1
|
Nesbitt JE, Jaskiewicz JJ, Bean H, Toner M, Tessier SN, Sandlin RD. Cryogenic enrichment of Plasmodium falciparum gametocytes from spiked whole blood. Cryobiology 2024; 114:104810. [PMID: 38040049 PMCID: PMC10954416 DOI: 10.1016/j.cryobiol.2023.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Each individual cell type typically requires a unique set of conditions for optimal cryopreservation outcome, which relates to its specific response to cryoprotective agent (CPA) toxicity, osmotic behavior and sensitivity to ice crystallization. Cryopreservation of heterogenous cell populations is therefore exceedingly difficult as it requires separate and often conflicting conditions for each cell type. Conversely, these contrasting conditions could be utilized to favor cryogenic preference of a single cell population within a heterogenous sample, leading to its enrichment by elimination of remaining cells. To establish proof-of-concept for this overall approach, a protocol was developed for the cryogenic enrichment of Plasmodium falciparum gametocytes from whole blood. To accomplish this goal, we evaluated the effects of CPAs and cooling conditions during cryopreservation of whole blood samples spiked with P. falciparum gametocytes. We identified that cooling to -80 °C at a rate of -1 °C/min in the presence of 11 % glycerol selectively favors recovery of gametocytes. This protocol eliminates 95.3 ± 1.7 % of total blood cells and recovers 43.2 ± 6.5 % of parasites, leading to a 19-fold enrichment as assessed by microscopic examination of blood smears. This protocol is tunable, where gametocyte enrichment 900-fold may be feasible, however there is an apparent tradeoff in overall parasite recovery. Although translation of this protocol for point-of-care testing for malaria presents many challenges, the overall approach of cryogenic purification may prove useful for alternative diagnostic applications.
Collapse
Affiliation(s)
- Jenny E Nesbitt
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Justyna J Jaskiewicz
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Hailey Bean
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Mehmet Toner
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Rebecca D Sandlin
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA.
| |
Collapse
|
2
|
Dash R, Skillman KM, Pereira L, Mascarenhas A, Dass S, Walke J, Almeida A, Fernandes M, Gomes E, White J, Chery-Karschney L, Khandeparkar A, Rathod PK, Duraisingh MT, Kanjee U. Development of a Plasmodium vivax biobank for functional ex vivo assays. Malar J 2023; 22:250. [PMID: 37653486 PMCID: PMC10470152 DOI: 10.1186/s12936-023-04668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. METHODS In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either - 80 °C or liquid nitrogen were also compared. RESULTS Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7-10 years) storage at - 80 °C on parasite recovery, enrichment or viability was observed. CONCLUSIONS Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.
Collapse
Affiliation(s)
- Rashmi Dash
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ligia Pereira
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Anjali Mascarenhas
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jayashri Walke
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Anvily Almeida
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mezia Fernandes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Laura Chery-Karschney
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | | | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Abstract
The cryoprotective additives (CPAs) used in the frozen storage of microorganisms (viruses, bacteria, fungi, algae, and protozoa) include a variety of simple and more complex chemical compounds, but only a few of them have been used widely and with satisfactory results: these include dimethylsulfoxide (Me2SO), glycerol, blood serum or serum albumin, skimmed milk, peptone, yeast extract, saccharose, glucose, methanol, polyvinylpyrrolidone (PVP), sorbitol, and malt extract. Pairwise comparisons of the cryoprotective activity of the more common CPAs used in cryomicrobiology, based on published experimental reports, indicate that the most successful CPAs have been Me2SO, methanol, ethylene glycol, propylene glycol, and serum or serum albumin, while glycerol, polyethylene glycol, PVP, and sucrose are less successful, and other sugars, dextran, hydroxyethyl starch, sorbitol, and milk are the least effective. However, diols (as well as some other CPAs) are toxic for many microbes. Me2SO might be regarded as the most universally useful CPA, although certain other CPAs can sometimes yield better recoveries with particular organisms. The best CPA, or combination of CPAs, and the optimum concentration for a particular cryosensitive microorganism has to be determined empirically. This review aims to provide a summary of the main experimental findings with a wide range of additives and organisms. A brief discussion of mechanisms of CPA action is also included.
Collapse
Affiliation(s)
- Zdenek Hubálek
- Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences, Klásterní 2, CZ-69142 Valtice, Czech Republic.
| |
Collapse
|
4
|
Purmova J, Salazar LM, Espejo F, Torres MH, Cubillos M, Torres E, Lopez Y, Rodríguez R, Patarroyo ME. NMR structure of Plasmodium falciparum malaria peptide correlates with protective immunity. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1571:27-33. [PMID: 12031287 DOI: 10.1016/s0304-4165(02)00203-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apical membrane antigen-1 is an integral Plasmodium falciparum malaria parasite membrane protein. High activity binding peptides (HABPs) to human red blood cells (RBCs) have been identified in this protein. One of them (peptide 4313), for which critical binding residues have already been defined, is conserved and nonimmunogenic. Its critical binding residues were changed for amino acids having similar mass but different charge to change such immunological properties; these changes generated peptide analogues. Some of these peptide analogues became immunogenic and protective in Aotus monkeys.Three-dimensional models of peptide 4313 and three analogues having different immune characteristics, were calculated from nuclear magnetic resonance (NMR) experiments with distance geometry and restrained molecular dynamic methods. All peptides contained a beta-turn structure spanning amino acids 7 to 10, except randomly structured 4313. When analysing dihedral angle phi and psi values, distorted type III or III' turns were identified in the protective and/or immunogenic peptides, whilst classical type III turns were found for the nonimmunogenic nonprotective peptides. This data shows that some structural modifications may lead to induction of immunogenicity and/or protection, suggesting a new way to develop multicomponent, subunit-based malarial vaccines.
Collapse
Affiliation(s)
- Jindra Purmova
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rivera Z, Granados G, Pinto M, Varón D, Carvajal C, Chaves F, Calvo J, Rodríguez R, Guzmán F, Patarroyo ME. Double dimer peptide constructs are immunogenic and protective against Plasmodium falciparum in the experimental Aotus monkey model. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 59:62-70. [PMID: 11906608 DOI: 10.1046/j.1397-002x.2001.00001_957.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple antigen peptide constructs (MAPs) have been used to obtain defined multimeric peptide molecules useful in the development of possible synthetic malaria vaccines. In this context, a method was developed, named double dimer constructs (DDCs), involving the direct synthesis of a dimeric peptide with a C-terminal cysteine. A tetrameric molecule was then obtained by oxidation of sulfhydryl groups. Dimer synthesis was optimized using a Fmoc/tBu strategy, dimers were purified by HPLC, oxidized with DMSO and characterized by HPLC and MALDI-TOF-MS. The tetramers or DDCs obtained by this method were used as immunogens in the search for a possible malaria vaccine. It was found that they were immunogenic in the experimental Aotus monkey model, and were able to induce protective immunity when challenged experimentally with a highly infective Plasmodium falciparum malaria strain.
Collapse
Affiliation(s)
- Z Rivera
- Fundación Instituto de Inmunologia de Colombia (FIDIC), Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
McLean SA, MacDougall LM, Phillips RS. Early appearance of variant parasites in Plasmodium chabaudi infections. Parasite Immunol 1990; 12:97-103. [PMID: 2320383 DOI: 10.1111/j.1365-3024.1990.tb00939.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have shown that the recrudescence parasitaemias seen in mice infected with Plasmodium chabaudi AS strain are antigenically different from the infecting parent population. Antigenic differences between recrudescent and parent populations were demonstrated in a passive transfer assay. In the present study, using the same assay system, it has been shown that in some mice, variant parasites (i.e. different from the parent population) can be detected at a time when the primary parasitaemia is still patent but in remission. This is the first report in Plasmodium of variant parasites being detected during the course of a patent primary parasitaemic episode of an infection initiated with a cloned line.
Collapse
Affiliation(s)
- S A McLean
- Wellcome Laboratories for Experimental Parasitology, Glasgow University, Bearsden
| | | | | |
Collapse
|
8
|
Moril T, Matsui T, Iijima T, Abe N, Yoshizawa A, Chikatsune M, Watanabe M. Cryopreservation of Leucocytozoon caulleryi sporozoites. THE JOURNAL OF PROTOZOOLOGY 1988; 35:356-9. [PMID: 3183995 DOI: 10.1111/j.1550-7408.1988.tb04106.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Leucocytozoon caulleryi sporozoites that had been stored at -196 degrees C or -80 degrees C for 6 or 12 months in Eagle's minimum essential medium or Medium 199 supplemented with 5% glycerol and 10% chicken serum showed infectivity to chickens. Glycerol at a concentration of 10% and dimethyl sulfoxide at 10% and 5% were found to be ineffective cryoprotective agents for the low temperature preservation of sporozoites. Sporozoites isolated from the intact females of Culicoides arakawae, which had been stored at -80 degrees C for 6 or 12 months without cryoprotective agents, retained their infectivity. No differences were observed in the prepatent period, duration of parasitemia, and presence of serum-soluble antigens between chickens infected with frozen sporozoites and those infected with fresh sporozoites.
Collapse
Affiliation(s)
- T Moril
- Department of Parasitology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|