1
|
Ekloh W, Asafu-Adjaye A, Tawiah-Mensah CNL, Ayivi-Tosuh SM, Quartey NKA, Aiduenu AF, Gayi BK, Koudonu JAM, Basing LA, Yamoah JAA, Dofuor AK, Osei JHN. A comprehensive exploration of schistosomiasis: Global impact, molecular characterization, drug discovery, artificial intelligence and future prospects. Heliyon 2024; 10:e33070. [PMID: 38988508 PMCID: PMC11234110 DOI: 10.1016/j.heliyon.2024.e33070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Schistosomiasis, one of the neglected tropical diseases which affects both humans and animals, is caused by trematode worms of the genus Schistosoma. The disease is caused by several species of Schistosoma which affect several organs such as urethra, liver, bladder, intestines, skin and bile ducts. The life cycle of the disease involves an intermediate host (snail) and a mammalian host. It affects people who are in close proximity to water bodies where the intermediate host is abundant. Common clinical manifestations of the disease at various stages include fever, chills, headache, cough, dysuria, hyperplasia and hydronephrosis. To date, most of the control strategies are dependent on effective diagnosis, chemotherapy and public health education on the biology of the vectors and parasites. Microscopy (Kato-Katz) is considered the golden standard for the detection of the parasite, while praziquantel is the drug of choice for the mass treatment of the disease since no vaccines have yet been developed. Most of the previous reviews on schistosomiasis have concentrated on epidemiology, life cycle, diagnosis, control and treatment. Thus, a comprehensive review that is in tune with modern developments is needed. Here, we extend this domain to cover historical perspectives, global impact, symptoms and detection, biochemical and molecular characterization, gene therapy, current drugs and vaccine status. We also discuss the prospects of using plants as potential and alternative sources of novel anti-schistosomal agents. Furthermore, we highlight advanced molecular techniques, imaging and artificial intelligence that may be useful in the future detection and treatment of the disease. Overall, the proper detection of schistosomiasis using state-of-the-art tools and techniques, as well as development of vaccines or new anti-schistosomal drugs may aid in the elimination of the disease.
Collapse
Affiliation(s)
- William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Andy Asafu-Adjaye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christopher Nii Laryea Tawiah-Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Blessing Kwabena Gayi
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | | | - Laud Anthony Basing
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jennifer Afua Afrifa Yamoah
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Adenta-Frafraha, Accra, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
2
|
Giovanoli Evack J, Kouadio JN, Achi LY, Bonfoh B, N'Goran EK, Zinsstag J, Utzinger J, Balmer O. Genetic characterization of schistosome species from cattle in Côte d'Ivoire. Parasit Vectors 2024; 17:122. [PMID: 38475876 DOI: 10.1186/s13071-024-06221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Schistosomiasis is a water-based parasitic disease that affects humans, livestock and wild animals. While considerable resources are dedicated to the surveillance, disease mapping, control and elimination of human schistosomiasis, this is not the case for livestock schistosomiasis. Indeed, there are important data and knowledge gaps concerning the species present, population genetic diversity, infection prevalence, morbidity and economic impact. This study aimed to identify circulating schistosome species in cattle across Côte d'Ivoire and to investigate their population diversity and structuring. METHODS Overall, 400 adult schistosomes were collected from slaughtered cattle at six sites across Côte d'Ivoire. Additionally, 114 miracidia were collected from live cattle at one site: Ferkessédougou, in the northern part of Côte d'Ivoire. DNA from all specimens was extracted and the cox1 and ITS1/2 regions amplified and analysed to confirm species. The genetic diversity and structuring of the schistosome populations were investigated using 12 microsatellite markers. RESULTS All adult schistosomes and miracidia presented Schistosoma bovis mitochondrial cox1 profile. Nuclear ITS1/2 data were obtained from 101 adult schistosomes and four miracidia, all of which presented an S. bovis profile. Genetic diversity indices revealed a deficiency of heterozygotes and signals of inbreeding across all sites, while structure analyses displayed little geographic structuring and differentiation. Cattle in Côte d'Ivoire thus appear to be mono-species infected with S. bovis. Hybrids of Schistosoma haematobium × S. bovis have not been identified in this study. Cattle schistosomes appear to be panmictic across the country. CONCLUSIONS Our results contribute to a deeper understanding of schistosome populations in Ivorian cattle and emphasize a One Health approach of joint human and animal surveillance and prevention and control programmes for schistosomiasis.
Collapse
Affiliation(s)
- Jennifer Giovanoli Evack
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
| | - Jules N Kouadio
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Louise Y Achi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- École de Spécialisation en Elevage et Métiers de la Viande de Bingerville, Abidjan, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Wijshake T, Rose J, Wang J, Zielke J, Marlar-Pavey M, Chen W, Collins JJ, Agathocleous M. Schistosome Infection Impacts Hematopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:607-616. [PMID: 38169327 PMCID: PMC10872488 DOI: 10.4049/jimmunol.2300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. In this article, we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm that causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Current address: State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Jacob Zielke
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Horák P, Bulantová J, Mikeš L. Other Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:107-155. [PMID: 39008265 DOI: 10.1007/978-3-031-60121-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Calvo-Urbano B, Léger E, Gabain I, De Dood CJ, Diouf ND, Borlase A, Rudge JW, Corstjens PLAM, Sène M, Van Dam GJ, Walker M, Webster JP. Sensitivity and specificity of human point-of-care circulating cathodic antigen (POC-CCA) test in African livestock for rapid diagnosis of schistosomiasis: A Bayesian latent class analysis. PLoS Negl Trop Dis 2023; 17:e0010739. [PMID: 37216407 DOI: 10.1371/journal.pntd.0010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans and animals. The morbidity and mortality inflicted upon livestock in the Afrotropical region has been largely overlooked, in part due to a lack of validated sensitive and specific tests, which do not require specialist training or equipment to deliver and interpret. As stressed within the recent WHO NTD 2021-2030 Roadmap and Revised Guideline for schistosomiasis, inexpensive, non-invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence mapping and appropriate intervention programmes. The aim of this study was to assess the sensitivity and specificity of the currently available point-of-care circulating cathodic antigen test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity was greater in the S. curassoni-dominated Barkedji livestock, both for cattle (median 81%; 95% credible interval (CrI): 55%-98%) and small ruminants (49%; CrI: 29%-87%), than in S. bovis-dominated Richard Toll ruminants (cattle: 62%; CrI: 41%-84%; small ruminants: 12%, CrI: 1%-37%). Overall, sensitivity was greater in cattle than in small ruminants. Small ruminants POC-CCA specificity was similar in both locations (91%; CrI: 77%-99%), whilst cattle POC-CCA specificity could not be assessed owing to the low number of uninfected cattle surveyed. Our results indicate that, whilst the current POC-CCA does represent a potential diagnostic tool for cattle and possibly for predominantly S. curassoni-infected livestock, future work is needed to develop parasite- and/or livestock-specific affordable and field-applicable diagnostic tests to enable determination of the true extent of livestock schistosomiasis.
Collapse
Affiliation(s)
- Beatriz Calvo-Urbano
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Isobel Gabain
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | - Anna Borlase
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | | | - Martin Walker
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P Webster
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
6
|
Wijshake T, Wang J, Rose J, Marlar-Pavey M, Collins JJ, Agathocleous M. Helminth infection impacts hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528073. [PMID: 36798229 PMCID: PMC9934639 DOI: 10.1101/2023.02.10.528073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. Here we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm which causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood, and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Rennar GA, Gallinger TL, Mäder P, Lange-Grünweller K, Haeberlein S, Grünweller A, Grevelding CG, Schlitzer M. Disulfiram and dithiocarbamate analogues demonstrate promising antischistosomal effects. Eur J Med Chem 2022; 242:114641. [PMID: 36027862 DOI: 10.1016/j.ejmech.2022.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 μm we improved antischistosomal activity down to 25 μm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 μm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 μm, and importantly five of them have antischistosomal activity also at 10 μm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 μm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.
Collapse
Affiliation(s)
- Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Patrick Mäder
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Kerstin Lange-Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Arnold Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Christoph G Grevelding
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany.
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany.
| |
Collapse
|
8
|
Liang S, Ponpetch K, Zhou YB, Guo J, Erko B, Stothard JR, Murad MH, Zhou XN, Satrija F, Webster JP, Remais JV, Utzinger J, Garba A. Diagnosis of Schistosoma infection in non-human animal hosts: A systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010389. [PMID: 35522699 PMCID: PMC9116658 DOI: 10.1371/journal.pntd.0010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/18/2022] [Accepted: 04/03/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reliable and field-applicable diagnosis of schistosome infections in non-human animals is important for surveillance, control, and verification of interruption of human schistosomiasis transmission. This study aimed to summarize uses of available diagnostic techniques through a systematic review and meta-analysis. METHODOLOGY AND PRINCIPAL FINDINGS We systematically searched the literature and reports comparing two or more diagnostic tests in non-human animals for schistosome infection. Out of 4,909 articles and reports screened, 19 met our inclusion criteria, four of which were considered in the meta-analysis. A total of 14 techniques (parasitologic, immunologic, and molecular) and nine types of non-human animals were involved in the studies. Notably, four studies compared parasitologic tests (miracidium hatching test (MHT), Kato-Katz (KK), the Danish Bilharziasis Laboratory technique (DBL), and formalin-ethyl acetate sedimentation-digestion (FEA-SD)) with quantitative polymerase chain reaction (qPCR), and sensitivity estimates (using qPCR as the reference) were extracted and included in the meta-analyses, showing significant heterogeneity across studies and animal hosts. The pooled estimate of sensitivity was 0.21 (95% confidence interval (CI): 0.03-0.48) with FEA-SD showing highest sensitivity (0.89, 95% CI: 0.65-1.00). CONCLUSIONS/SIGNIFICANCE Our findings suggest that the parasitologic technique FEA-SD and the molecular technique qPCR are the most promising techniques for schistosome diagnosis in non-human animal hosts. Future studies are needed for validation and standardization of the techniques for real-world field applications.
Collapse
Affiliation(s)
- Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Keerati Ponpetch
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, Thailand
| | - Yi-Biao Zhou
- School of Public Health, Fudan University, Shanghai, People’s Republic of China
| | - Jiagang Guo
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Merseyside, United Kingdom
| | - M. Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Fadjar Satrija
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Justin V. Remais
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amadou Garba
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
9
|
Fredrick M, Danson M, John K, Stanislaus K, David N, Maina N, Michael G, Suleiman M, Mercy A. Schistosoma mansoni and soil transmtted helminths in olive baboons and potential zoonosis. Vet Med Sci 2021; 7:2026-2031. [PMID: 33942545 PMCID: PMC8464276 DOI: 10.1002/vms3.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Zoonotic pathogens are among the most important causes of ill health all over the world. The presence of these pathogens in free ranging baboons may have significant implications for humans. In Kenya, the encroachment of wildlife habitats has led to increased interaction between humans and wildlife especially non-human primates. The current study therefore aimed at investigating any possible zoonotic gastrointestinal helminths of olive baboons (Papio anubis) at the human-wildlife interface in two park borders and a ranch in Kenya, namely, Tsavo West National Park, Tana River Primate Reserve and Mutara Ranch, Laikipia, Kenya. One hundred and forty-seven baboons were used in the study. They were trapped in the wild, sampled for stool marked and then released back to the wild. Gastrointestinal (GIT) helminths identified were Strongyloides, Oesophagostomum, Enterobius spp and Trichuris Trichiura from all the three sites while Schistosoma mansoni was only detected from Tsavo baboons and with very low incidence (2.1%). The prevalence of these parasites varied among the sites but significant difference in prevalence was only noted in Strongyloides and Oesophagostomum (p < 0.05) among the three sites. This therefore implies that even with control measures instituted on the human population, baboons will always be a source of zoonotic GIT helminths especially S. mansoni even if the incidence are low. There is need to put in place measures aiming to reduce their interactions with humans and also try to control these infections in the baboons.
Collapse
Affiliation(s)
- Maloba Fredrick
- Department of Zoological SciencesKenyatta UniversityNairobiKenya
| | - Mwangi Danson
- Department of Conservation BiologyInstitute of Primate ResearchNairobiKenya
| | - Kagira John
- Jommo Kenyatta University of Agriculture and TechnologyNairobiKenya
| | - Kivai Stanislaus
- Department of Conservation BiologyInstitute of Primate ResearchNairobiKenya
| | | | | | - Gicheru Michael
- Department of Zoological SciencesKenyatta UniversityNairobiKenya
| | | | - Akinyi Mercy
- Department of Conservation BiologyInstitute of Primate ResearchNairobiKenya
- Department of BiologyDuke UniversityDurhamNCUSA
| |
Collapse
|
10
|
Schols R, Carolus H, Hammoud C, Muzarabani KC, Barson M, Huyse T. Invasive snails, parasite spillback, and potential parasite spillover drive parasitic diseases of Hippopotamus amphibius in artificial lakes of Zimbabwe. BMC Biol 2021; 19:160. [PMID: 34412627 PMCID: PMC8377832 DOI: 10.1186/s12915-021-01093-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Humans impose a significant pressure on large herbivore populations, such as hippopotami, through hunting, poaching, and habitat destruction. Anthropogenic pressures can also occur indirectly, such as artificial lake creation and the subsequent introduction of invasive species that alter the ecosystem. These events can lead to drastic changes in parasite diversity and transmission, but generally receive little scientific attention. Results In order to document and identify trematode parasites of the common hippopotamus (Hippopotamus amphibius) in artificial water systems of Zimbabwe, we applied an integrative taxonomic approach, combining molecular diagnostics and morphometrics on archived and new samples. In doing so, we provide DNA reference sequences of the hippopotamus liver fluke Fasciola nyanzae, enabling us to construct the first complete Fasciola phylogeny. We describe parasite spillback of F. nyanzae by the invasive freshwater snail Pseudosuccinea columella, as a consequence of a cascade of biological invasions in Lake Kariba, one of the biggest artificial lakes in the world. Additionally, we report an unknown stomach fluke of the hippopotamus transmitted by the non-endemic snail Radix aff. plicatula, an Asian snail species that has not been found in Africa before, and the stomach fluke Carmyerius cruciformis transmitted by the native snail Bulinus truncatus. Finally, Biomphalaria pfeifferi and two Bulinus species were found as new snail hosts for the poorly documented hippopotamus blood fluke Schistosoma edwardiense. Conclusions Our findings indicate that artificial lakes are breeding grounds for endemic and non-endemic snails that transmit trematode parasites of the common hippopotamus. This has important implications, as existing research links trematode parasite infections combined with other stressors to declining wild herbivore populations. Therefore, we argue that monitoring the anthropogenic impact on parasite transmission should become an integral part of wildlife conservation efforts. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01093-2.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium. .,Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium.
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, KU Leuven-VIB Center for Microbiology, Leuven, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Limnology Research Unit, Ghent University, Ghent, Belgium
| | | | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana.,Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
11
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
12
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Cable J, Webster BL. The detection of Schistosoma bovis in livestock on Pemba Island, Zanzibar: A preliminary study. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100056. [PMID: 35284855 PMCID: PMC8906095 DOI: 10.1016/j.crpvbd.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Schistosoma bovis is a parasitic trematode of ungulates transmitted by freshwater snails in Sub-Saharan Africa causing bovine intestinal schistosomiasis that leads to chronic morbidity and significant agricultural economic losses. The recently reported occurrence of Bulinus globosus infected with S. bovis for the first time on Pemba Island (Zanzibar, United Republic of Tanzania) is a cause of concern for livestock/wildlife health and complicates the surveillance of Schistosoma haematobium. To confirm that local cattle are infected with S. bovis, fresh faecal samples were collected from six adult cows surrounding two schistosomiasis transmission sites in Kinyasini, Pemba Island. Schistosome eggs were concentrated, egg hatching stimulated and miracidia were individually captured and identified by analysis of the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) and the partial nuclear internal transcribed spacer region (ITS1+5.8S+ITS2). Two S. bovis miracidia were collected from one faecal sample with two cox1 haplotypes, one matching cox1 data obtained from S. bovis cercariae, collected previously at the same site in Pemba, the other matching S. bovis cox1 data originating from coastal Tanzania. The findings conclude that S. bovis transmission has been established on Pemba Island and is likely to have been imported through livestock trade with East Africa. Increasing the sensitivity of non-invasive diagnostics for bovine schistosomiasis, together with wider sampling, will enable a better assessment on the epidemiology of S. bovis on Pemba Island. The bovine schistosome Schistosoma bovis is detected for the first time from cattle in Zanzibar. Local transmission of S. bovis is confirmed on Pemba Island. Bovine schistosomes complicate the xenomonitoring and surveillance of human urogenital schistosomiasis. Bovine schistosomiasis could lead to chronic morbidity of cattle and agricultural economic losses.
Collapse
|
13
|
Kebede T, Bech N, Allienne JF, Olivier R, Erko B, Boissier J. Genetic evidence for the role of non-human primates as reservoir hosts for human schistosomiasis. PLoS Negl Trop Dis 2020; 14:e0008538. [PMID: 32898147 PMCID: PMC7500647 DOI: 10.1371/journal.pntd.0008538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/18/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schistosomiasis is a chronic parasitic disease, that affects over 207 million people and causes over 200,000 deaths annually, mainly in sub-Saharan Africa. Although many health measures have been carried out to limit parasite transmission, significant numbers of non-human primates such as Chlorocebus aethiops (Ch. aethiops) (vervet) and Papio anubis (baboon) are infected with S. mansoni, notably in Ethiopia, where they are expected to have potentially significant implications for transmission and control efforts. Objective The objective of this study was to assess and compare the genetic diversity and population structure of S. mansoni isolates from human and non-human primates free-ranging in close proximity to villages in selected endemic areas of Ethiopia. Methods A cross-sectional study was conducted in three transmission sites: Bochesa, Kime and Fincha. A total of 2,356 S. mansoni miracidia were directly isolated from fecal specimens of 104 hosts (i.e. 60 human hosts and 44 non-human primates). We performed DNA extraction and PCR amplification using fourteen microsatellite loci. Results At population scale we showed strong genetic structure between the three sample sites. At the definitive host scale, we observed that host factors can shape the genetic composition of parasite infra-populations. First, in male patients, we observed a positive link between parasite genetic diversity and the age of the patients. Second, we observed a difference in genetic diversity which was high in human males, medium in human females and low in non-human primates (NHPs). Finally, whatever the transmission site no genetic structure was observed between human and non-human primates, however, there appears to be little barriers, if any, host specificity of the S. mansoni populations with cross-host infections. Conclusion Occurrence of infection of a single host with multiple S. mansoni strains and inter- and intra-host genetic variations was observed. Substantial genetic diversity and gene flow across the S. mansoni population occurred at each site and non-human primates likely play a role in local transmission and maintenance of infection. Therefore, public health and wildlife professionals should work together to improve disease control and elimination strategies. Schistosomiasis is a chronic disease caused by flukes (trematodes). The definitive host spectrum of schistosomes, whether human, non-human primates (NHPs) or other mammals, is highly dependent on the schistosome species concerned. Genetic diversity and population structure studies of S. mansoni have provided insights into the variation of natural populations. Understanding S. mansoni genetic diversity and population structure of isolates from human and non-human primate hosts living in close proximity showed the occurrence of infection of a single host with multiple S. mansoni strains and inter- and intra-host genetic variations. In this article, the researchers assert the fact that genetic approach reveals that parasites from the three different sites are independent. Thus, we could consider the three sites as geographical replicates showing the influence of NHPs in parasitic transmission in Ethiopia. This study provides insights into the epidemiology, genetic diversity and population structure of S. mansoni in human and non-human primates in Ethiopia, all of which are crucial for the control of schistosomiasis.
Collapse
Affiliation(s)
- Tadesse Kebede
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
- * E-mail:
| | - Nicolas Bech
- Laboratory of Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Poitiers University, Poitiers, France
| | - Jean-François Allienne
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Rey Olivier
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jerome Boissier
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
14
|
Chibwana FD, Tumwebaze I, Mahulu A, Sands AF, Albrecht C. Assessing the diversity and distribution of potential intermediate hosts snails for urogenital schistosomiasis: Bulinus spp. (Gastropoda: Planorbidae) of Lake Victoria. Parasit Vectors 2020; 13:418. [PMID: 32795373 PMCID: PMC7427762 DOI: 10.1186/s13071-020-04281-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The Lake Victoria basin is one of the most persistent hotspots of schistosomiasis in Africa, the intestinal form of the disease being studied more often than the urogenital form. Most schistosomiasis studies have been directed to Schistosoma mansoni and their corresponding intermediate snail hosts of the genus Biomphalaria, while neglecting S. haematobium and their intermediate snail hosts of the genus Bulinus. In the present study, we used DNA sequences from part of the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer 2 (ITS2) region to investigate Bulinus populations obtained from a longitudinal survey in Lake Victoria and neighbouring systems during 2010-2019. METHODS Sequences were obtained to (i) determine specimen identities, diversity and phylogenetic positions, (ii) reconstruct phylogeographical affinities, and (iii) determine the population structure to discuss the results and their implications for the transmission and epidemiology of urogenital schistosomiasis in Lake Victoria. RESULTS Phylogenies, species delimitation methods (SDMs) and statistical parsimony networks revealed the presence of two main groups of Bulinus species occurring in Lake Victoria; B. truncatus/B. tropicus complex with three species (B. truncatus, B. tropicus and Bulinus sp. 1), dominating the lake proper, and a B. africanus group, prevalent in banks and marshes. Although a total of 47 cox1 haplotypes, were detected within and outside Lake Victoria, there was limited haplotype sharing (only Haplotype 6 was shared between populations from Lake Victoria open waters and neighbouring aquatic systems) - an indication that haplotypes are specific to habitats. CONCLUSIONS The Bulinus fauna of Lake Victoria consists of at least B. truncatus, B. tropicus, Bulinus sp. 1 (B. trigonus?) and B. ugandae. The occurrence and wide distribution of Bulinus species in Lake Victoria potentially implies the occurrence of urogenital schistosomiasis in communities living along the shores and on islands of the lake who depend solely on the lake for their livelihood. More in-depth studies are needed to obtain a better picture of the extent of the disease in the Lake Victoria basin.
Collapse
Affiliation(s)
- Fred D. Chibwana
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Immaculate Tumwebaze
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Anna Mahulu
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Arthur F. Sands
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
15
|
Léger E, Borlase A, Fall CB, Diouf ND, Diop SD, Yasenev L, Catalano S, Thiam CT, Ndiaye A, Emery A, Morrell A, Rabone M, Ndao M, Faye B, Rollinson D, Rudge JW, Sène M, Webster JP. Prevalence and distribution of schistosomiasis in human, livestock, and snail populations in northern Senegal: a One Health epidemiological study of a multi-host system. Lancet Planet Health 2020; 4:e330-e342. [PMID: 32800151 PMCID: PMC7443702 DOI: 10.1016/s2542-5196(20)30129-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease of global medical and veterinary importance. As efforts to eliminate schistosomiasis as a public health problem and interrupt transmission gather momentum, the potential zoonotic risk posed by livestock Schistosoma species via viable hybridisation in sub-Saharan Africa have been largely overlooked. We aimed to investigate the prevalence, distribution, and multi-host, multiparasite transmission cycle of Haematobium group schistosomiasis in Senegal, West Africa. METHODS In this epidemiological study, we carried out systematic surveys in definitive hosts (humans, cattle, sheep, and goats) and snail intermediate hosts, in 2016-18, in two areas of Northern Senegal: Richard Toll and Lac de Guiers, where transmission is perennial; and Barkedji and Linguère, where transmission is seasonal. The occurrence and distribution of Schistosoma species and hybrids were assessed by molecular analyses of parasitological specimens obtained from the different hosts. Children in the study villages aged 5-17 years and enrolled in school were selected from school registers. Adults (aged 18-78 years) were self-selecting volunteers. Livestock from the study villages in both areas were also randomly sampled, as were post-mortem samples from local abattoirs. Additionally, five malacological surveys of snail intermediate hosts were carried out at each site in open water sources used by the communities and their animals. FINDINGS In May to August, 2016, we surveyed 375 children and 20 adults from Richard Toll and Lac de Guiers, and 201 children and 107 adults from Barkedji and Linguère; in October, 2017, to January, 2018, we surveyed 386 children and 88 adults from Richard Toll and Lac de Guiers, and 323 children and 85 adults from Barkedji and Linguère. In Richard Toll and Lac de Guiers the prevalence of urogenital schistosomiasis in children was estimated to be 87% (95% CI 80-95) in 2016 and 88% (82-95) in 2017-18. An estimated 63% (in 2016) and 72% (in 2017-18) of infected children were shedding Schistosoma haematobium-Schistosoma bovis hybrids. In adults in Richard Toll and Lac de Guiers, the prevalence of urogenital schistosomiasis was estimated to be 79% (52-97) in 2016 and 41% (30-54) in 2017-18, with 88% of infected samples containing S haematobium-S bovis hybrids. In Barkedji and Linguère the prevalence of urogenital schistosomiasis in children was estimated to be 30% (23-38) in 2016 and 42% (35-49) in 2017-18, with the proportion of infected children found to be shedding S haematobium-S bovis hybrid miracidia much lower than in Richard Toll and Lac de Guiers (11% in 2016 and 9% in 2017-18). In adults in Barkedji and Linguère, the prevalence of urogenital schistosomiasis was estimated to be 26% (17-36) in 2016 and 47% (34-60) in 2017-18, with 10% of infected samples containing S haematobium-S bovis hybrids. The prevalence of S bovis in the sympatric cattle population of Richard Toll and the Lac de Guiers was 92% (80-99), with S bovis also found in sheep (estimated prevalence 14% [5-31]) and goats (15% [5-33]). In Barkedji and Linguère the main schistosome species in livestock was Schistosoma curassoni, with an estimated prevalence of 73% (48-93) in sheep, 84% (61-98) in goats and 8% (2-24) in cattle. S haematobium-S bovis hybrids were not found in livestock. In Richard Toll and Lac de Guiers 35% of infected Bulinus spp snail intermediate hosts were found to be shedding S haematobium-S bovis hybrids (68% shedding S haematobium; 17% shedding S bovis); however, no snails were found to be shedding S haematobium hybrids in Barkedji and Linguère (29% shedding S haematobium; 71% shedding S curassoni). INTERPRETATION Our findings suggest that hybrids originate in humans via zoonotic spillover from livestock populations, where schistosomiasis is co-endemic. Introgressive hybridisation, evolving host ranges, and wider ecosystem contexts could affect the transmission dynamics of schistosomiasis and other pathogens, demonstrating the need to consider control measures within a One Health framework. FUNDING Zoonoses and Emerging Livestock Systems programme (UK Biotechnology and Biological Sciences Research Council, UK Department for International Development, UK Economic and Social Research Council, UK Medical Research Council, UK Natural Environment Research Council, and UK Defence Science and Technology Laboratory).
Collapse
Affiliation(s)
- Elsa Léger
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK.
| | - Anna Borlase
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; NTD Modelling Consortium, Big Data Institute, University of Oxford, Oxford, UK
| | - Cheikh B Fall
- Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nicolas D Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal; Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Samba D Diop
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal
| | - Lucy Yasenev
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Stefano Catalano
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Cheikh T Thiam
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Alassane Ndiaye
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Aidan Emery
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - Alice Morrell
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Muriel Rabone
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Babacar Faye
- Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Communicable Diseases Policy Research Group, London School of Hygiene & Tropical Medicine, London, UK; Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
16
|
Pu LH, Li Z, Wu J, Zhang YL, Chen JQ, Yang JF, Zou FC. Prevalence, molecular epidemiology and zoonotic risk of Entamoeba spp. from experimental macaques in Yunnan Province, southwestern China. Parasitol Res 2020; 119:2733-2740. [PMID: 32617726 DOI: 10.1007/s00436-020-06762-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Amebiasis is a worldwide parasitic zoonosis, with symptoms of abdominal discomfort, indigestion, diarrhea, and even death. However, limited information about the prevalence of Entamoeba spp. in experimental nonhuman primates (NHPs) in southwestern China is available. The objective of the current study was to investigate the frequency and species identity of Entamoeba to evaluate potential zoonotic risk factors for Entamoeba spp. infection in experimental NHPs. A total of 505 fecal samples were collected from NHPs (macaques) and analyzed by PCR analysis the small subunit rRNA (SSU rRNA) gene of Entamoeba spp. Forty-seven specimens were positive for Entamoeba spp., and the prevalence of Entamoeba spp. was 9.31% (47/505). Significant differences in the prevalence rates among the three breeds (P = 0.002 < 0.01, df = 2, χ2 = 12.33) and feed types (P = 0.001 < 0.01, df = 1, χ2 = 10.12) were observed. Altogether, four Entamoeba species, including E. dispar (57.44%), E. chattoni (29.78%), E. histolytica (6.38%), and E. coli (6.38%), were identified by DNA sequence analysis. The results suggested a low prevalence but high diversity of Entamoeba species in experimental NHPs in Yunnan Province, southwestern China. Results of this study contribute to the knowledge of the genetic characteristics of Entamoeba spp. in NHPs.
Collapse
Affiliation(s)
- Li-Hua Pu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zhao Li
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Jie Wu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Yu-Lin Zhang
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan Province, People's Republic of China
| | - Jia-Qi Chen
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan Province, People's Republic of China
| | - Jian-Fa Yang
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| | - Feng-Cai Zou
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| |
Collapse
|
17
|
Ganoe LS, Brown JD, Yabsley MJ, Lovallo MJ, Walter WD. A Review of Pathogens, Diseases, and Contaminants of Muskrats ( Ondatra zibethicus) in North America. Front Vet Sci 2020; 7:233. [PMID: 32478106 PMCID: PMC7242561 DOI: 10.3389/fvets.2020.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Over the last 50 years, significant muskrat (Ondatra zibethicus) harvest declines have been observed throughout North America. Several theories for the decline have been proposed, including increased parasite infections and disease within muskrat populations. No existing wholistic review of muskrat exposure to pathogens, contaminants, and diseases exists. To address this knowledge gap, we conducted a thorough review of existing literature on muskrat pathogens, contaminants, and diseases across their natural range. This review is comprised of 131 articles from 1915 to 2019 and from 27 U.S. states and 9 Canadian provinces. A wide diversity of contaminants, toxins, and pathogens were reported in muskrats, with the most common diseases being cysticercosis, tularemia, Tyzzer's disease, and biotoxin poisoning from cyanobacteria. This review provides a summary of muskrat pathogens, contaminants, and diseases over a century that has observed significant population declines throughout the species' range in North America. Such data provide a baseline for understanding the potential role of disease in these declines. In addition, these data highlight critical knowledge gaps that warrant future research efforts.
Collapse
Affiliation(s)
- Laken S Ganoe
- Pennsylvania Cooperative Fish & Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, United States
| | - Justin D Brown
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Matthew J Lovallo
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, PA, United States
| | - W David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
18
|
Abstract
While non-human primate studies have long been conducted in laboratories, and more recently at zoological parks, sanctuaries are increasingly considered a viable setting for research. Accredited sanctuaries in non-range countries house thousands of primates formerly used as subjects of medical research, trained performers or personal pets. In range countries, however, sanctuaries typically house orphaned primates confiscated from illegal poaching and the bushmeat and pet trafficking trades. Although the primary mission of these sanctuaries is to rescue and rehabilitate residents, many of these organizations are increasingly willing to participate in non-invasive research. Notably, from a scientific standpoint, most sanctuaries provide potential advantages over traditional settings, such as large, naturalistic physical and social environments which may result in more relevant models of primates' free-ranging wild counterparts than other captive settings. As a result, an impressive scope of research in the fields of primate behaviour, cognition, veterinary science, genetics and physiology have been studied in sanctuaries. In this review, we examine the range and form of research that has been conducted at accredited sanctuaries around the world. We also describe the potential challenges of sanctuary-based work and the considerations that external researchers may face when deciding to collaborate with primate sanctuaries on their research projects.
Collapse
Affiliation(s)
- Stephen R Ross
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark St., Chicago, IL 60614, USA
| | - Jesse G Leinwand
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark St., Chicago, IL 60614, USA
| |
Collapse
|
19
|
Accuracy of the sedimentation and filtration methods for the diagnosis of schistosomiasis in cattle. Parasitol Res 2020; 119:1707-1712. [PMID: 32236710 DOI: 10.1007/s00436-020-06660-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/15/2020] [Indexed: 01/01/2023]
Abstract
Infection with blood flukes of the genus Schistosoma causes considerable human and animal morbidity, mortality and economic loss to the livestock industry. Current diagnostic tools have limitations. In this study, we compared the sedimentation and filtration methods for the diagnosis of schistosomiasis in livestock. A total of 196 faecal samples from cattle in Côte d'Ivoire were subjected to sedimentation and filtration for the diagnosis of schistosomiasis and other intestinal parasite infections. Schistosoma eggs or miracidia were discovered in 32 samples: 15 by filtration only, seven by sedimentation only, six concurrently by both methods and four by observing miracidia swimming on the sedimentation slide. The sensitivity of sedimentation and filtration was 41% and 66%, respectively. Cases with no Schistosoma eggs identified in the sediment but miracidia swimming on the slide indicate that eggs had hatched before microscopy. More accurate diagnostic are required for livestock schistosomiasis, in order to better understand the epidemiology and inform control and elimination efforts in livestock and human populations.
Collapse
|
20
|
Tumwebaze I, Clewing C, Dusabe MC, Tumusiime J, Kagoro-Rugunda G, Hammoud C, Albrecht C. Molecular identification of Bulinus spp. intermediate host snails of Schistosoma spp. in crater lakes of western Uganda with implications for the transmission of the Schistosoma haematobium group parasites. Parasit Vectors 2019; 12:565. [PMID: 31775865 PMCID: PMC6882369 DOI: 10.1186/s13071-019-3811-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/15/2019] [Indexed: 12/05/2022] Open
Abstract
Background Human schistosomiasis is the second most important tropical disease and occurs in two forms in Africa (intestinal and urogenital) caused by the digenetic trematodes Schistosoma mansoni and Schistosoma haematobium, respectively. A proposed recent shift of schistosomiasis above a previously established altitudinal threshold of 1400 m above sea level in western Ugandan crater lakes has triggered more research interest there. Methods Based on extensive field sampling in western Uganda and beyond and employing an approach using sequences of the mitochondrial barcoding gene cytochrome c oxidase subunit 1 (cox1) this study aims were: (i) identification and establishment of the phylogenetic affinities of Bulinus species as potential hosts for Schistosoma spp.; (ii) determining diversity, frequency and distribution patterns of Bulinus spp.; and (iii) establishing genetic variability and phylogeographical patterns using Bayesian inference and parsimony network analyses. Results Out of the 58 crater lakes surveyed, three species of Bulinus snails were found in 34 crater lakes. Bulinus tropicus was dominating, Bulinus forskalii was found in two lakes and Bulinus truncatus in one. The latter two species are unconfirmed potential hosts for S. haematobium in this region. However, Bulinus tropicus is an important species for schistosomiasis transmission in ruminants. Bulinus tropicus comprised 31 haplotypes while both B. forskalii and B. truncatus exhibited only a single haplotype in the crater lakes. All species clustered with most of the haplotypes from surrounding lake systems forming source regions for the colonization of the crater lakes. Conclusions This first detailed malacological study of the crater lakes systems in western Uganda revealed presence of Bulinus species that are either not known or not regionally known to be hosts for S. haematobium, the causing agent of human urogenital schistosomiasis. Though this disease risk is almost negligible, the observed dominance of B. tropicus in the crater lakes shows that there is a likelihood of a high risk of infections with Schistosoma bovis. Thus, extra attention should be accorded to safeguard wild and domestic ruminants in this region as the population benefits from these animals.
Collapse
Affiliation(s)
- Immaculate Tumwebaze
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany.
| | - Catharina Clewing
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | | | - Julius Tumusiime
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Grace Kagoro-Rugunda
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium.,Limnology Research Unit, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
21
|
Lu Z, Spänig S, Weth O, Grevelding CG. Males, the Wrongly Neglected Partners of the Biologically Unprecedented Male-Female Interaction of Schistosomes. Front Genet 2019; 10:796. [PMID: 31552097 PMCID: PMC6743411 DOI: 10.3389/fgene.2019.00796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Schistosomes are the only platyhelminths that have evolved separate sexes, and they exhibit a unique reproductive biology because the female's sexual maturation depends on a constant pairing contact with the male. In the female, pairing leads to gonad differentiation, which is associated with substantial morphological changes, and controls among others the expression of gonad-associated genes. In the male, no morphological changes have been observed after pairing, although first data indicated an effect of pairing on gene transcription. Comprehensive transcriptomic approaches have revealed an unexpected high number of genes that are differentially transcribed in the male after pairing. Their identities suggest roles for the male that are not restricted to feeding and enhanced muscular power to transport paired female and, as assumed before, to induce its sexual maturation by one "magic" factor. Instead, a more complex picture emerges in which both partners live in a reciprocal sender-recipient relationship that not only affects the gonads of both genders but may also involve tactile stimuli, transforming growth factor β signaling, nutritional parts, and neuronal processes, including neuropeptides and G protein-coupled receptor signaling. This review provides a summary of transcriptomics including an overview of genes expressed in a pairing-dependent manner in schistosome males. This may stimulate further research in understanding the role of the male as the recipient of the female's signals upon pairing, the male's "capacitation," and its subsequent competence as a sender of information. The latter process finally transforms a sexually immature, autonomous female without completely developed gonads into a sexually mature, partially non-autonomous female with fully differentiated gonads and enormous egg production capacity.
Collapse
Affiliation(s)
- Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Insitute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Spänig
- Department of Mathematics & Computer Science, University of Marburg, Marburg, Germany
| | - Oliver Weth
- Insitute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
22
|
Al-Shehri H, Power BJ, Archer J, Cousins A, Atuhaire A, Adriko M, Arinaitwe M, Alanazi AD, LaCourse EJ, Kabatereine NB, Stothard JR. Non-invasive surveillance of Plasmodium infection by real-time PCR analysis of ethanol preserved faeces from Ugandan school children with intestinal schistosomiasis. Malar J 2019; 18:109. [PMID: 30935388 PMCID: PMC6444585 DOI: 10.1186/s12936-019-2748-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background As part of ongoing co-surveillance of intestinal schistosomiasis and malaria in Ugandan school children, a non-invasive detection method for amplification of Plasmodium DNA using real-time (rt)PCR analysis of ethanol preserved faeces (EPF) was assessed. For diagnostic tabulations, results were compared to rtPCR analysis of dried blood spots (DBS) and field-based point-of-care (POC) rapid diagnostic tests (RDTs). Methods A total of 247 school children from 5 primary schools along the shoreline of Lake Albert were examined with matched EPF and DBS obtained. Mean prevalence and prevalence by school was calculated by detection of Plasmodium DNA by rtPCR using a 18S rDNA Taqman® probe. Diagnostic sensitivity, specificity, positive and negative predictive values were tabulated and compared against RDTs. Results By rtPCR of EPF and DBS, 158 (63.9%; 95% CI 57.8–69.7) and 198 (80.1%, 95% CI 74.7–84.6) children were positive for Plasmodium spp. By RDT, 138 (55.8%; 95% CI 49.6–61.9) and 45 (18.2%; 95% CI 13.9–23.5) children were positive for Plasmodium falciparum, and with non-P. falciparum co-infections, respectively. Using RDT results as a convenient field-based reference, the sensitivity of rtPCR of EPF and DBS was 73.1% (95% CI 65.2–79.8) and 94.2% (95% CI 88.9–97.0) while specificity was 47.7% (95% CI 38.5–57.0) and 37.6% (95% CI 29.0–46.9), respectively. With one exception, school prevalence estimated by analysis of EPF was higher than that by RDT. Positive and negative predictive values were compared and discussed. Conclusions In this high transmission setting, EPF sampling with rtPCR analysis has satisfactory diagnostic performance in estimation of mean prevalence and prevalence by school upon direct comparison with POC-RDTs. Although analysis of EPF was judged inferior to that of DBS, it permits an alternative non-invasive sampling regime that could be implemented alongside general monitoring and surveillance for other faecal parasites. EPF analysis may also have future value in passive surveillance of low transmission settings.
Collapse
Affiliation(s)
- Hajri Al-Shehri
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Ministry of Health, Asir District, Abha, Kingdom of Saudi Arabia
| | - B Joanne Power
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Alice Cousins
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Aaron Atuhaire
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Adriko
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Arinaitwe
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - E James LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
23
|
Horák P, Bulantová J, Mikeš L. Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:217-254. [PMID: 31297764 DOI: 10.1007/978-3-030-18616-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis affecting more than 200 million people in tropical and subtropical countries, infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The Aporocotylidae are pathogenic in fish, Spirorchiidae in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in molluscs and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive, but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| |
Collapse
|
24
|
Mäder P, Rennar GA, Ventura AMP, Grevelding CG, Schlitzer M. Chemotherapy for Fighting Schistosomiasis: Past, Present and Future. ChemMedChem 2018; 13:2374-2389. [DOI: 10.1002/cmdc.201800572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Patrick Mäder
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Georg A. Rennar
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Alejandra M. Peter Ventura
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS; Justus-Liebig-Universität Gießen; Schubertstraße 81 35392 Gießen Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| |
Collapse
|
25
|
Davoust B, Levasseur A, Mediannikov O. Studies of nonhuman primates: key sources of data on zoonoses and microbiota. New Microbes New Infect 2018; 26:S104-S108. [PMID: 30402252 PMCID: PMC6205567 DOI: 10.1016/j.nmni.2018.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
The genetic and morphologic similarities between primates and humans means that much information obtained from primates may be applied to humans, and vice versa. However, habitat loss, hunting and the continued presence of humans have a negative effect on the biology and behaviour of almost all nonhuman primates. Noninvasive methods such as stool collection are among the safest alternative ways to study the multiple aspects of the biology of primates. Many epidemiologic issues (e.g. pathogen detection, microbiota studies) may be easily studied using stool samples from primates. Primates are undoubtedly among the first candidates suspected of becoming the source of one of the next emerging epidemic of zoonotic origin, as has already been observed with HIV, malaria and monkeypox. The Institut Hospitalo-Universitaire Méditerranée Infection in Marseille actively participates in the study, mostly epidemiologic, of nonhuman primates, using mostly stool samples.
Collapse
Affiliation(s)
- B Davoust
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| | - A Levasseur
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| | - O Mediannikov
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
26
|
Occurrence of Schistosoma bovis on Pemba Island, Zanzibar: implications for urogenital schistosomiasis transmission monitoring. Parasitology 2018; 145:1727-1731. [PMID: 30086805 PMCID: PMC7116046 DOI: 10.1017/s0031182018001154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The causative agent of urogenital schistosomiasis, Schistosoma haematobium, was thought to be the only schistosome species transmitted through Bulinus snails on Unguja and Pemba Island (Zanzibar, United Republic of Tanzania). For insights into the environmental risk of S. haematobium transmission on Pemba Island, malacological surveys collecting Bulinus globosus and B. nasutus, two closely related potential intermediate hosts of S. haematobium were conducted across the island in November 2016. Of 1317 B. globosus/B. nasutus collected, seven B. globosus, identified through sequencing a DNA region of the mitochondrial cytochrome oxidase subunit 1 (cox1), were observed with patent infections assumed to be S. haematobium. However, when the collected cercariae were identified through sequencing a region of the cox1 and the nuclear internal transcribed spacer (ITS1 + 2), schistosomes from five of these B. globosus collected from a single locality were in fact S. bovis. The identified presence of S. bovis raises concerns for animal health on Pemba, and complicates future transmission monitoring of S. haematobium. These results show the pertinence for not only sensitive, but also species-specific markers to be used when identifying cercariae during transmission monitoring, and also provide the first molecular confirmation for B. globosus transmitting S. bovis in East Africa.
Collapse
|
27
|
Di Bella S, Riccardi N, Giacobbe DR, Luzzati R. History of schistosomiasis (bilharziasis) in humans: from Egyptian medical papyri to molecular biology on mummies. Pathog Glob Health 2018; 112:268-273. [PMID: 30016215 DOI: 10.1080/20477724.2018.1495357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Schistosomiasis is a parasitic infection that has evolved together with the humankind. Evidence in ancient Egyptian medical papyri or Assyrian medical texts reported signs and symptoms that could resemble schistosomiasis; similarly, some biblical passages describe an epidemic (depicted as a 'curse') that has been hypothesized to be associated with schistosomiasis' spread in Mesopotamia. In the modern era, Theodor Maximilian Bilharz and Patrick Manson (the 'father of tropical medicine') gave an impetus to the knowledge about the parasite and its spread until the present time, when immunoassays and molecular biology on mummies allowed retracing important milestones regarding schistosomiasis' evolution. Schistosomiasis affects more than 200 millions of people worldwide and it is an emblem of how hard it is to prevent, control and treat neglected tropical diseases. Our work reviews the history of schistosomiasis with regard to human infections.
Collapse
Affiliation(s)
- Stefano Di Bella
- a Infectious Diseases Department , Azienda Sanitaria Universitaria Integrata di Trieste , Trieste , Italy
| | - Niccolò Riccardi
- b Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS per l'Oncologia and Department Health Science (DISSAL) , University of Genoa , Genoa , Italy
| | - Daniele Roberto Giacobbe
- b Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS per l'Oncologia and Department Health Science (DISSAL) , University of Genoa , Genoa , Italy
| | - Roberto Luzzati
- a Infectious Diseases Department , Azienda Sanitaria Universitaria Integrata di Trieste , Trieste , Italy
| |
Collapse
|
28
|
Rosinger AY, Young SL, Collins SM, Haider SR, Mishra P, Nagai HT, Petro M, Downs JA. Schistosomiasis and hydration status: Schistosoma haematobium, but not Schistosoma mansoni increases urine specific gravity among rural Tanzanian women. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:952-959. [PMID: 29664990 DOI: 10.1002/ajpa.23479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Schistosome infections can damage organs important for water homeostasis, especially the kidneys. Urogenital schistosomiasis (caused by Schistosoma haematobium) increases protein and blood in urine and intestinal schistosomiasis (caused by S. mansoni) affects total body water. However, no data exist on how different schistosome species affect urine specific gravity (USG), a hydration biomarker. Therefore, we assessed the relationship between S. haematobium- and S. mansoni-infected and uninfected women and USG in rural Tanzania. MATERIALS AND METHODS Surveys were conducted and stool and urine samples were collected among 211 nonpregnant women aged 18-50. S. haematobium eggs were detected using the urine filtration method. S. mansoni eggs were detected using the Kato Katz method. USG was measured using a refractometer and analyzed as both a continuous and dichotomous variable. Regression (linear/logistic) models were estimated to test the relationship between infection and hydration status. RESULTS The prevalence of S. haematobium was 5.9% and S. mansoni was 5.4% with no coinfections. In regression models, S. haematobium-infected women had significantly higher USG (Beta = 0.007 g mL-1 ; standard error = 0.002; p = 0.001) and odds (Odds ratio: 7.76, 95% CI: 1.21-49.5) of elevated USG (>1.020 g mL-1 ) than uninfected women, whereas S. mansoni-infected women did not. DISCUSSION Schistosoma haematobium, but not S. mansoni, infection is associated with higher USG and risk of inadequate hydration. Future work should determine whether findings are attributable to parasite-induced debris in urine or urinary tract pathologies and signs of renal damage. Human and non-human primate studies using USG in schistosome-endemic areas should account for schistosomiasis.
Collapse
Affiliation(s)
- Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania 16802.,Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, Illinois 60208.,Institute for Policy Research, Northwestern University, Evanston, Illinois 60208
| | - Shalean M Collins
- Department of Anthropology, Northwestern University, Evanston, Illinois 60208
| | - Syeda Razia Haider
- Department of Medicine, Weill Cornell Medicine, Center for Global Health, New York, New York 10065
| | - Pallavi Mishra
- Department of Medicine, Weill Cornell Medicine, Center for Global Health, New York, New York 10065
| | - Honest T Nagai
- National Institute for Medical Research, Mwanza Tanzania
| | - Mnyeshi Petro
- National Institute for Medical Research, Mwanza Tanzania
| | - Jennifer A Downs
- Department of Medicine, Weill Cornell Medicine, Center for Global Health, New York, New York 10065
| |
Collapse
|
29
|
Geyer KK, Munshi SE, Vickers M, Squance M, Wilkinson TJ, Berrar D, Chaparro C, Swain MT, Hoffmann KF. The anti-fecundity effect of 5-azacytidine (5-AzaC) on Schistosoma mansoni is linked to dis-regulated transcription, translation and stem cell activities. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:213-222. [PMID: 29649665 PMCID: PMC6039303 DOI: 10.1016/j.ijpddr.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Uncontrolled host immunological reactions directed against tissue-trapped eggs precipitate a potentially lethal, pathological cascade responsible for schistosomiasis. Blocking schistosome egg production, therefore, presents a strategy for simultaneously reducing immunopathology as well as limiting disease transmission in endemic or emerging areas. We recently demonstrated that the ribonucleoside analogue 5-azacytidine (5-AzaC) inhibited Schistosoma mansoni oviposition, egg maturation and ovarian development. While these anti-fecundity effects were associated with a loss of DNA methylation, other molecular processes affected by 5-AzaC were not examined at the time. By comparing the transcriptomes of 5-AzaC-treated females to controls, we provide evidence that this ribonucleoside analogue also modulates other crucial aspects of schistosome egg-laying biology. For example, S. mansoni gene products associated with amino acid-, carbohydrate-, fatty acid-, nucleotide- and tricarboxylic acid (TCA)- homeostasis are all dysregulated in 5-AzaC treated females. To validate the metabolic pathway most significantly affected by 5-AzaC, amino acid metabolism, nascent protein synthesis was subsequently quantified in adult schistosomes. Here, 5-AzaC inhibited this process by 68% ±16.7% (SEM) in male- and 81% ±4.8% (SEM) in female-schistosomes. Furthermore, the transcriptome data indicated that adult female stem cells were also affected by 5-AzaC. For instance, 40% of transcripts associated with proliferating schistosome cells were significantly down-regulated by 5-AzaC. This finding correlated with a considerable reduction (95%) in the number of 5-ethynyl-2'-deoxyuridine (EdU) positive cells found in 5-AzaC-treated females. In addition to protein coding genes, the effect that 5-AzaC had on repetitive element expression was also assessed. Here, 46 repeats were found differentially transcribed between 5-AzaC-treated and control females with long terminal repeat (LTR) and DNA transposon classes being amongst the most significant. This study demonstrates that the anti-fecundity activity of 5-AzaC affects more than just DNA methylation in schistosome parasites. Further characterisation of these processes may reveal novel targets for schistosomiasis control.
Collapse
Affiliation(s)
- Kathrin K Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Sabrina E Munshi
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Michael Squance
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Toby J Wilkinson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom.
| | - Daniel Berrar
- Data Science Laboratory, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Cristian Chaparro
- University of Perpignan Via Domitia, 58 Avenue Paul Alduy, Bat R, F-66860 Perpignan Cedex, France.
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| |
Collapse
|
30
|
Teklemariam D, Legesse M, Degarege A, Liang S, Erko B. Schistosoma mansoni and other intestinal parasitic infections in schoolchildren and vervet monkeys in Lake Ziway area, Ethiopia. BMC Res Notes 2018; 11:146. [PMID: 29463304 PMCID: PMC5819654 DOI: 10.1186/s13104-018-3248-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/12/2018] [Indexed: 11/29/2022] Open
Abstract
Objective To assess Schistosoma mansoni and other intestinal parasitic infections in schoolchildren and vervet monkeys (Chlorocebus aethiops) in Bochessa Village, Ziway, Ethiopia. Results Fecal specimens from selected schoolchildren and droppings of the vervet monkeys were collected and microscopically examined for intestinal parasites using the Kato-Katz thick smear and formol-ether concentration techniques. The prevalences of S. mansoni, Trichuris trichiura, Ascaris lumbricoides, Enterobius vermicularis, hookworms, Hymenolepis nana and Taenia species among the children were 35.7, 26.9, 24.1, 2.1, 2.1, 1.07 and 2.1%, respectively (by Kato-Katz) and 39.3, 36.1, 35.6, 2.9, 10.0, 4.3, and 2.9%, respectively (by formol-ether concentration). Prevalence of S. mansoni in vervet monkeys ranged from 10 to 20%. B. pfeifferi snails were exposed to S. mansoni miracidia from vervet origin, shed cercariae were then used to infect lab-bred albino mice. Adult worms were harvested from the mice 5 weeks post-exposure to cercariae to establish the schistosome life cycle and confirm the infection in the vervet monkeys. The natural infection of S. mansoni in vervet monkeys suggests that the non-human primate is likely to be implicated in the local transmission of schistosomiasis. Further epidemiological and molecular studies are needed to fully elucidate zoonotic role of non-human primate in the area.
Collapse
Affiliation(s)
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Degarege
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Epidemiology, Robert Stemple College of Public Health, Florida International University, Miami, USA
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
31
|
Pouillevet H, Dibakou SE, Ngoubangoye B, Poirotte C, Charpentier MJ. A Comparative Study of Four Methods for the Detection of Nematode Eggs and Large Protozoan Cysts in Mandrill Faecal Material. Folia Primatol (Basel) 2017; 88:344-357. [DOI: 10.1159/000480233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022]
|
32
|
Igetei JE, El-Faham M, Liddell S, Doenhoff MJ. Antigenic cross-reactivity between Schistosoma mansoni and peanut: a role for cross-reactive carbohydrate determinants (CCDs) and implications for the hygiene hypothesis. Immunology 2017; 150:506-517. [PMID: 28201853 DOI: 10.1111/imm.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/08/2016] [Accepted: 01/01/2017] [Indexed: 12/21/2022] Open
Abstract
The antigenic reactivity of constituents of Schistosoma mansoni and peanut (Arachis hypogaea) was investigated to determine whether identical antigenic epitopes possessed by both organisms provided a possible explanation for the negative correlation between chronic schistosome infection and atopy to allergens. Aqueous extracts of peanuts were probed in Western immunoblots with rabbit IgG antibodies raised against the egg, cercarial and adult worm stages of S. mansoni. Several molecules in the peanut extract were antigenically reactive with antibodies from the various rabbit anti-schistosome sera. A pair of cross-reactive peanut molecules at ~30 000-33 000 molecular weight was purified and both proteins were identified by mass spectrometric analysis as the peanut allergen Ara h 1. Anti-S. mansoni soluble egg antigen antibodies that were eluted off the peanut molecules reacted with two S. mansoni egg antigens identified by mass spectrometry as IPSE/α-1 and κ-5. Alignments of the amino acid sequences of Ara h 1 and either IPSE/α-1 or κ-5 revealed a low level of peptide sequence identity. Incubation of nitrocellulose paper carrying electrophoresed peanut molecules, six constituents of other allergic plants and S. mansoni egg antigens in a mild solution of sodium metaperiodate before probing with antibodies, inhibited most of the cross-reactivities. The results are consistent with the antigenic cross-reactive epitopes of S. mansoni egg antigens, peanut and other allergic plants being cross-reactive carbohydrate determinants (CCDs). These findings are novel and an explanation based on 'blocking antibodies' could provide an insight for the inverse relationship observed between schistosome infection and allergies.
Collapse
Affiliation(s)
- Joseph E Igetei
- School of Life Sciences, University of Nottingham, Nottingham, UK NG7 2RD.,Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Edo State, Nigeria
| | - Marwa El-Faham
- School of Life Sciences, University of Nottingham, Nottingham, UK NG7 2RD.,Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Susan Liddell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK LE12 5RD
| | - Michael J Doenhoff
- School of Life Sciences, University of Nottingham, Nottingham, UK NG7 2RD
| |
Collapse
|
33
|
Stothard JR, Campbell SJ, Osei-Atweneboana MY, Durant T, Stanton MC, Biritwum NK, Rollinson D, Ombede DRE, Tchuem-Tchuenté LA. Towards interruption of schistosomiasis transmission in sub-Saharan Africa: developing an appropriate environmental surveillance framework to guide and to support 'end game' interventions. Infect Dis Poverty 2017; 6:10. [PMID: 28088239 PMCID: PMC5237522 DOI: 10.1186/s40249-016-0215-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Schistosomiasis is a waterborne parasitic disease in sub-Saharan Africa, particularly common in rural populations living in impoverished conditions. With the scale-up of preventive chemotherapy, national campaigns will transition from morbidity- to transmission-focused interventions thus formal investigation of actual or expected declines in environmental transmission is needed as 'end game' scenarios arise. Surprisingly, there are no international or national guidelines to do so in sub-Saharan Africa. Our article therefore provides an introduction to key practicalities and pitfalls in the development of an appropriate environmental surveillance framework. In this context, we discuss how strategies need to be adapted and tailored to the local level to better guide and support future interventions through this transition. As detection of egg-patent infection in people becomes rare, careful sampling of schistosome larvae in freshwater and in aquatic snails with robust species-specific DNA assays will be required. Appropriate metrics, derived from observed prevalence(s) as compared with predetermined thresholds, could each provide a clearer insight into contamination- and exposure-related dynamics. Application could be twofold, first to certify areas currently free from schistosomiasis transmission or second to red-flag recalcitrant locations where extra effort or alternative interventions are needed.
Collapse
Affiliation(s)
- J. Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Suzy J. Campbell
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Mike Y. Osei-Atweneboana
- Department of Environmental Biology and Health, Council for Scientific and Industrial Research-Water Research Insitute, P.O. Box M 32, Accra, Ghana
| | - Timothy Durant
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Michelle C. Stanton
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | | | - David Rollinson
- Department of Life Sciences; Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Dieudonné R. Eloundou Ombede
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Louis-Albert Tchuem-Tchuenté
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- National Programme for the Control of Schistosomiasis and Intestinal Helminthiasis, Ministry of Public Health, Yaoundé, Cameroon
| |
Collapse
|
34
|
Odeniran PO, Ademola IO. Zoonotic Parasites of Wildlife in Africa: A Review. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2016. [DOI: 10.3957/056.046.0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Paul O. Odeniran
- Department of Veterinary Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Isaiah O. Ademola
- Department of Veterinary Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
35
|
Purification of a chymotrypsin-like enzyme present on adult Schistosoma mansoni worms from infected mice and its characterization as a host carboxylesterase. Parasitology 2016; 143:646-57. [DOI: 10.1017/s0031182016000184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYA serine protease-like enzyme found in detergent extracts of Schistosoma mansoni adult worms perfused from infected mice has been purified from mouse blood and further characterized. The enzyme is approximately 85 kDa and hydrolyses N-acetyl-DL-phenylalanine β-naphthyl–ester, a chromogenic substrate for chymotrypsin-like enzymes. The enzyme from S. mansoni worms appears to be antigenically and enzymatically similar to a molecule that is present in normal mouse blood and so is seemingly host-derived. The enzyme was partially purified by depleting normal mouse serum of albumin using sodium chloride and cold ethanol, followed by repeated rounds of purification by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified material was subjected to tandem mass spectrometry and its derived peptides found to belong to mouse carboxylesterase 1C. Its ability to hydrolyse α- or β-naphthyl acetates, which are general esterase substrates, has been confirmed. A similar carboxylesterase was purified and characterized from rat blood. Additional evidence to support identification of the enzyme as a carboxylesterase has been provided. Possible roles of the enzyme in the mouse host–parasite relationship could be to ease the passage of worms through the host's blood vessels and/or in immune evasion.
Collapse
|
36
|
Cibot M, Guillot J, Lafosse S, Bon C, Seguya A, Krief S. Nodular Worm Infections in Wild Non-human Primates and Humans Living in the Sebitoli Area (Kibale National Park, Uganda): Do High Spatial Proximity Favor Zoonotic Transmission? PLoS Negl Trop Dis 2015; 9:e0004133. [PMID: 26451592 PMCID: PMC4599739 DOI: 10.1371/journal.pntd.0004133] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nodular Oesophagostomum genus nematodes are a major public health concern in some African regions because they can be lethal to humans. Their relatively high prevalence in people has been described in Uganda recently. While non-human primates also harbor Oesophagostomum spp., the epidemiology of this oesophagostomosis and the role of these animals as reservoirs of the infection in Eastern Africa are not yet well documented. METHODOLOGY/PRINCIPAL FINDINGS The present study aimed to investigate Oesophagostomum infection in terms of parasite species diversity, prevalence and load in three non-human primates (Pan troglodytes, Papio anubis, Colobus guereza) and humans living in close proximity in a forested area of Sebitoli, Kibale National Park (KNP), Uganda. The molecular phylogenetic analyses provided the first evidence that humans living in the Sebitoli area harbored O. stephanostomum, a common species in free-ranging chimpanzees. Chimpanzees were also infected by O. bifurcum, a common species described in human populations throughout Africa. The recently described Oesophagostomum sp. found in colobine monkeys and humans and which was absent from baboons in the neighboring site of Kanyawara in KNP (10 km from Sebitoli), was only found in baboons. Microscopic analyses revealed that the infection prevalence and parasite load in chimpanzees were significantly lower in Kanyawara than in Sebitoli, an area more impacted by human activities at its borders. CONCLUSIONS/SIGNIFICANCE Three different Oesophagostomum species circulate in humans and non-human primates in the Sebitoli area and our results confirm the presence of a new genotype of Oesophagostomum recently described in Uganda. The high spatiotemporal overlap between humans and chimpanzees in the studied area coupled with the high infection prevalence among chimpanzees represent factors that could increase the risk of transmission for O. stephanostomum between the two primate species. Finally, the importance of local-scale research for zoonosis risk management is important because environmental disturbance and species contact can differ, leading to different parasitological profiles between sites that are close together within the same forest patches.
Collapse
Affiliation(s)
- Marie Cibot
- UMR 7206, Eco-Anthropologie et Ethnobiologie, Muséum national d’Histoire naturelle, Paris, France
- UMR 7179, Mécanismes adaptatifs: Des organismes aux communautés, Muséum national d’Histoire naturelle, Paris, France
- Great Apes Conservation Project (GACP), Sebitoli Research Station, Kibale National Park, Fort Portal, Uganda
| | - Jacques Guillot
- Department of Parasitology, Dynamyc research group EnvA-UPEC, Ecole nationale vétérinaire d’Alfort, UPE, Maisons-Alfort, France
| | - Sophie Lafosse
- UMR 7206, Eco-Anthropologie et Ethnobiologie, Muséum national d’Histoire naturelle, Paris, France
| | - Céline Bon
- UMR 7206, Eco-Anthropologie et Ethnobiologie, Muséum national d’Histoire naturelle, Paris, France
| | | | - Sabrina Krief
- UMR 7206, Eco-Anthropologie et Ethnobiologie, Muséum national d’Histoire naturelle, Paris, France
- Great Apes Conservation Project (GACP), Sebitoli Research Station, Kibale National Park, Fort Portal, Uganda
| |
Collapse
|
37
|
Stephenson R, You H, McManus DP, Toth I. Schistosome Vaccine Adjuvants in Preclinical and Clinical Research. Vaccines (Basel) 2014; 2:654-85. [PMID: 26344751 PMCID: PMC4494218 DOI: 10.3390/vaccines2030654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022] Open
Abstract
There is currently no vaccine available for human use for any parasitic infections, including the helminth disease, schistosomiasis. Despite many researchers working towards this goal, one of the focuses has been on identifying new antigenic targets. The bar to achieve protective efficacy in humans was set at a consistent induction of 40% protection or better by the World Health Organisation (WHO), and although this is a modest goal, it is yet to be reached with the six most promising schistosomiasis vaccine candidates (Sm28GST, IrV5, Sm14, paramyosin, TPI, and Sm23). Adjuvant selection has a large impact on the effectiveness of the vaccine, and the use of adjuvants to aid in the stimulation of the immune system is a critical step and a major variable affecting vaccine development. In addition to a comprehensive understanding of the immune system, level of protection and the desired immune response required, there is also a need for a standardised and effective adjuvant formulation. This review summarises the status of adjuvants that have been or are being employed in schistosomiasis vaccine development focusing on immunisation outcomes at preclinical and clinical stages.
Collapse
Affiliation(s)
- Rachel Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Q4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Q4006, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
38
|
Stothard JR, Sousa-Figueiredo JC, Navaratnam AMD. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev Anti Infect Ther 2014; 11:733-52. [DOI: 10.1586/14787210.2013.811931] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Horák P, Kolářová L, Mikeš L. Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:331-64. [PMID: 24903370 DOI: 10.1007/978-1-4939-0915-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, Prague, 12844, Czech Republic,
| | | | | |
Collapse
|
40
|
Human contact influences the foraging behaviour and parasite community in long-tailed macaques. Parasitology 2013; 140:709-18. [PMID: 23363557 DOI: 10.1017/s003118201200203x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human–wildlife interactions have reached unprecedented levels, and humans are influencing the earth’s ecosystems more rapidly and extensively than ever before. This situation is cause for serious concern, especially since disease interactions between wildlife and humans have been recognized as major conservation threats. In this study, long-tailed macaques, Macaca fascicularis, from 2 forest parks located in north-eastern Thailand were investigated to determine the influence of habitat modification by humans on helminth parasite associations in non-human primates. Macaque populations with contact to anthropogenically modified environments were compared with sylvatic groups in nearby natural environments. In order to test for human–non-human primate transmission of parasites, the local human populations were also examined. Humans were infected with a number of potentially pathogenic parasites, including Opisthorchis viverrini and Strongyloides stercoralis. However, eggs of these helminths were not detected in macaque feces. Thus, no direct parasite transfer from humans to non-human primates could be confirmed. However, macaque groups with more frequent contact with human modified habitats, and a higher portion of human-provided food in their diet, had significantly higher prevalences and intensities of Strongyloides fuelleborni and of an intestinal fluke (probably Haplorchis sp.) than sylvatic groups. Positive correlations were found between the time foraging on the ground and infection with S. fuelleborni, and the amount of human-provided food and intestinal fluke infection. Human alteration of habitat and associated modifications in nonhuman primate behaviour are likely to play a role in determining the occurrence, prevalence and intensity of zoonotic helminth infection of wild non-human primates.
Collapse
|
41
|
Mafuyai HB, Barshep Y, Audu BS, Kumbak D, Ojobe TO. Baboons as potential reservoirs of zoonotic gastrointestinal parasite infections at Yankari National Park, Nigeria. Afr Health Sci 2013; 13:252-4. [PMID: 24235920 DOI: 10.4314/ahs.v13i2.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Zoonoses pose a risk to public health. OBJECTIVE To carry out the investigation of the prevalence of gastrointestinal parasites of baboons, Papio anubis, frequenting the Wikki base Camp in Yankari National Park, Nigeria. METHOD Formol-ether concentration technique was used to isolate parasite eggs and cysts from faecal samples. RESULTS Parasites recovered were Ascaris lumbricoides, Ancylostoma duodenale, Strongyloides stercoralis, Fasciola sp, Schistosoma mansoni, Hymenolepis nana, and Trichostrongylus sp, and cysts of protozoan parasites Entomoeba histolytica, E. coli, and Iodamoeba butschii. CONCLUSION Most of the parasites identified are known to have high pathologic involvement in humans, implicating the baboons as potential source and reservoirs for human zoonotic parasitic infections although further molecular work would be necessary to ascertain if these gastrointestinal parasites are the same strains that infect humans.
Collapse
Affiliation(s)
- H B Mafuyai
- Department of Zoology, University of Jos, PMB 2040, Plateau State, Nigeria
| | | | | | | | | |
Collapse
|
42
|
Intestinal schistosomiasis in chimpanzees on Ngamba Island, Uganda: observations on liver fibrosis, schistosome genetic diversity and praziquantel treatment. Parasitology 2012; 140:285-95. [PMID: 23095137 DOI: 10.1017/s0031182012001576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite treatment with praziquantel (PZQ) at 40 mg/kg in food, several chimpanzees on Ngamba Island Chimpanzee Sanctuary (NICS) continue to excrete eggs of Schistosoma mansoni. To monitor disease, 8 animals were closely examined under anaesthesia in March 2011 with portable ultrasonography and by rectal snip biopsy. Schistosome genetic diversity had been previously assayed within 4 of these chimpanzees, finding extensive diversity with 27 DNA barcodes encountered, although none was common to all animals. Calcified schistosome eggs were found in the rectal snips from 5 chimpanzees and liver fibrosis was clearly documented, indicative of progressive disease in 6 animals, the latter being surprisingly advanced in a younger chimpanzee. All 8 animals were treated under anaesthesia by oral gavage with PZQ at 60 mg/kg dosing that was well tolerated. These animals were again re-examined in June 2012 using stool and urine sampling. Only 1 chimpanzee appeared to be free from infection and active egg excretion was confirmed in 6 animals. If intestinal schistosomiasis is to be controlled within this setting, a long-term disease management plan is required which should combine active case-detection with an insistent treatment regime with praziquantel for these chimpanzees, exploring perhaps the performance of even higher dosing.
Collapse
|
43
|
Stopping schistosomes from 'monkeying-around' in chimpanzees. Trends Parasitol 2012; 28:320-6. [PMID: 22738857 DOI: 10.1016/j.pt.2012.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/19/2022]
Abstract
Ngamba Island Chimpanzee Sanctuary (NICS) in Lake Victoria, Uganda is currently home to 44 wild-borne, semi-captive chimpanzees. Despite regular veterinary health checks, it only came to light recently that many animals, and sanctuary staff, were naturally infected with Schistosoma mansoni. Indeed, local schistosome transmission appears firmly engrained for intermediate snail hosts can be found along almost the entirety of Ngamba's shoreline. Here, the epidemiology of infection is a dynamic interplay between human and chimpanzee populations, as revealed by genetic analyses of S. mansoni. In this review, our present understanding of this complex and evolving situation is discussed, alongside general disease control activities in Uganda, to highlight future interventions towards stopping schistosome morbidity and transmission within this conservation sanctuary setting.
Collapse
|