1
|
Demirlek C, Arslan B, Eyuboglu MS, Yalincetin B, Atas F, Cesim E, Demir M, Uzman Ozbek S, Kizilay E, Verim B, Sut E, Baykara B, Kaya M, Akdede BB, Bora E. Retina in Clinical High-Risk and First-Episode Psychosis. Schizophr Bull 2024:sbae189. [PMID: 39488000 DOI: 10.1093/schbul/sbae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormalities in the retina are observed in psychotic disorders, especially in schizophrenia. STUDY DESIGN Using spectral-domain optical coherence tomography, we investigated structural retinal changes in relatively metabolic risk-free youth with clinical high-risk (CHR, n = 34) and first-episode psychosis (FEP, n = 30) compared with healthy controls (HCs, n = 28). STUDY RESULTS Total retinal macular thickness/volume of the right eye increased in FEP (effect sizes, Cohen's d = 0.69/0.66) and CHR (d = 0.67/0.76) compared with HCs. Total retinal thickness/volume was not significantly different between FEP and CHR. Macular retinal nerve fiber layer (RNFL) thickness/volume of the left eye decreased in FEP compared with HCs (d = -0.75/-0.66). Peripapillary RNFL thickness was not different between groups. The ganglion cell (GCL), inner plexiform (IPL), and inner nuclear (INL) layers thicknesses/volumes of both eyes increased in FEP compared with HCs (d = 0.70-1.03). GCL volumes of both eyes, IPL thickness/volume of the left eye, and INL thickness/volume of both eyes increased in CHR compared with HCs (d = 0.64-1.01). In the macula, while central sector thickness/volume decreased (d = -0.62 to -0.72), superior outer (peri-foveal) sector thickness/volume of both eyes increased (d = 0.81 to 0.86) in FEP compared with HCs. CONCLUSIONS The current findings suggest that distinct regions and layers of the retina may be differentially impacted during the emergence and early phase of psychosis. Consequently, oculomics could play significant roles, not only as a diagnostic tool but also as a mirror reflecting neurobiological changes at axonal and cellular levels.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, United States
| | - Berat Arslan
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Merve S Eyuboglu
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ferdane Atas
- Department of Ophthalmology, Marmara University, Faculty of Medicine, Istanbul 34854, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Simge Uzman Ozbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Elif Kizilay
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Burcu Verim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ekin Sut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Burak Baykara
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | | | - Berna B Akdede
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria 3053, Australia
| |
Collapse
|
2
|
Blose BA, Silverstein SM, Stuart KV, Keane PA, Khawaja AP, Wagner SK. Association between polygenic risk for schizophrenia and retinal morphology: A cross-sectional analysis of the United Kingdom Biobank. Psychiatry Res 2024; 339:116106. [PMID: 39079374 DOI: 10.1016/j.psychres.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
We examined the relationship between genetic risk for schizophrenia (SZ), using polygenic risk scores (PRSs), and retinal morphological alterations. Retinal structural and vascular indices derived from optical coherence tomography (OCT) and color fundus photography (CFP) and PRSs for SZ were analyzed in N = 35,024 individuals from the prospective cohort study, United Kingdom Biobank (UKB). Results indicated that macular ganglion cell-inner plexiform layer (mGC-IPL) thickness was significantly inversely related to PRS for SZ, and this relationship was strongest within higher PRS quintiles and independent of potential confounders and age. PRS, however, was unrelated to retinal vascular characteristics, with the exception of venular tortuosity, and other retinal structural indices (macular retinal nerve fiber layer [mRNFL], inner nuclear layer [INL], cup-to-disc ratio [CDR]). Additionally, the association between greater PRS and reduced mGC-IPL thickness was only significant for participants in the 40-49 and 50-59 age groups, not those in the 60-69 age group. These findings suggest that mGC-IPL thinning is associated with a genetic predisposition to SZ and may reflect neurodevelopmental and/or neurodegenerative processes inherent to SZ. Retinal microvasculature alterations, however, may be secondary consequences of SZ and do not appear to be associated with a genetic predisposition to SZ.
Collapse
Affiliation(s)
- Brittany A Blose
- Department of Psychology, University of Rochester, Rochester, NY, United States; Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, United States; Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States; Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States; Center for Visual Science, University of Rochester, Rochester, New York, United States.
| | - Kelsey V Stuart
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Pearse A Keane
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Siegfried K Wagner
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Sheehan N, Bannai D, Silverstein SM, Lizano P. Neuroretinal Alterations in Schizophrenia and Bipolar Disorder: An Updated Meta-analysis. Schizophr Bull 2024; 50:1067-1082. [PMID: 38954839 PMCID: PMC11349028 DOI: 10.1093/schbul/sbae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are characterized by major symptomatic, cognitive, and neuroanatomical changes. Recent studies have used optical coherence tomography (OCT) to investigate retinal changes in SZ and BD, but their unique and shared changes require further evaluation. Articles were identified using PubMed and Google Scholar. 39 studies met the inclusion criteria. Diagnostic groups were proband (SZ/BD combined), SZ, BD, and healthy control (HC) eyes. Meta-analyses utilized fixed and random effects models when appropriate, and publication bias was corrected using trim-and-fill analysis ("meta" package in R). Results are reported as standardized mean differences with 95% CIs. Data from 3145 patient eyes (1956 SZ, 1189 BD) and 3135 HC eyes were included. Studies identified thinning of the peripapillary retinal nerve fiber layer (pRNFL, overall and in 2 subregions), m-Retina (overall and all subregions), mGCL-IPL, mIPL, and mRPE in SZ patients. BD showed thinning of the pRNFL (overall and in each subregion), pGCC, and macular Retina (in 5 subregions), but no changes in thickness or volume for the total retina. Neither SZ nor BD patients demonstrated significant changes in the fovea, mRNFL, mGCL, mGCC, mINL, mOPL, mONL, or choroid thicknesses. Moderating effects of age, illness duration, and smoking on retinal structures were identified. This meta-analysis builds upon previous literature in this field by incorporating recent OCT studies and examining both peripapillary and macular retinal regions with respect to psychotic disorders. Overall, this meta-analysis demonstrated both peripapillary and macular structural retinal abnormalities in people with SZ or BD compared with HCs.
Collapse
Affiliation(s)
- Nora Sheehan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Carriello MA, Costa DFB, Alvim PHP, Pestana MC, Bicudo DDS, Gomes EMP, Coelho TA, Biava PJ, Berlitz VG, Bianchini AJ, Shiokawa A, Shiokawa N, Sato MT, Massuda R. Retinal layers and symptoms and inflammation in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1115-1124. [PMID: 36928482 DOI: 10.1007/s00406-023-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder that affects brain structure and function. The retina, as well as the brain, consists of neuronal and glial cells packed in layers. Cortical volume and brain thickness are associated with inflammatory biomarkers, however, no study has been performed associating inflammatory biomarkers and retina in schizophrenia. our study aims to compare the retinal macular thickness and volume and peripapillary thickness in patients with schizophrenia and controls, and associate it to symptoms of schizophrenia, to interleukin-6 (IL-6) and C Reactive Protein (CRP) levels. Optical coherence tomography was performed to assess retinal layer thickness and volume, and CRP and IL-6 levels were measured in patients with schizophrenia and controls. Positive, negative, and general symptoms of schizophrenia were measured with the Positive and Negative Syndrome Scale (PANSS). A linear regression controlling for confounding factors was performed. 70 subjects were included, 35 patients, and 35 controls matched for sex and age. Patients with schizophrenia presented a significantly lower macular volume (p < 0.05) and thickness (< 0.05) than controls. PANSS positive, general and total scores were associated with retinal nerve fiber layer (RNFL) thickness (p < 0.05). There was no association between inflammatory markers (CRP and IL-6) levels and the retinal layer. A reduction in macular volume and thickness was found in patients with schizophrenia. The severity of schizophrenia symptoms was associated with RNFL thickness. CRP and IL-6 are not associated with retinal thickness/volume in schizophrenia or controls.
Collapse
Affiliation(s)
- Marcelo Alves Carriello
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil.
| | - Diogo F Bornancin Costa
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Pedro Henrique Pereira Alvim
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Mariana Camargo Pestana
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Duana Dos Santos Bicudo
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Eloisa Maria Pontarolo Gomes
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Tamires Amelotti Coelho
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Patrick Junior Biava
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Vitória Gabriela Berlitz
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Ana J Bianchini
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Aline Shiokawa
- Retina and Vitreous Ophthalmology-Curitiba, Curitiba, Brazil
| | - Naoye Shiokawa
- Retina and Vitreous Ophthalmology-Curitiba, Curitiba, Brazil
| | - Mario Teruo Sato
- Retina and Vitreous Ophthalmology-Curitiba, Curitiba, Brazil
- Department of Ophthalmology, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| | - Raffael Massuda
- Psychotic Disorders Research Program, Department of Psychiatry, Universidade Federal Do Paraná-UFPR, Curitiba, Brazil
| |
Collapse
|
5
|
Daneshvar R, Naghib M, Fayyazi Bordbar MR, Faridhosseini F, Fotouhi M, Motamed Shariati M. Optic nerve head neurovascular assessments in patients with schizophrenia: A cross-sectional study. Health Sci Rep 2024; 7:e2100. [PMID: 38725558 PMCID: PMC11079145 DOI: 10.1002/hsr2.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Objective The retina is a protrusion of the brain, so researchers have recently proposed retinal changes as a new marker for studying central nervous system diseases. To investigate optic nerve head neurovascular structure assessed by optical coherence tomography angiography (OCTA) in schizophrenia compared to healthy subjects. Methods The study was conducted from 2019 to 2021 at the Ibn Sina Psychiatric Hospital in Mashhad, Iran. We enrolled 22 hospitalized known cases of schizophrenia, treated with risperidone as an antipsychotic drug, and 22 healthy subjects. The two groups were matched in age and gender. In the schizophrenic group, the positive and negative syndrome scale test was used to assess the illness severity. All subjects underwent complete ophthalmic evaluations and OCTA imaging. Results We found that the cup/disc area ratio, vertical cup/disc ratio, and horizontal cup/disc ratio are significantly higher in patients with schizophrenia than in healthy subjects (with p-values of 0.019, 0.015, and 0.022, respectively). No statistically significant difference in the peripapillary retinal nerve fiber layer and vascular parameters of the optic nerve head was observed between schizophrenia and healthy groups. Conclusion We found evidence regarding the difference in the optic nerve head tomographic properties in schizophrenia compared to healthy subjects. However, ONH vascular parameters showed no significant difference. More studies are needed for a definite conclusion.
Collapse
Affiliation(s)
- Ramin Daneshvar
- Eye Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Naghib
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Farhad Faridhosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Marziyeh Fotouhi
- Eye Research CenterMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
6
|
Batur M, Özdemir PG, Bilmez Tan R, Şahin Taş Z. Assessment of metacognition and retinal optical coherence tomography findings in shift workers. Chronobiol Int 2024; 41:393-405. [PMID: 38438316 DOI: 10.1080/07420528.2024.2325017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
It is known that working in the shift system, especially the night shift, affects physical, mental, and social well-being. We investigated the changes in the inner retinal layers and choroidal layer of the eyes of nurses working night and day shifts using optical coherence tomography (OCT). We also explored the effect of night shift work on metacognition and the relationships between these variables. A total of 79 nurses participated in the study, of whom 40 worked night shifts. The researcher gave the participants sociodemographic information and the Metacognition Questionnaire-30 (MCQ-30) form. Retinal nerve fiber layer (RNFL) thickness, ganglion cell layer (GCL) thickness, inner nuclear layer (INL) thickness, inner plexiform layer (IPL) thickness, central macular thickness (CMT), and subfoveal choroidal thickness (SFCT) were measured with OCT. It was found that the level of metacognitive activity associated with cognitive confidence was higher (p = 0.044) for nurses who worked night shifts and that the level of metacognitive activity associated with cognitive awareness was lower (p = 0.015) for nurses who worked night shifts. RNFL-nasal superior (NS) thickness was lower in night shift workers than the day shift group (p = 0.017). Our study revealed significant relationships between metacognition and the OCT findings among night and day shift workers. Our study revealed that RNFL measurements and metacognitive activity may differ and there may be a relationship between these parameters in nurses who work shifts. Further research is needed to investigate the long-term effects of night shift work on retinal health.
Collapse
Affiliation(s)
- Muhammed Batur
- Medical Faculty Department of Ophthalmology, Yuzuncu Yıl University, Van, Turkey
| | - Pınar Güzel Özdemir
- Medical Faculty Department of Psychiatry, Yuzuncu Yil University, Van, Turkey
| | - Rumeysa Bilmez Tan
- Medical Faculty Department of Ophthalmology, Yuzuncu Yıl University, Van, Turkey
| | - Zeynep Şahin Taş
- Medical Faculty Department of Psychiatry, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
7
|
Komatsu H, Onoguchi G, Silverstein SM, Jerotic S, Sakuma A, Kanahara N, Kakuto Y, Ono T, Yabana T, Nakazawa T, Tomita H. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography. Mol Psychiatry 2024; 29:464-482. [PMID: 38081943 PMCID: PMC11116118 DOI: 10.1038/s41380-023-02340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Abnormal findings on optical coherence tomography (OCT) and electroretinography (ERG) have been reported in participants with schizophrenia spectrum disorders (SSDs). This study aims to reveal the pooled standard mean difference (SMD) in retinal parameters on OCT and ERG among participants with SSDs and healthy controls and their association with demographic characteristics, clinical symptoms, smoking, diabetes mellitus, and hypertension. METHODS Using PubMed, Scopus, Web of Science, and PSYNDEX, we searched the literature from inception to March 31, 2023, using specific search terms. This study was registered with PROSPERO (CRD4202235795) and conducted according to PRISMA 2020. RESULTS We included 65 studies in the systematic review and 44 in the meta-analysis. Participants with SSDs showed thinning of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer- inner plexiform cell layer, and retinal thickness in all other segments of the macula. A meta-analysis of studies that excluded SSD participants with diabetes and hypertension showed no change in results, except for pRNFL inferior and nasal thickness. Furthermore, a significant difference was found in the pooled SMD of pRNFL temporal thickness between the left and right eyes. Meta-regression analysis revealed an association between retinal thinning and duration of illness, positive and negative symptoms. In OCT angiography, no differences were found in the foveal avascular zone and superficial layer foveal vessel density between SSD participants and controls. In flash ERG, the meta-analysis showed reduced amplitude of both a- and b-waves under photopic and scotopic conditions in SSD participants. Furthermore, the latency of photopic a-wave was significantly shorter in SSD participants in comparison with HCs. DISCUSSION Considering the prior report of retinal thinning in unaffected first-degree relatives and the results of the meta-analysis, the findings suggest that retinal changes in SSDs have both trait and state aspects. Future longitudinal multimodal retinal imaging studies are needed to clarify the pathophysiological mechanisms of these changes and to clarify their utility in individual patient monitoring efforts.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.
- Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan
- Department of Community Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Ozisik GG, Kiraz S. Evaluation of retinal thickness measured by optical coherence tomography in patients with generalized anxiety disorder. Photodiagnosis Photodyn Ther 2023; 44:103766. [PMID: 37640207 DOI: 10.1016/j.pdpdt.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To compare the peripapillary retinal nerve fiber layer thickness, macular thickness, ganglion cell layer thickness, and inner plexiform layer thickness determined by Optic Coherence Tomography in the patient group diagnosed with a generalized anxiety disorder who did not receive any psychiatric medication with the healthy control group. METHODS Forty newly diagnosed, drug-free Generalized Anxiety Disorder patients and 43 healthy age- and gender-matched control subjects were included in the study. Macular thickness, ganglion cell layer thickness, inner plexiform layer thickness, and peripapillary retinal nerve fiber layer thickness were measured using optical coherence tomography. Structured Clinical Interviews and a State-Trait Anxiety Scale were applied to both groups. RESULTS Gender distributions (P = 0.965) and mean ages were similar between the groups (P = 0.340). Retinal nerve fiber layer thickness measurements were not significantly different between the groups. We observed statistically significant thinning in the inner superior, inner nasal, inner temporal, inner inferior, and outer inferior quadrants of the macula in the patient group compared to the control group (P = 0.046, P = 0.046, P = 0.020, P = 0.007, P = 0.014). We found thinning at the Ganglion cell layer in the inner inferior and outer temporal quadrants (Respectively P = 0.018, P = 0.049), inner plexiform layer in the inner nasal, inner temporal, and inner inferior quadrants (Respectively P = 0.046, P = 0.044, P = 0.011) compared to the control group. CONCLUSIONS This is the first study to reveal thinning in the macula, ganglion cell layer, and inner plexiform layer in newly diagnosed, drug-free Generalized Anxiety Disorder patients compared to the control group.
Collapse
Affiliation(s)
- Gulce Gokgoz Ozisik
- Department of Ophthalmology, Faculty of Medicine, Hitit University, Corum, Turkey.
| | - Seda Kiraz
- Department of Psychiatry, Faculty of Medicine, Hitit University, Corum, Turkey
| |
Collapse
|
9
|
Kurtulmus A, Sahbaz C, Elbay A, Guler EM, Sonmez Avaroglu G, Kocyigit A, Ozdemir MH, Kirpinar I. Clinical and biological correlates of optical coherence tomography findings in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1837-1850. [PMID: 37022475 DOI: 10.1007/s00406-023-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023]
Abstract
There is a growing body of evidence indicating retinal layer thinning in schizophrenia. However, neuropathological processes underlying these retinal structural changes and its clinical correlates are yet to be known. Here, we aim to investigate the clinical and biological correlates of OCT findings in schizophrenia. 50 schizophrenia patients and 40 healthy controls were recruited. Retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and macular and choroidal thicknesses were recorded. A comprehensive battery of neuropsychological tests was applied. Fasting glucose, triglycerides and HDL-cholesterol levels, TNF-α, IL-1β and IL-6 levels were measured. Right IPL was significantly thinner in patients than the controls after controlling for various confounders (F = 5.42, p = .02). Higher IL-6, IL-1β, and TNF-α levels were associated with decreased left macular thickness (r = - 0.26, p = .027, r = - 0.30, p = 0.012, and r = - 0.24, p = .046, respectively) and higher IL-6 was associated with thinning of right IPL (r = - 0.27, p = 0.023) and left choroid (r = - 0.23, p = .044) in the overall sample. Thinning of right IPL and left macula were also associated with worse executive functioning (r = 0.37, p = 0.004 and r = 0.33, p = 0.009) and attention (r = 0.31, p = 0.018 and r = 0.30, p = 0.025). In patients with schizophrenia, IPL thinning was associated with increased BMI (r = - 0.44, p = 0.009) and decreased HDL levels (r = 0.43, p = 0.021). Decreased TNF-α level was related to IPL thinning, especially in the left eye (r = 0.40, p = 0.022). These findings support the hypothesis that OCT might provide the opportunity to establish an accessible and non-invasive probe of brain pathology in schizophrenia and related disorders. However, future studies investigating retinal structural changes as a biological marker for schizophrenia should also consider the metabolic state of the subjects.
Collapse
Affiliation(s)
- Ayse Kurtulmus
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey.
- Department od Psychiatry, Istanbul Medeniyet University Goztepe Research and Training Hospital, Istanbul, Turkey.
| | - Cigdem Sahbaz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ahmet Elbay
- Department of Ophthalmology, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Gamze Sonmez Avaroglu
- Fatih Community Mental Health Centre, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Ismet Kirpinar
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
10
|
Prasannakumar A, Kumar V, Mailankody P, Appaji A, Battu R, Berendschot TTJM, Rao NP. A systematic review and meta-analysis of optical coherence tomography studies in schizophrenia, bipolar disorder and major depressive disorder. World J Biol Psychiatry 2023; 24:707-720. [PMID: 37070475 DOI: 10.1080/15622975.2023.2203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES Due to the common neurodevelopmental origin and easy accessibility, the retina serves as a surrogate marker for changes in the brain. Hence, Optical Coherence Tomography (OCT), a tool to examine the neuronal layers of retina has gained importance in investigating psychiatric disorders. Several studies in the last decade have reported retinal structural alterations in schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). However, the findings are inconsistent. Hence, we conducted a meta-analysis to investigate alterations in OCT parameters in patients with SCZ, BD and MDD. METHODS We searched electronic databases for studies that examined OCT parameters in patients with SCZ, BD and MDD published up to January 2023. The primary outcome measures were thickness and volumes of the retinal Nerve Fibre Layer (RNFL). We conducted meta-analysis using a random effects model. RESULTS The searches yielded 2638 publications of which 43 studies were included in the final analysis across all disorders. Compared to controls, the RNFL was thinner in SCZ patients (SMD = -0.37, p = <0.001) and BD patients (SMD = -0.67, p = < 0.001), but not in MDD patients (SMD = -0.08, p = 0.54). On quadrant wise analysis, temporal quadrant RNFL was thinner in SCZ but not in BD, while all other quadrants were thinner in both SCZ and BD. CONCLUSION We found significant reductions in RNFL thickness in SCZ and BD, but not in MDD. The differential involvement in various quadrants and parameters across the disorders has potential implications for using retinal parameters as a diagnostic biomarker.
Collapse
Affiliation(s)
- Akash Prasannakumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vijay Kumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Abhishek Appaji
- Department of Medical Electronics, BMS College of Engineering, Bangalore, Karnataka, India
- Department of Opthalmology, University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rajani Battu
- Department of Opthalmology, Centre for Eye Genetics and Research, Bangalore, Karnataka, India
| | - Tos T J M Berendschot
- Department of Opthalmology, University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Blose BA, Lai A, Crosta C, Thompson JL, Silverstein SM. Retinal Neurodegeneration as a Potential Biomarker of Accelerated Aging in Schizophrenia Spectrum Disorders. Schizophr Bull 2023; 49:1316-1324. [PMID: 37459382 PMCID: PMC10483469 DOI: 10.1093/schbul/sbad102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND HYPOTHESES Several biological markers are believed to reflect accelerated aging in schizophrenia spectrum disorders; however, retinal neural changes have not yet been explored as potential CNS biomarkers of accelerated aging in this population. The aim of this study was to determine whether retinal neural layer thinning is more strongly related to age in schizophrenia and schizoaffective disorder patients (SZ) than in a psychiatrically healthy control group (CON). STUDY DESIGN Schizophrenia (n = 60) and CON participants (n = 69) underwent spectral domain optical coherence tomography (OCT) scans to examine the following variables in both eyes: retinal nerve fiber layer (RNFL) thickness, macula central subfield (CSF) thickness, macula volume, ganglion cell layer-inner plexiform layer (GCL-IPL) thickness, optic cup volume, and cup-to-disc ratio. Eleven participants in each group had diabetes or hypertension. STUDY RESULTS Significant negative relationships between age and RNFL thickness, macula volume, and GCL-IPL thickness were observed in the SZ group, while no significant relationships were observed in the CON group. However, many of the findings in the SZ group lost significance when participants with diabetes/hypertension were removed from analyses. A notable exception to this was that the age × SZ interaction accounted for a unique proportion of variance in GCL-IPL thinning over and above the effect of diabetes/hypertension. CONCLUSIONS The results suggest that retinal atrophy occurs at an increased rate in schizophrenia spectrum disorders, potentially reflecting accelerated aging inherent to these conditions, with considerable contributions from systemic medical diseases closely linked to this population.
Collapse
Affiliation(s)
- Brittany A Blose
- Department of Psychology, University of Rochester, Rochester, NY, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Adriann Lai
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- University Behavioral Health Care, Rutgers University, Piscataway, NJ, USA
| | - Christen Crosta
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Judy L Thompson
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatric Rehabilitation and Counseling Professions, Rutgers University, Piscataway, NJ, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- University Behavioral Health Care, Rutgers University, Piscataway, NJ, USA
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Wagner SK, Cortina-Borja M, Silverstein SM, Zhou Y, Romero-Bascones D, Struyven RR, Trucco E, Mookiah MRK, MacGillivray T, Hogg S, Liu T, Williamson DJ, Pontikos N, Patel PJ, Balaskas K, Alexander DC, Stuart KV, Khawaja AP, Denniston AK, Rahi JS, Petzold A, Keane PA. Association Between Retinal Features From Multimodal Imaging and Schizophrenia. JAMA Psychiatry 2023; 80:478-487. [PMID: 36947045 PMCID: PMC10034669 DOI: 10.1001/jamapsychiatry.2023.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 03/23/2023]
Abstract
Importance The potential association of schizophrenia with distinct retinal changes is of clinical interest but has been challenging to investigate because of a lack of sufficiently large and detailed cohorts. Objective To investigate the association between retinal biomarkers from multimodal imaging (oculomics) and schizophrenia in a large real-world population. Design, Setting, and Participants This cross-sectional analysis used data from a retrospective cohort of 154 830 patients 40 years and older from the AlzEye study, which linked ophthalmic data with hospital admission data across England. Patients attended Moorfields Eye Hospital, a secondary care ophthalmic hospital with a principal central site, 4 district hubs, and 5 satellite clinics in and around London, United Kingdom, and had retinal imaging during the study period (January 2008 and April 2018). Data were analyzed from January 2022 to July 2022. Main Outcomes and Measures Retinovascular and optic nerve indices were computed from color fundus photography. Macular retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (mGC-IPL) thicknesses were extracted from optical coherence tomography. Linear mixed-effects models were used to examine the association between schizophrenia and retinal biomarkers. Results A total of 485 individuals (747 eyes) with schizophrenia (mean [SD] age, 64.9 years [12.2]; 258 [53.2%] female) and 100 931 individuals (165 400 eyes) without schizophrenia (mean age, 65.9 years [13.7]; 53 253 [52.8%] female) were included after images underwent quality control and potentially confounding conditions were excluded. Individuals with schizophrenia were more likely to have hypertension (407 [83.9%] vs 49 971 [48.0%]) and diabetes (364 [75.1%] vs 28 762 [27.6%]). The schizophrenia group had thinner mGC-IPL (-4.05 μm, 95% CI, -5.40 to -2.69; P = 5.4 × 10-9), which persisted when investigating only patients without diabetes (-3.99 μm; 95% CI, -6.67 to -1.30; P = .004) or just those 55 years and younger (-2.90 μm; 95% CI, -5.55 to -0.24; P = .03). On adjusted analysis, retinal fractal dimension among vascular variables was reduced in individuals with schizophrenia (-0.14 units; 95% CI, -0.22 to -0.05; P = .001), although this was not present when excluding patients with diabetes. Conclusions and Relevance In this study, patients with schizophrenia had measurable differences in neural and vascular integrity of the retina. Differences in retinal vasculature were mostly secondary to the higher prevalence of diabetes and hypertension in patients with schizophrenia. The role of retinal features as adjunct outcomes in patients with schizophrenia warrants further investigation.
Collapse
Affiliation(s)
- Siegfried K. Wagner
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Mario Cortina-Borja
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Steven M. Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
- Center for Visual Science, University of Rochester, Rochester, New York
| | - Yukun Zhou
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - David Romero-Bascones
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Biomedical Engineering Department, Faculty of Engineering (MU-ENG), Mondragon Unibertsitatea, Mondragón, Spain
| | - Robbert R. Struyven
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Emanuele Trucco
- VAMPIRE Project, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Muthu R. K. Mookiah
- VAMPIRE Project, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Tom MacGillivray
- VAMPIRE Project, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Hogg
- VAMPIRE Project, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Timing Liu
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Dominic J. Williamson
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Nikolas Pontikos
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Praveen J. Patel
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Konstantinos Balaskas
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Kelsey V. Stuart
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Alastair K. Denniston
- University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Jugnoo S. Rahi
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Ulverscroft Vision Research Group, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Axel Petzold
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pearse A. Keane
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
Urenda JP, Del Dosso A, Birtele M, Quadrato G. Present and Future Modeling of Human Psychiatric Connectopathies With Brain Organoids. Biol Psychiatry 2023; 93:606-615. [PMID: 36759258 PMCID: PMC11229385 DOI: 10.1016/j.biopsych.2022.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Brain organoids derived from human pluripotent stem cells are emerging as a powerful tool to model cellular aspects of neuropsychiatric disorders, including alterations in cell proliferation, differentiation, migration, and lineage trajectory. To date, most contributions in the field have focused on modeling cellular impairment of the cerebral cortex, with few studies probing dysfunction in local network connectivity. However, it is increasingly more apparent that these psychiatric disorders are connectopathies involving multiple brain structures and the connections between them. Therefore, the lack of reproducible anatomical features in these 3-dimensional cultures represents a major bottleneck for effectively modeling brain connectivity at the micro(cellular) level and at the macroscale level between brain regions. In this perspective, we review the use of current organoid protocols to model neuropsychiatric disorders with a specific emphasis on the potential and limitations of the current strategies to model impairments in functional connectivity. Finally, we discuss the importance of adopting interdisciplinary strategies to establish next-generation, multiregional organoids that can model, with higher fidelity, the dysfunction in the development and functionality of long-range connections within the brain of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
- Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashley Del Dosso
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
14
|
A comparative study of retinal layer changes among patients with schizophrenia and healthy controls. Acta Neuropsychiatr 2022; 35:165-176. [PMID: 36476516 DOI: 10.1017/neu.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM This study aimed to evaluate the retinal nerve fibre layer changes among different group of patients with schizophrenia and compare it with healthy controls by using swept-source optical coherence tomography. METHODOLOGY Patients with first-episode schizophrenia (n = 21) in remission (n = 35) or with treatment-resistant schizophrenia (TRS) (n = 35) and 36 healthy controls were evaluated for retinal thickness. RESULTS Patients with psychotic illnesses had significantly lower sub-foveal choroidal thickness (effect size 0.84-0.86), when compared to the healthy controls. When patients with first-episode schizophrenia were compared with patients with TRS, TRS patients had significant lower sub-foveal choroidal thickness (left eye) when the various confounders (such as age, gender, duration of treatment, smoking, current medications, body mass index, waist circumference, blood pressure, fasting glucose, HbA1c, presence or absence of metabolic syndrome) were taken into account. When the patients with TRS were compared with healthy controls, initially significant differences were observed for the macular volume (left and right) and the ganglion cell thickness (right eye) but these differences disappeared after controlling for the various covariates. CONCLUSIONS Compared to healthy controls, patients with schizophrenia, psychotic illnesses have thinning of the retina, especially in the sub-foveal choroidal thickness.
Collapse
|
15
|
Structural and functional retinal alterations in patients with paranoid schizophrenia. Transl Psychiatry 2022; 12:402. [PMID: 36151078 PMCID: PMC9508100 DOI: 10.1038/s41398-022-02167-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Ophthalmological methods have increasingly raised the interest of neuropsychiatric specialists. While the integrity of the retinal cell functions can be evaluated with the electroretinogram (ERG), optical coherence tomography (OCT) allows a structural investigation of retinal layer thicknesses. Previous studies indicate possible functional and structural retinal alterations in patients with schizophrenia. Twenty-five patients with paranoid schizophrenia and 25 healthy controls (HC) matched for age, sex, and smoking status participated in this study. Both, ERG and OCT were applied to obtain further insights into functional and structural retinal alterations. A significantly reduced a-wave amplitude and thickness of the corresponding para- and perifoveal outer nuclear layer (ONL) was detected in patients with paranoid schizophrenia with a positive correlation between both measurement parameters. Amplitude and peak time of the photopic negative response (PhNR) and thickness of the parafoveal ganglion cell layer (GCL) were decreased in patients with schizophrenia compared to HC. Our results show both structural and functional retinal differences between patients with paranoid schizophrenia and HC. We therefore recommend the comprehensive assessment of the visual system of patients with schizophrenia, especially to further investigate the effect of antipsychotic medication, the duration of illness, or other factors such as inflammatory or neurodegenerative processes. Moreover, longitudinal studies are required to investigate whether the functional alterations precede the structural changes.
Collapse
|
16
|
Komatsu H, Onoguchi G, Jerotic S, Kanahara N, Kakuto Y, Ono T, Funakoshi S, Yabana T, Nakazawa T, Tomita H. Retinal layers and associated clinical factors in schizophrenia spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3592-3616. [PMID: 35501407 DOI: 10.1038/s41380-022-01591-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The retina shares structural and functional similarities with the brain. Furthermore, structural changes in the retina have been observed in patients with schizophrenia spectrum disorders (SSDs). This systematic review and meta-analysis investigated retinal abnormalities and their association with clinical factors for SSD. METHODS Studies related to retinal layers in SSD patients were retrieved from PubMed, Scopus, Web of Science, Cochrane Controlled Register of Trials, International Clinical Trials Registry Platform, and PSYNDEX databases from inception to March 31, 2021. We screened and assessed the eligibility of the identified studies. EZR ver.1.54 and the metafor package in R were used for the meta-analysis and a random-effects or fixed-effects model was used to report standardized mean differences (SMDs). RESULTS Twenty-three studies (2079 eyes of patients and 1571 eyes of controls) were included in the systematic review and meta-analysis. The average peripapillary retinal nerve fiber layer (pRNFL) thickness, average macular thickness (MT), and macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness were significantly lower in patients than in controls (n = 14, 6, and 3, respectively; SMD = -0.33, -0.49, and -0.43, respectively). Patients also had significantly reduced macular volume (MV) compared to controls (n = 7; SMD = -0.53). The optic cup volume (OCV) was significantly larger in patients than in controls (n = 3; SMD = 0.28). The meta-regression analysis indicated an association between several clinical factors, such as duration of illness and the effect size of the pRNFL, macular GCL-IPL, MT, and MV. CONCLUSION Thinning of the pRNFL, macular GCL-IPL, MT, and MV and enlargement of the OCV in SSD were observed. Retinal abnormalities may be applicable as state/trait markers in SSDs. The accumulated evidence was mainly cross-sectional and requires verification by longitudinal studies to characterize the relationship between OCT findings and clinical factors.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan. .,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan. .,Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shunichi Funakoshi
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Boudriot E, Schworm B, Slapakova L, Hanken K, Jäger I, Stephan M, Gabriel V, Ioannou G, Melcher J, Hasanaj G, Campana M, Moussiopoulou J, Löhrs L, Hasan A, Falkai P, Pogarell O, Priglinger S, Keeser D, Kern C, Wagner E, Raabe FJ. Optical coherence tomography reveals retinal thinning in schizophrenia spectrum disorders. Eur Arch Psychiatry Clin Neurosci 2022; 273:575-588. [PMID: 35930031 PMCID: PMC10085905 DOI: 10.1007/s00406-022-01455-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Schizophrenia spectrum disorders (SSDs) are presumed to be associated with retinal thinning. However, evidence is lacking as to whether these retinal alterations reflect a disease-specific process or are rather a consequence of comorbid diseases or concomitant microvascular impairment. METHODS The study included 126 eyes of 65 patients with SSDs and 143 eyes of 72 healthy controls. We examined macula and optic disc measures by optical coherence tomography (OCT) and OCT angiography (OCT-A). Additive mixed models were used to assess the impact of SSDs on retinal thickness and perfusion and to explore the association of retinal and clinical disease-related parameters by controlling for several ocular and systemic covariates (age, sex, spherical equivalent, intraocular pressure, body mass index, diabetes, hypertension, smoking status, and OCT signal strength). RESULTS OCT revealed significantly lower parafoveal macular, macular ganglion cell-inner plexiform layer (GCIPL), and macular retinal nerve fiber layer (RNFL) thickness and thinner mean and superior peripapillary RNFL in SSDs. In contrast, the applied OCT-A investigations, which included macular and peripapillary perfusion density, macular vessel density, and size of the foveal avascular zone, did not reveal any significant between-group differences. Finally, a longer duration of illness and higher chlorpromazine equivalent doses were associated with lower parafoveal macular and macular RNFL thickness. CONCLUSIONS This study strengthens the evidence for disease-related retinal thinning in SSDs.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Benedikt Schworm
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Lenka Slapakova
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Katharina Hanken
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Iris Jäger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Georgios Ioannou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Julian Melcher
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, 86156, Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, 80336, Munich, Germany.,Munich Center for Neurosciences (MCN), LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Christoph Kern
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany. .,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany.
| |
Collapse
|
18
|
Gonzalez-Diaz JM, Radua J, Sanchez-Dalmau B, Camos-Carreras A, Zamora DC, Bernardo M. Mapping Retinal Abnormalities in Psychosis: Meta-analytical Evidence for Focal Peripapillary and Macular Reductions. Schizophr Bull 2022; 48:1194-1205. [PMID: 35810337 PMCID: PMC9673251 DOI: 10.1093/schbul/sbac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several studies have suggested that the retina structure is affected in schizophrenia spectrum disorders (SSD). We aimed to investigate the location and size of the potential differences between patients and healthy controls (HC) in several thickness and volume measures across the retina. STUDY DESIGN We included cross-sectional studies comparing peripapillary retinal nerve fiber layer (pRNFL) thickness, macular volume, macular thickness (MT), foveal thickness, ganglion cell and inner plexiform layer thickness (GCL+IPL), cup volume, and cup/disc ratio (C/D) in the right and/or left eyes and/or the pRNFL and MT quadrants between patients with SSD and HC. Search databases were MEDLINE, Web of Science, PsycINFO, Cochrane Central, and medrxiv.org. Risk of bias was assessed with the Newcastle-Ottawa Scale. Standardized mean differences (SMD), subgroup analysis, and meta-regression with several variables were computed using the dmetar package in R. PROSPERO: CRD42021287873. STUDY RESULTS Data from 22 reports (942 patients, 742 HC) were included. We found a retinal thinning in pRNFL (-0.30; 95% CI: -0.46, -0.14), macula (-0.37; 95% CI: -0.61, -0.13), and GCL+IPL (-0.33; 95% CI: -0.57, -0.10). The retinal thinning was especially pronounced in the superior and inferior quadrants of the inner ring of the macula. We also observed a decrease of macular volume (-0.44; 95% CI: -0.68, -0.20) and an increase in C/D ratio (0.35; 95% CI: 0.03, 0.67). CONCLUSIONS Current evidence demonstrates retinal thinning in SSD, affecting both axonal and cellular structures, specially focused in the inner ring of the macula.
Collapse
Affiliation(s)
- Jairo M Gonzalez-Diaz
- Universitat de Barcelona, Barcelona, Spain,UR Center for Mental Health—CERSAME, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia,Clinica Nuestra Señora de la Paz, Bogota, Colombia
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain,Early Psychosis: Interventions and Clinical-detection Lab, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Department of Clinical Neuroscience, Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden
| | - Bernardo Sanchez-Dalmau
- Institut Clínic d’Oftalmologia, Hospital Clínic, Barcelona, Spain,Visual Lab. Ocular Inflammation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Universitat de Barcelona, Barcelona, Spain
| | - Anna Camos-Carreras
- Institut Clínic d’Oftalmologia, Hospital Clínic, Barcelona, Spain,Visual Lab. Ocular Inflammation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Diana C Zamora
- UR Center for Mental Health—CERSAME, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Miquel Bernardo
- To whom correspondence should be addressed; Department of Psychiatry and Psychology, Clinical Institute of Neuroscience. Hospital Clinic of Barcelona, Villarroel, 170. 08036. Barcelona, Spain; tel: +34 93 227 54 00 Ext. 3142, e-mail:
| |
Collapse
|
19
|
Retinal changes in bipolar disorder as an endophenotype candidate: Comparison of OCT-detected retinal changes in patients, siblings, and healthy controls. Psychiatry Res 2022; 313:114606. [PMID: 35561535 DOI: 10.1016/j.psychres.2022.114606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique that detects retinal changes reflecting neurodegeneration. In recent studies in patients with bipolar disorder (BD) abnormal OCT findings have shown. In this study, we aimed to investigate the retinal changes in BD patients and their healthy siblings (HS) by comparing them with the healthy control (HC) group and to explore these findings as potential endophenotype candidates. 31 patients with BD, 31 age-matched HSs and 46 HCs were included and peripapillary retinal nerve fiber layer (RNFL), ganglion cell layer (GCL)+inner plexiform layer (IPL) and macular volume (MV) thicknesses were measured by OCT. The relationship between disease severity parameters, functionality and OCT measurements in the patient group was also investigated. In results, the mean RNFL thicknesses did not differ between groups. All GCL+IPL thicknesses were found to be significantly lower in the patient and sibling groups compared to the HCs. GCL+IPL thicknesses were significantly correlated with functionality of patients and severity of the disorder. Our findings suggest that analysis of retinal layers with OCT may be a beneficial indicator to show neuronal changes in BD and GCL+IPL may be a suitable endophenotype candidate.
Collapse
|
20
|
Francisco AA, Foxe JJ, Horsthuis DJ, Molholm S. Early visual processing and adaptation as markers of disease, not vulnerability: EEG evidence from 22q11.2 deletion syndrome, a population at high risk for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:28. [PMID: 35314711 PMCID: PMC8938446 DOI: 10.1038/s41537-022-00240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/17/2023]
Abstract
We investigated visual processing and adaptation in 22q11.2 deletion syndrome (22q11.2DS), a condition characterized by an increased risk for schizophrenia. Visual processing differences have been described in schizophrenia but remain understudied early in the disease course. Electrophysiology was recorded during a visual adaptation task with different interstimulus intervals to investigate visual processing and adaptation in 22q11.2DS (with (22q+) and without (22q−) psychotic symptoms), compared to control and idiopathic schizophrenia groups. Analyses focused on early windows of visual processing. While increased amplitudes were observed in 22q11.2DS in an earlier time window (90–140 ms), decreased responses were seen later (165–205 ms) in schizophrenia and 22q+. 22q11.2DS, and particularly 22q−, presented increased adaptation effects. We argue that while amplitude and adaptation in the earlier time window may reflect specific neurogenetic aspects associated with a deletion in chromosome 22, amplitude in the later window may be a marker of the presence of psychosis and/or of its chronicity/severity.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
21
|
Green KM, Choi JJ, Ramchandran RS, Silverstein SM. OCT and OCT Angiography Offer New Insights and Opportunities in Schizophrenia Research and Treatment. Front Digit Health 2022; 4:836851. [PMID: 35252961 PMCID: PMC8894243 DOI: 10.3389/fdgth.2022.836851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The human retina and retinal imaging technologies continue to increasingly gain the attention of schizophrenia researchers. With the same embryologic origin as the brain, the retina offers a window into neurovascular changes that may underlie disease. Recently, two technologies that have already revolutionized the field of ophthalmology, optical coherence tomography (OCT), and a functional extension of this, optical coherence tomography angiography (OCTA), have gained traction. Together, these non-invasive technologies allow for microscopic imaging of both structural and vascular features of the retina. With ease of use and no side effects, these devices are likely to prove powerful digital health tools in the study and treatment of schizophrenia. They may also prove key to discovering disease relevant biomarkers that underly neurodevelopmental and neurodegenerative aspects of conditions such as schizophrenia.
Collapse
Affiliation(s)
- Kyle M. Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
| | - Joy J. Choi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| | - Rajeev S. Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven M. Silverstein
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| |
Collapse
|
22
|
Gandu S, Bannai D, Adhan I, Kasetty M, Katz R, Zang R, Lutz O, Kim LA, Keshavan M, Miller JB, Lizano P. Inter-device reliability of swept source and spectral domain optical coherence tomography and retinal layer differences in schizophrenia. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Demir B, Ozsoy F, Kepenek I, Altindag A. Examination of optical coherence tomography findings in patients with methamphetamine use disorder. J Addict Dis 2021; 40:278-284. [PMID: 34747324 DOI: 10.1080/10550887.2021.1983294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE In our study, we aimed to examine Optical Coherence Tomography (OCT) findings in patients diagnosed with methamphetamine use disorder (MUD) by comparing them with healthy controls. METHODS Sixty-five people were included in our study and 130 eyes were evaluated; 33 cases were included in the patient group with MUD according to DSM-5 diagnostic criteria and 32 as the healthy control group. Detailed biomicroscopic examinations and then both eyes were evaluated through OCT by the same ophthalmologist. RESULTS There was no statistically significant difference between the patient and control groups in terms of gender and age (p > 0.05). When the OCT findings were evaluated, the measurements of the patients in any quadrant for retinal nerve fiber layer (RNFL) were not statistically different from the control group (p > 0.05). Macula and choroidal layer thickness did not differ between the groups (p > 0.05). Only right intraocular pressure was found to be decreased in the patient group (p = 0.026). CONCLUSIONS There are a limited number of studies examining OCT findings in patients with MUD. Visual symptoms and intraocular pressure should be considered when evaluating patients with MUD and planning their treatment. In addition; in order for OCT findings to gain importance, which can be used as an effective method to show the possible neurodegeneration that may occur in substance use disorder, it should be supported with further research.
Collapse
Affiliation(s)
- Bahadir Demir
- Faculty of Medicine, Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | - Filiz Ozsoy
- Clinic of Psychiatry, Tokat State Hospital, Tokat, Turkey
| | - Idris Kepenek
- 25 December State Hospital, Clinic of Ophthalmology, Gaziantep, Turkey
| | - Abdurrahman Altindag
- Department of Psychiatry, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
24
|
Koman-Wierdak E, Róg J, Brzozowska A, Toro MD, Bonfiglio V, Załuska-Ogryzek K, Karakuła-Juchnowicz H, Rejdak R, Nowomiejska K. Analysis of the Peripapillary and Macular Regions Using OCT Angiography in Patients with Schizophrenia and Bipolar Disorder. J Clin Med 2021; 10:4131. [PMID: 34575242 PMCID: PMC8472507 DOI: 10.3390/jcm10184131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To measure RNFL and vasculature around the optic disc and in the macula in patients with schizophrenia (SZ) and bipolar disorder (BD) using optical coherence tomography angiography (OCTA). METHODS 24 eyes of patients with SZ and 16 eyes of patients with BD as well as 30 eyes of healthy subjects were examined with OCTA. The radiant peripapillary capillary (RPC) density and RNFL thickness were measured in the peripapillary area. Moreover, macular thickness and vessel density were measured in both superficial and deep layers. RESULTS Significantly decreased values of vessel density in the macular deep vascular complex were found in the eyes of patients with SZ, compared to BD and the control group. The macular thickness in the whole vascular complex and in the fovea was significantly lower in SZ and BD group than in the control group. The radiant peripapillary vascular density and RNFL thickness were similar across groups. CONCLUSIONS The retinal microvascular dysfunction occurs in the macula in patients with SZ and BD, but not around optic disc. OCTA can become an essential additional diagnostic tool in detection of psychiatric disorders.
Collapse
Affiliation(s)
- Edyta Koman-Wierdak
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (M.D.T.); (R.R.); (K.N.)
| | - Joanna Róg
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-079 Lublin, Poland; (J.R.); (H.K.-J.)
| | - Agnieszka Brzozowska
- Department of Mathematics and Medical Biostatistics, Medical University of Lublin, 20-079 Lublin, Poland;
| | - Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (M.D.T.); (R.R.); (K.N.)
- Department of Ophthalmology, University of Zurich, 8091 Zurich, Switzerland
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, 90127 Palermo, Italy;
| | | | - Hanna Karakuła-Juchnowicz
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-079 Lublin, Poland; (J.R.); (H.K.-J.)
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (M.D.T.); (R.R.); (K.N.)
| | - Katarzyna Nowomiejska
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (M.D.T.); (R.R.); (K.N.)
| |
Collapse
|
25
|
Jerotic S, Lalovic N, Pejovic S, Mihaljevic M, Pavlovic Z, Britvic D, Risimic D, Soldatovic I, Silverstein SM, Maric NP. Sex differences in macular thickness of the retina in patients with psychosis spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110280. [PMID: 33567332 DOI: 10.1016/j.pnpbp.2021.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Imaging of retinal structure in psychosis spectrum disorders (PSD) is a novel approach to studying effect of this illness class on CNS structure. Studies of optical coherence tomography (OCT) have revealed significant reductions in regarding: retinal nerve fiber layer (RNFL), macular thickness (MT), ganglion cell-inner plexiform layer (GC-IPL) and macular volume (MV). Sex differences in retinal structure in PSD have not been previously explored. METHODS This cross-sectional pilot study included 81 participant of age matched patients and controls. There were no differences between genders regarding illness duration and antipsychotic daily dose in the patient group. SD-OCT assessed RNFL, GC-IPL, MT, MV, and optic nerve cup-to-disc (C/D) ratio. In order to assess the main effects of illness, sex, and illness × sex interaction on the retinal parameters, general linear model was performed. RESULTS Patients demonstrated abnormalities on all OCT indices. Effects of sex were observed for central subfield MT and C/D ratio, which were lower in females. An illness × sex interaction effect was observed for the left MT, indicating greater thinning in female patients. CONCLUSION Sex differences in OCT findings in PSD appear to be most prominent considering macular parameters. These preliminary data may have important implications for the valid interpretation of OCT findings as potential biomarkers for PSD.
Collapse
Affiliation(s)
- Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia.
| | - Nikola Lalovic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Slobodanka Pejovic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Mihaljevic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zorana Pavlovic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Britvic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Dijana Risimic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Ophthalmology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivan Soldatovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Nadja P Maric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute of Mental Health, Belgrade, Serbia
| |
Collapse
|
26
|
Silverstein SM, Lai A, Green KM, Crosta C, Fradkin SI, Ramchandran RS. Retinal Microvasculature in Schizophrenia. Eye Brain 2021; 13:205-217. [PMID: 34335068 PMCID: PMC8318708 DOI: 10.2147/eb.s317186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Schizophrenia is associated with alterations in neural structure and function of the retina that are similar to changes seen in the retina and brain in multiple neurodegenerative disorders. Preliminary evidence suggests that retinal microvasculature may also be compromised in schizophrenia. The goal of this study was to determine, using optical coherence tomography angiography (OCTA), whether 1) schizophrenia is associated with alterations in retinal microvasculature density; and 2) microvasculature reductions are associated with retinal neural layer thinning and performance on a measure of verbal IQ. PATIENTS AND METHODS Twenty-eight outpatients with schizophrenia or schizoaffective disorder and 37 psychiatrically healthy control subjects completed OCT and OCTA exams, and the Wechsler Test of Adult Reading. RESULTS Schizophrenia patients were characterized by retinal microvasculature density reductions, and enlarged foveal avascular zones, in both eyes. These microvascular abnormalities were generally associated with thinning of retinal neural (macular and peripapillary nerve fiber layer) tissue (but the data were stronger for the left than the right eye) and lower scores on a proxy measure of verbal IQ. First- and later-episode patients did not differ significantly on OCTA findings. CONCLUSION The retinal microvasculature impairments seen in schizophrenia appear to be a biomarker of overall brain health, as is the case for multiple neurological conditions. Additional research is needed, however, to clarify contributions of social disadvantage and medical comorbidities to the findings.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Adriann Lai
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Kyle M Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christen Crosta
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | - Rajeev S Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
27
|
Zhuo C, Xiao B, Ji F, Lin X, Jiang D, Tian H, Xu Y, Wang W, Chen C. Patients with first-episode untreated schizophrenia who experience concomitant visual disturbances and auditory hallucinations exhibit co-impairment of the brain and retinas-a pilot study. Brain Imaging Behav 2021; 15:1533-1541. [PMID: 32748321 DOI: 10.1007/s11682-020-00351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are limited structural brain and retina alteration data from schizophrenia patients who experience visual disturbances (VDs) with or without auditory hallucinations (AHs). We compared brain and retina alterations between first-episode untreated schizophrenia patients with VDs (FUSCH-VDs) with versus without AHs, and between patients and healthy controls (HCs)(N = 30/group). VDs, AHs, gray matter volumes (GMVs), and retinal thicknesses were evaluated with the Bonn Scale for Assessment of Basic Symptoms (BSABS) scale, the Auditory Hallucinations Rating Scale (AHRS), magnetic resonance imaging (MRI), and optical coherence tomography (OCT), respectively. Compared to HCs, FUSCH-VDs had reduced GMVs, mainly in dorsal V3/V3A and V5 regions, the fusiform gyrus, and ventral V4 and V8 regions. Most FUSCH-VDs (85.0%; 51/60) had primary visual cortex-retina co-impairments. FUSCH-VDs with AHs had more serious and larger scope GMV reductions than FUSCH-VDs without AHs. FUSCH-VDs with AHs had significant retinal thickness reductions compared to HCs. Primary visual cortex-retina co-impairments were found to be more common, and more pronounced when present, in FUSCH-VDs with AHs than in FUSCH-VDs without AHs. The present findings support the notion that VDs and AHs may have reciprocal deteriorating actions in patients with schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, 272119, Shandong, China. .,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China. .,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China.
| | - Bo Xiao
- Department of OCT, Tianjin Eye Hospital, Tianjin, 300034, China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, 272119, Shandong, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, 361000, Fujian, China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
28
|
Asanad S, O'Neill H, Addis H, Chen S, Wang J, Goldwaser E, Kochunov P, Hong LE, Saeedi OJ. Neuroretinal Biomarkers for Schizophrenia Spectrum Disorders. Transl Vis Sci Technol 2021; 10:29. [PMID: 34004009 PMCID: PMC8083086 DOI: 10.1167/tvst.10.4.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We evaluated the patient-control differences and predictive value of the retina as potential biomarkers for schizophrenia. Methods The institutional study included both eyes of 58 schizophrenia spectrum disorder (SSD) patients (age 37.2 ± 12.3 years) and 35 controls (age 41.1 ± 15.2 years). Retinal nerve fiber layer (RNFL), ganglion cell–inner plexiform layer, outer retinal photoreceptor complex, and total macula thicknesses were measured by optical coherence tomography (OCT). Anterior segment parameters including central corneal thickness, anterior chamber depth, and axial length were measured to rule out confounds on the retinal measures. Results The peripapillary RNFL was overall significantly thinner in SSD relative to controls (F = 3.97, P = 0.049), most pronounced in the temporal (5.2 µm difference, F = 6.95, P = 0.010) and inferior quadrants (12.1 µm difference, F = 7.32, P = 0.009). There were no significant group differences in thickness for the macular RNFL, ganglion, or photoreceptor cell related measures (P > 0.05). Peripapillary RNFL, central macula, and outer photoreceptor complex thicknesses were together able to classify SSD patients with 80% sensitivity and 71% specificity; area under the curve = 0.82 (95% confidence interval, 0.75–0.88). Conclusions SSD patients exhibited significant RNFL thinning relative to controls. Notably, retinal thickness measures including both peripapillary and macular data exhibited improved diagnostic accuracy for SSD as compared to these regions alone. Translational Relevance This is the first study to evaluate the predictive value of both the inner and outer retina in SSD. OCT retinal thickness measures including peripapillary data in conjunction with macular data may provide an informative, noninvasive in vivo ocular biomarker for schizophrenia.
Collapse
Affiliation(s)
- Samuel Asanad
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugh O'Neill
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hampton Addis
- Children's National Health System, Washington, DC, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jingtao Wang
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Silverstein SM, Lai A. The Phenomenology and Neurobiology of Visual Distortions and Hallucinations in Schizophrenia: An Update. Front Psychiatry 2021; 12:684720. [PMID: 34177665 PMCID: PMC8226016 DOI: 10.3389/fpsyt.2021.684720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is characterized by visual distortions in ~60% of cases, and visual hallucinations (VH) in ~25-50% of cases, depending on the sample. These symptoms have received relatively little attention in the literature, perhaps due to the higher rate of auditory vs. visual hallucinations in psychotic disorders, which is the reverse of what is found in other neuropsychiatric conditions. Given the clinical significance of these perceptual disturbances, our aim is to help address this gap by updating and expanding upon prior reviews. Specifically, we: (1) present findings on the nature and frequency of VH and distortions in schizophrenia; (2) review proposed syndromes of VH in neuro-ophthalmology and neuropsychiatry, and discuss the extent to which these characterize VH in schizophrenia; (3) review potential cortical mechanisms of VH in schizophrenia; (4) review retinal changes that could contribute to VH in schizophrenia; (5) discuss relationships between findings from laboratory measures of visual processing and VH in schizophrenia; and (6) integrate findings across biological and psychological levels to propose an updated model of VH mechanisms, including how their content is determined, and how they may reflect vulnerabilities in the maintenance of a sense of self. In particular, we emphasize the potential role of alterations at multiple points in the visual pathway, including the retina, the roles of multiple neurotransmitters, and the role of a combination of disinhibited default mode network activity and enhanced state-related apical/contextual drive in determining the onset and content of VH. In short, our goal is to cast a fresh light on the under-studied symptoms of VH and visual distortions in schizophrenia for the purposes of informing future work on mechanisms and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States.,Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| | - Adriann Lai
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
30
|
Liu Y, Chen J, Huang L, Yan S, Bian Q, Yang F. Relationships Among Retinal Nerve Fiber Layer Thickness, Vascular Endothelial Growth Factor, and Cognitive Impairment in Patients with Schizophrenia. Neuropsychiatr Dis Treat 2021; 17:3597-3606. [PMID: 34916796 PMCID: PMC8668245 DOI: 10.2147/ndt.s336077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Studies have suggested retinal nerve fiber layer (RNFL) involvement in the pathogenesis of schizophrenia. Additionally, research has shown that vascular endothelial growth factor (VEGF) potentially contributes to the pathophysiology of psychiatric disorders. Therefore, this study aimed to investigate VEGF, RNFL, and correlations with cognitive impairments in schizophrenia patients. METHODS Patients with schizophrenia (n = 138) were compared to healthy controls (n = 160). RNFLs were measured with optical coherence tomography (OCT). The Stroop color and word test (SCWT) was used to evaluate neurocognition. Blood samples were collected to measure VEGF. SPSS 20.0 was used to perform analysis of covariance, t-tests, partial correlation analysis, and linear regression. RESULTS Thinner RNFLs were found in schizophrenia patients (p < 0.001). RNFL showed a significant correlation with SCWT scores (all p < 0.05). Serum level of VEGF was lower in patients with schizophrenia (p = 0.010). Total and inferior RNFL thicknesses of right eyes were positively correlated to VEGF level (RNFL total thickness p = 0.032, inferior thickness p = 0.014).Total RNFL thicknesses were shown to be reduced following a prolonged duration of illness (both p < 0.01). CONCLUSION These findings suggest that patients with schizophrenia have degeneration with RNFL thickness following illness duration, which may contribute to neurocognitive impairments observed in schizophrenia. VEGF is speculated to play some important role on RNFL degeneration with schizophrenia patients.
Collapse
Affiliation(s)
- Yanhong Liu
- Huilongguan Clinical Medical School, Peking University, Beijing, People's Republic of China.,Beijing Huilongguan Hospital, Beijing, People's Republic of China
| | - Jingxu Chen
- Huilongguan Clinical Medical School, Peking University, Beijing, People's Republic of China.,Beijing Huilongguan Hospital, Beijing, People's Republic of China
| | - Lvzhen Huang
- Ophthalmology Department, People's Hospital of Peking University, Beijing, People's Republic of China
| | - Shaoxiao Yan
- Huilongguan Clinical Medical School, Peking University, Beijing, People's Republic of China.,Beijing Huilongguan Hospital, Beijing, People's Republic of China
| | - Qingtao Bian
- Huilongguan Clinical Medical School, Peking University, Beijing, People's Republic of China.,Beijing Huilongguan Hospital, Beijing, People's Republic of China
| | - Fude Yang
- Huilongguan Clinical Medical School, Peking University, Beijing, People's Republic of China.,Beijing Huilongguan Hospital, Beijing, People's Republic of China
| |
Collapse
|
31
|
Duraković D, Silić A, Peitl V, Tadić R, Lončarić K, Glavina T, Šago D, Turk LP, Karlović D. THE USE OF ELECTRORETINOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH SCHIZOPHRENIA. Acta Clin Croat 2020; 59:729-739. [PMID: 34285444 PMCID: PMC8253076 DOI: 10.20471/acc.2020.59.04.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
The use of electroretinography (ERG) and optical coherence tomography (OCT) has currently expanded beyond ophthalmology alone. The aim of this review is to present the results and knowledge acquired by these two methods in patients suffering from schizophrenia. Reviewing the studies applying ERG and OCT methods in the field of psychiatry, one can conclude that results of the research imply morphological and functional changes of retina in patients with schizophrenia that are not consistent. However, in most studies there was reduction of the amplitude and changes in the implicit time related parameters on ERG and thinning of the retinal nerve fiber layer on OCT. Neurons in the eye use the same neurotransmitters as neurons in the basal brain structures that are most affected in schizophrenia, according to the dopamine hypothesis of schizophrenia. Unlike neurons in the basal brain structures, the neurons in the eye are in vivo available to ERG. Using the aforementioned tests together with clinical diagnostic criteria of schizophrenia, the subgroups with different prognostic and therapeutic specificities within schizophrenia as a group of diseases might be identified more precisely.
Collapse
Affiliation(s)
| | - Ante Silić
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Vjekoslav Peitl
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Rašeljka Tadić
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Kristina Lončarić
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Trpimir Glavina
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Daniela Šago
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Ljiljana Pačić Turk
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| | - Dalibor Karlović
- 1Sestre milosrdnice University Hospital Centre, Department of Psychiatry, Zagreb, Croatia; 2Sestre milosrdnice University Hospital Centre, Department of Ophthalmology, Zagreb, Croatia; 3Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
32
|
Structural imaging of the retina in psychosis spectrum disorders: current status and perspectives. Curr Opin Psychiatry 2020; 33:476-483. [PMID: 32639357 DOI: 10.1097/yco.0000000000000624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Structural changes of the retina in schizophrenia and other psychotic disorders seem plausible as these conditions are accompanied by widespread morphological abnormalities of the brain. Advances in structural retinal imaging have led to the possibility of precise quantification of individual retinal layers, using optical coherence tomography (OCT) scanners. RECENT FINDINGS The aggregation of information related to OCT findings in schizophrenia has resulted in three metaanalyses, which are currently described. Areas where retinal changes were reported include retinal nerve fiber layer (RNFL), ganglion cell layer complex (GCC), macular volume, and macular thickness, but findings on affected retinal segments vary to some extent across studies. Discrepancies in individual studies could be because of small samples, heterogeneity within schizophrenia (phase of the illness, illness duration, predominant symptomatology), inconsistent reporting of antipsychotic therapy, insufficient control of confounding variables (somatic comorbidities, smoking, and so on), and use of the different types of OCT scanners. SUMMARY Exploration of potential disturbances in retinal architecture could provide new insights into neuronal changes associated with psychosis spectrum disorders, with potential to elucidate the nature and timing of developmental, progressive, inflammatory, and degenerative aspects of neuropathology and pathophysiology, and to assist with characterizing heterogeneity and facilitating personalized treatment approaches.
Collapse
|
33
|
Liu Y, Huang L, Tong Y, Chen J, Gao D, Yang F. Association of retinal nerve fiber abnormalities with serum CNTF and cognitive functions in schizophrenia patients. PeerJ 2020; 8:e9279. [PMID: 32676219 PMCID: PMC7335503 DOI: 10.7717/peerj.9279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have reported reductions in retinal nerve fiber layers (RNFL) in schizophrenia. Ciliary neurotrophic factor (CNTF) has shown protective effects on both the neurogenesis and retina. This study aimed at investigating retinal abnormalities and establishing their correlation with serum CNTF and cognitive impairments in schizophrenic Chinese patients. METHODS In total, 221 patients diagnosed with schizophrenia and 149 healthy controls were enrolled. Serum CNTF and clinical features of patients were investigated. Cognitive functions were evaluated with Repeatable Battery for the Assessment of Neuropsychology Status (RBANS). RNFL thickness and macular thickness (MT) of both eyes were measured with optical coherence tomography (OCT). T-tests and analysis of covariance were used to compare the variables between the patient and control groups, while multiple linear regression analysis was performed to determine the associations of RNFL thickness, CNTF and cognitive impairments. RESULTS RNFL was found thinner in patients than in healthy controls (right: 88.18 ± 25.84 µm vs.102.13 ± 14.32 µm, p = 0.001; left: 92.84 ± 13.54 µm vs.103.71 ± 11.94 µm, p < 0.001). CNTF was lower in the schizophrenia group (1755.45 ± 375.73 pg/ml vs. 1909.99 ± 368.08 pg/ml, p = 0.001). Decline in RNFL thickness was found correlated with course of illness and serum CNTF in patients (all p < 0.05). Similarly, cognitive functions such as immediate memory and visuospatial functions were also found correlated with decline in RNFL thickness. CONCLUSION Decline in RNFL thickness was associated with cognitive impairments of schizophrenia and CNFT serum concentration. The possibility of reduction in RNFL thickness as a biomarker for schizophrenia needs to be further examined.
Collapse
Affiliation(s)
- Yanhong Liu
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Lvzhen Huang
- People's Hospital of Peking University, Peking University, Beijing, China
| | - Yongsheng Tong
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Jingxu Chen
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Dongfang Gao
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Fude Yang
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| |
Collapse
|
34
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Lai A, Crosta C, Loftin M, Silverstein SM. Retinal structural alterations in chronic versus first episode schizophrenia spectrum disorders. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
36
|
Bannai D, Lizano P, Kasetty M, Lutz O, Zeng V, Sarvode S, Kim LA, Hill S, Tamminga C, Clementz B, Gershon E, Pearlson G, Miller JB, Keshavan M. Retinal layer abnormalities and their association with clinical and brain measures in psychotic disorders: A preliminary study. Psychiatry Res Neuroimaging 2020; 299:111061. [PMID: 32145500 PMCID: PMC7183910 DOI: 10.1016/j.pscychresns.2020.111061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
Studies utilizing optical coherence tomography (OCT) in psychosis have identified abnormalities in retinal cytoarchitecture. We aim to analyze retinal layer topography in psychosis and its correlation with clinical and imaging parameters. Macular retinal images were obtained via OCT in psychosis probands (n = 25) and healthy controls (HC, n = 15). Clinical, cognitive and structural MRI data were collected from participants. No thinning was noted for the retinal nerve fiber, ganglion cell or inner plexiform layers. We found significant thinning in the right inner temporal, right central, and left inner superior quadrants of the outer nuclear layer (ONL) in probands compared to HC. Thickening of the outer plexiform layer (OPL) was observed in the right inner temporal, left inner superior, and left inner temporal quadrants. The right inner temporal and left inner superior quadrants of both the OPL and ONL showed significant inverse correlations. Retinal pigment epithelium thinning correlated with worse mania symptoms, and thinning in the ONL was associated with worse cognitive function. ONL thinning was also associated with smaller total brain and white matter volume. Our findings suggest that outer retinal layers may provide additional insights into the pathophysiology of psychosis, possibly reflecting synaptic or inflammatory aberrations that lead to retinal pathologies.
Collapse
Affiliation(s)
- Deepthi Bannai
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paulo Lizano
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Megan Kasetty
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, USA
| | - Olivia Lutz
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Suraj Sarvode
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Leo A Kim
- Retina Service, Department of Opthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Scot Hill
- Department of Psychology, Rosalind Franklin University, Chicago, IL, USA
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brett Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Elliot Gershon
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, IL, USA
| | | | - John B Miller
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, USA; Retina Service, Department of Opthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Matcheri Keshavan
- Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Silverstein SM, Fradkin SI, Demmin DL. Schizophrenia and the retina: Towards a 2020 perspective. Schizophr Res 2020; 219:84-94. [PMID: 31708400 PMCID: PMC7202990 DOI: 10.1016/j.schres.2019.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differences between people with schizophrenia and psychiatrically healthy controls have been consistently demonstrated on measures of retinal function such as electroretinography (ERG), and measures of retinal structure such as optical coherence tomography (OCT). Since our 2015 review of this literature, multiple new studies have been published using these techniques. At the same time, the accumulation of data has highlighted the "fault lines" in these fields, suggesting methodological considerations that need greater attention in future studies. METHODS We reviewed studies of ERG and OCT in schizophrenia, as well as data from studies whose findings are relevant to interpreting these papers, such as those on effects of the following on ERG and OCT data: comorbid medical conditions that are over-represented in schizophrenia, smoking, antipsychotic medication, substance abuse, sex and gender, obesity, attention, motivation, and influences of brain activity on retinal function. RESULTS Recent ERG and OCT studies continue to support the hypothesis of retinal structural and functional abnormalities in schizophrenia, and suggest that these are relevant to understanding broader aspects of pathophysiology, neurodevelopment, and neurodegeneration in this disorder. However, there are differences in findings which suggest that the effects of multiple variables on ERG and OCT data need further clarification. CONCLUSIONS The retina, as the only component of the CNS that can be imaged directly in live humans, has potential to clarify important aspects of schizophrenia. With greater attention to specific methodological issues, the true potential of ERG and OCT as biomarkers for important clinical phenomena in schizophrenia should become apparent.
Collapse
Affiliation(s)
- Steven M Silverstein
- Rutgers University Behavioral Health Care, United States; Rutgers University, Robert Wood Johnson Medical School, Departments of Psychiatry and Ophthalmology, United States.
| | | | - Docia L Demmin
- Rutgers University, Department of Psychology, United States.
| |
Collapse
|
38
|
Gagné AM, Moreau I, St-Amour I, Marquet P, Maziade M. Retinal function anomalies in young offspring at genetic risk of schizophrenia and mood disorder: The meaning for the illness pathophysiology. Schizophr Res 2020; 219:19-24. [PMID: 31320175 DOI: 10.1016/j.schres.2019.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Visual defects are documented in psychiatric disorders such as schizophrenia, bipolar disorder and major depressive disorder. One of the most consistent alterations in patients is a change in cone and rod electroretinographic (ERG) responses. We previously showed a reduced rod b-wave amplitude in a small sample of young offspring born to an affected parent. A confirmation of the patients ERG anomalies in young offspring at high genetic risk would offer a new approach to the neurodevelopmental investigation of the illness. We thus investigated cone and rod responses in a larger sample of young healthy high-risk offspring. METHODS The ERG was recorded in 99 offspring of patients having DMS-IV schizophrenia, bipolar or major depressive disorder (mean age 16.03; SD 6.14) and in 223 healthy controls balanced for sex and age. The a- and b-wave latency and amplitude of cones and rods were recorded. RESULTS Cone b-wave latency was increased in offspring (ES = 0.31; P = 0.006) whereas rod b-wave amplitude was decreased (ES = -0.37; P = 0.001) and rod latency was increased (ES = 0.35; P = 0.002). CONCLUSIONS The ERG rod and cone abnormal response previously reported in adult patients having schizophrenia, bipolar disorder or major depressive disorder are detectable in genetically high-risk offspring as early as in childhood and adolescence. Moreover, a gradient of effect sizes among offspring and the three adult diagnoses was found in the cone response. This suggests that ERG waveform as a risk endophenotype might become part of the definition of a "childhood risk syndrome".
Collapse
Affiliation(s)
- Anne-Marie Gagné
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada
| | - Isabel Moreau
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada
| | - Isabelle St-Amour
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada
| | - Pierre Marquet
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada; Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Canada
| | - Michel Maziade
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada; Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, Canada.
| |
Collapse
|
39
|
Miller M, Zemon V, Nolan-Kenney R, Balcer LJ, Goff DC, Worthington M, Hasanaj L, Butler PD. Optical coherence tomography of the retina in schizophrenia: Inter-device agreement and relations with perceptual function. Schizophr Res 2020; 219:13-18. [PMID: 31937481 DOI: 10.1016/j.schres.2019.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) studies have demonstrated differences between people with schizophrenia and controls. Many questions remain including the agreement between scanners. The current study seeks to determine inter-device agreement of OCT data in schizophrenia compared to controls and to explore the relations between OCT and visual function measures. METHODS Participants in this pilot study were 12 individuals with schizophrenia spectrum disorders and 12 age- and sex-matched controls. Spectralis and Cirrus OCT machines were used to obtain retinal nerve fiber layer (RNFL) thickness and macular volume. Cirrus was used to obtain ganglion cell layer + inner plexiform layer (GCL + IPL) thickness. Visual function was assessed with low-contrast visual acuity and the King-Devick test of rapid number naming. RESULTS There was excellent relative agreement in OCT measurements between the two machines, but poor absolute agreement, for both patients and controls. On both machines, people with schizophrenia showed decreased macular volume but no difference in RNFL thickness compared to controls. No between-group difference in GCL + IPL thickness was found on Cirrus. Controls showed significant associations between King-Devick performance and RNFL thickness and macular volume, and between low-contrast visual acuity and GCL + IPL thickness. Patients did not show significant associations between OCT measurements and visual function. CONCLUSIONS Good relative agreement suggests that the offset between machines remains constant and should not affect comparisons between groups. Decreased macular volume in individuals with schizophrenia on both machines supports findings of prior studies and provides further evidence that similar results may be found irrespective of OCT device.
Collapse
Affiliation(s)
- Margaret Miller
- Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Rachel Nolan-Kenney
- Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Laura J Balcer
- Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Donald C Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Michelle Worthington
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Lisena Hasanaj
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Pamela D Butler
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
40
|
An investigation of retinal layer thicknesses in unaffected first-degree relatives of schizophrenia patients. Schizophr Res 2020; 218:255-261. [PMID: 31948898 DOI: 10.1016/j.schres.2019.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION A large number of studies using different neuroimaging methods showed various structural changes both in patients and their unaffected first-degree relatives (FDRs) over the past years. Optical coherence tomography (OCT) is a relatively new, non-invasive imaging method used to obtain high-resolution cross-sectional images of the retina. A growing body of evidence reports thinning of retinal layers in patients with schizophrenia which is considered as a proxy for CNS alterations. We hypothesized that retinal layer changes would be observed in FDRs, in parallel with those seen in patients, as a potential endophenotype candidate. METHODS Thirty-eight schizophrenia patients, 38 FDRs of schizophrenia and 38 age and gender-matched healthy subjects with no family history (HCs) were recruited to this study. OCT measurements were performed and peripapillary retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL) and macular thicknesses were measured. RESULTS The groups did not differ on RNFL, macular or GCL thickness. However, IPL thickness was significantly lower in both patients and FDRs than HCs (p = .025 and p = .041, respectively). The difference between groups remained significant after controlling for confounders such as age, gender, smoking status, comorbid medical diseases and BMI (p = .016 patients vs HCs and p = .014 FDRs vs HCs). CONCLUSION Our findings suggest that IPL thinning may hold promise as a useful endophenotype for genetic and early detection studies. The evaluation of this area could provide an important avenue for elucidating some of the neurodevelopmental aberrations in the disorder.
Collapse
|
41
|
Sahbaz C, Elbay A, Ozcelik M, Ozdemir H. Insomnia Might Influence the Thickness of Choroid, Retinal Nerve Fiber and Inner Plexiform Layer. Brain Sci 2020; 10:brainsci10030178. [PMID: 32204463 PMCID: PMC7139633 DOI: 10.3390/brainsci10030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep may play a fundamental role in retinal regulation and the degree of retinal variables. However, no clinical study has investigated optical coherence tomography (OCT) parameters in patients with primary insomnia. All participants were evaluated with the insomnia severity index (ISI) and the Pittsburgh sleep quality index (PSQI). The retinal nerve fiber layer (RNFL), ganglion cell layer (GC), inner plexiform layer (IPL), macula and choroidal (CH) thickness were compared between 52 drug-naïve patients with primary insomnia and 45 age-gender-BMI-smoke status matched healthy controls (HC). The patients with primary insomnia differed from the HC regarding RNFL-Global (p = 0.024) and RNFL-Nasal inferior (p = 0.010); IPL-Temporal (p < 0.001), IPL-Nasal (p < 0.001); CH-Global (p < 0.001), CH-Temporal (p = 0.004), CH-Nasal (p < 0.001), and CH-Fovea (p = 0.019). ISI correlated with RNFL-Global and RNFL-Nasal inferior. The regression analysis revealed that ISI was the significant predictor for the thickness of RNFL- Nasal inferior (p = 0.020), RNFL-Global (p = 0.031), and CH-Nasal (p = 0.035) in patients with primary insomnia. Sleep disorders are seen commonly in patients with psychiatric, including ocular diseases. Adjusting the effect of insomnia can help to clarify the consistency in findings of OCT.
Collapse
Affiliation(s)
- Cigdem Sahbaz
- Department of Psychiatry, Faculty of Medicine, Bezmialem Vakıf University, Istanbul 34093, Turkey
- Correspondence:
| | - Ahmet Elbay
- Department of Ophthalmology, Bezmialem Vakıf University, Istanbul 34093, Turkey; (A.E.); (H.O.)
| | - Mine Ozcelik
- School of Medicine, Bezmialem Vakıf University, Istanbul 34093, Turkey;
| | - Hakan Ozdemir
- Department of Ophthalmology, Bezmialem Vakıf University, Istanbul 34093, Turkey; (A.E.); (H.O.)
| |
Collapse
|
42
|
Almonte MT, Capellàn P, Yap TE, Cordeiro MF. Retinal correlates of psychiatric disorders. Ther Adv Chronic Dis 2020; 11:2040622320905215. [PMID: 32215197 PMCID: PMC7065291 DOI: 10.1177/2040622320905215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
Diagnosis and monitoring of psychiatric disorders rely heavily on subjective self-reports of clinical symptoms, which are complicated by the varying consistency of accounts reported by patients with an impaired mental state. Hence, more objective and quantifiable measures have been sought to provide clinicians with more robust methods to evaluate symptomology and track progression of disease in response to treatments. Owing to the shared origins of the retina and the brain, it has been suggested that changes in the retina may correlate with structural and functional changes in the brain. Vast improvements in retinal imaging, namely optical coherence tomography (OCT) and electrodiagnostic technology, have made it possible to investigate the eye at a microscopic level, allowing for the investigation of potential biomarkers in vivo. This review provides a summary of retinal biomarkers associated with schizophrenia, bipolar disorder and major depression, demonstrating how retinal biomarkers may be used to complement existing methods and provide structural markers of pathophysiological mechanisms that underpin brain dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Melanie T. Almonte
- Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | | | - Timothy E. Yap
- Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | | |
Collapse
|
43
|
Retinal structural abnormalities in young adults with psychosis spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109825. [PMID: 31759084 DOI: 10.1016/j.pnpbp.2019.109825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Structural retinal architecture in living organisms became measurable with the development of optical coherence tomography (OCT) scanners. Single-layer analysis with spectral-domain OCT, among other techniques, may provide further insight into pathological changes in complex brain disorders such as psychosis spectrum disorders (PSD). METHODS This study investigated potential thinning of retinal layers (retinal nerve fiber layer - RNFL, macular volume, macular thickness, ganglion cell-inner plexiform layer- GC-IPL, optic cup volume and cup-to-disk ratio) using a spectral-domain OCT device in 33 non-acute PSD patients (illness duration 5.9 ± 3.9 years) and 35 healthy controls. RESULTS In comparison to age and gender matched controls, patients had bilateral reductions in GC-IPL layer thickness and macular volume. Macular central subfield thinning was found in the right eye, while average macular thickness was lower in the left eye only. RNFL thinning was not observed in patients in comparison to controls, but we noticed that status of this layer could be affected by daily dose of antipsychotics and by illness duration. CONCLUSION Taken together, our results reveal that retinal thinning is present in young adults with PSDs, but in comparison to the literature we found more prominent changes in both GC-IPL and macular volume/thickness, than in RNFL. Our findings may reflect synaptic loss and neuronal atrophy in non-acute young patients with psychosis.
Collapse
|
44
|
Kazakos CT, Karageorgiou V. Retinal Changes in Schizophrenia: A Systematic Review and Meta-analysis Based on Individual Participant Data. Schizophr Bull 2020; 46:27-42. [PMID: 31626695 PMCID: PMC7145676 DOI: 10.1093/schbul/sbz106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Retinal assessment has indicated the presence of neuronal loss in neurodegenerative disorders, but its role in schizophrenia remains unclear. We sought to synthesize the available evidence considering 3 noninvasive modalities: optical coherence tomography, electroretinography, and fundus photography, and examine their diagnostic accuracy based on unpublished individual participant data, when provided by the primary study authors. METHODS We searched MEDLINE, SCOPUS, clinicaltrials.gov, PSYNDEX, Cochrane Controlled Register of Trials (CENTRAL), WHO International Clinical Trials Registry Platform, and Google Scholar, up to October 30, 2018. Authors were contacted and invited to share anonymized participant-level data. Aggregate data were pooled using random effects models. Diagnostic accuracy meta-analysis was based on multiple cutoffs logistic generalized linear mixed modeling. This study was registered with PROSPERO, number CRD42018109344. RESULTS Pooled mean differences of peripapillary retinal nerve fiber layer thickness in micrometer between 694 eyes of 432 schizophrenia patients and 609 eyes of 358 controls, from 11 case-control studies, with corresponding 95% confidence intervals (CIs) by quadrant were the following: -4.55, 95% CI: -8.28, -0.82 (superior); -6.25, 95% CI: -9.46, -3.04 (inferior); -3.18, 95% CI: -5.04, -1.31 (nasal); and -2.7, 95% CI: -4.35, -1.04 (temporal). Diagnostic accuracy, based on 4 studies, was fair to poor, unaffected by age and sex; macular area measurements performed slightly better. CONCLUSION The notion of structural and functional changes in retinal integrity of patients with schizophrenia is supported with current evidence, but diagnostic accuracy is limited. The potential prognostic, theranostic, and preventive role of retinal evaluation remains to be examined.
Collapse
Affiliation(s)
- Charalampos T Kazakos
- Independent Researcher, Athens, Greece,To whom correspondence should be addressed; tel: +30-694-5351827, fax: +30-210-3618503, e-mail:
| | - Vasilios Karageorgiou
- Second Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
Lizano P, Bannai D, Lutz O, Kim LA, Miller J, Keshavan M. A Meta-analysis of Retinal Cytoarchitectural Abnormalities in Schizophrenia and Bipolar Disorder. Schizophr Bull 2020; 46:43-53. [PMID: 31112601 PMCID: PMC6942159 DOI: 10.1093/schbul/sbz029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Schizophrenia (SZ) and bipolar disorder (BD) are characterized by reductions in gray matter and white matter. Limitations in brain imaging have led researchers to use optical coherence tomography (OCT) to explore retinal imaging biomarkers of brain pathology. We examine the retinal layers that may be associated with SZ or BD. METHODS Articles identified using PubMed, Web of Science, Cochrane Database. Twelve studies met inclusion for acutely/chronically ill patients. We used fixed or random effects meta-analysis for probands (SZ and BD), SZ or BD eyes vs healthy control (HC) eyes. We adjusted for sources of bias, cross-validated results, and report standardized mean differences (SMD). Statistical analysis performed using meta package in R. RESULTS Data from 820 proband eyes (SZ = 541, BD = 279) and 904 HC eyes were suitable for meta-analysis. The peripapillary retinal nerve fiber layer (RNFL) showed significant thinning in SZ and BD eyes compared to HC eyes (n = 12, SMD = -0.74, -0.51, -1.06, respectively). RNFL thinning was greatest in the nasal, temporal, and superior regions. The combined peripapillary ganglion cell layer and inner plexiform layer (GCL-IPL) showed significant thinning in SZ and BD eyes compared to HC eyes (n = 4, SMD = -0.39, -0.44, -0.28, respectively). No statistically significant differences were identified in other retinal or choroidal regions. Clinical variables were unrelated to the RNFL or GCL-IPL thickness by meta-regression. CONCLUSION The observed retinal layer thinning is consistent with the classic gray- and white-matter atrophy observed on neuroimaging in SZ and BD patients. OCT may be a useful biomarker tool in studying the neurobiology of psychosis.
Collapse
Affiliation(s)
- Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA,To whom correspondence should be addressed; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Ave, KS253, Boston, MA 02215, US; tel: 201-776-6708, fax: 617-667-2808, e-mail:
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
| | - Olivia Lutz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
| | - Leo A Kim
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - John Miller
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Özsoy F, Alim S. Optical coherence tomography findings in patients with alcohol use disorder and their relationship with clinical parameters. Cutan Ocul Toxicol 2019; 39:54-60. [PMID: 31847594 DOI: 10.1080/15569527.2019.1700379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: In our study, we aimed to investigate the ganglion cell-inner plexiform layer thickness (GCIPL), retinal nerve fibre layer thickness (RNFL), mean macular volume (MMV), central macular thickness (CMT), mean macular thickness (MMT), and choroidal thickness (CT) values with optical coherence tomography (OCT) in patients who are diagnosed with alcohol use disorder (AUD).Materials and methods: The study included 43 patients who were diagnosed with AUD, and 43 healthy controls. Detailed biomicroscopic examinations of all the participants, visual acuity, intraocular pressure, anterior and posterior segment examinations, and then, OCT measurements were carried out.Results: Although the measured values for RNFL in the superior and temporal quadrant are within normal limits, they were slightly higher compared to those in the control group (p values 0.127 and 0.191 for superior quadrant and temporal quadrant, respectively). The CT measurements in all quadrants were higher than the control group; however, these measurements were not statistically significant (p > 0.05). When the relation between clinical features and OCT findings of the patients were examined, it was determined that the ages of the patients were statistically significantly and inversely correlated with the temporal CT and also the nasal and temporal quadrants of RNFL.Conclusions: Our study is the first study that examines the retinal GCIPL and CT with OCT in patients who are diagnosed with AUD. In our results, it was determined that there were no statistically significant differences between the participants in terms of OCT parameters. Further studies with larger sampling groups evaluating neurotransmission findings may provide wider results.
Collapse
Affiliation(s)
- Filiz Özsoy
- Clinic of Psychiatry, Tokat State Hospital, Tokat, Turkey
| | - Sait Alim
- Department of Ophthalmology, School of Medicine, Gaziosmanpaşa University Hospital, Tokat, Turkey
| |
Collapse
|
47
|
Appaji A, Nagendra B, Chako DM, Padmanabha A, Jacob A, Hiremath CV, Varambally S, Kesavan M, Venkatasubramanian G, Rao SV, Webers CAB, Berendschot TTJM, Rao NP. Examination of retinal vascular trajectory in schizophrenia and bipolar disorder. Psychiatry Clin Neurosci 2019; 73:738-744. [PMID: 31400288 DOI: 10.1111/pcn.12921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
AIM Evidence suggests microvascular dysfunction (wider retinal venules and narrower arterioles) in schizophrenia (SCZ) and bipolar disorder (BD). The vascular development is synchronous with neuronal development in the retina and brain. The retinal vessel trajectory is related to retinal nerve fiber layer thinning and cerebrovascular abnormalities in SCZ and BD and has not yet been examined. Hence, in this study we examined the retinal vascular trajectory in SCZ and BD in comparison with healthy volunteers (HV). METHODS Retinal images were acquired from 100 HV, SCZ patients, and BD patients, respectively, with a non-mydriatic fundus camera. Images were quantified to obtain the retinal arterial and venous trajectories using a validated, semiautomated algorithm. Analysis of covariance and regression analyses were conducted to examine group differences. A supervised machine-learning ensemble of bagged-trees method was used for automated classification of trajectory values. RESULTS There was a significant difference among groups in both the retinal venous trajectory (HV: 0.17 ± 0.08; SCZ: 0.25 ± 0.17; BD: 0.27 ± 0.20; P < 0.001) and the arterial trajectory (HV: 0.34 ± 0.15; SCZ: 0.29 ± 0.10; BD: 0.29 ± 0.11; P = 0.003) even after adjusting for age and sex (P < 0.001). On post-hoc analysis, the SCZ and BD groups differed from the HV on retinal venous and arterial trajectories, but there was no difference between SCZ and BD patients. The machine learning showed an accuracy of 86% and 73% for classifying HV versus SCZ and BD, respectively. CONCLUSION Smaller trajectories of retinal arteries indicate wider and flatter curves in SCZ and BD. Considering the relation between retinal/cerebral vasculatures and retinal nerve fiber layer thinness, the retinal vascular trajectory is a potential marker for SCZ and BD. As a relatively affordable investigation, retinal fundus photography should be further explored in SCZ and BD as a potential screening measure.
Collapse
Affiliation(s)
- Abhishek Appaji
- Department of Medical Electronics, B. M. S. College of Engineering, Bangalore, India.,University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bhargavi Nagendra
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Dona M Chako
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ananth Padmanabha
- Department of Medical Electronics, B. M. S. College of Engineering, Bangalore, India
| | - Arpitha Jacob
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Chaitra V Hiremath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Shyam V Rao
- Department of Medical Electronics, B. M. S. College of Engineering, Bangalore, India.,University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
48
|
Almeida NL, Fernandes TP, Lima EH, Sales HF, Santos NA. Combined influence of illness duration and medication type on visual sensitivity in schizophrenia. BRAZILIAN JOURNAL OF PSYCHIATRY 2019; 42:27-32. [PMID: 31269094 PMCID: PMC6986493 DOI: 10.1590/1516-4446-2018-0331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/16/2019] [Indexed: 01/29/2023]
Abstract
Objective: Patients with schizophrenia have visual processing impairments. The main findings from the literature indicate that these deficits may be related to differences in paradigms, medications, and illness duration. This study is part of a large-scale study investigating visual sensitivity in schizophrenia. Here we aimed to investigate the combined effects of illness duration and antipsychotic use on contrast sensitivity function. Methods: Data were collected from 50 healthy controls and 50 outpatients with schizophrenia (classified according to illness duration and medication type) aged 20-45 years old. The contrast sensitivity function was measured for spatial frequencies ranging from 0.2 to 20 cycles per degree using linear sine-wave gratings. Results: Patients with an illness duration > 5 years had more pronounced deficits. Differences in the combined effects of illness duration and antipsychotic use were marked in patients on typical antipsychotics who had been ill > 10 years. No significant differences were found between typical and atypical antipsychotics in patients with an illness duration < 5 years. Conclusion: Visual impairment was related to both long illness duration and medication type. These results should be tested in further studies to investigate pharmacological mechanisms.
Collapse
Affiliation(s)
- Natalia L Almeida
- Laboratório de Percepção, Neurociências e Comportamento (LPNeC), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Thiago P Fernandes
- Laboratório de Percepção, Neurociências e Comportamento (LPNeC), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Eveline H Lima
- Laboratório de Percepção, Neurociências e Comportamento (LPNeC), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Hemerson F Sales
- Laboratório de Percepção, Neurociências e Comportamento (LPNeC), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Natanael A Santos
- Laboratório de Percepção, Neurociências e Comportamento (LPNeC), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil
| |
Collapse
|
49
|
Nikitova N, Keane BP, Demmin D, Silverstein SM, Uhlhaas PJ. The Audio-Visual Abnormalities Questionnaire (AVAQ): Development and validation of a new instrument for assessing anomalies in sensory perception in schizophrenia spectrum disorders. Schizophr Res 2019; 209:227-233. [PMID: 31182320 PMCID: PMC6703161 DOI: 10.1016/j.schres.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anomalies in visual and auditory perception represent an important aspect of the symptomatic manifestation of schizophrenia (ScZ). However, there are currently no instruments available that allow the assessment of the full range of auditory and visual abnormalities using a self-report measure. METHODS We developed the 85-item Audio-Visual Abnormalities Questionnaire (AVAQ) to assess abnormalities in auditory and visual processing. The AVAQ was validated in an online-sample of 355 healthy participants to establish the factorial structure, internal consistency and reliability of the instrument. In addition, participants completed the Autism-Spectrum Quotient (AQ) and the Schizotypal Personality Questionnaire (SPQ) to establish convergent validity regarding autistic and schizotypal traits. RESULTS High internal consistency was observed for the total AVAQ-scale (α = 0.99) as well as for the visual (α = 0.98), auditory (α = 0.96) and the audio-visual subscales (α = 0.83). Principal component analyses demonstrated one factor comprising 78 items. The AVAQ was positively correlated with the SPQ (r = 0.69, p < .001) as well as the AQ (r = 0.38, p < .001). Correlations with the SPQ were highest for unusual perceptual experiences (r = 0.72, p < .001) and lowest for social anxiety (r = 0.30, p < .001). CONCLUSION The AVAQ demonstrated excellent reliability, internal consistency and construct validity. Accordingly, the instrument could be useful for characterizing sensory dysfunctions across the schizophrenia spectrum that could guide interventions as well as aid the development of biomarkers.
Collapse
Affiliation(s)
- Nikoleta Nikitova
- Institute for Neuroscience and Psychology, Univ. of Glasgow, United Kingdom of Great Britain and Northern Ireland
| | - Brian P Keane
- Department of Psychiatry, Rutgers, Robert Wood Johnson Medical School, United States of America; Center for Cognitive Science, Rutgers University, United States of America; University Behavioral Health Care - Rutgers University, United States of America
| | - Docia Demmin
- University Behavioral Health Care - Rutgers University, United States of America; Department of Psychology, Rutgers University, United States of America
| | - Steven M Silverstein
- Department of Psychiatry, Rutgers, Robert Wood Johnson Medical School, United States of America; Center for Cognitive Science, Rutgers University, United States of America; University Behavioral Health Care - Rutgers University, United States of America; Department of Ophthalmology, Rutgers, Robert Wood Johnson Medical School, United States of America
| | - Peter J Uhlhaas
- Institute for Neuroscience and Psychology, Univ. of Glasgow, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
50
|
Thakkar KN, Antinori A, Carter OL, Brascamp JW. Altered short-term neural plasticity related to schizotypal traits: Evidence from visual adaptation. Schizophr Res 2019; 207:48-57. [PMID: 29685421 PMCID: PMC6195854 DOI: 10.1016/j.schres.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/03/2018] [Accepted: 04/08/2018] [Indexed: 01/10/2023]
Abstract
Abnormalities in synaptic plasticity are argued to underlie the neural dysconnectivity observed in schizophrenia. One way to measure synaptic plasticity is through sensory adaptation, whereby sensory neurons exhibit reduced sensitivity after sustained stimulus exposure. Evidence for decreased adaptation in individuals with schizophrenia is currently inconclusive, possibly due to heterogeneity in clinical and medication status across samples. Here we circumvent these confounds by examining whether altered adaptation is represented sub-clinically in the general population. To test this we used three paradigms from visual perception research that provide a precise and non-invasive index of adaptation in the visual system. Two paradigms involve a class of illusory percepts termed visual aftereffects. The third relies on a visual phenomenon termed binocular rivalry, where incompatible stimuli are presented to the two eyes and observers alternate between perceiving exclusively one stimulus or a combination of the two (i.e. mixed perception). We analyzed the strength and dynamics of visual adaptation in these paradigms, in relation to schizotypy. Our results showed that increased schizotypal traits were related to reduced orientation, but not luminance, aftereffect strength (Exp. 1). Further, increased schizotypy was related to a greater proportion of mixed perception during binocular rivalry (Exp. 1 and 2). Given that visual adaption is well understood at cellular and computational levels, our data suggest that short-term plasticity in the visual system can provide important information about the disease mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States,Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, United States,Corresponding author at: 316 Physics Road, Room 110C, East Lansing, MI 48824, United States. (K.N. Thakkar)
| | - Anna Antinori
- Melbourne School of Psychological Science, University of Melbourne, Parkville, VIC, Australia
| | - Olivia L. Carter
- Melbourne School of Psychological Science, University of Melbourne, Parkville, VIC, Australia
| | - Jan W. Brascamp
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|