukast and vincamine ameliorate tamoxifen-induced oxidative stress and inflammation: Role of the JNK/ERK pathway. Life Sci 2018; 202:78-88. [DOI: 10.1016/j.lfs.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
|
45
|
Kim Y, Kim DM, Kim JY. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators. J Food Sci 2017; 82:1264-1270. [PMID: 28369951 DOI: 10.1111/1750-3841.13695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health.
Collapse
Affiliation(s)
- Yunyoung Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, Seoul, 139-743, Republic of Korea
| | - Dong-Min Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, Seoul, 139-743, Republic of Korea
| | - Ji Yeon Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, Seoul, 139-743, Republic of Korea
| |
Collapse
|
46
|
Debbabi M, Zarrouk A, Bezine M, Meddeb W, Nury T, Badreddine A, Karym EM, Sghaier R, Bretillon L, Guyot S, Samadi M, Cherkaoui-Malki M, Nasser B, Mejri M, Ben-Hammou S, Hammami M, Lizard G. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells. Chem Phys Lipids 2017; 207:151-170. [PMID: 28408132 DOI: 10.1016/j.chemphyslip.2017.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/05/2017] [Indexed: 01/12/2023]
Abstract
Increased levels of 7-ketocholesterol (7KC), which results mainly from cholesterol auto-oxidation, are often found in the plasma and/or cerebrospinal fluid of patients with neurodegenerative diseases and might contribute to activation of microglial cells involved in neurodegeneration. As major cellular dysfunctions are induced by 7KC, it is important to identify molecules able to impair its side effects. Since consumption of olive and argan oils, and fish is important in the Mediterranean diet, the aim of the study was to determine the ability of oleic acid (OA), a major compound of olive and argan oil, and docosahexaenoic acid (DHA) present in fatty fishes, such as sardines, to attenuate 7KC-induced cytotoxic effects. Since elaidic acid (EA), the trans isomer of OA, can be found in hydrogenated cooking oils and fried foods, its effects on 7KC-induced cytotoxicity were also determined. In murine microglial BV-2 cells, 7KC induces cell growth inhibition, mitochondrial dysfunctions, reactive oxygen species overproduction and lipid peroxidation, increased plasma membrane permeability and fluidity, nuclei condensation and/or fragmentation and caspase-3 activation, which are apoptotic characteristics, and an increased LC3-II/LC3-I ratio, which is a criterion of autophagy. 7KC is therefore a potent inducer of oxiapoptophagy (OXIdation+APOPTOsis+autoPHAGY) on BV-2 cells. OA and EA, but not DHA, also favor the accumulation of lipid droplets revealed with Masson's trichrome, Oil Red O, and Nile Red staining. The cytotoxicity of 7KC was strongly attenuated by OA and DHA. Protective effects were also observed with EA. However, 7KC-induced caspase-3 activation was less attenuated with EA. Different effects of OA and EA on autophagy were also observed. In addition, EA (but not OA) increased plasma membrane fluidity, and only OA (but not EA) was able to prevent the 7KC-induced increase in plasma membrane fluidity. Thus, in BV-2 microglial cells, the principal fatty acids of the Mediterranean diet (OA, DHA) were able to attenuate the major toxic effects of 7KC, thus reinforcing the interest of natural compounds present in the Mediterranean diet to prevent the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Meryam Debbabi
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Univ Monastir, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia
| | - Amira Zarrouk
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Univ Monastir, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia; Univ Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Maryem Bezine
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Univ Tunis El Manar - Pasteur Institut, Lab. 'Venoms & Therapeutic Biomolecules', Tunis, Tunisia
| | - Wiem Meddeb
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Univ Carthage, Faculty of Sciences, Bizerte, Tunisia
| | - Thomas Nury
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France
| | - Asmaa Badreddine
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Lab of 'Biochemistry of Neuroscience', Univ. Hassan I, Settat, Morocco
| | - El Mostafa Karym
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Lab of 'Biochemistry of Neuroscience', Univ. Hassan I, Settat, Morocco
| | - Randa Sghaier
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France; Univ Monastir, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia; Univ Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Lionel Bretillon
- Eye & Nutrition Research Group, CSGA, UMR 1324 INRA, 6265 CNRS, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Mohammad Samadi
- LCPMC-A2, ICPM, Département de Chimie, Université de Lorraine, Metz, France
| | - Mustapha Cherkaoui-Malki
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France
| | - Boubker Nasser
- Lab of 'Biochemistry of Neuroscience', Univ. Hassan I, Settat, Morocco
| | - Mondher Mejri
- Univ Carthage, Faculty of Sciences, Bizerte, Tunisia
| | - Sofien Ben-Hammou
- Department of Neurology, University Hospital Sahloul, 4000 Sousse, Tunisia
| | - Mohamed Hammami
- Univ Monastir, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia
| | - Gérard Lizard
- Univ Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, Dijon, France.
| |
Collapse
|
47
|
Cilla A, Alegría A, Attanzio A, Garcia-Llatas G, Tesoriere L, Livrea MA. Dietary phytochemicals in the protection against oxysterol-induced damage. Chem Phys Lipids 2017; 207:192-205. [PMID: 28267434 DOI: 10.1016/j.chemphyslip.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
The intake of fruits and vegetables is associated with reduced incidence of many chronic diseases. These foods contain phytochemicals that often possess antioxidant and free radical scavenging capacity and show anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative disorders. Many factors can be included in the etiopathogenesis of all of these multifactorial diseases that involve oxidative stress, inflammation and/or cell death processes, oxysterols, i.e. cholesterol oxidation products (COPs) as well as phytosterol oxidation products (POPs), among others. These oxidized lipids result from either spontaneous and/or enzymatic oxidation of cholesterol/phytosterols on the steroid nucleus or on the side chain and their critical roles in the pathophysiology of the abovementioned diseases has become increasingly evident. In this context, many studies investigated the potential of dietary phytochemicals (polyphenols, carotenoids and vitamins C and E, among others) to protect against oxysterol toxicity in various cell models mimicking pathophysiological conditions. This review, summarizing the mechanisms involved in the chemopreventive effect of phytochemicals against the injury by oxysterols may constitute a step forward to consider the importance of preventive strategies on a nutritional point of view to decrease the burden of many age-related chronic diseases.
Collapse
Affiliation(s)
- Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alessandro Attanzio
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Luisa Tesoriere
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maria A Livrea
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| |
Collapse
|
48
|
Ciriminna R, Delisi R, Albanese L, Meneguzzo F, Pagliaro M. Opuntia ficus‐indica
seed oil: Biorefinery and bioeconomy aspects. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Mario Pagliaro
- Istituto per lo Studio dei Materiali NanostrutturatiCNRPalermoItaly
| |
Collapse
|
49
|
Massip-Copiz MM, Clauzure M, Valdivieso ÁG, Santa-Coloma TA. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling. Arch Biochem Biophys 2017; 616:1-12. [PMID: 28088327 DOI: 10.1016/j.abb.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/24/2022]
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ángel Gabriel Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
50
|
Huang FL, Chiou RYY, Chen WC, Ko HJ, Lai LJ, Lin SM. Dehydrated Basella alba Fruit Juice as a Novel Natural Colorant: Pigment Stability, In Vivo Food Safety Evaluation and Anti-Inflammatory Mechanism Characterization. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:322-329. [PMID: 27405766 DOI: 10.1007/s11130-016-0563-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Flesh of Basella alba L. mature fruits bearing deep-violet juice provides a novel and potential source of natural colorant. To minimize the pigment purification process and warrant safety acceptability, B. alba colorant powder (BACP) was prepared using mature fruits through a practical batch preparation and subjected to fundamental pigment characterization, food safety assessment and bio-function evaluation. Yield of the dehydrated B. alba colorant powder (BACP) was 37 g/kg fresh fruits. Reconstituted aqueous solution of the BACP exhibited an identical visible spectrum (400-700 nm) as that of fresh juice. Color of the solution (absorbance at 540 nm) was stable in a broad pH ranged from 3 to 8 and enhanced by co-presence of calcium and magnesium ions, while was rapidly bleached by ferrous and ferric ions. For in vivo food safety evaluation, ICR mice were daily gavage administered with BACP up to 1000 mg/kg body weight for 28 days. Organ weight determination, serum biochemical analysis and histopathological examination of hearts, livers, lungs and kidneys revealed no obvious health hazard. In vitro anti-inflammatory activity of BACP was characterized in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. BACP exerted potent anti-inflammatory activity by down-regulation of inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α, IL-1β, IL-6 and IL-12 and the blockage of IκB kinase (IKK)/IκB/nuclear factor-κ B (NFκB) activation cascade. These results supported that BACP may serve as a beneficial alternative of natural food colorant.
Collapse
Affiliation(s)
- Fu-Long Huang
- Department of Food Science, National Chiayi University, Chiayi City, 60004, Taiwan, Republic of China
| | - Robin Y-Y Chiou
- Department of Food Science, National Chiayi University, Chiayi City, 60004, Taiwan, Republic of China
| | - Wei-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi City, 60004, Taiwan, Republic of China
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Huey-Jiun Ko
- Department of Food Science, National Chiayi University, Chiayi City, 60004, Taiwan, Republic of China
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan, Republic of China
| | - Li-Jung Lai
- Department of Food Science, National Chiayi University, Chiayi City, 60004, Taiwan, Republic of China
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan, Republic of China
| | - Shu-Mei Lin
- Department of Food Science, National Chiayi University, Chiayi City, 60004, Taiwan, Republic of China.
| |
Collapse
|