1
|
Sung K, Gao Y, Yu LR, Chon J, Hiett KL, Line JE, Kweon O, Park M, Khan SA. Phenotypic, genotypic and proteomic variations between poor and robust colonizing Campylobacter jejuni strains. Microb Pathog 2024; 193:106766. [PMID: 38942248 DOI: 10.1016/j.micpath.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Campylobacter jejuni is one of the major causes of bacterial gastrointestinal disease in humans worldwide. This foodborne pathogen colonizes the intestinal tracts of chickens, and consumption of chicken and poultry products is identified as a common route of transmission. We analyzed two C. jejuni strains after oral challenge with 105 CFU/ml of C. jejuni per chick; one strain was a robust colonizer (A74/C) and the other a poor colonizer (A74/O). We also found extensive phenotypic differences in growth rate, biofilm production, and in vitro adherence, invasion, intracellular survival, and transcytosis. Strains A74/C and A74/O were genotypically similar with respect to their whole genome alignment, core genome, and ribosomal MLST, MLST, flaA, porA, and PFGE typing. The global proteomes of the two congenic strains were quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and 618 and 453 proteins were identified from A74/C and A74/O isolates, respectively. Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that carbon metabolism and motility proteins were distinctively overexpressed in strain A74/C. The robust colonizer also exhibited a unique proteome profile characterized by significantly increased expression of proteins linked to adhesion, invasion, chemotaxis, energy, protein synthesis, heat shock proteins, iron regulation, two-component regulatory systems, and multidrug efflux pump. Our study underlines phenotypic, genotypic, and proteomic variations of the poor and robust colonizing C. jejuni strains, suggesting that several factors may contribute to mediating the different colonization potentials of the isogenic isolates.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA.
| | - Yuan Gao
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Jungwhan Chon
- Department of Companion Animal Health, Inje University, Gimhae, South Korea
| | - Kelli L Hiett
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US FDA, Laurel, MD, 20708, USA
| | - J Eric Line
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture (USDA), Athens, GA, 30605, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| | - Saeed A Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| |
Collapse
|
2
|
Sabotič J, Janež N, Volk M, Klančnik A. Molecular structures mediating adhesion of Campylobacter jejuni to abiotic and biotic surfaces. Vet Microbiol 2023; 287:109918. [PMID: 38029692 DOI: 10.1016/j.vetmic.2023.109918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
3
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
5
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
Sher AA, Jerome JP, Bell JA, Yu J, Kim HY, Barrick JE, Mansfield LS. Experimental Evolution of Campylobacter jejuni Leads to Loss of Motility, rpoN (σ54) Deletion and Genome Reduction. Front Microbiol 2020; 11:579989. [PMID: 33240235 PMCID: PMC7677240 DOI: 10.3389/fmicb.2020.579989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Evolution experiments in the laboratory have focused heavily on model organisms, often to the exclusion of clinically relevant pathogens. The foodborne bacterial pathogen Campylobacter jejuni belongs to a genus whose genomes are small compared to those of its closest genomic relative, the free-living genus Sulfurospirillum, suggesting genome reduction during the course of evolution to host association. In an in vitro experiment, C. jejuni serially passaged in rich medium in the laboratory exhibited loss of flagellar motility-an essential function for host colonization. At early time points the motility defect was often reversible, but after 35 days of serial culture, motility was irreversibly lost in most cells in 5 independently evolved populations. Population re-sequencing revealed disruptive mutations to genes in the flagellar transcriptional cascade, rpoN (σ54)-therefore disrupting the expression of the genes σ54 regulates-coupled with deletion of rpoN in all evolved lines. Additional mutations were detected in virulence-related loci. In separate in vivo experiments, we demonstrate that a phase variable (reversible) motility mutant carrying an adenine deletion within a homopolymeric tract resulting in truncation of the flagellar biosynthesis gene fliR was deficient for colonization in a C57BL/6 IL-10-/- mouse disease model. Re-insertion of an adenine residue partially restored motility and ability to colonize mice. Thus, a pathogenic C. jejuni strain was rapidly attenuated by experimental laboratory evolution and demonstrated genomic instability during this evolutionary process. The changes observed suggest C. jejuni is able to evolve in a novel environment through genome reduction as well as transition, transversion, and slip-strand mutations.
Collapse
Affiliation(s)
- Azam A. Sher
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| | - John P. Jerome
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julian Yu
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Hahyung Y. Kim
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jeffrey E. Barrick
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Mead G. Factors affecting intestinal colonisation of poultry by campylobacter and role of microflora in control. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20020016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G.C. Mead
- Royal Veterinary College, Boltons Park, Hawkshead Road, Potters Bar, Hertfordshire EN6 1NB, United Kingdom,
| |
Collapse
|
8
|
Schmidt AM, Escher U, Mousavi S, Tegtmeyer N, Boehm M, Backert S, Bereswill S, Heimesaat MM. Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model. Gut Pathog 2019; 11:24. [PMID: 31131028 PMCID: PMC6525468 DOI: 10.1186/s13099-019-0306-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni infections constitute serious threats to human health with increasing prevalences worldwide. Our knowledge regarding the molecular mechanisms underlying host–pathogen interactions is still limited. Our group has established a clinical C. jejuni infection model based on abiotic IL-10−/− mice mimicking key features of human campylobacteriosis. In order to further validate this model for unraveling pathogen-host interactions mounting in acute disease, we here surveyed the immunopathological features of the important C. jejuni virulence factors FlaA and FlaB and the major adhesin CadF (Campylobacter adhesin to fibronectin), which play a role in bacterial motility, protein secretion and adhesion, respectively. Methods and results Therefore, abiotic IL-10−/− mice were perorally infected with C. jejuni strain 81-176 (WT) or with its isogenic flaA/B (ΔflaA/B) or cadF (ΔcadF) deletion mutants. Cultural analyses revealed that WT and ΔcadF but not ΔflaA/B bacteria stably colonized the stomach, duodenum and ileum, whereas all three strains were present in the colon at comparably high loads on day 6 post-infection. Remarkably, despite high colonic colonization densities, murine infection with the ΔflaA/B strain did not result in overt campylobacteriosis, whereas mice infected with ΔcadF or WT were suffering from acute enterocolitis at day 6 post-infection. These symptoms coincided with pronounced pro-inflammatory immune responses, not only in the intestinal tract, but also in other organs such as the liver and kidneys and were accompanied with systemic inflammatory responses as indicated by increased serum MCP-1 concentrations following C. jejuni ΔcadF or WT, but not ΔflaA/B strain infection. Conclusion For the first time, our observations revealed that the C. jejuni flagellins A/B, but not adhesion mediated by CadF, are essential for inducing murine campylobacteriosis. Furthermore, the secondary abiotic IL-10−/− infection model has been proven suitable not only for detailed investigations of immunological aspects of campylobacteriosis, but also for differential analyses of the roles of distinct C. jejuni virulence factors in induction and progression of disease. Electronic supplementary material The online version of this article (10.1186/s13099-019-0306-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna-Maria Schmidt
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Soraya Mousavi
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Nicole Tegtmeyer
- 2Institute for Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Manja Boehm
- 2Institute for Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Steffen Backert
- 2Institute for Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Stefan Bereswill
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
9
|
Li J, Gulbronson CJ, Bogacz M, Hendrixson DR, Thompson SA. FliW controls growth-phase expression of Campylobacter jejuni flagellar and non-flagellar proteins via the post-transcriptional regulator CsrA. MICROBIOLOGY-SGM 2018; 164:1308-1319. [PMID: 30113298 DOI: 10.1099/mic.0.000704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Campylobacter jejuni is an important human pathogen that causes 96 million cases of acute diarrheal disease worldwide each year. We have shown that C. jejuni CsrA is involved in the post-transcriptional regulation of more than 100 proteins, and altered expression of these proteins is presumably involved in the altered virulence-related phenotypes of a csrA mutant. Mutation of fliW results in C. jejuni cells that have greatly truncated flagella, are less motile, less able to form biofilms, and exhibit a reduced ability to colonize chicks. The loss of FliW results in the altered expression of 153 flagellar and non-flagellar proteins, the majority of which are members of the CsrA regulon. The number of proteins dysregulated in the fliW mutant was greater at mid-log phase (120 proteins) than at stationary phase (85 proteins); 52 proteins showed altered expression at both growth phases. Loss of FliW altered the growth-phase- and CsrA-mediated regulation of FlaA flagellin. FliW exerts these effects by binding to both FlaA and to CsrA, as evidenced by pull-down assays, protein-protein cross-linking, and size-exclusion chromatography. Taken together, these results show that CsrA-mediated regulation of both flagellar and non-flagellar proteins is modulated by direct binding of CsrA to the flagellar chaperone FliW. Changing FliW:CsrA stoichiometries at different growth phases allow C. jejuni to couple the expression of flagellar motility to metabolic and virulence characteristics.
Collapse
Affiliation(s)
- Jiaqi Li
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - Connor J Gulbronson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Bogacz
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - David R Hendrixson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stuart A Thompson
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Al-Banna NA, Cyprian F, Albert MJ. Cytokine responses in campylobacteriosis: Linking pathogenesis to immunity. Cytokine Growth Factor Rev 2018; 41:75-87. [PMID: 29550265 DOI: 10.1016/j.cytogfr.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022]
Abstract
Campylobacter jejuni is an important enteric pathogen that causes diarrheas of different degrees of severity and several extra-intestinal manifestations, including Guillain-Barre syndrome. The variability of disease outcomes is thought to be linked to the immune response induced by C. jejuni. The virulence factors of C. jejuni induce a pro-inflammatory response, that is initiated by the intestinal epithelial cells, propagated by innate immune cells and modulated by the cells of the adaptive immune response. This review focuses on cytokines, that are reported to orchestrate the induction and propagation of pro-inflammatory immune response, and also those that are involved in control and resolution of inflammation. We describe the functional roles of a number of cytokines in modulating anti-Campylobacter immune responses: 1. cytokines of innate immunity (TNF-α, IL-6, and IL-8) as initiators of inflammatory response, 2. cytokines of antigen-presenting cells (IL-1β, IL-12, and IL-23) as promoters of pro-inflammatory response, 3. cytokines produced by T cells (IFN-γ, IL-17, IL-22) as activators of T cells, and 4. anti-inflammatory cytokines (IL-4 and IL-10) as inhibitors of pro-inflammatory responses. We highlight the roles of cytokines as potential therapeutic agents that are under investigation. In the end, we pose several questions that remain unanswered in our quest to understand Campylobacter immunity.
Collapse
Affiliation(s)
- Nadia A Al-Banna
- Department of Basic Medical Sciences, College of Medicine, QU Health Cluster, Qatar University, Doha, Qatar.
| | - Farhan Cyprian
- Department of Basic Medical Sciences, College of Medicine, QU Health Cluster, Qatar University, Doha, Qatar.
| | - M John Albert
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait.
| |
Collapse
|
11
|
Lehri B, Seddon AM, Karlyshev AV. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 2017; 8:1753-1760. [PMID: 28766992 PMCID: PMC5810503 DOI: 10.1080/21505594.2017.1362533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to the global spread of multidrug resistant pathogenic bacteria, alternative approaches in combating infectious diseases are required. One such approach is the use of probiotics. Lactobacillus fermentum 3872 is a promising probiotic bacterium producing a range of antimicrobial compounds, such as hydrogen peroxide and lactic acid. In addition, previous studies involving genome sequencing and analysis of L. fermentum 3872 allowed the identification of a gene encoding a cell surface protein referred to as collagen binding protein (CBP) (not found in other strains of the species, according to the GenBank database), consisting of a C-terminal cell wall anchor domain (LPXT), multiple repeats of ‘B domains' that form stalks presenting an “A domain” required for adhesion. In this study, we found that the CBP of L. fermentum 3872 binds to collagen I present on the surface of the epithelial cells lining the gastrointestinal tract. Moreover, we found that this host receptor is also used for attachment by the major gastrointestinal pathogen, Campylobacter jejuni. Furthermore, we identified an adhesin involved in such interaction and demonstrated that both L. fermentum 3872 and its CBP can inhibit binding of this pathogen to collagen I. Combined with the observation that C. jejuni growth is affected in the acidic environment produced by L. fermentum 3872, the finding provides a good basis for further investigation of this strain as a potential tool for fighting Campylobacter infections.
Collapse
Affiliation(s)
- B Lehri
- a The School of Life Sciences, Pharmacy and Chemistry, SEC Faculty , Kingston University , Kingston Upon Thames , UK
| | - A M Seddon
- a The School of Life Sciences, Pharmacy and Chemistry, SEC Faculty , Kingston University , Kingston Upon Thames , UK
| | - A V Karlyshev
- a The School of Life Sciences, Pharmacy and Chemistry, SEC Faculty , Kingston University , Kingston Upon Thames , UK
| |
Collapse
|
12
|
Ferrara LGM, Wallat GD, Moynié L, Dhanasekar NN, Aliouane S, Acosta-Gutiérrez S, Pagès JM, Bolla JM, Winterhalter M, Ceccarelli M, Naismith JH. MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca 2+ Ion Bound at the Constriction Zone. J Mol Biol 2016; 428:4528-4543. [PMID: 27693650 PMCID: PMC5090048 DOI: 10.1016/j.jmb.2016.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 11/11/2022]
Abstract
The Gram-negative organism Campylobacter jejuni is the major cause of food poisoning. Unlike Escherichia coli, which has two major porins, OmpC and OmpF, C. jejuni has one, termed major outer membrane protein (MOMP) through which nutrients and antibiotics transit. We report the 2.1-Å crystal structure of C. jejuni MOMP expressed in E. coli and a lower resolution but otherwise identical structure purified directly from C. jejuni. The 2.1-Å resolution structure of recombinant MOMP showed that although the protein has timeric arrangement similar to OmpC, it is an 18-stranded, not 16-stranded, β-barrel. The structure has identified a Ca2 + bound at the constriction zone, which is functionally significant as suggested by molecular dynamics and single-channel experiments. The water-filled channel of MOMP has a narrow constriction zone, and single-molecule studies show a monomeric conductivity of 0.7 ± 0.2 nS and a trimeric conductance of 2.2 ± 0.2 nS. The ion neutralizes negative charges at the constriction zone, reducing the transverse electric field and reversing ion selectivity. Modeling of the transit of ciprofloxacin, an antibiotic of choice for treating Campylobacter infection, through the pore of MOMP reveals a trajectory that is dependent upon the presence metal ion. The crystal structure of MOMP, the general diffusion porin of Campylobacter, has been determined. The protein is an 18-stranded β-barrel that is different than the 16-stranded OmpC and OmpF proteins from E. coli, but like them, MOMP is trimeric. The protein has a central pore size and conductivity intermediate between OmpC and OmpF. A Ca2 + ion bound at the constriction zone influences the biophysical properties of porin. The trajectory of the transit of the antibiotic ciprofloxacin through the pore is dependent on the presence of a metal ion.
Collapse
Affiliation(s)
- Luana G M Ferrara
- Biomedical Sciences Research Complex, University of St Andrews, 09042 St Andrews, UK
| | - Gregor D Wallat
- Biomedical Sciences Research Complex, University of St Andrews, 09042 St Andrews, UK
| | - Lucile Moynié
- Biomedical Sciences Research Complex, University of St Andrews, 09042 St Andrews, UK
| | - Naresh N Dhanasekar
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | | | - Silvia Acosta-Gutiérrez
- Department of Physics, University of Cagliari, Cittadella Universitaria Monserrato, S.P8-km 0.700, 09042 Monserrato, Cagliari (CA), Italy
| | | | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria Monserrato, S.P8-km 0.700, 09042 Monserrato, Cagliari (CA), Italy
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St Andrews, 09042 St Andrews, UK; State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Baig A, McNally A, Dunn S, Paszkiewicz KH, Corander J, Manning G. Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni. BMC Genomics 2015; 16:852. [PMID: 26497129 PMCID: PMC4619573 DOI: 10.1186/s12864-015-2087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is a major zoonotic pathogen, causing gastroenteritis in humans. Invasion is an important pathogenesis trait by which C. jejuni causes disease. Here we report the genomic analysis of 134 strains to identify traits unique to hyperinvasive isolates. METHODS A total of 134 C. jejuni genomes were used to create a phylogenetic tree to position the hyperinvasive strains. Comparative genomics lead to the identification of mosaic capsule regions. A pan genome approach led to the discovery of unique loci, or loci with unique alleles, to the hyperinvasive strains. RESULTS Phylogenetic analysis showed that the hyper-invasive phenotype is a generalist trait. Despite the fact that hyperinvasive strains are only distantly related based on the whole genome phylogeny, they all possess genes within the capsule region with high identity to capsule genes from C. jejuni subsp. doylei and C. lari. In addition there were genes unique to the hyper-invasive strains with identity to non-C. jejuni genes, as well as allelic variants of mainly pathogenesis related genes already known in the other C. jejuni. In particular, the sequence of flagella genes, flgD-E and flgL were highly conserved amongst the hyper-invasive strains and divergent from sequences in other C. jejuni. A novel cytolethal distending toxin (cdt) operon was also identified as present in all hyper-invasive strains in addition to the classic cdt operon present in other C. jejuni. CONCLUSIONS Overall, the hyper-invasive phenotype is strongly linked to the presence of orthologous genes from other Campylobacter species in their genomes, notably within the capsule region, in addition to the observed association with unique allelic variants in flagellar genes and the secondary cdt operon which is unlikely under random sharing of accessory alleles in separate lineages.
Collapse
Affiliation(s)
- Abiyad Baig
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Alan McNally
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Steven Dunn
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | | | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
14
|
Tsang J, Hoover TR. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species. SCIENTIFICA 2014; 2014:681754. [PMID: 24672734 PMCID: PMC3930126 DOI: 10.1155/2014/681754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.
Collapse
Affiliation(s)
- Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
16
|
Singh P, Kwon YM. Comparative analysis of Campylobacter populations within individual market-age broilers using Fla gene typing method. Poult Sci 2013; 92:2135-44. [PMID: 23873562 DOI: 10.3382/ps.2012-02615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter species is the most common human pathogen causing gastrointestinal infections in humans, and poultry is considered a major source of this pathogen. In this project, we aim to study the genetic diversity of Campylobacter populations within individual chickens using cecal samples to understand the nature of intestinal colonization in chickens by Campylobacter species. Genotyping was conducted based on the DNA sequence of short variable regions (SVR) in the flaA gene. Cecal samples were collected from 9 market-age broiler chickens and used for isolation of Campylobacter genomic DNA. The SVR fragments of 400 bp were amplified using SVR-specific primers, cloned, and sequenced. Sequencing results obtained from 86 clones (~10 clones/bird) showed that on an average 23.25% of clones had mutations within individuals. The mutations did not show any consistent pattern, suggesting a random nature of the mutations. When translated SVR sequences were analyzed, on average 20.57% of strains carried altered amino acid sequences in SVR within individuals. Four translated sequences had nonsense mutations to produce truncated proteins. These results suggest that there are multiple genotypes colonizing in a cecum and the occurrence of truncated FlaA protein may represent a novel mechanism for evasion of adaptive immune responses.
Collapse
Affiliation(s)
- Pallavi Singh
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
17
|
Mertins S, Allan BJ, Townsend HG, Köster W, Potter AA. Role of motAB in adherence and internalization in polarized Caco-2 cells and in cecal colonization of Campylobacter jejuni. Avian Dis 2013; 57:116-22. [PMID: 23678739 DOI: 10.1637/10235-050412-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni, a gram-negative motile bacterium commonly found in the chicken gastrointestinal tract, is one of the leading causes of bacterial gastroenteritis in humans worldwide. An intact and functional flagellum is important for C. jejuni virulence and colonization. To understand the role of C. jejuni motility in adherence and internalization in polarized Caco-2 cells and in cecal colonization of chickens we constructed a C. jejuni NCTC11168 V1 deltamotAB mutant. The motAB genes code for the flagellar motor, which enables the rotation of the flagellum. The nonmotile deltamotAB mutant expressed a full-length flagellum, which allowed us to differentiate between the roles of full-length flagella and motility in the ability of C. jejuni to colonize. To study the adherence and invasion abilities of the C. jejuni deltamotAB mutant we chose to use polarized Caco-2 cells, which are thought to be more representative of in vivo intestinal cell architecture and function. Although the C. jejuni deltamotAB mutant adhered significantly better than the wild type to the Caco-2 cells, we observed a significant reduction in the ability to invade the cells. In this study we obtained evidence that the flagellar rotation triggers C. jejuni invasion into polarized Caco-2 cells and we believe that C. jejuni is propelled into the cell with a drill-like rotation. The deltamotAB mutant was also tested for its colonization potential in a 1-day-old chicken model. The nonmotile C. jejuni deltamotAB mutant was not able to colonize any birds at days 3 and 7, suggesting that motility is essential for C. jejuni colonization.
Collapse
Affiliation(s)
- Sonja Mertins
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
18
|
Al-Adwani SR, Crespo R, Shah DH. Production and evaluation of chicken egg-yolk-derived antibodies against Campylobacter jejuni colonization-associated proteins. Foodborne Pathog Dis 2013; 10:624-31. [PMID: 23742296 DOI: 10.1089/fpd.2012.1313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Campylobacter jejuni is one of the most important causes of foodborne gastroenteritis. Chickens are considered a reservoir host of C. jejuni, and epidemiological studies have shown that contaminated chicken meat is a primary source of human infection. The objective of this study was to produce chicken egg-yolk-derived antibody (IgY) against the five C. jejuni colonization-associated proteins or CAPs (CadF, FlaA, MOMP, FlpA, and CmeC). Recombinant C. jejuni CAPs were expressed in Escherichia coli and were purified by affinity chromatography. Specific-pathogen-free laying hens were hyperimmunized with each recombinant CAP to induce production of α-CAP-specific IgY. Egg yolks were collected from immunized and nonimmunized hens and were lyophilized to obtain egg-yolk powder (EYP) with or without α-C. jejuni CAP-specific IgY. IgY was purified from EYP, and the antibody response in serum and egg yolk was tested by indirect enzyme-linked immunosorbent assay. The α-C. jejuni CAP-specific IgY levels were significantly (p<0.05) higher in both serum and EYP obtained from immunized hens as compared with the nonimmunized hens. Each α-C. jejuni CAP-specific IgY reacted with the C. jejuni cells and recombinant CAPs as detected by immunofluorescence microscopy and Western blot assays, respectively. We also show that α-CadF, α-MOMP, and α-CmeC IgY significantly reduced adherence of C. jejuni to the chicken hepatocellular carcinoma (LMH) cells, suggesting that these α-C. jejuni CAP-specific IgY may be useful as a passive immunotherapeutic to reduce C. jejuni colonization in chickens.
Collapse
Affiliation(s)
- Salma R Al-Adwani
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
19
|
Sirianni A, Kaakoush NO, Raftery MJ, Mitchell HM. The pathogenic potential of Helicobacter pullorum: possible role for the type VI secretion system. Helicobacter 2013; 18:102-11. [PMID: 23067230 DOI: 10.1111/hel.12009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pullorum is a putative enterohepatic pathogen that has been associated with hepatobiliary and gastrointestinal diseases in chickens and in humans. The pathogenic potential of H. pullorum NCTC 12826 was investigated. METHODS Adherence and gentamicin protection assays and scanning electron microscopy were performed to quantitate and visualise H. pullorum adherence and invasion. Proteomics coupled with mass spectrometry was employed to characterise the secretome of H. pullorum. RESULTS Helicobacter pullorum was able to adhere to the Caco-2 intestinal epithelial cell line with a mean attachment value of 1.98 ± 0.16% and invade Caco-2 cells with a mean invasion value of 0.25 ± 0.02%. The in vitro adherence and invasion assays were confirmed with scanning electron microscopy, which showed that H. pullorum can adhere to host cells through flagellum-microvillus interaction and invade causing a membrane-ruffling effect. One hundred and thirty-seven proteins were identified, of which 33 were bioinformatically predicted to be secreted. Further functional classifications revealed six putative virulence and colonisation factors, which included cell-binding factor 2, flagellin, secreted protein Hcp, valine-glycine repeat protein G, a type VI secretion protein, and a protease. Protein threading of H. pullorum Hcp and subsequent 3D-Blast searches revealed structural similarities between Hcp and endocytic vesicle coat proteins, suggesting the type VI secretion system of H. pullorum may interact with endocytic vesicles. CONCLUSIONS This study has shown that H. pullorum has the ability to adhere to and invade human cells and secrete factors that may contribute to the pathogenic potential of H. pullorum.
Collapse
Affiliation(s)
- Andrea Sirianni
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | |
Collapse
|
20
|
EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect Immun 2012. [PMID: 23184526 DOI: 10.1128/iai.01046-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Campylobacter jejuni is a natural commensal of the avian intestinal tract. However, the bacterium is also the leading cause of acute bacterial diarrhea worldwide and is implicated in development of Guillain-Barré syndrome. Like many bacterial pathogens, C. jejuni assembles complex surface structures that interface with the surrounding environment and are involved in pathogenesis. Recent work in C. jejuni identified a gene encoding a novel phosphoethanolamine (pEtN) transferase, EptC (Cj0256), that plays a promiscuous role in modifying the flagellar rod protein, FlgG; the lipid A domain of lipooligosaccharide (LOS); and several N-linked glycans. In this work, we report that EptC catalyzes the addition of pEtN to the first heptose sugar of the inner core oligosaccharide of LOS, a fourth enzymatic target. We also examine the role pEtN modification plays in circumventing detection and/or killing by host defenses. Specifically, we show that modification of C. jejuni lipid A with pEtN results in increased recognition by the human Toll-like receptor 4-myeloid differentiation factor 2 (hTLR4-MD2) complex, along with providing resistance to relevant mammalian and avian antimicrobial peptides (i.e., defensins). We also confirm the inability of aberrant forms of LOS to activate Toll-like receptor 2 (TLR2). Most exciting, we demonstrate that strains lacking eptC show decreased commensal colonization of chick ceca and reduced colonization of BALB/cByJ mice compared to wild-type strains. Our results indicate that modification of surface structures with pEtN by EptC is key to its ability to promote commensalism in an avian host and to survive in the mammalian gastrointestinal environment.
Collapse
|
21
|
Haag LM, Fischer A, Otto B, Grundmann U, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. Campylobacter jejuni infection of infant mice: acute enterocolitis is followed by asymptomatic intestinal and extra-intestinal immune responses. Eur J Microbiol Immunol (Bp) 2012; 2:2-11. [PMID: 24611115 DOI: 10.1556/eujmi.2.2012.1.2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/07/2012] [Indexed: 01/20/2023] Open
Abstract
Campylobacter (C.) jejuni is among the leading bacterial agents causing enterocolitis worldwide. Despite the high prevalence of C. jejuni infections and its significant medical and economical consequences, intestinal pathogenesis is poorly understood. This is mainly due to the lack of appropriate animal models. In the age of 3 months, adult mice display strong colonization resistance (CR) against C. jejuni. Previous studies underlined the substantial role of the murine intestinal microbiota in maintaining CR. Due to the fact that the host-specific gut flora establishes after weaning, we investigated CR against C. jejuni in 3-week-old mice and studied intestinal and extra-intestinal immunopathogenesis as well as age dependent differences of the murine colon microbiota. In infant animals infected orally immediately after weaning C. jejuni strain B2 could stably colonize the gastrointestinal tract for more than 100 days. Within six days following infection, infant mice developed acute enterocolitis as indicated by bloody diarrhea, colonic shortening, and increased apoptotic cell numbers in the colon mucosa. Similar to human campylobacteriosis clinical disease manifestations were self-limited and disappeared within two weeks. Interestingly, long-term C. jejuni infection was accompanied by distinct intestinal immune and inflammatory responses as indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils, as well as apoptotic cells in the colon mucosa. Strikingly, C. jejuni infection also induced a pronounced influx of immune cells into extra-intestinal sites such as liver, lung, and kidney. Furthermore, C. jejuni susceptible weaned mice harbored a different microbiota as compared to resistant adult animals. These results support the essential role of the microflora composition in CR against C. jejuni and demonstrate that infant mouse models resemble C. jejuni mediated immunopathogenesis including the characteristic self-limited enterocolitis in human campylobacteriosis. Furthermore, potential clinical and immunological sequelae of chronic C. jejuni carriers in humans can be further elucidated by investigation of long-term infected infant mice. The observed extraintestinal disease manifestations might help to unravel the mechanisms causing complications such as reactive arthritis or Guillain-Barré syndrome.
Collapse
|
22
|
Rubinchik S, Seddon A, Karlyshev AV. Molecular mechanisms and biological role of Campylobacter jejuni attachment to host cells. Eur J Microbiol Immunol (Bp) 2012; 2:32-40. [PMID: 24611119 DOI: 10.1556/eujmi.2.2012.1.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 01/13/2023] Open
Abstract
Adhesion to host cells is an important step in pathogenesis of Campylobacter jejuni, which is the most prevalent bacterial cause of human gastroenteritis worldwide. In contrast to other bacteria such as E. coli and Salmonella, adherence of C. jejuni is not mediated by fimbria or pili. A number of C. jejuni adhesion-related factors have been described. However, the results obtained by different researchers in different laboratories are often contradictory and inconclusive, with only some of the factors described being confirmed as true adhesins. In this review, we present the current state of studies on the mechanisms of attachment of C. jejuni to host cells.
Collapse
Affiliation(s)
- S Rubinchik
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| | - A Seddon
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| | - A V Karlyshev
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| |
Collapse
|
23
|
Ganan M, Silván J, Carrascosa A, Martínez-Rodríguez A. Alternative strategies to use antibiotics or chemical products for controlling Campylobacter in the food chain. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Duan Q, Zhou M, Zhu L, Zhu G. Flagella and bacterial pathogenicity. J Basic Microbiol 2012; 53:1-8. [PMID: 22359233 DOI: 10.1002/jobm.201100335] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 10/22/2011] [Indexed: 01/19/2023]
Abstract
As locomotive organelles, flagella allow bacteria to move toward favorable environments. A flagellum consists of three parts: the basal structure (rotary motor), the hook (universal joint), and the filament (helical propeller). For ages, flagella have been generally regarded as important virulence factors, mainly because of their motility property. However, flagella are getting recognized to play multiple roles with more functions besides motility and chemotaxis. Recent evidence has pinpointed that the bacterial flagella participate in many additional processes including adhesion, biofilm formation, virulence factor secretion, and modulation of the immune system of eukaryotic cells. This mini-review summarizes data from recent studies that elucidated how flagella, as a virulence factor, contribute to bacterial pathogenicity.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | |
Collapse
|
25
|
King V, Wassenaar T, Van Der Zeijst BAM, Newell DG. Variations inCampylobacter jejuniFlagellin, and Flagellin Genes, DuringIn VivoandIn VitroPassage. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609109140134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- V. King
- Department of Biological Sciences, North East Surrey College of Technology, Reigate Road, EweII, Surrey, KT17 3DS, UK
| | - T. Wassenaar
- Department of Bacteriology of the Institute of Infectious Diseases and Immunology, School of Veterinary Medicine, University of Utrecht, 3508, TD, Utrecht, The Netherlands
| | - B. A. M. Van Der Zeijst
- Department of Bacteriology of the Institute of Infectious Diseases and Immunology, School of Veterinary Medicine, University of Utrecht, 3508, TD, Utrecht, The Netherlands
| | - D. G. Newell
- Centre for Applied Microbiology and Research, Public Health Laboratory Service, Porton, Salisbury, SP4 OJG, UK
| |
Collapse
|
26
|
Hartley LE, Kaakoush NO, Ford JL, Korolik V, Mendz GL. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation. Gut Pathog 2009; 1:13. [PMID: 19555480 PMCID: PMC2715421 DOI: 10.1186/1757-4749-1-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/25/2009] [Indexed: 11/12/2022] Open
Abstract
Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR) cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.
Collapse
Affiliation(s)
- Lauren E Hartley
- Institute for Glycomics, Griffith University, Gold Coast, Australia.
| | | | | | | | | |
Collapse
|
27
|
Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. Infect Immun 2008; 76:4498-508. [PMID: 18644884 DOI: 10.1128/iai.01317-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli colonize and infect the intestinal epithelium and cause acute inflammatory diarrhea. The intestinal epithelium serves as a physical barrier to, and a sensor of, bacterial infection by secreting proinflammatory cytokines. This study examined the mechanisms for Campylobacter-induced secretion of the proinflammatory chemokine interleukin-8 (IL-8) by using polarized T84 human colonic epithelial cells as a model. C. jejuni increased the secretion of both IL-8 and tumor necrosis factor alpha (TNF-alpha) in polarized epithelial cells. However, the increase in IL-8 secretion was independent of Campylobacter-stimulated TNF-alpha secretion. Polarized T84 cells secreted IL-8 predominantly to the basolateral medium independently of the inoculation direction. While there was a significant correlation between the levels of IL-8 secretion and Campylobacter invasion, all 11 strains tested increased IL-8 secretion by polarized T84 cells despite their differences in adherence, invasion, and transcytosis efficiencies. Cell-free supernatants of Campylobacter-T84-cell culture increased IL-8 secretion to levels similar to those induced by live bacterial inoculation. The ability of the supernatant to induce IL-8 secretion was reduced by flagellum and cytolethal distending toxin (CDT) gene mutants, treatment of the supernatant with protease K or heat, or treatment of T84 cells with the Toll-like receptor (TLR) inhibitor MyD88 inhibitory peptide or chloroquine. NF-kappaB inhibitors or cdtB mutation plus MyD88 inhibitor, but not flaA cdtB double mutations, abolished the ability of the supernatant to induce IL-8 secretion. Taken together, our results demonstrate that Campylobacter-induced IL-8 secretion requires functional flagella and CDT and depends on the activation of NF-kappaB through TLR signaling and CDT in human intestinal epithelial cells.
Collapse
|
28
|
van Alphen LB, Bleumink-Pluym NMC, Rochat KD, van Balkom BWM, Wösten MMSM, van Putten JPM. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell Microbiol 2008; 10:53-66. [PMID: 18052944 DOI: 10.1111/j.1462-5822.2007.01014.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency.
Collapse
Affiliation(s)
- Lieke B van Alphen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Fernando U, Biswas D, Allan B, Attah-Poku S, Willson P, Valdivieso-Garcia A, Potter AA. Serological assessment of synthetic peptides of Campylobacter jejuni NCTC11168 FlaA protein using antibodies against multiple serotypes. Med Microbiol Immunol 2007; 197:45-53. [PMID: 17704944 DOI: 10.1007/s00430-007-0058-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Indexed: 11/25/2022]
Abstract
The flagellum of Campylobacter jejuni is not only responsible for initiating colonization of the gastrointestinal tract of host animals but is also a major antigen that induces protective immune responses. However, protection is limited to the homologous strain and the ability to protect against multiple serotypes has yet to be determined. In this study, we have shown that FlaA is an immunodominant protein on NCTC11168 CJ1 flagella and we mapped the immunoreactive epitopes on the protein by probing a series of overlapping synthetic peptides spanning the entire sequence with sera against multiple C. jejuni serotypes. Amino acid residues 176-205 (P8), 376-405 (P16) and 501-530 (P21) were immunodominant and cross-reactive. The mucosal IgA in the intestinal secretions of CJ1-infected birds reacted significantly with peptides P16 and P21 indicating that the specificity of the mucosal response is different from the systemic response. Antisera raised against formalin-killed CJ1 cells and purified flagellin showed positive reactivity with a subset of peptides identified by antisera against live C. jejuni. This study provides insight into the specificity of the host immune responses to the FlaA protein of C. jejuni and suggests that these sequences merit further testing for their immunogenicity and potential as subunit vaccine candidates for multiple serotypes.
Collapse
Affiliation(s)
- Ursla Fernando
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | | | | | | | | | | | | |
Collapse
|
30
|
Malik-Kale P, Raphael BH, Parker CT, Joens LA, Klena JD, Quiñones B, Keech AM, Konkel ME. Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism's virulence potential. Appl Environ Microbiol 2007; 73:3123-36. [PMID: 17369342 PMCID: PMC1907099 DOI: 10.1128/aem.01399-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 02/28/2007] [Indexed: 11/20/2022] Open
Abstract
Phenotypic and genotypic evidence suggests that not all Campylobacter jejuni isolates are pathogenic for humans. We hypothesized that differences in gene content or gene expression alter the degree of pathogenicity of C. jejuni isolates. A C. jejuni isolate (Turkey) recovered from a turkey and a second C. jejuni isolate (CS) recovered from a chicken differed in their degrees of in vitro and in vivo virulence. The C. jejuni Turkey isolate invaded INT 407 human epithelial cells and secreted the Cia (Campylobacter invasion antigen) proteins, while the C. jejuni CS isolate was noninvasive for human epithelial cells and did not secrete the Cia proteins. Newborn piglets inoculated with the C. jejuni Turkey isolate developed more severe clinical signs of campylobacteriosis than piglets inoculated with the C. jejuni CS isolate. Additional work revealed that flagellin was not expressed in the C. jejuni CS isolate. Microarray and real-time reverse transcription-PCR analyses revealed that all flagellar class II genes were significantly downregulated in the C. jejuni CS isolate compared to the C. jejuni Turkey isolate. Finally, nucleotide sequencing of the flgR gene revealed the presence of a single residue that was different in the FlgR proteins of the C. jejuni Turkey and CS isolates. Complementation of the C. jejuni CS isolate with a wild-type copy of the flgR gene restored the isolate's motility. Collectively, these findings support the hypothesis that critical differences in gene content or gene expression can alter the pathogenic potential of C. jejuni isolates.
Collapse
Affiliation(s)
- Preeti Malik-Kale
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4233, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Grant AJ, Woodward J, Maskell DJ. Development of anex vivoorgan culture model using human gastro-intestinal tissue andCampylobacter jejuni. FEMS Microbiol Lett 2006; 263:240-3. [PMID: 16978363 DOI: 10.1111/j.1574-6968.2006.00449.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Campylobacter jejuni is an important food-borne pathogen. However, relatively little is understood regarding its pathogenesis, and research is hampered by the lack of a suitable model. Recently, a number of groups have developed assays to study the pathogenic mechanisms of C. jejuni using cell culture models. Here, we report the development of an ex vivo organ culture model, allowing for the maintenance of intestinal mucosal tissue, to permit more complex host-bacterium interactions to be studied. Ex vivo organ culture highlights the propensity for C. jejuni to adhere to mucosal tissue via the flagellum, either as discrete colonies or as multicellular units.
Collapse
Affiliation(s)
- Andrew J Grant
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
32
|
Zheng J, Meng J, Zhao S, Singh R, Song W. Adherence to and invasion of human intestinal epithelial cells by Campylobacter jejuni and Campylobacter coli isolates from retail meat products. J Food Prot 2006; 69:768-74. [PMID: 16629018 DOI: 10.4315/0362-028x-69.4.768] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The abilities of 34 Campylobacter jejuni and 9 Campylobacter coli isolates recovered from retail meats to adhere to and invade human intestinal epithelial T84 cells were examined and compared with those of a well-characterized human clinical strain, C. jejuni 81-176, to better assess the pathogenic potential of these meat isolates. The meat isolates exhibited a wide range of adherence and invasion abilities; a few of the isolates adhered to and invaded T84 cells almost as well as did C. jejuni 81-176. There was a significant correlation between the adherence ability and the invasion ability of the Campylobacter isolates. The presence of eight putative virulence genes in these Campylobacter isolates that are potentially responsible for adherence and invasion or that encode cytolethal distending toxin was determined using PCR. All Campylobacter isolates possessed flaA, cadF, pldA, cdtA, cdtB, and cdtC, and most (91%) also contained the ciaB gene. However, the virB11 gene, carried by virulence plasmid pVir, was absent in almost all the Campylobacter isolates. Our findings indicated that C. jejuni and C. coli present in retail meat were diverse in their ability to adhere to and invade human intestinal epithelial cells and that the putative virulence genes were widespread among the Campylobacter isolates. Thus, despite of the presence of the putative virulence genes, only some but not all Campylobacter strains isolated from retail meat can effectively invade human intestinal epithelial cells in vitro.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Nutrition & Food Science, University of Maryland, College Park 20742, USA
| | | | | | | | | |
Collapse
|
33
|
Nachamkin I, Angeletti RH, Prystowsky MB. Biochemical similarity among serologically distinct flagellins of Campylobacter jejuni. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1988.tb02987.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Goon S, Ewing CP, Lorenzo M, Pattarini D, Majam G, Guerry P. A sigma28-regulated nonflagella gene contributes to virulence of Campylobacter jejuni 81-176. Infect Immun 2006; 74:769-72. [PMID: 16369037 PMCID: PMC1346654 DOI: 10.1128/iai.74.1.769-772.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Campylobacter jejuni 81-176 mutant in Cj0977 was fully motile but reduced >3 logs compared to the parent in invasion of intestinal epithelial cells in vitro. The mutant was also attenuated in a ferret diarrheal disease model. Expression of Cj0977 protein was dependent on a minimal flagella structure.
Collapse
Affiliation(s)
- Scarlett Goon
- Enteric Diseases Dept., Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
35
|
MacCallum A, Hardy SP, Everest PH. Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. MICROBIOLOGY-SGM 2005; 151:2451-2458. [PMID: 16000735 DOI: 10.1099/mic.0.27950-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Caco-2 cells are models of absorptive enterocytes. The net transport of fluid from apical to basolateral surfaces results in 'domes' forming in differentiated monolayers. Here, the effect of Campylobacter jejuni on this process has been examined. C. jejuni caused no changes in short-circuit current upon infection of Caco-2 cell monolayers in Ussing chambers. Thus, no active secretory events could be demonstrated using this model. It was therefore hypothesized that C. jejuni could inhibit the absorptive function of enterocytes and that this may contribute to diarrhoeal disease. C. jejuni infection of fluid-transporting ('doming') Caco-2 cells resulted in a significant reduction in dome number, which correlated with a decrease in tight junction integrity in infected monolayers, when measured as transepithelial electrical resistance. Defined mutants of C. jejuni also reduced dome numbers in infected monolayers. C. jejuni also altered the distribution of the tight junction protein occludin within cell monolayers. The addition to monolayers of extracellular gentamicin prevented these changes, indicating the contribution of extracellular bacteria to this process. Thus, tight junction integrity is required for fluid transport in Caco-2 cell monolayers as leaky tight junctions cannot maintain support of transported fluid at the basolateral surface of infected cell monolayers. Inhibition of absorptive cell function, changes in epithelial resistance and rearrangement of tight junctional proteins such as occludin represent a potential diarrhoeal mechanism of C. jejuni.
Collapse
Affiliation(s)
- Amanda MacCallum
- Institute of Comparative Medicine, University of Glasgow Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Simon P Hardy
- Department of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - Paul H Everest
- Institute of Comparative Medicine, University of Glasgow Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
36
|
Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 2005; 73:1797-810. [PMID: 15731081 PMCID: PMC1064905 DOI: 10.1128/iai.73.3.1797-1810.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is the most common bacterial cause of diarrhea worldwide. To colonize the gut and cause infection, C. jejuni must successfully compete with endogenous microbes for nutrients, resist host defenses, persist in the intestine, and ultimately infect the host. These challenges require the expression of a battery of colonization and virulence determinants. In this study, the intestinal lifestyle of C. jejuni was studied using whole-genome microarray, mutagenesis, and a rabbit ileal loop model. Genes associated with a wide range of metabolic, morphological, and pathological processes were expressed in vivo. The in vivo transcriptome of C. jejuni reflected its oxygen-limited, nutrient-poor, and hyperosmotic environment. Strikingly, the expression of several C. jejuni genes was found to be highly variable between individual rabbits. In particular, differential gene expression suggested that C. jejuni extensively remodels its envelope in vivo by differentially expressing its membrane proteins and by modifying its peptidoglycan and glycosylation composition. Furthermore, mutational analysis of seven genes, hspR, hrcA, spoT, Cj0571, Cj0178, Cj0341, and fliD, revealed an important role for the stringent and heat shock response in gut colonization. Overall, this study provides new insights on the mechanisms of gut colonization, as well as possible strategies employed by Campylobacter to resist or evade the host immune responses.
Collapse
Affiliation(s)
- Alain Stintzi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt-Ott R, Pohl S, Burghard S, Weig M, Gross U. Identification and characterization of a major subgroup of conjugative Campylobacter jejuni plasmids. J Infect 2005; 50:12-21. [PMID: 15603835 DOI: 10.1016/j.jinf.2004.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2004] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Enterocyte invasion of Campylobacter jejuni 81-176 has been reported to depend upon the virulence plasmid pVir. The objective of this study was to determine the prevalence of pVir in clinical C. jejuni isolates, to investigate DNA homologies between C. jejuni plasmids and the significance of plasmids for C. jejuni invasiveness. METHODS DNA homologies between C. jejuni plasmids were studied by southern blot hybridization. C. jejuni invasion into human intestinal Caco-2 cells was assessed in a gentamicin exclusion assay. RESULTS Twenty-nine percent of C. jejuni isolated from patients with bloody or watery diarrhoea harboured plasmids of various sizes. One plasmid (7%) was a pVir homologue whereas, the majority of the plasmids (53%) belonged to a subgroup distinct from pVir. The plasmids of this novel subgroup share extensive DNA sequence homology with each other, including homologues to so-called invasion-promoting genes. However, conjugative transfer of these plasmids clearly did not increase invasiveness of plasmidless recipient C. jejuni strains. CONCLUSION This study indicates that only a small proportion of C. jejuni strains carry the virulence factor pVir and that at least one other distinctive group of plasmids in C. jejuni exists, which does not seem to be associated with invasiveness.
Collapse
Affiliation(s)
- Ruprecht Schmidt-Ott
- Department of Bacteriology, University of Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Kassaify ZG, Mine Y. Nonimmunized egg yolk powder can suppress the colonization of Salmonella typhimurium, Escherichia coli O157:H7, and Campylobacter jejuni in laying hens. Poult Sci 2004; 83:1497-506. [PMID: 15384899 DOI: 10.1093/ps/83.9.1497] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
If colonized, poultry shed enteric pathogens in the feces. Of those that colonize poultry Salmonella spp., Campylobacter jejuni (C. jejuni), and Escherichia coli (E. coli) O157:H7 are the most concern to the industry. The authors previously discovered that the introduction of 5% dried nonimmunized egg yolk powder in the regular feed could eliminate and prevent Salmonella enteritidis intestinal colonization of laying hens. Hence, the efficacy of nonimmunized dried egg yolk powder supplement in controlling the colonization of laying hens with Salmonella typhimurium (S. typhimurium), C. jejuni, and E. coli O157:H7 was investigated in this study. The 10% (wt/ wt) egg yolk powder eliminated S. typhimurium after 2 wk of feeding and the 5 and 7.5% (wt/wt) supplements significantly (P < 0.05) reduced the frequency of colonization. Similarly, 7.5 and 10% egg yolk powder reduced the colonization of C. jejuni and E. coli O157:H7 significantly (P < 0.05) after 1 wk of feeding. In the prevention trial, pathogen-free chickens were fed supplemented feed (10% egg yolk powder) for 4 wk and were then infected. S. typhimurium was prevented from colonizing the intestine throughout the 4-wk test, and E. coli O157:H7 colonization was delayed for 2 wk. C. jejuni and E. coli O157:H7 populations in the intestine were significantly (P < 0.05) suppressed by egg yolk powder supplementation throughout the test. None of the supplement concentrations affected BW or the mean weight and number of the eggs laid per hen. At the end of the study, the organisms were absent or significantly (P < 0.05) reduced in the intestine, ovary, oviduct, and spleen of hens fed the egg yolk powder treatment. This study indicates that nonimmunized egg yolk powder is able to reduce the frequency of colonization of foodborne pathogens and prevent these organisms from colonizing the intestinal tract. Addition of egg yolk powder to the regular feed at a concentration of 7.5 to 10% (wt/wt) may be a simple means of reducing or inhibiting S. typhimurium, C. jejuni, and E. coli O157:H7 colonization in laying hens.
Collapse
Affiliation(s)
- Z G Kassaify
- University of Guelph, Department of Food Science, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
39
|
Song YC, Jin S, Louie H, Ng D, Lau R, Zhang Y, Weerasekera R, Al Rashid S, Ward LA, Der SD, Chan VL. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol 2004; 53:541-53. [PMID: 15228533 DOI: 10.1111/j.1365-2958.2004.04175.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type III secretion systems identified in bacterial pathogens of animals and plants transpose effectors and toxins directly into the cytosol of host cells or into the extracellular milieu. Proteins of the type III secretion apparatus are conserved among diverse and distantly related bacteria. Many type III apparatus proteins have homologues in the flagellar export apparatus, supporting the notion that type III secretion systems evolved from the flagellar export apparatus. No type III secretion apparatus genes have been found in the complete genomic sequence of Campylobacter jejuni NCTC11168. In this study, we report the characterization of a protein designated FlaC of C. jejuni TGH9011. FlaC is homologous to the N- and C-terminus of the C. jejuni flagellin proteins, FlaA and FlaB, but lacks the central portion of these proteins. flaC null mutants form a morphologically normal flagellum and are highly motile. In wild-type C. jejuni cultures, FlaC is found predominantly in the extracellular milieu as a secreted protein. Null mutants of the flagellar basal rod gene (flgF) and hook gene (flgE) do not secrete FlaC, suggesting that a functional flagellar export apparatus is required for FlaC secretion. During C. jejuni infection in vitro, secreted FlaC and purified recombinant FlaC bind to HEp-2 cells. Invasion of HEp-2 cells by flaC null mutants was reduced to a level of 14% compared with wild type, suggesting that FlaC plays an important role in cell invasion.
Collapse
Affiliation(s)
- Y C Song
- Department of Medical Genetics and Microbiology, Medical Science Building, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology (Reading) 2004; 150:1957-1964. [PMID: 15184581 DOI: 10.1099/mic.0.26721-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has recently been shown that the enteropathogenCampylobacter jejunihas anN-linked generalproteinglycosylation pathway (Pgl) that modifies many of the organism's proteins. To determine the role of theN-linked general glycosylation inC jejuni, the authors studied thepglHgene, which shows high similarity to a family of sugar transferases.pglHmutants were constructed in strains 81116 and 11168H. Both mutants were shown to be deficient in their ability to glycosylate a number ofC. jejuniproteins, but their lipooligosaccharide and capsule were unaffected. ThepglHmutants had significantly reduced ability to adhere to and invade human epithelial Caco-2 cells. Additionally, the 81116pglHmutant was severely affected in its ability to colonize chicks. These results suggest that glycosylation is important for the attachment ofC. jejunito human and chicken host cells and imply a role for glycoproteins in the pathogenesis ofC. jejuni.
Collapse
Affiliation(s)
- A V Karlyshev
- London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London EC1A 7HT, UK
| | - P Everest
- Department of Veterinary Pathology, Glasgow University, Bearsden, Glasgow G61 1QH, UK
| | - D Linton
- London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London EC1A 7HT, UK
| | - S Cawthraw
- Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - D G Newell
- Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - B W Wren
- London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London EC1A 7HT, UK
| |
Collapse
|
41
|
Allen KJ, Griffiths MW. Use of luminescent Campylobacter jejuni ATCC 33291 to assess eggshell colonization and penetration in fresh and retail eggs. J Food Prot 2001; 64:2058-62. [PMID: 11770638 DOI: 10.4315/0362-028x-64.12.2058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A luminescent phenotype in Campylobacter jejuni ATCC 33291, generated by a transcriptional fusion between the C. jejuni flaA sigma28 promoter and the luxCDABE genes of Xenorhabdus luminescens on plasmid pRYluxCDABE, was used to examine colonization and penetration of fresh and retail eggs. C. jejuni colonized both fresh and retail eggs at 37, 40, and 42 degrees under microaerophilic conditions. Fresh eggs were more heavily colonized than retail eggs. Under aerobic conditions, fresh eggs were colonized at similar levels for all three temperatures. C. jejuni was found to penetrate the eggshell in 2 of 48 (4.2%) fresh eggs assessed. Although the lux+ phenotype did not provide an effective means of predicting penetration sites, it was effective at visualizing eggshell colonization. Also, it effectively demonstrated the organism's opportunistic nature, as eggshell surfaces with flaws and slight cracks were extensively colonized and easily detected by a photon counting charge-coupled device camera. Using scanning electron microscopy, C. jejuni ATCC 33291 was visualized on both the exterior and interior surfaces of the egg membranes indicating penetration of these barriers.
Collapse
Affiliation(s)
- K J Allen
- Department of Food Science, University of Guelph, Ontario, Canada.
| | | |
Collapse
|
42
|
Allen KJ, Griffiths MW. Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett 2001; 205:43-8. [PMID: 11728714 DOI: 10.1111/j.1574-6968.2001.tb10923.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effect of environmental and chemotactic stimuli was assessed using a fusion between the Campylobacter jejuni flaA sigma(28) promoter and a promoterless luxCDABE cassette on pRYluxCDABE. Environmental stimuli relevant to the enteric environment were found to modulate flaA promoter activity. pH, bovine bile, deoxycholate, L-fucose and osmolarity up-regulated the flaA promoter while viscosity resulted in down-regulation. C. jejuni chemotactic effectors, including the amino acids aspartate and glutamate and the organic acids citrate, fumarate, alpha-ketoglutarate and succinate up-regulated the flaA promoter. Proline, which does not elicit a chemotactic response, up-regulated the flaA promoter.
Collapse
Affiliation(s)
- K J Allen
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
43
|
Smith DG, Lawson GH. Lawsonia intracellularis: getting inside the pathogenesis of proliferative enteropathy. Vet Microbiol 2001; 82:331-45. [PMID: 11506927 DOI: 10.1016/s0378-1135(01)00397-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although proliferative enteropathy (PE) has been recognised for several decades, Lawsonia intracellularis, the aetiological agent, was identified formally in only 1995. This organism is both highly fastidious and obligately intracellular bacterium, characteristics which have inevitably restricted investigations in all aspects of its biology. Despite these limitations, advances have been made in characterising and understanding L. intracellularis-host interaction both in vivo and in vitro. Based upon evidence provided by mainly pathological and histological investigations conducted to date, we review salient features of our current understanding of processes involved throughout the course of infection by this unique pathogen.
Collapse
Affiliation(s)
- D G Smith
- Zoonotic and Animal Pathogens Research Laboratory, Department of Medical Microbiology, University of Edinburgh, Teviot Place, Scotland EH8 9AG, Edinburgh, UK.
| | | |
Collapse
|
44
|
van Vliet AH, Ketley JM. Pathogenesis of enteric Campylobacter infection. SYMPOSIUM SERIES (SOCIETY FOR APPLIED MICROBIOLOGY) 2001:45S-56S. [PMID: 11422560 DOI: 10.1046/j.1365-2672.2001.01353.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A H van Vliet
- Department of Medical Microbiology, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Abstract
Campylobacter jejuni and closely related organisms are major causes of human bacterial enteritis. These infections can lead to extraintestinal disease and severe long-term complications. Of these, neurological damage, apparently due to the immune response of the host, is the most striking. This review examines current knowledge of the pathophysiology of the organism. Diversity of C. jejuni isolates in genotypic and phenotypic characteristics now is recognized and clinically relevant examples are presented. Expected future directions are outlined.
Collapse
Affiliation(s)
- T M Wassenaar
- Johannes Gutenberg University, Institute of Medical Microbiology and Hygiene, Hochhaus am Augustusplatz, D-55101 Mainz, Germany
| | | |
Collapse
|
46
|
Loong Chan V, Louie H, Joe A. Expression of the flgFG operon of Campylobacter jejuni in Escherichia coli yields an extra fusion protein. Gene 1998; 225:131-41. [PMID: 9931471 DOI: 10.1016/s0378-1119(98)00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two Campylobacter jejuni genes with homology to the Escherichia coli flgF and flgG genes encoding two of the basal body rod proteins were isolated, and the nucleotide sequence was determined and analyzed. These two C. jejuni genes were shown, by Northern hybridization analysis, to function as a single operon (flgFG). Two transcriptional start sites were detected upstream of flgF, corresponding to the two RNA transcripts detected in the Northern blot. Western blot immunoassays using anti-FlgF and anti-FlgG antibodies demonstrated the synthesis of FlgF and FlgG proteins in C. jejuni and in Escherichia coli containing the C. jejuni flgF and flgG genes. Maxicell analysis and Western immunoblots using anti-FlgF antibodies to probe flgFG-encoded proteins in E. coli revealed the presence of a protein with a molecular mass of approximately the combined mass of the FlgF and FlgG proteins. Anti-FlgF antibodies detected in C. jejuni cell extracts the native FlgF protein and also a higher-molecular-weight protein that is likely encoded by the flgF and part of the flgG sequences.
Collapse
Affiliation(s)
- V Loong Chan
- Department of Medical Genetics and Microbiology, and Department of Laboratory Medicine and Pathobiology, University of Toronto, 150 College Street, Toronto, Ontario,
| | | | | |
Collapse
|
47
|
Abstract
Thirteen Campylobacter jejuni strains of human origin showed differing behaviours when analysed for their ability to bind the Caco-2 cell line in vitro, suggesting variations in genetic complements and/or regulation. We designed an oligonucleotide probe corresponding to a highly conserved part of adhesins from various Gram-negative bacteria. Among our laboratory collection, Southern hybridization has demonstrated that only a discrete number of strains harbour this sequence. The corresponding gene has been cloned from our prototype strain and sequence analysis has confirmed homology with Gram-negative bacterial adhesins. The ORF corresponded to 869 amino acids; we named this protein P95. Protein sequence similarity assessment demonstrated that this gene product belongs to the family of proteins including the filamentous haemagglutinin of Bordetella pertussis and the high-molecular-weight surface-exposed adhesins of Haemophilus influenzae. Comparison of adhesion and hybridization results emphasized the involvement of this gene in an essential pathogenic process of Campylobacter.
Collapse
Affiliation(s)
- K Kelle
- Faculté de Médecine de la Timone, Marseille, France
| | | | | |
Collapse
|
48
|
Fry BN, Korolik V, Ten Brinke JA, Pennings MTT, Zalm R, Teunis BJJ, Coloe PJ, van der Zeijst BAM. The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2049-2061. [PMID: 9720026 DOI: 10.1099/00221287-144-8-2049] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Most Campylobacter jejuni strains express lipo-oligosaccharides. Some strains also express lipopolysaccharides (LPS), with O-antigen-like carbohydrate repeats. C. jejuni 81116 expresses an LPS containing both lipo-oligosaccharides and O-antigen-like repeats, but nothing is known about the structure or sugar composition of these LPS species. A cosmid library of the genome of C. jejuni 81116 was constructed and probed with Campylobacter hyoilei genes involved in LPS synthesis. Five cosmids hybridized with the probe and two of these expressed C. jejuni 81116 LPS in Escherichia coli. By subcloning, a 16 kb DNA region was identified which contains the genetic information required to express C. jejuni LPS. DNA sequence analysis revealed 11 ORFs homologous to genes involved in LPS synthesis of other bacteria. They consisted of three homologues of sugar biosynthesis genes, two homologues of transport genes and six homologues of sugar transferases.
Collapse
Affiliation(s)
- Ben N Fry
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityYalelaan 1, 3584 CL UtrechtThe Netherlands
| | - Victoria Korolik
- Department of Applied BiologyRMIT GPO Box 2476V, Melbourne 3001Australia
| | - Janna A Ten Brinke
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityYalelaan 1, 3584 CL UtrechtThe Netherlands
| | | | - Robert Zalm
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityYalelaan 1, 3584 CL UtrechtThe Netherlands
| | - Bart J J Teunis
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityYalelaan 1, 3584 CL UtrechtThe Netherlands
| | - Peter J Coloe
- Department of Applied BiologyRMIT GPO Box 2476V, Melbourne 3001Australia
| | - Bernard A M van der Zeijst
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityYalelaan 1, 3584 CL UtrechtThe Netherlands
| |
Collapse
|
49
|
Abstract
Of all the virulence factors that were proposed for Campylobacter jejuni and related species to cause disease in humans, the discovery of toxin production was the most promising but led to a rather confusing and even disappointing stream of data. The discussion of whether proteinaceous exotoxins are relevant in disease remains open. One important reason for this lack of consensus is the anecdotal nature of the literature reports. To provide a basis for an unbiased opinion, this review compiles all described exotoxins, compares their reported properties, and provides a summary of animal model studies and clinical data. The toxins are divided into enterotoxins and cytotoxins and are sorted according to their biochemical properties. Since many Campylobacter toxins have been compared with toxins of other species, some key examples of the latter are also discussed. Future directions of toxin research that appear promising are defined.
Collapse
Affiliation(s)
- T M Wassenaar
- Institute of Medical Microbiology and Hygiene, University of Mainz, Germany.
| |
Collapse
|
50
|
Harmon KM, Ransom GM, Wesley IV. Differentiation of Campylobacter jejuni and Campylobacter coli by polymerase chain reaction. Mol Cell Probes 1997; 11:195-200. [PMID: 9232618 DOI: 10.1006/mcpr.1997.0104] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A multiplex PCR assay was developed using two primer sets for the identification and differentiation of Campylobacter coli and Campylobacter jejuni. Primer Set I amplifies a 460-bp fragment present in C. coli and C. jejuni. Set II amplifies a 160-bp target unique to C. jejuni. When the assay was performed on reference strains, amplification of C. coli yielded only the 460-bp fragment. Amplification of C. jejuni generated both the 160- and 460-bp fragments. Campylobacter field strains (n = 85) isolated from raw poultry were identified by PCR and by conventional biochemical methods. Species determination by the two methods agreed for 83 of the 85 isolates examined. By PCR, 23 were identified as C. coli and 62 as C. jejuni. One isolate was unidentifiable by biochemical testing. The PCR assay identified this isolated as C. coli. In addition, one strain which was identified as C. coli by biochemical testing was determined to be C. jejuni by PCR. The PCR assay offers an alternative to traditional biochemical typing methods for the identification and differentiation of C. coli and C. jejuni isolated from poultry. It is accurate, simple to perform, and can be completed within 8 h.
Collapse
Affiliation(s)
- K M Harmon
- Enteric Diseases and Food Safety Research Unit, USDA, Ames, IA 50010, USA
| | | | | |
Collapse
|