1
|
Barzola FN, Laiolo J, Cotelo C, Joray MB, Volpini X, Rivero MR, Rópolo AS, Touz MC, Feliziani C. Cytotoxic effects of ivermectin on Giardia lamblia: induction of apoptosis and cell cycle arrest. Front Microbiol 2024; 15:1484805. [PMID: 39545240 PMCID: PMC11560887 DOI: 10.3389/fmicb.2024.1484805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Giardia lamblia is a flagellated protozoan parasite causing giardiasis, a common intestinal infection characterized by diarrhea, abdominal cramps, and nausea. Treatments employed to combat this parasitic infection have remained unchanged for the past 40 years, leading to the emergence of resistant strains and prompting the search for new therapeutic agents. Methods This study investigated the cytotoxic effects of ivermectin (IVM) on G. lamblia trophozoites. We conducted dose-response experiments to assess IVM-induced cytotoxicity. We utilized various biochemical and ultrastructural analyses to explore the underlying mechanisms of cell death, including reactive oxygen species (ROS) production, DNA fragmentation, cell cycle arrest, and apoptosis markers. Results Our findings demonstrate that IVM induces dose-dependent cytotoxicity and triggers cell death pathways. We found that IVM treatment generates elevated levels of reactive oxygen species (ROS), DNA fragmentation, and arrests of trophozoites in the cell cycle's S phase. Additionally, ultrastructural analysis reveals morphological alterations consistent with apoptosis, such as cytoplasmic vacuolization, chromatin condensation, and tubulin distribution. Discussion The insights gained from this study may contribute to developing new therapeutic strategies against giardiasis, addressing the challenge posed by drug-resistant strains.
Collapse
Affiliation(s)
- Florencia Nicole Barzola
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica De Córdoba, Córdoba, Argentina
| | - Camilo Cotelo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Cientí-ficas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Ximena Volpini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología – Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - María Romina Rivero
- Instituto De Desarrollo Agroindustrial y De La Salud (IDAS-CONCIET), Universidad Nacional De Rio Cuarto, Rio Cuarto, Argentina
| | - Andrea Silvana Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Haldar T, Sardar SK, Ghosal A, Prasad A, Nakano YS, Dutta S, Nozaki T, Ganguly S. Andrographolide induced cytotoxicity and cell cycle arrest in Giardia trophozoites. Exp Parasitol 2024; 262:108773. [PMID: 38723845 DOI: 10.1016/j.exppara.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 μM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.
Collapse
Affiliation(s)
- Tapas Haldar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Sanjib K Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Akash Prasad
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Yumiko Saito Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India.
| |
Collapse
|
3
|
Suárez-Rico DO, Munguía-Huizar FJ, Cortés-Zárate R, Hernández-Hernández JM, González-Pozos S, Perez-Rangel A, Castillo-Romero A. Repurposing Terfenadine as a Novel Antigiardial Compound. Pharmaceuticals (Basel) 2023; 16:1332. [PMID: 37765140 PMCID: PMC10535608 DOI: 10.3390/ph16091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time-dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research.
Collapse
Affiliation(s)
- Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico;
| | - Francisco Javier Munguía-Huizar
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico; (J.M.H.-H.); (A.P.-R.)
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico;
| | - Armando Perez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico; (J.M.H.-H.); (A.P.-R.)
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Mexico; (F.J.M.-H.); (R.C.-Z.)
| |
Collapse
|
4
|
Wu JH, Lee JC, Ho CC, Chiu PW, Sun CH. A myeloid leukemia factor homolog is involved in tolerance to stresses and stress-induced protein metabolism in Giardia lamblia. Biol Direct 2023; 18:20. [PMID: 37095576 PMCID: PMC10127389 DOI: 10.1186/s13062-023-00378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The eukaryotic membrane vesicles contain specific sets of proteins that determine vesicle function and shuttle with specific destination. Giardia lamblia contains unknown cytosolic vesicles that are related to the identification of a homolog of human myeloid leukemia factor (MLF) named MLF vesicles (MLFVs). Previous studies suggest that MLF also colocalized with two autophagy machineries, FYVE and ATG8-like protein, and that MLFVs are stress-induced compartments for substrates of the proteasome or autophagy in response to rapamycin, MG132, and chloroquine treatment. A mutant protein of cyclin-dependent kinase 2, CDK2m3, was used to understand whether the aberrant proteins are targeted to degradative compratments. Interestingly, MLF was upregulated by CDK2m3 and they both colocalized within the same vesicles. Autophagy is a self-digestion process that is activated to remove damaged proteins for preventing cell death in response to various stresses. Because of the absence of some autophagy machineries, the mechanism of autophagy is unclear in G. lamblia. RESULTS In this study, we tested the six autophagosome and stress inducers in mammalian cells, including MG132, rapamycin, chloroquine, nocodazole, DTT, and G418, and found that their treatment increased reactive oxygen species production and vesicle number and level of MLF, FYVE, and ATG8-like protein in G. lamblia. Five stress inducers also increased the CDK2m3 protein levels and vesicles. Using stress inducers and knockdown system for MLF, we identified that stress induction of CDK2m3 was positively regulated by MLF. An autophagosome-reducing agent, 3-methyl adenine, can reduce MLF and CDK2m3 vesicles and proteins. In addition, knockdown of MLF with CRISPR/Cas9 system reduced cell survival upon treatment with stress inducers. Our newly developed complementation system for CRISPR/Cas9 indicated that complementation of MLF restored cell survival in response to stress inducers. Furthermore, human MLF2, like Giardia MLF, can increase cyst wall protein expression and cyst formation in G. lamblia, and it can colocalize with MLFVs and interact with MLF. CONCLUSIONS Our results suggest that MLF family proteins are functionally conserved in evolution. Our results also suggest an important role of MLF in survival in stress conditions and that MLFVs share similar stress-induced characteristics with autophagy compartments.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Jen-Chi Lee
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China.
| |
Collapse
|
5
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
6
|
Auriostigue-Bautista JC, Hernández-Vázquez E, González-Calderón D, Figueroa-Romero JL, Castillo-Villanueva A, Torres-Arroyo A, Ponce-Macotela M, Rufino-González Y, Martínez-Gordillo M, Miranda LD, Oria-Hernández J, Reyes-Vivas H. Discovery of Benzopyrrolizidines as Promising Antigiardiasic Agents. Front Cell Infect Microbiol 2022; 11:828100. [PMID: 35096662 PMCID: PMC8790063 DOI: 10.3389/fcimb.2021.828100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Current treatments for giardiasis include drugs with undesirable side effects, which increase the levels of therapeutic desertion and promote drug resistance in the parasites. Herein, we describe the antigiardiasic evaluation on Giardia lamblia trophozoites of a structurally diverse collection of 74 molecules. Among these scaffolds, we discovered a benzopyrrolizidine derivative with higher antigiardiasic activity (IC50 = 11 µM) and lower cytotoxicity in human cell cultures (IC50 = 130 µM) than those displayed by the current gold-standard drugs (metronidazole and tinidazole). Furthermore, this compound produced morphologic modifications of trophozoites, with occasional loss of one of the nuclei, among other changes not observed with standard giardicidal drugs, suggesting that it might act through a novel mechanism of action.
Collapse
Affiliation(s)
- Juan Carlos Auriostigue-Bautista
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Eduardo Hernández-Vázquez
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - David González-Calderón
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Jorge Luís Figueroa-Romero
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Angélica Torres-Arroyo
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Martha Ponce-Macotela
- Laboratorio de Parasitología-Experimental, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Yadira Rufino-González
- Laboratorio de Parasitología-Experimental, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Mario Martínez-Gordillo
- Laboratorio de Parasitología-Experimental, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Luis D Miranda
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría. Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
7
|
Krakovka S, Ribacke U, Miyamoto Y, Eckmann L, Svärd S. Characterization of Metronidazole-Resistant Giardia intestinalis Lines by Comparative Transcriptomics and Proteomics. Front Microbiol 2022; 13:834008. [PMID: 35222342 PMCID: PMC8866875 DOI: 10.3389/fmicb.2022.834008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Metronidazole (MTZ) is a clinically important antimicrobial agent that is active against both bacterial and protozoan organisms. MTZ has been used extensively for more than 60 years and until now resistance has been rare. However, a recent and dramatic increase in the number of MTZ resistant bacteria and protozoa is of great concern since there are few alternative drugs with a similarly broad activity spectrum. To identify key factors and mechanisms underlying MTZ resistance, we utilized the protozoan parasite Giardia intestinalis, which is commonly treated with MTZ. We characterized two in vitro selected, metronidazole resistant parasite lines, as well as one revertant, by analyzing fitness aspects associated with increased drug resistance and transcriptomes and proteomes. We also conducted a meta-analysis using already existing data from additional resistant G. intestinalis isolates. The combined data suggest that in vitro generated MTZ resistance has a substantial fitness cost to the parasite, which may partly explain why resistance is not widespread despite decades of heavy use. Mechanistically, MTZ resistance in Giardia is multifactorial and associated with complex changes, yet a core set of pathways involving oxidoreductases, oxidative stress responses and DNA repair proteins, is central to MTZ resistance in both bacteria and protozoa.
Collapse
Affiliation(s)
- Sascha Krakovka
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, Cho CC, Lin BC, Chiu PW, Pan YJ, Kao YY, Liu YC, Sun CH. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochim Biophys Acta Gen Subj 2021; 1865:129859. [PMID: 33581251 DOI: 10.1016/j.bbagen.2021.129859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Soo-Wah Gan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jo-Yu Liao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chao-Cheng Cho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Bo-Chi Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Jiao Pan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Yun Kao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Chen Liu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.
| |
Collapse
|
9
|
Teulière J, Bernard G, Bapteste E. The Distribution of Genes Associated With Regulated Cell Death Is Decoupled From the Mitochondrial Phenotypes Within Unicellular Eukaryotic Hosts. Front Cell Dev Biol 2020; 8:536389. [PMID: 33072737 PMCID: PMC7539657 DOI: 10.3389/fcell.2020.536389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Genetically regulated cell death (RCD) occurs in all domains of life. In eukaryotes, the evolutionary origin of the mitochondrion and of certain forms of RCD, in particular apoptosis, are thought to coincide, suggesting a central general role for mitochondria in cellular suicide. We tested this mitochondrial centrality hypothesis across a dataset of 67 species of protists, presenting 5 classes of mitochondrial phenotypes, including functional mitochondria, metabolically diversified mitochondria, functionally reduced mitochondria (Mitochondrion Related Organelle or MRO) and even complete absence of mitochondria. We investigated the distribution of genes associated with various forms of RCD. No homologs for described mammalian regulators of regulated necrosis could be identified in our set of 67 unicellular taxa. Protists with MRO and the secondarily a mitochondriate Monocercomonoides exilis display heterogeneous reductions of apoptosis gene sets with respect to typical mitochondriate protists. Remarkably, despite the total lack of mitochondria in M. exilis, apoptosis-associated genes could still be identified. These same species of protists with MRO and M. exilis harbored non-reduced autophagic cell death gene sets. Moreover, transiently multicellular protist taxa appeared enriched in apoptotic and autophagy associated genes compared to free-living protists. This analysis suggests that genes associated with apoptosis in animals and the presence of the mitochondria are significant yet non-essential biological components for RCD in protists. More generally, our results support the hypothesis of a selection for RCD, including both apoptosis and autophagy, as a developmental mechanism linked to multicellularity.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Guillaume Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
10
|
Castellanos IC, Calvo EP, Wasserman M. A new gene inventory of the ubiquitin and ubiquitin-like conjugation pathways in Giardia intestinalis. Mem Inst Oswaldo Cruz 2020; 115:e190242. [PMID: 32130365 PMCID: PMC7029713 DOI: 10.1590/0074-02760190242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ubiquitin (Ub) and Ub-like proteins (Ub-L) are critical regulators of complex cellular processes such as the cell cycle, DNA repair, transcription, chromatin remodeling, signal translation, and protein degradation. Giardia intestinalis possesses an experimentally proven Ub-conjugation system; however, a limited number of enzymes involved in this process were identified using basic local alignment search tool (BLAST). This is due to the limitations of BLAST’s ability to identify homologous functional regions when similarity between the sequences dips to < 30%. In addition Ub-Ls and their conjugating enzymes have not been fully elucidated in Giardia. OBJETIVE To identify the enzymes involved in the Ub and Ub-Ls conjugation processes using intelligent systems based on the hidden Markov models (HMMs). METHODS We performed an HMM search of functional Pfam domains found in the key enzymes of these pathways in Giardia’s proteome. Each open reading frame identified was analysed by sequence homology, domain architecture, and transcription levels. FINDINGS We identified 118 genes, 106 of which corresponded to the ubiquitination process (Ub, E1, E2, E3, and DUB enzymes). The E3 ligase group was the largest group with 82 members; 71 of which harbored a characteristic RING domain. Four Ub-Ls were identified and the conjugation enzymes for NEDD8 and URM1 were described for first time. The 3D model for Ub-Ls displayed the β-grasp fold typical. Furthermore, our sequence analysis for the corresponding activating enzymes detected the essential motifs required for conjugation. MAIN CONCLUSIONS Our findings highlight the complexity of Giardia’s Ub-conjugation system, which is drastically different from that previously reported, and provides evidence for the presence of NEDDylation and URMylation enzymes in the genome and transcriptome of G. intestinalis.
Collapse
Affiliation(s)
| | | | - Moisés Wasserman
- Universidad Nacional de Colombia, Laboratorio de Investigaciones Básicas en Bioquímica, Bogotá, Colombia
| |
Collapse
|
11
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India.,Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India.,Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
13
|
Durán-Pérez SA, López-Moreno HS, Jiménez-Edeza M, Parra-Unda JR, Rangel-López E, Rendón-Maldonado JG. Upregulation of Cathepsin B-like Protease Activity During Apoptosis inGiardia duodenalis. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190204112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:In eukaryotic cells, apoptosis signaling pathways are controlled mainly by aspartic acid cysteine proteases (caspases). However, certain unicellular microorganisms, such as Giardia duodenalis, lack these proteins. Thus, other cysteine proteases may play an important role in the parasite apoptosis signaling pathway.Objective:To understand the effect of cathepsin B-like inhibition on the cell viability of Giardia duodenalis and its cell death process.Methods:Bioinformatics analysis was performed to identify apoptotic proteases. Analysis showed that cathepsin B-like protease genes from G. duodenalis were the best candidate. A homology modeling technique was used to explore in silico the inhibitory effect of E-64 against cathepsin B-like proteases from G. duodenalis genome and to examine the effect of curcumin on cathepsin B-like activity regulation. In addition, the effect of E-64 on parasite survival and DNA fragmentation was tested.Results:Eight cathepsin B-like protease coding genes were identified in silico. Interestingly, while these sequences lacked the cathepsin B characteristic occluding loop, they maintained the catalytic active- site responsible for cathepsin B activity, which was evidenced by the increase in the degradation of the Z-RR-AMC substrate, suggesting the upregulation of the activity of these proteins. Additionally, inhibition of E-64 against G. duodenalis trophozoites caused a decrease in DNA fragmentation compared to control cells and had a positive effect on parasite survival after exposure to curcumin.Conclusion:Overall, these results suggested that Giardia duodenalis might have a cell death mechanism in which cathepsin B-like proteases play an important role.
Collapse
Affiliation(s)
- Sergio Alonso Durán-Pérez
- Doctorate in Biotechnology, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Calzada de las Americas Norte 2771, Bureaucrat, 80030 Culiacan, Sinaloa, Mexico
| | - Héctor Samuel López-Moreno
- Doctorate in Biotechnology, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Calzada de las Americas Norte 2771, Bureaucrat, 80030 Culiacan, Sinaloa, Mexico
| | - Maribel Jiménez-Edeza
- Doctorate in Biomedical Sciences, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Calzada de las Americas Norte 2771, Bureaucrat, 80030 Culiacan, Sinaloa, Mexico
| | - Jesús Ricardo Parra-Unda
- Doctorate in Biotechnology, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Calzada de las Americas Norte 2771, Bureaucrat, 80030 Culiacan, Sinaloa, Mexico
| | - Edgar Rangel-López
- Laboratory of Amino Acids Exciters, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - José Guadalupe Rendón-Maldonado
- Doctorate in Biotechnology, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Calzada de las Americas Norte 2771, Bureaucrat, 80030 Culiacan, Sinaloa, Mexico
| |
Collapse
|
14
|
Gadelha APR, Bravim B, Vidal J, Reignault LC, Cosme B, Huber K, Bracher F, de Souza W. Alterations on growth and cell organization of Giardia intestinalis trophozoites after treatment with KH-TFMDI, a novel class III histone deacetylase inhibitor. Int J Med Microbiol 2019; 309:130-142. [PMID: 30665874 DOI: 10.1016/j.ijmm.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.
Collapse
Affiliation(s)
- Ana Paula R Gadelha
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Bárbara Bravim
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Juliana Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lissa Catherine Reignault
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Cosme
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wanderley de Souza
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Ordoñez-Quiroz A, Ortega-Pierres MG, Bazán-Tejeda ML, Bermúdez-Cruz RM. DNA damage induced by metronidazole in Giardia duodenalis triggers a DNA homologous recombination response. Exp Parasitol 2018; 194:24-31. [PMID: 30237050 DOI: 10.1016/j.exppara.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/14/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023]
Abstract
The mechanisms underlying metronidazole (MTZ) resistance in Giardia duodenalis have been associated with decreased activity of the enzymes implicated in its activation including nitroductase-1, thioredoxin reductase and pyruvate-ferredoxin oxidoreductase (PFOR). MTZ activation generates radicals that can form adducts with proteins such as thioredoxin reductase and α- and -β giardins as well as DNA damage resulting in trophozoite's death. The damage induced in DNA requires a straight forward response that may allow parasite survival. Here, we studied changes in histone H2A phosphorylation to evaluate the DNA repair response pathway after induction of double strand break (DSB) by MTZ in Giardia DNA. Our results showed that the DNA repair mechanisms after exposure of Giardia trophozoites to MTZ, involved a homologous recombination pathway. We observed a significant increase in the expression level of proteins GdDMC1B, which carries out Rad51 role in G. duodenalis, and GdMre11, after 12 h of exposure to 3.2 μM MTZ. This increase was concomitant with the generation of DSB in the DNA of trophozoites treated MTZ. Altogether, these results suggest that MTZ-induced DNA damage in Giardia triggers the DNA homologous recombination repair (DHRR) pathway, which may contribute to the parasite survival in the presence of MTZ.
Collapse
Affiliation(s)
- Angel Ordoñez-Quiroz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - M Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - María Luisa Bazán-Tejeda
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - Rosa M Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico.
| |
Collapse
|
16
|
Robinson-Cohen C, Zelnick LR, Hoofnagle AN, Lutsey PL, Burke G, Michos ED, Shea SJC, Tracy R, Siscovick DS, Psaty B, Kestenbaum B, de Boer IH. Associations of Vitamin D-Binding Globulin and Bioavailable Vitamin D Concentrations With Coronary Heart Disease Events: The Multi-Ethnic Study of Atherosclerosis (MESA). J Clin Endocrinol Metab 2017; 102:3075-3084. [PMID: 28472285 PMCID: PMC5546864 DOI: 10.1210/jc.2017-00296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
Abstract
CONTEXT Low 25-hydroxyvitamin D [25(OH)D] is associated with coronary heart disease (CHD) in people who are white and Chinese but not black or Hispanic. Vitamin D binding globulin (VDBG) avidly binds 25(OH)D, reducing its bioavailability, and differs in isoform and concentration by race. OBJECTIVE Evaluate associations of VDBG with CHD and whether accounting for VDBG or estimating bioavailable 25(OH)D explains the heterogeneity of the association of 25(OH)D with CHD. DESIGN AND SETTING We conducted a case-cohort study within the Multi-Ethnic Study of Atherosclerosis. Participants with an incident CHD event over 12 years of follow-up (n = 538) and a randomly assigned subcohort (n = 999) were included. We measured baseline 25(OH)D, VDBG, and isoforms using mass spectrometry and estimated bioavailable 25(OH)D from published equations. RESULTS VDBG was associated with an increased risk of CHD [hazard ratio, 1.77 (95% confidence interval, 1.46 to 2.14) per standard deviation increment, P < 0.0001], without evidence of heterogeneity by race or isoform (each P for interaction > 0.1). Low total 25(OH)D was differentially associated with CHD events, by race, with or without adjustment for VDBG (P for interaction = 0.04 or 0.05, respectively). Associations of 25(OH)D with CHD were strengthened with adjustment for VDBG among participants who were white or Chinese, and bioavailable 25(OH)D was associated with CHD events only among white participants. CONCLUSIONS High VDBG concentration was associated with CHD events in all racial and ethnic groups. Incorporation of VDBG strengthened existing associations of 25(OH)D with CHD but did not explain racial heterogeneity in associations of 25(OH)D with CHD.
Collapse
Affiliation(s)
- Cassianne Robinson-Cohen
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195
| | - Leila R. Zelnick
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gregory Burke
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Erin D. Michos
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland 21218
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Steven J. C. Shea
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10027
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405
- Department of Biochemistry, University of Vermont, Burlington, Vermont 05405
| | | | - Bruce Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology and Medicine, University of Washington, Seattle, Washington 98101
- Department of Health Services, University of Washington, Seattle, Washington 98195
- Group Health Research Institute, Seattle, Washington 98101
| | - Bryan Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195
| | - Ian H. de Boer
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
17
|
Baig AM, Lalani S, Khan NA. Apoptosis in Acanthamoeba castellanii
belonging to the T4 genotype. J Basic Microbiol 2017; 57:574-579. [DOI: 10.1002/jobm.201700025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/02/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Abdul M. Baig
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Salima Lalani
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Naveed A. Khan
- Faculty of Science and Technology, Department of Biological Sciences; Sunway University; Bandar Sunway Selangor Malaysia
| |
Collapse
|
18
|
Proteomic and functional analyses reveal pleiotropic action of the anti-tumoral compound NBDHEX in Giardia duodenalis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:147-158. [PMID: 28366863 PMCID: PMC5377010 DOI: 10.1016/j.ijpddr.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
Abstract
Giardiasis, a parasitic diarrheal disease caused by Giardia duodenalis, affects one billion people worldwide. Treatment relies only on a restricted armamentarium of drugs. The disease burden and the increase in treatment failure highlight the need for novel, safe and well characterized drug options. The antitumoral compound NBDHEX is effective in vitro against Giardia trophozoites and inhibits glycerol-3-phosphate dehydrogenase. Aim of this work was to search for additional NBDHEX protein targets. The intrinsic NBDHEX fluorescence was exploited in a proteomic analysis to select and detect modified proteins in drug treated Giardia. In silico structural analysis, intracellular localization and functional assays were further performed to evaluate drug effects on the identified targets. A small subset of Giardia proteins was covalently bound to the drug at specific cysteine residues. These proteins include metabolic enzymes, e.g. thioredoxin reductase (gTrxR), as well as elongation factor 1B-γ (gEF1Bγ), and structural proteins, e.g. α-tubulin. We showed that NBDHEX in vitro binds to recombinant gEF1Bγ and gTrxR, but only the last one could nitroreduce NBDHEX leading to drug modification of gTrxR catalytic cysteines, with concomitant disulphide reductase activity inhibition and NADPH oxidase activity upsurge. Our results indicate that NBDHEX reacts with multiple targets whose roles and/or functions are specifically hampered. In addition, NBDHEX is in turn converted to reactive intermediates extending its toxicity. The described NBDHEX pleiotropic action accounts for its antigiardial activity and encourages the use of this drug as a promising alternative for the future treatment of giardiasis.
Collapse
|
19
|
Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, Bolscher JGM, Carrero JC, Leon-Sicairos C, Leon-Sicairos N. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2016; 95:82-90. [PMID: 28165283 DOI: 10.1139/bcb-2016-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardia intestinalis is the most common infectious protozoan parasite in children. Despite the effectiveness of some drugs, the disease remains a major worldwide problem. Consequently, the search for new treatments is important for disease eradication. Biological molecules with antimicrobial properties represent a promising alternative to combat pathogens. Bovine lactoferrin (bLF) is a key component of the innate host defense system, and its peptides have exhibited strong antimicrobial activity. Based on these properties, we evaluated the parasiticidal activity of these peptides on G. intestinalis. Trophozoites were incubated with different peptide concentrations for different periods of time, and the growth or viability was determined by carboxyfluorescein-succinimidyl-diacetate-ester (CFDA) and propidium iodide (PI) staining. Endocytosis of peptides was investigated by confocal microscopy, damage was analyzed by transmission and scanning electron microscopy, and the type of programmed cell death was analyzed by flow cytometry. Our results showed that the LF peptides had giardicidal activity. The LF peptides interacted with G. intestinalis and exposure to LF peptides correlated with an increase in the granularity and vacuolization of the cytoplasm. Additionally, the formation of pores, extensive membrane disruption, and programmed cell death was observed in trophozoites treated with LF peptides. Our results demonstrate that LF peptides exhibit potent in vitro antigiardial activity.
Collapse
Affiliation(s)
- Hugo Aguilar-Diaz
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,b Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, México
| | - Tomas Nepomuceno-Mejia
- c Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Calle 4a, Avenida Norte esquina con Calle 19 Pte S/N, Centro, Tapachula 30700, Chiapas, Mexico
| | - Francisco Gallardo-Vera
- d Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad Universitaria, México DF 04510, México
| | - Yolanda Hornelas-Orozco
- e Servicio Académico de Microscopía Electrónica de Barrido, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México, D. F. 04510, México
| | - Kamran Nazmi
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Julio Cesar Carrero
- g Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Claudia Leon-Sicairos
- h Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Avenida de las Américas y Josefa Ortiz (Ciudad Universitaria), Culiacán 80030, Sinaloa, México
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,i Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacan 80200, Sinaloa, México
| |
Collapse
|
20
|
Matadamas-Martínez F, Castillo R, Hernández-Campos A, Méndez-Cuesta C, de Souza W, Gadelha AP, Nogueda-Torres B, Hernández JM, Yépez-Mulia L. Proteomic and ultrastructural analysis of the effect of a new nitazoxanide-N-methyl-1H-benzimidazole hybrid against Giardia intestinalis. Res Vet Sci 2016; 105:171-9. [DOI: 10.1016/j.rvsc.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
|
21
|
Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol Biochem Parasitol 2016; 206:56-66. [DOI: 10.1016/j.molbiopara.2015.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023]
|
22
|
Martínez-Espinosa R, Argüello-García R, Saavedra E, Ortega-Pierres G. Albendazole induces oxidative stress and DNA damage in the parasitic protozoan Giardia duodenalis. Front Microbiol 2015; 6:800. [PMID: 26300866 PMCID: PMC4526806 DOI: 10.3389/fmicb.2015.00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
The control of Giardia duodenalis infections is carried out mainly by drugs, among these albendazole (ABZ) is commonly used. Although the cytotoxic effect of ABZ usually involves binding to β-tubulin, it has been suggested that oxidative stress may also play a role in its parasiticidal mechanism. In this work the effect of ABZ in Giardia clones that are susceptible or resistant to different concentrations (1.35, 8, and 250 μM) of this drug was analyzed. Reactive oxygen species (ROS) were induced by ABZ in susceptible clones and this was associated with a decrease in growth that was alleviated by cysteine supplementation. Remarkably, ABZ-resistant clones exhibited partial cross-resistance to H2O2, whereas a Giardia H2O2-resistant strain can grow in the presence of ABZ. Lipid oxidation and protein carbonylation in ABZ-treated parasites did not show significant differences as compared to untreated parasites; however, ABZ induced the formation of 8OHdG adducts and DNA degradation, indicating nucleic acid oxidative damage. This was supported by observations of histone H2AX phosphorylation in ABZ-susceptible trophozoites treated with 250 μM ABZ. Flow cytometry analysis showed that ABZ partially arrested cell cycle in drug-susceptible clones at G2/M phase at the expense of cells in G1 phase. Also, ABZ treatment resulted in phosphatidylserine exposure on the parasite surface, an event related to apoptosis. All together these data suggest that ROS induced by ABZ affect Giardia genetic material through oxidative stress mechanisms and subsequent induction of apoptotic-like events.
Collapse
Affiliation(s)
- Rodrigo Martínez-Espinosa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Emma Saavedra
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez México City, Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
23
|
El-Taweel HA. Understanding drug resistance in human intestinal protozoa. Parasitol Res 2015; 114:1647-59. [DOI: 10.1007/s00436-015-4423-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/05/2015] [Indexed: 01/07/2023]
|
24
|
Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 2015; 6:e1609. [PMID: 25611384 PMCID: PMC4669768 DOI: 10.1038/cddis.2014.570] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Programmed cell death is a process known to have a crucial role in many aspects of eukaryotes physiology and is clearly essential to their life. As a consequence, the underlying molecular mechanisms have been extensively studied in eukaryotes and we now know that different signalling pathways leading to functionally and morphologically different forms of death exist in these organisms. Similarly, mono-cellular organism can activate signalling pathways leading to death of a number of cells within a colony. The reason why a single-cell organism would activate a program leading to its death is apparently counterintuitive and probably for this reason cell death in prokaryotes has received a lot less attention in the past years. However, as summarized in this review there are many reasons leading to prokaryotic cell death, for the benefit of the colony. Indeed, single-celled organism can greatly benefit from multicellular organization. Within this forms of organization, regulation of death becomes an important issue, contributing to important processes such as: stress response, development, genetic transformation, and biofilm formation.
Collapse
|
25
|
Stress management in cyst-forming free-living protists: programmed cell death and/or encystment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:437534. [PMID: 25648302 PMCID: PMC4306356 DOI: 10.1155/2015/437534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 11/21/2022]
Abstract
In the face of harsh conditions and given a choice, a cell may (i) undergo programmed cell death, (ii) transform into a cancer cell, or (iii) enclose itself into a cyst form. In metazoans, the available evidence suggests that cellular machinery exists only to execute or avoid programmed cell death, while the ability to form a cyst was either lost or never developed. For cyst-forming free-living protists, here we pose the question whether the ability to encyst was gained at the expense of the programmed cell death or both functions coexist to counter unfavorable environmental conditions with mutually exclusive phenotypes.
Collapse
|
26
|
Földvári-Nagy L, Ari E, Csermely P, Korcsmáros T, Vellai T. Starvation-response may not involve Atg1-dependent autophagy induction in non-unikont parasites. Sci Rep 2014; 4:5829. [PMID: 25059978 PMCID: PMC5376053 DOI: 10.1038/srep05829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/04/2014] [Indexed: 12/20/2022] Open
Abstract
Autophagy, the lysosome-mediated self-degradation process, is implicated in survival during starvation in yeast, Dictyostelium and animals. In these eukaryotic taxa (collectively called Unikonts), autophagy is induced primarily through the Atg1/ULK1 complex in response to nutrient depletion. Autophagy has also been well-studied in non-unikont parasites, such as Trypanosoma and Plasmodium, and found important in their life-cycle transitions. However, how autophagy is induced in non-unikonts remains largely unrevealed. Using a bioinformatics approach, we examined the presence of Atg1 and of its complex in the genomes of 40 non-unikonts. We found that these genomes do not encode typical Atg1 proteins: BLAST and HMMER queries matched only with the kinase domain of Atg1, while other segments responsible for regulation and protein-binding were missing. Non-unikonts also lacked other components of the Atg1-inducing complex. Orthologs of an alternative autophagy inducer, Atg6 were found only in the half of the species, indicating that the other half may possess other inducing mechanisms. As key autophagy genes have differential expression patterns during life-cycle, we raise the possibility that autophagy in these protists is induced mainly at the post-transcriptional level. Understanding Atg1-independent autophagy induction mechanisms in these parasites may lead to novel pharmacological interventions, not affecting human Atg1-dependent autophagy.
Collapse
Affiliation(s)
| | - Eszter Ari
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Korcsmáros
- 1] Department of Genetics, Eötvös Loránd University, Budapest, Hungary [2] TGAC, The Genome Analysis Centre, Norwich, UK [3] Gut Health and Food Safety Programme, Institute of Food Research, Norwich, UK
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Mastronicola D, Falabella M, Testa F, Pucillo LP, Teixeira M, Sarti P, Saraiva LM, Giuffrè A. Functional characterization of peroxiredoxins from the human protozoan parasite Giardia intestinalis. PLoS Negl Trop Dis 2014; 8:e2631. [PMID: 24416465 PMCID: PMC3886907 DOI: 10.1371/journal.pntd.0002631] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/26/2013] [Indexed: 01/03/2023] Open
Abstract
The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2−•) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO−). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO− rapidly (k = 4×105 M−1 s−1 and 2×105 M−1 s−1 at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis. Giardia intestinalis causes one of the most common human intestinal diseases worldwide, called giardiasis. This microorganism infects the small intestine where it has to cope with O2, nitric oxide (NO) and related reactive species that are toxic for Giardia as it lacks most of the conventional antioxidant enzymes. Understanding how this pathogen survives oxidative stress is thus important because it may help to identify novel drug targets to combat giardiasis. Some enzymes playing a role in the antioxidant defense of Giardia have been recently reported, but it is yet unknown how the parasite copes with two well-known oxidants, hydrogen peroxide (H2O2) and peroxynitrite (ONOO−). In this study, the Authors show that Giardia expresses two enzymes (called peroxiredoxins), yet uncharacterized, that are able not only to degrade both H2O2 and ONOO−, but also to repair damaged molecules (called hydroperoxides) that accumulate in the cell under oxidative stress conditions. These results are totally unprecedented because no enzymes with these types of functions have been reported for Giardia to date. If these two enzymes will prove to be essential for Giardia virulence in future studies, a new way will be paved towards the discovery of novel drugs to treat giardiasis.
Collapse
Affiliation(s)
| | - Micol Falabella
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Fabrizio Testa
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | | | - Miguel Teixeira
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paolo Sarti
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Lígia M. Saraiva
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
28
|
Moon EK, Hong Y, Chung DI, Kong HH. Identification of atg8 isoform in encysting Acanthamoeba. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:497-502. [PMID: 24327773 PMCID: PMC3857495 DOI: 10.3347/kjp.2013.51.5.497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022]
Abstract
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.
Collapse
Affiliation(s)
- Eun-Kyung Moon
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | | | |
Collapse
|
29
|
Ramsdale M. Programmed cell death in the cellular differentiation of microbial eukaryotes. Curr Opin Microbiol 2012; 15:646-52. [DOI: 10.1016/j.mib.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/22/2023]
|