1
|
Kristensen MWP, Biuk B, Nielsen J, Bojesen KB, Nielsen MØ. Glutamate, GABA and NAA in treatment-resistant schizophrenia: A systematic review of the effect of clozapine and group differences between clozapine-responders and non-responders. Behav Brain Res 2025; 479:115338. [PMID: 39566584 DOI: 10.1016/j.bbr.2024.115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Treatment-resistance in patients with schizophrenia is a major obstacle for improving outcome in patients, especially in those not gaining from clozapine. Novel research implies that glutamatergic and GABAergic abnormalities may be present in treatment-resistant patients, and preclinical research suggests that clozapine affects the GABAergic system. Moreover, clozapine may have a neuroprotective role. To investigate these issues, we conducted a systematic review to evaluate the relationship between clozapine and in vivo measures of gamma-aminobutyric acid (GABA), glutamate (glu), and N-acetylaspartate (NAA) brain levels in treatment- and ultra-treatment-resistant schizophrenia patients (TRS and UTRS). Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we included three longitudinal and six cross sectional studies utilizing proton magnetic resonance spectroscopy (H-MRS) that explored brain metabolite levels in clozapine-treated patients. Findings were limited by a small number of studies and definite conclusions cannot be drawn, but the present studies may imply that clozapine reduces glutamate levels in striatal but not cortical areas, whereas glutamatergic metabolites and GABA levels may be increased in ACC in the combined group of TRS and UTRS. Clozapine may also increase NAA in cortical areas. Importantly, this review highlights the need for further clinical studies investigating the effect of clozapine on brain levels of glutamate, GABA, and NAA as well as metabolite group differences in patients with UTRS compared with TRS.
Collapse
Affiliation(s)
- Milo Wolfgang Pilgaard Kristensen
- Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Bahast Biuk
- Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Jimmi Nielsen
- Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Copenhagen University hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Maximo J, Nelson E, Kraguljac N, Patton R, Bashir A, Lahti A. Changes in glutamate levels in anterior cingulate cortex following 16 weeks of antipsychotic treatment in antipsychotic-naïve first-episode psychosis patients. Psychol Med 2025; 55:e35. [PMID: 39927517 DOI: 10.1017/s0033291724003386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BACKGROUND Previous findings in psychosis have revealed mixed findings on glutamate (Glu) levels in the dorsal anterior cingulate cortex (dACC). Factors such as illness chronicity, methodology, and medication status have impeded a more nuanced evaluation of Glu in psychosis. The goal of this longitudinal neuroimaging study was to investigate the role of antipsychotics on Glu in the dACC in antipsychotic-naïve first-episode psychosis (FEP) patients. METHODS We enrolled 117 healthy controls (HCs) and 113 antipsychotic-naïve FEP patients for this study. 3T proton magnetic resonance spectroscopy (1H-MRS; PRESS; TE = 80 ms) data from a voxel prescribed in the dACC were collected from all participants at baseline, 6, and 16 weeks following antipsychotic treatment. Glutamate levels were quantified using the QUEST algorithm and analyzed longitudinally using linear mixed-effects models. RESULTS We found that baseline dACC glutamate levels in FEP were not significantly different than those of HCs. Examining Glu levels in FEP revealed a decrease in Glu levels after 16 weeks of antipsychotic treatment; this effect was weaker in HC. Finally, baseline Glu levels were associated with decreases in positive symptomology. CONCLUSIONS We report a progressive decrease of Glu levels over a period of 16 weeks after initiation of treatment and a baseline Glu level association with a reduction in positive symptomology, suggestive of a potential mechanism of antipsychotic drug (APD) action. Overall, these findings suggest that APDs can influence Glu within a period of 16 weeks, which has been deemed as an optimal window for symptom alleviation using APDs.
Collapse
Affiliation(s)
- Jose Maximo
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Nelson
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Kraguljac
- Department of Psychiatry and Behavioral Health, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Rita Patton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, USA
| | - Adrienne Lahti
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Dominicus L, Zandstra M, Franse J, Otte W, Hillebrand A, de Graaf S, Ambrosen K, Glenthøj BY, Zalesky A, Borup Bojesen K, Sørensen M, Scheepers F, Stam C, Oranje B, Ebdrup B, van Dellen E. Advancing treatment response prediction in first-episode psychosis: integrating clinical and electroencephalography features. Psychiatry Clin Neurosci 2025. [PMID: 39895596 DOI: 10.1111/pcn.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
AIMS Prompt diagnosis and intervention are crucial for first-episode psychosis (FEP) outcomes, but predicting the response to antipsychotics remains challenging. We studied whether adding electroencephalography (EEG) characteristics improves clinical prediction models for treatment response and whether EEG-based predictors are influenced by initial treatment. METHODS We included 115 antipsychotic-naïve patients with FEP. Positive and Negative Syndrome Scale (PANSS) and sociodemographic items were included as clinical features. Additionally, we analyzed resting-state EEG data (n = 45) for (relative) power, functional connectivity, and network organization. Treatment response, measured as change in PANSS positive subscale scores (∆PANSS+), was predicted using a random forest regression model. We analyzed whether the most predictive EEG characteristics were influenced after treatment. RESULTS The clinical model explained 12% variance in symptom reduction in the training set and 32% in the validation set. Including EEG variables in the model led to a nonsignificant increase of 2% (total 34%) explained variance in symptom reduction. High hallucination symptom scores and a more hierarchical organization of alpha band networks (tree hierarchy) were associated with ∆PANSS+ reduction. The tree hierarchy in the alpha band decreased after medication. EEG source analysis revealed that this change was driven by alterations in the degree and centrality of frontal and parietal nodes in the functional brain network. CONCLUSIONS Both clinical and EEG characteristics can inform treatment response prediction in patients with FEP, but the combined model may not be beneficial over a clinical model. Nevertheless, adding a more objective marker such as EEG could be valuable in selected cases.
Collapse
Affiliation(s)
- Livia Dominicus
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Melissa Zandstra
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Franse
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim Otte
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, and Utrecht University, Utrecht, The Netherlands
| | - Arjan Hillebrand
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Simone de Graaf
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Ambrosen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Center Glostrup, Glostrup, Denmark
| | - Mikkel Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Center Glostrup, Glostrup, Denmark
| | - Floortje Scheepers
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis Stam
- Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjorn Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Nelson EA, Kraguljac NV, Bashir A, Cofield SS, Maximo JO, Armstrong W, Lahti AC. A longitudinal study of hippocampal subfield volumes and hippocampal glutamate levels in antipsychotic-naïve first episode psychosis patients. Mol Psychiatry 2024:10.1038/s41380-024-02812-1. [PMID: 39580605 DOI: 10.1038/s41380-024-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Previous studies have implicated hippocampal abnormalities in the neuropathology of psychosis spectrum disorders. Reduced hippocampal volume has been reported across all illness stages, and this atrophy has been hypothesized to be the result of glutamatergic excess. To test this hypothesis, we measured hippocampal subfield volumes and hippocampal glutamate levels in antipsychotic naïve first episode psychosis patients (FEP) and the progression of volume decline and changes in glutamate levels over a 16-week antipsychotic drug (APD) trial. We aimed to determine if subfield volumes at baseline were associated with glutamate levels, and if baseline glutamate levels were predictive of change in subfield volumes over time. METHODS We enrolled ninety-three medication-naïve FEP participants and 80 matched healthy controls (HC). T1 and T2 weighted images and magnetic resonance spectroscopy (MRS) data from a voxel prescribed in the left hippocampus were collected from participants at baseline and after 6 and 16 weeks of APD treatment. Hippocampal subfield volumes were assessed using FreeSurfer 7.1.1., while glutamate levels were quantified using jMRUI version 6.0. Data were analyzed using linear mixed models. RESULTS We found regional subfield volume deficits in the CA1, and presubiculum in FEP at baseline, that further expanded to include the molecular and granule cell layer of the dentate gyrus (GC/ML/DG) and CA4 by week 16. Baseline hippocampal glutamate levels in FEP were not significantly different than those of HC, and there was no effect of treatment on glutamate. Glutamate levels were not related to initial subfield volumes or volume changes over 16 weeks. CONCLUSION We report a progressive loss of hippocampal subfield volumes over a period of 16 weeks after initiation of treatment, suggestive of early progression in neuropathology. Our results do not suggest a role for glutamate as a driving factor. This study underscores the need to further research the mechanism(s) underlying this phenomenon as it has implications for early intervention to preserve cognitive decline in FEP participants.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, USA
| | - Adil Bashir
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Stacey S Cofield
- Department of Electrical and Computer Engineering, Auburn University, Auburn, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
5
|
Zhang J, Toulopoulou T, Li Q, Niu L, Peng L, Dai H, Chen K, Wang X, Huang R, Wei X, Zhang R. Charting brain GABA and glutamate levels across psychiatric disorders by quantitative analysis of 121 1H-MRS studies. Psychol Med 2024:1-12. [PMID: 39564744 DOI: 10.1017/s0033291724001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
BACKGROUND Psychiatric diagnosis is based on categorical diagnostic classification, yet similarities in genetics and clinical features across disorders suggest that these classifications share commonalities in neurobiology, particularly regarding neurotransmitters. Glutamate (Glu) and gamma-aminobutyric acid (GABA), the brain's primary excitatory and inhibitory neurotransmitters, play critical roles in brain function and physiological processes. METHODS We examined the levels of Glu, combined glutamate and glutamine (Glx), and GABA across psychiatric disorders by pooling data from 121 1H-MRS studies and further divided the sample based on Axis I disorders. RESULTS Statistically significant differences in GABA levels were found in the combined psychiatric group compared with healthy controls (Hedge's g = -0.112, p = 0.008). Further analyses based on brain regions showed that brain GABA levels significantly differed across Axis I disorders and controls in the parieto-occipital cortex (Hedge's g = 0.277, p = 0.019). Furthermore, GABA levels were reduced in affective disorders in the occipital cortex (Hedge's g = -0.468, p = 0.043). Reductions in Glx levels were found in neurodevelopmental disorders (Hedge's g = -0.287, p = 0.022). Analysis focusing on brain regions suggested that Glx levels decreased in the frontal cortex (Hedge's g = -0.226, p = 0.025), and the reduction of Glu levels in patients with affective disorders in the frontal cortex is marginally significant (Hedge's g = -0.172, p = 0.052). When analyzing the anterior cingulate cortex and prefrontal cortex separately, reductions were only found in GABA levels in the former (Hedge's g = - 0.191, p = 0.009) across all disorders. CONCLUSIONS Altered glutamatergic and GABAergic metabolites were found across psychiatric disorders, indicating shared dysfunction. We found reduced GABA levels across psychiatric disorders and lower Glu levels in affective disorders. These results highlight the significance of GABA and Glu in psychiatric etiology and partially support rethinking current diagnostic categories.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Qian Li
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haowei Dai
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Keyin Chen
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, PR China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
6
|
Bojesen KB, Rostrup E, Sigvard AK, Mikkelsen M, Edden RAE, Ebdrup BH, Glenthøj B. The Trajectory of Prefrontal GABA Levels in Initially Antipsychotic-Naïve Patients With Psychosis During 2 Years of Treatment and Associations With Striatal Cerebral Blood Flow and Outcome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:703-713. [PMID: 38145706 DOI: 10.1016/j.bpsc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND GABAergic (gamma-aminobutyric acidergic) function in the prefrontal cortex seems dysfunctional in patients with first-episode psychosis, but the impact of longer-term treatment and relationship to clinical outcomes and striatal activity are unknown. METHODS A longitudinal study of 39 antipsychotic-naïve and benzodiazepine-free patients with psychosis (22.4 ± 5.4 years, 64% women) and 54 matched healthy control participants (HCs) (22.2 ± 4.3 years, 61% women) who were followed up after 6 weeks (28 patients, 51 HCs), 6 months (17 patients, 47 HCs), and 2 years (21 patients, 43 HCs) was completed. GABA levels in the dorsal anterior cingulate cortex and striatal resting cerebral blood flow were assessed on a 3T magnetic resonance scanner at all visits. RESULTS GABA levels in the dorsal anterior cingulate cortex were significantly lower in patients at baseline and after 6 weeks but not after 6 months or 2 years. Analyses of groups separately revealed decreased GABA levels after 2 years in HCs but stable levels in patients. Treatment increased striatal resting cerebral blood flow after 6 weeks and 6 months but not after 2 years. GABA levels were negatively associated with striatal resting cerebral blood flow in both groups at all visits. Last, lower baseline GABA levels in patients were related to less functional improvement after 2 years. CONCLUSIONS The findings suggest a different trajectory of GABA levels and striatal perfusion in first-episode patients over 2 years of antipsychotic treatment compared with HCs and indicate a downregulatory role of prefrontal GABAergic function on the striatum. Moreover, abnormally low prefrontal GABA level at illness onset may be a marker for a more severe prognosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Okada N, Yahata N, Koshiyama D, Morita K, Sawada K, Kanata S, Fujikawa S, Sugimoto N, Toriyama R, Masaoka M, Koike S, Araki T, Kano Y, Endo K, Yamasaki S, Ando S, Nishida A, Hiraiwa-Hasegawa M, Edden RAE, Sawa A, Kasai K. Longitudinal trajectories of anterior cingulate glutamate and subclinical psychotic experiences in early adolescence: the impact of bullying victimization. Mol Psychiatry 2024; 29:939-950. [PMID: 38182806 PMCID: PMC11176069 DOI: 10.1038/s41380-023-02382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Center for Research on Counseling and Support Services, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Sugimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University Mizonokuchi Hospital, Futago 5-1-1, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Yukiko Kano
- Department Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Endo
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway Street, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Genetic Medicine, and Pharmacology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Fan L, Liang L, Wang Y, Ma X, Yuan L, Ouyang L, He Y, Li Z, Li C, Chen X, Palaniyappan L. Glutamatergic basis of antipsychotic response in first-episode psychosis: a dual voxel study of the anterior cingulate cortex. Neuropsychopharmacology 2024; 49:845-853. [PMID: 37752221 PMCID: PMC10948866 DOI: 10.1038/s41386-023-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
A subgroup of patients with schizophrenia is believed to have aberrant excess of glutamate in the frontal cortex; this subgroup is thought to show poor response to first-line antipsychotic treatments that focus on dopamine blockade. If we can identify this subgroup early in the course of illness, we can reduce the repeated use of first-line antipsychotics and potentially stratify first-episode patients to intervene early with second-line treatments such as clozapine. The use of proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate and Glx (glutamate plus glutamine) may provide a means for such a stratification. We must first establish if there is robust evidence linking elevations in anterior cingulate cortex (ACC) glutamate metabolites to poor response, and determine if the use of antipsychotics worsens the glutamatergic excess in eventual nonresponders. In this study, we estimated glutamate levels at baseline in 42 drug-naive patients with schizophrenia. We then treated them all with risperidone at a standard dose range of 2-6 mg/day and followed them up for 3 months to categorize their response status. We expected to see baseline "hyperglutamatergia" in nonresponders, and expected this to worsen over time at the follow-up. In line with our predictions, nonresponders had higher glutamate than responders, but patients as a group did not differ in glutamate and Glx from the healthy control (HC) group before treatment-onset (F1,79 = 3.20, p = 0.046, partial η2 = 0.075). Glutamatergic metabolites did not change significantly over time in both nonresponders and responders over the 3 months of antipsychotic exposure (F1,31 = 1.26, p = 0.270, partial η2 = 0.039). We conclude that the use of antipsychotics without prior knowledge of later response delays symptom relief in a subgroup of first-episode patients, but does not worsen the glutamatergic excess seen at the baseline. Given the current practice of nonstratified use of antipsychotics, longer-time follow-up MRS studies are required to see if improvement in symptoms accompanies a dynamic shift in glutamate profile.
Collapse
Affiliation(s)
- Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Liangbing Liang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
9
|
King B, Kempton MJ, Broberg BV, Merritt K, Barker GJ, Lythgoe DJ, Perez-Iglesias R, Baandrup L, Düring SW, Stone JM, Rostrup E, Sommer IE, Glenthøj B, Kahn RS, Dazzan P, McGuire PK, Egerton A. A letter to the editor: The effects of alcohol use on brain glutamate in first episode psychosis. Schizophr Res 2024; 266:234-236. [PMID: 38430851 DOI: 10.1016/j.schres.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Bridget King
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Brian V Broberg
- Centre for Neuropsychiatric Schizophrenia Research, CNSR, and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Rocio Perez-Iglesias
- Department of Psychiatry, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Lone Baandrup
- Mental Health Centre Copenhagen, Mental Health Services of the Capital Region, Denmark and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Signe W Düring
- Centre for Neuropsychiatric Schizophrenia Research, CNSR, and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; Sussex Partnership NHS Foundation Trust, Eastbourne, BN21 2UD, United Kingdom
| | - Egill Rostrup
- Centre for Neuropsychiatric Schizophrenia Research, CNSR, and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Iris E Sommer
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Birte Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research, CNSR, and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine - BG, Denmark
| | - René S Kahn
- Department of Psychiatry and Behavioural Health System, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, United States of America
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Health, Oxford Health National Health Service Foundation Trust, Oxford, United Kingdom; National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Oxford, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
10
|
van der Pluijm M, Alting M, Schrantee A, Edden RAE, Booij J, de Haan L, van de Giessen E. Glutamate and GABA levels in the anterior cingulate cortex in treatment resistant first episode psychosis patients. Schizophr Res 2024; 264:471-478. [PMID: 38277736 DOI: 10.1016/j.schres.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Around 30 % of schizophrenia patients do not respond sufficiently to conventional antipsychotic treatment. Glutamate and γ-aminobutyric acid (GABA) may be implicated in treatment resistant (TR) patients. Some data indicate that TR patients show increased glutamate levels compared to responders, but findings are inconclusive and limited in the early disease stage. Furthermore, the two neurotransmitters have rarely been assessed in conjunction. We therefore aimed to investigate the role of GABA+ and glutamate in first episode TR patients and explore whether these neurometabolites could be potential predictive markers for TR schizophrenia. STUDY DESIGN We used proton magnetic resonance spectroscopy (MRS) to assess glutamate + glutamine (Glx) and GABA including macromolecules (GABA+) in the anterior cingulate cortex (ACC) of 58 first episode psychosis patients. At six months follow-up treatment response was determined and in a subgroup of 33 patients a follow-up MRS scan was acquired. STUDY RESULTS Glx and GABA+ levels were not significantly different between TR patients and responders at baseline and the levels did not change at six months follow-up. The groups differed in voxel fractions, which could have influenced our results even though we corrected for these differences. CONCLUSIONS Our findings do not provide evidence that ACC Glx or GABA+ levels are potential biomarkers for TR in first episode psychosis. Future research needs to take in to account voxel fractions and report potential differences. Comparison with previous literature suggests that illness duration, clozapine responsiveness and medication effects may partly explain the heterogeneous results on Glx and GABA+ levels in TR.
Collapse
Affiliation(s)
- Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Maartje Alting
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
11
|
Kristensen TD, Raghava JM, Skjerbæk MW, Dhollander T, Syeda W, Ambrosen KS, Bojesen KB, Nielsen MØ, Pantelis C, Glenthøj BY, Ebdrup BH. Fibre density and fibre-bundle cross-section of the corticospinal tract are distinctly linked to psychosis-specific symptoms in antipsychotic-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1797-1812. [PMID: 37012463 PMCID: PMC10713712 DOI: 10.1007/s00406-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Martin W Skjerbæk
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ambrosen KS, Fredriksson F, Anhøj S, Bak N, van Dellen E, Dominicus L, Lemvigh CK, Sørensen ME, Nielsen MØ, Bojesen KB, Fagerlund B, Glenthøj BY, Oranje B, Hansen LK, Ebdrup BH. Clustering of antipsychotic-naïve patients with schizophrenia based on functional connectivity from resting-state electroencephalography. Eur Arch Psychiatry Clin Neurosci 2023; 273:1785-1796. [PMID: 36729135 PMCID: PMC10713774 DOI: 10.1007/s00406-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Schizophrenia is associated with aberrations in the Default Mode Network (DMN), but the clinical implications remain unclear. We applied data-driven, unsupervised machine learning based on resting-state electroencephalography (rsEEG) functional connectivity within the DMN to cluster antipsychotic-naïve patients with first-episode schizophrenia. The identified clusters were investigated with respect to psychopathological profile and cognitive deficits. Thirty-seven antipsychotic-naïve, first-episode patients with schizophrenia (mean age 24.4 (5.4); 59.5% males) and 97 matched healthy controls (mean age 24.0 (5.1); 52.6% males) underwent assessments of rsEEG, psychopathology, and cognition. Source-localized, frequency-dependent functional connectivity was estimated using Phase Lag Index (PLI). The DMN-PLI was factorized for each frequency band using principal component analysis. Clusters of patients were identified using a Gaussian mixture model and neurocognitive and psychopathological profiles of identified clusters were explored. We identified two clusters of patients based on the theta band (4-8 Hz), and two clusters based on the beta band (12-30 Hz). Baseline psychopathology could predict theta clusters with an accuracy of 69.4% (p = 0.003), primarily driven by negative symptoms. Five a priori selected cognitive functions conjointly predicted the beta clusters with an accuracy of 63.6% (p = 0.034). The two beta clusters displayed higher and lower DMN connectivity, respectively, compared to healthy controls. In conclusion, the functional connectivity within the DMN provides a novel, data-driven means to stratify patients into clinically relevant clusters. The results support the notion of biological subgroups in schizophrenia and endorse the application of data-driven methods to recognize pathophysiological patterns at earliest stage of this syndrome.
Collapse
Affiliation(s)
- Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Fanny Fredriksson
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Simon Anhøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | | | - Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Livia Dominicus
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Lars K Hansen
- Department of Applied Mathematics and Computer Science, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Dahl ASA, Sørensen V, Ambrosen KS, Sørensen ME, Mohr GH, Nielsen MØ, Bojesen KB, Glenthøj BY, Hahn M, Midtgaard J, Ebdrup BH. Influence of psychopathology and metabolic parameters on quality of life in patients with first-episode psychosis before and after initial antipsychotic treatment. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:76. [PMID: 37935717 PMCID: PMC10630335 DOI: 10.1038/s41537-023-00402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
The impact of psychological and physical health on quality of life (QoL) in patients with early psychosis remain relatively unexplored. We evaluated the predictive value of psychopathological and metabolic parameters on QoL in antipsychotic-naïve patients with first-episode psychosis before and after initial antipsychotic treatment. At baseline, 125 patients underwent assessments of psychopathology, prevalence of metabolic syndrome (MetS), and QoL. After 6 weeks of antipsychotic monotherapy, 89 patients were re-investigated. At baseline, the prevalence of MetS was 19.3% (n = 22). After 6 weeks, body weight (1.3 kg, p < 0.001) and body mass index (0.4 kg/m2, p < 0.001) increased, and four additional patients developed MetS. Multivariate linear regression revealed that positive and negative symptoms, and to some degree waist circumference, were predictors of QoL at both time points. Our findings suggest that in the earliest stages of antipsychotic treatment, metabolic side-effects may be less influential on QoL than psychopathological severity.
Collapse
Affiliation(s)
- Anne Sofie A Dahl
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Victor Sørensen
- Centre for Applied Research in Mental Health Care (CARMEN), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Karen S Ambrosen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Mikkel E Sørensen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Grímur H Mohr
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Mette Ø Nielsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten B Bojesen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Julie Midtgaard
- Centre for Applied Research in Mental Health Care (CARMEN), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) & Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital-Mental Health Services Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Bojesen KB, Glenthøj BY, Sigvard AK, Tangmose K, Raghava JM, Ebdrup BH, Rostrup E. Cerebral blood flow in striatum is increased by partial dopamine agonism in initially antipsychotic-naïve patients with psychosis. Psychol Med 2023; 53:6691-6701. [PMID: 36754993 PMCID: PMC10600821 DOI: 10.1017/s0033291723000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Resting cerebral blood flow (rCBF) in striatum and thalamus is increased in medicated patients with psychosis, but whether this is caused by treatment or illness pathology is unclear. Specifically, effects of partial dopamine agonism, sex, and clinical correlates on rCBF are sparsely investigated. We therefore assessed rCBF in antipsychotic-naïve psychosis patients before and after aripiprazole monotherapy and related findings to sex and symptom improvement. METHODS We assessed rCBF with the pseudo-Continuous Arterial Spin Labeling (PCASL) sequence in 49 first-episode patients (22.6 ± 5.2 years, 58% females) and 50 healthy controls (HCs) (22.3 ± 4.4 years, 63% females) at baseline and in 29 patients and 49 HCs after six weeks. RCBF in striatum and thalamus was estimated with a region-of-interest (ROI) approach. Psychopathology was assessed with the positive and negative syndrome scale. RESULTS Baseline rCBF in striatum and thalamus was not altered in the combined patient group compared with HCs, but female patients had lower striatal rCBF compared with male patients (p = 0.009). Treatment with a partial dopamine agonist increased rCBF significantly in striatum (p = 0.006) in the whole patient group, but not significantly in thalamus. Baseline rCBF in nucleus accumbens was negatively associated with improvement in positive symptoms (p = 0.046), but baseline perfusion in whole striatum and thalamus was not related to treatment outcome. CONCLUSIONS The findings suggest that striatal perfusion is increased by partial dopamine agonism and decreased in female patients prior to first treatment. This underlines the importance of treatment effects and sex differences when investigating the neurobiology of psychosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
15
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci Rep 2023; 13:12792. [PMID: 37550354 PMCID: PMC10406950 DOI: 10.1038/s41598-023-39881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Despite many differences, autism spectrum disorder and schizophrenia spectrum disorder share environmental risk factors, genetic predispositions as well as neuronal abnormalities, and show similar cognitive deficits in working memory, perspective taking, or response inhibition. These shared abnormalities are already present in subclinical traits of these disorders. The literature proposes that changes in the inhibitory GABAergic and the excitatory glutamatergic system could explain underlying neuronal commonalities and differences. Using magnetic resonance spectroscopy (1H-MRS), we investigated the associations between glutamate concentrations in the anterior cingulate cortex (ACC), the left/right putamen, and left/right dorsolateral prefrontal cortex and psychotic-like experiences (Schizotypal Personality Questionnaire) and autistic traits (Autism Spectrum Quotient) in 53 healthy individuals (26 women). To investigate the contributions of glutamate concentrations in different cortical regions to symptom expression and their interactions, we used linear regression analyses. We found that only glutamate concentration in the ACC predicted psychotic-like experiences, but not autistic traits. Supporting this finding, a binomial logistic regression predicting median-split high and low risk groups for psychotic-like experiences revealed ACC glutamate levels as a significant predictor for group membership. Taken together, this study provides evidence that glutamate levels in the ACC are specifically linked to the expression of psychotic-like experiences, and may be a potential candidate in identifying early risk individuals prone to developing psychotic-like experiences.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Sigvard AK, Bojesen KB, Ambrosen KS, Nielsen MØ, Gjedde A, Tangmose K, Kumakura Y, Edden R, Fuglø D, Jensen LT, Rostrup E, Ebdrup BH, Glenthøj BY. Dopamine Synthesis Capacity and GABA and Glutamate Levels Separate Antipsychotic-Naïve Patients With First-Episode Psychosis From Healthy Control Subjects in a Multimodal Prediction Model. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:500-509. [PMID: 37519478 PMCID: PMC10382695 DOI: 10.1016/j.bpsgos.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Disturbances in presynaptic dopamine activity and levels of GABA (gamma-aminobutyric acid) and glutamate plus glutamine collectively may have a role in the pathophysiology of psychosis, although separately they are poor diagnostic markers. We tested whether these neurotransmitters in combination improve the distinction of antipsychotic-naïve patients with first-episode psychosis from healthy control subjects. Methods We included 23 patients (mean age 22.3 years, 9 male) and 20 control subjects (mean age 22.4 years, 8 male). We determined dopamine metabolism in the nucleus accumbens and striatum from 18F-fluorodopa (18F-FDOPA) positron emission tomography. We measured GABA levels in the anterior cingulate cortex (ACC) and glutamate plus glutamine levels in the ACC and left thalamus with 3T proton magnetic resonance spectroscopy. We used binominal logistic regression for unimodal prediction when we modeled neurotransmitters individually and for multimodal prediction when we combined the 3 neurotransmitters. We selected the best combination based on Akaike information criterion. Results Individual neurotransmitters failed to predict group. Three triple neurotransmitter combinations significantly predicted group after Benjamini-Hochberg correction. The best model (Akaike information criterion 48.5) carried 93.5% of the cumulative model weight. It reached a classification accuracy of 83.7% (p = .003) and included dopamine synthesis capacity (Ki4p) in the nucleus accumbens (p = .664), GABA levels in the ACC (p = .019), glutamate plus glutamine levels in the thalamus (p = .678), and the interaction term Ki4p × GABA (p = .016). Conclusions Our multimodal approach proved superior classification accuracy, implying that the pathophysiology of patients represents a combination of neurotransmitter disturbances rather than aberrations in a single neurotransmitter. Particularly aberrant interrelations between Ki4p in the nucleus accumbens and GABA values in the ACC appeared to contribute diagnostic information.
Collapse
Affiliation(s)
- Anne K. Sigvard
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Karen S. Ambrosen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Yoshitaka Kumakura
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center, Saitama Medical University, Japan
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- FM. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Tangmose K, Rostrup E, Bojesen KB, Sigvard A, Glenthøj BY, Nielsen MØ. Clinical response to treatment with a partial dopamine agonist is related to changes in reward processing. Psychiatry Res 2023; 326:115308. [PMID: 37399765 DOI: 10.1016/j.psychres.2023.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
Aberrant neuronal coding of reward processing has been linked to psychosis. It remains unresolved how treatment with a partial dopamine agonist affects reward processing, and whether treatment affects reward processing differently in patients responding and not responding to treatment. Here, 33 antipsychotic-naïve psychosis patients and 33 matched healthy controls underwent functional magnetic resonance imaging before and after patients received aripiprazole monotherapy for six weeks. Processing of motivational salient events and negative outcome evaluation (NOE) was examined using a monetary incentive delay task. Psychopathology was assessed with the Positive and Negative Syndrome Scale, and responders were identified by having ≥30% reduction in positive symptoms (N=21). At baseline, patients displayed an increased NOE signal in the caudate and dorsolateral prefrontal cortex compared to healthy controls. In the caudate, the NOE signal was normalized at follow-up, and normalization was driven by responders. In responders only, there was a significant improvement in the motivational salience signal in the caudate at follow-up. Motivational salience and NOE signals in the caudate may be associated with a dopaminergic mechanism in patients characterized as responders which may not be the case in non-responders. Likewise, non-dopaminergic mechanism may underly abnormal NOE processing in dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Rigshospitalet, Glostrup, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Merritt K, McCutcheon RA, Aleman A, Ashley S, Beck K, Block W, Bloemen OJN, Borgan F, Boules C, Bustillo JR, Capizzano AA, Coughlin JM, David A, de la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galińska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes O, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan MS, Kim SY, King B, Kunugi H, Lauriello J, León-Ortiz P, Liemburg E, Mcilwain ME, Modinos G, Mouchlianitis E, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Patel T, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Reyes-Madrigal F, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone J, Szulc A, Taylor R, Thakkar KN, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H, McGuire P, Egerton A. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol Psychiatry 2023; 28:2039-2048. [PMID: 36806762 PMCID: PMC10575771 DOI: 10.1038/s41380-023-01991-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK.
| | | | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sarah Ashley
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Katherine Beck
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christiana Boules
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony David
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience (CNP), Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics (S2.06), Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, 8020978, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Lawrence S Kegeles
- Columbia University, Department of Psychiatry, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | | | | | - Bridget King
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - J Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edith Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Elias Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tulsi Patel
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, BR3 3BX, UK
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Reggie Taylor
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | | | - Peter C Williamson
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Stephen J Wood
- Orygen, Melbourne, VIC, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, UK
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Philip McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
20
|
Tangmose K, Rostrup E, Bojesen KB, Sigvard A, Jessen K, Johansen LB, Glenthøj BY, Nielsen MØ. Reward disturbances in antipsychotic-naïve patients with first-episode psychosis and their association to glutamate levels. Psychol Med 2023; 53:1629-1638. [PMID: 37010221 DOI: 10.1017/s0033291721003305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant anticipation of motivational salient events and processing of outcome evaluation in striatal and prefrontal regions have been suggested to underlie psychosis. Altered glutamate levels have likewise been linked to schizophrenia. Glutamatergic abnormalities may affect the processing of motivational salience and outcome evaluation. It remains unresolved, whether glutamatergic dysfunction is associated with the coding of motivational salience and outcome evaluation in antipsychotic-naïve patients with first-episode psychosis. METHODS Fifty-one antipsychotic-naïve patients with first-episode psychosis (22 ± 5.2 years, female/male: 31/20) and 52 healthy controls (HC) matched on age, sex, and parental education underwent functional magnetic resonance imaging and magnetic resonance spectroscopy (3T) in one session. Brain responses to motivational salience and negative outcome evaluation (NOE) were examined using a monetary incentive delay task. Glutamate levels were estimated in the left thalamus and anterior cingulate cortex using LCModel. RESULTS Patients displayed a positive signal change to NOE in the caudate (p = 0.001) and dorsolateral prefrontal cortex (DLPFC; p = 0.003) compared to HC. No group difference was observed in motivational salience or in levels of glutamate. There was a different association between NOE signal in the caudate and DLPFC and thalamic glutamate levels in patients and HC due to a negative correlation in patients (caudate: p = 0.004, DLPFC: p = 0.005) that was not seen in HC. CONCLUSIONS Our findings confirm prior findings of abnormal outcome evaluation as a part of the pathophysiology of schizophrenia. The results also suggest a possible link between thalamic glutamate and NOE signaling in patients with first-episode psychosis.
Collapse
Affiliation(s)
- Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Louise Baruël Johansen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Egerton A, Griffiths K, Casetta C, Deakin B, Drake R, Howes OD, Kassoumeri L, Khan S, Lankshear S, Lees J, Lewis S, Mikulskaya E, Millgate E, Oloyede E, Pollard R, Rich N, Segev A, Sendt KV, MacCabe JH. Anterior cingulate glutamate metabolites as a predictor of antipsychotic response in first episode psychosis: data from the STRATA collaboration. Neuropsychopharmacology 2023; 48:567-575. [PMID: 36456813 PMCID: PMC9852590 DOI: 10.1038/s41386-022-01508-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Elevated brain glutamate has been implicated in non-response to antipsychotic medication in schizophrenia. Biomarkers that can accurately predict antipsychotic non-response from the first episode of psychosis (FEP) could allow stratification of patients; for example, patients predicted not to respond to standard antipsychotics could be fast-tracked to clozapine. Using proton magnetic resonance spectroscopy (1H-MRS), we examined the ability of glutamate and Glx (glutamate plus glutamine) in the anterior cingulate cortex (ACC) and caudate to predict response to antipsychotic treatment. A total of 89 minimally medicated patients with FEP not meeting symptomatic criteria for remission were recruited across two study sites. 1H-MRS and clinical data were acquired at baseline, 2 and 6 weeks. Response was defined as >20% reduction in Positive and Negative Syndrome Scale (PANSS) Total score from baseline to 6 weeks. In the ACC, baseline glutamate and Glx were higher in Non-Responders and significantly predicted response (P < 0.02; n = 42). Overall accuracy was greatest for ACC Glx (69%) and increased to 75% when symptom severity at baseline was included in the model. Glutamate metabolites in the caudate were not associated with response, and there was no significant change in glutamate metabolites over time in either region. These results add to the evidence linking elevations in ACC glutamate metabolites to a poor antipsychotic response. They indicate that glutamate may have utility in predicting response during early treatment of first episode psychosis. Improvements in accuracy may be made by combining glutamate measures with other response biomarkers.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cecila Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
| | - Richard Drake
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sobia Khan
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Steve Lankshear
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shon Lewis
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elena Mikulskaya
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ebenezer Oloyede
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Pollard
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nathalie Rich
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aviv Segev
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Macroscale EEG characteristics in antipsychotic-naïve patients with first-episode psychosis and healthy controls. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:5. [PMID: 36690632 PMCID: PMC9870995 DOI: 10.1038/s41537-022-00329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023]
Abstract
Electroencephalography in patients with a first episode of psychosis (FEP) may contribute to the diagnosis and treatment response prediction. Findings in the literature vary due to small sample sizes, medication effects, and variable illness duration. We studied macroscale resting-state EEG characteristics of antipsychotic naïve patients with FEP. We tested (1) for differences between FEP patients and controls, (2) if EEG could be used to classify patients as FEP, and (3) if EEG could be used to predict treatment response to antipsychotic medication. In total, we studied EEG recordings of 62 antipsychotic-naïve patients with FEP and 106 healthy controls. Spectral power, phase-based and amplitude-based functional connectivity, and macroscale network characteristics were analyzed, resulting in 60 EEG variables across four frequency bands. Positive and Negative Symptom Scale (PANSS) were assessed at baseline and 4-6 weeks follow-up after treatment with amisulpride or aripiprazole. Mann-Whitney U tests, a random forest (RF) classifier and RF regression were used for statistical analysis. Our study found that at baseline, FEP patients did not differ from controls in any of the EEG characteristics. A random forest classifier showed chance-level discrimination between patients and controls. The random forest regression explained 23% variance in positive symptom reduction after treatment in the patient group. In conclusion, in this largest antipsychotic- naïve EEG sample to date in FEP patients, we found no differences in macroscale EEG characteristics between patients with FEP and healthy controls. However, these EEG characteristics did show predictive value for positive symptom reduction following treatment with antipsychotic medication.
Collapse
|
23
|
Simmonite M, Steeby CJ, Taylor SF. Medial Frontal Cortex GABA Concentrations in Psychosis Spectrum and Mood Disorders: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2023; 93:125-136. [PMID: 36335069 PMCID: PMC10184477 DOI: 10.1016/j.biopsych.2022.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Abnormalities of GABAergic (gamma-aminobutyric acidergic) systems may play a role in schizophrenia and mood disorders. Magnetic resonance spectroscopy allows for noninvasive in vivo quantification of GABA; however, studies of GABA in schizophrenia have yielded inconsistent findings. This may stem from grouping together disparate voxels from functionally heterogeneous regions. METHODS We searched PubMed for magnetic resonance spectroscopy studies of GABA in the medial frontal cortex (MFC) in patients with schizophrenia, bipolar disorder, and depression and in individuals meeting criteria for ultra-high risk for psychosis. Voxel placements were classified as rostral-, rostral-mid-, mid-, or posterior MFC, and meta-analyses were conducted for each group for each subregion. RESULTS Of 341 screened articles, 23 studies of schizophrenia, 6 studies of bipolar disorder, 20 studies of depression, and 7 studies of ultra-high risk met the inclusion criteria. Meta-analysis revealed lower mid- (standardized mean difference [SMD] = -0.28, 95% CI, -0.48 to -0.07, p < .01) and posterior (SMD = -0.29, 95% CI, -0.49 to -0.09, p < .01) MFC GABA in schizophrenia and increased rostral MFC GABA in bipolar disorder (SMD = 0.76, 95% CI, 0.25 to -1.25, p < .01). In depression, reduced rostral MFC GABA (SMD = -0.36, 95% CI, -0.64 to -0.08, p = .01) did not survive correction for multiple comparisons. We found no evidence for GABA differences in individuals at ultra-high risk for psychosis. CONCLUSIONS While limited by small numbers of published studies, these results substantiate the relevance of GABA in the pathophysiology of psychosis spectrum and mood disorders and underline the importance of voxel placement.
Collapse
Affiliation(s)
- Molly Simmonite
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan.
| | - Clara J Steeby
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Zahid U, Onwordi EC, Hedges EP, Wall MB, Modinos G, Murray RM, Egerton A. Neurofunctional correlates of glutamate and GABA imbalance in psychosis: A systematic review. Neurosci Biobehav Rev 2023; 144:105010. [PMID: 36549375 DOI: 10.1016/j.neubiorev.2022.105010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Glutamatergic and GABAergic dysfunction are implicated in the pathophysiology of schizophrenia. Previous work has shown relationships between glutamate, GABA, and brain activity in healthy volunteers. We conducted a systematic review to evaluate whether these relationships are disrupted in psychosis. Primary outcomes were the relationship between metabolite levels and fMRI BOLD response in psychosis relative to healthy volunteers. 17 case-control studies met inclusion criteria (594 patients and 538 healthy volunteers). Replicated findings included that in psychosis, positive associations between ACC glutamate levels and brain activity are reduced during resting state conditions and increased during cognitive control tasks, and negative relationships between GABA and local activation in the ACC are reduced. There was evidence that antipsychotic medication may alter the relationship between glutamate levels and brain activity. Emerging literature is providing insights into disrupted relationships between neurometabolites and brain activity in psychosis. Future studies determining a link to clinical variables may develop this approach for biomarker applications, including development or targeting novel therapeutics.
Collapse
Affiliation(s)
- Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Department of Psychiatry, University of Oxford, UK.
| | - Ellis C Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK; South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
| | - Emily P Hedges
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Matthew B Wall
- Invicro London, Hammersmith Hospital, UK; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK; Clinical Psychopharmacology Unit, University College London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
25
|
Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry 2022; 12:500. [PMID: 36463316 PMCID: PMC9719533 DOI: 10.1038/s41398-022-02253-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with 1H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN1 subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast 1H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.
Collapse
Affiliation(s)
- Andreas O Kruse
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
26
|
Ueno F, Nakajima S, Iwata Y, Honda S, Torres-Carmona E, Mar W, Tsugawa S, Truong P, Plitman E, Noda Y, Mimura M, Sailasuta N, Mikkelsen M, Edden RAE, De Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Gamma-aminobutyric acid (GABA) levels in the midcingulate cortex and clozapine response in patients with treatment-resistant schizophrenia: A proton magnetic resonance spectroscopy ( 1 H-MRS) study. Psychiatry Clin Neurosci 2022; 76:587-594. [PMID: 36111425 DOI: 10.1111/pcn.13463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Gamma-Aminobutyric Acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABAergic dysfunction has been implicated in the pathophysiology of schizophrenia. Clozapine, the only approved drug for treatment-resistant schizophrenia (TRS), involves the GABAergic system as one of its targets. However, no studies have investigated the relationship between brain GABA levels, as measured by proton magnetic resonance spectroscopy (1 H-MRS), and clozapine response in patients with TRS. METHODS This study enrolled patients with TRS who did not respond to clozapine (ultra-resistant schizophrenia: URS) and who responded to clozapine (non-URS), patients with schizophrenia who responded to first-line antipsychotics (first-line responders: FLR), and healthy controls (HCs). We measured GABA levels in the midcingulate cortex (MCC) using 3T 1 H-MRS and compared these levels among the groups. The associations between GABA levels and symptom severity were also explored within the patient groups. RESULTS A total of 98 participants (URS: n = 22; non-URS: n = 25; FLR: n = 16; HCs: n = 35) completed the study. We found overall group differences in MCC GABA levels (F(3,86) = 3.25, P = 0.04). Specifically, patients with URS showed higher GABA levels compared to those with non-URS (F(1,52) = 8.40, P = 0.03, Cohen's d = 0.84). MCC GABA levels showed no associations with any of the symptom severity scores within each group or the entire patient group. CONCLUSION Our study is the first to report elevated GABA levels in the MCC in patients with schizophrenia resistant to clozapine treatment compared with those responsive to clozapine. Longitudinal studies are required to evaluate if GABA levels are a suitable biomarker to predict clozapine resistance.
Collapse
Affiliation(s)
- Fumihiko Ueno
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Chuo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Edgardo Torres-Carmona
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Wanna Mar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Eric Plitman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Napapon Sailasuta
- Department of Tropical Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
28
|
Baandrup L, Allerup P, Nielsen MØ, Düring SW, Bojesen KB, Leucht S, Galderisi S, Mucci A, Bucci P, Arango C, Díaz‐Caneja CM, Dazzan P, McGuire P, Demjaha A, Ebdrup BH, Fleischhacker WW, Kahn RS, Glenthøj BY. Scalability of the Positive and Negative Syndrome Scale in first-episode schizophrenia assessed by Rasch models. Acta Psychiatr Scand 2022; 146:21-35. [PMID: 35417039 PMCID: PMC9325503 DOI: 10.1111/acps.13434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Historically, assessment of the psychometric properties of the Positive and Negative Syndrome Scale (PANSS) has had several foci: (1) calculation of reliability indexes, (2) extraction of subdimensions from the scale, and (3) assessment of the validity of the total score. In this study, we aimed to examine the scalability and to assess the clinical performance of the 30-item PANSS total score as well as the scalability of a shorter version (PANSS-6) of the scale. METHODS A composite data set of 1073 patients with first-episode schizophrenia or schizophrenia spectrum disorder was subjected to Rasch analysis of PANSS data from baseline and 4-6 weeks follow-up. RESULTS The central tests of fit of the Rasch model failed to satisfy the statistical requirements behind item homogeneity for the PANSS-30 as well as the PANSS-6 total score. For the PANSS-30, Differential Item Functioning was pronounced both for the 7-point Likert scale rating categories and when dichotomizing the rating categories. Subsequently, the Rasch structure analysis in the context of dichotomized items was used to isolate and estimate a systematic error because of item inhomogeneity, as well as a random error. The size of the combined sources of error for the PANSS-30 total score approximated 20% which is often regarded as clinical cut-off between response versus no-response. CONCLUSION The results demonstrate the operational consequences of a lack of statistical fit of the Rasch model and suggest that the calculated measure of uncertainty needs to be considered when using the PANSS-30 total score.
Collapse
Affiliation(s)
- Lone Baandrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia ResearchMental Health Center GlostrupGlostrupDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Bispebjerg and GentofteMental Health Center CopenhagenGentofteDenmark
| | | | - Mette Ø. Nielsen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia ResearchMental Health Center GlostrupGlostrupDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Signe W. Düring
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia ResearchMental Health Center GlostrupGlostrupDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Kirsten B. Bojesen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia ResearchMental Health Center GlostrupGlostrupDenmark
| | - Stefan Leucht
- Department of Psychiatry and PsychotherapyTechnical University of Munich, School of MedicineMünchenGermany
| | - Silvana Galderisi
- Department of PsychiatryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Armida Mucci
- Department of PsychiatryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Paola Bucci
- Department of PsychiatryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad ComplutenseMadridSpain
| | - Covadonga M. Díaz‐Caneja
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad ComplutenseMadridSpain
| | - Paola Dazzan
- National Institute for Health Research Biomedical Research CentreSouth London and Maudsley NHS Foundation TrustLondonUK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Philip McGuire
- National Institute for Health Research Biomedical Research CentreSouth London and Maudsley NHS Foundation TrustLondonUK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Arsime Demjaha
- National Institute for Health Research Biomedical Research CentreSouth London and Maudsley NHS Foundation TrustLondonUK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia ResearchMental Health Center GlostrupGlostrupDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Wolfgang W. Fleischhacker
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry IMedical University InnsbruckInnsbruckAustria
| | - René S. Kahn
- Department of PsychiatryBrain Center Rudolf MagnusUtrechtThe Netherlands
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Birte Y. Glenthøj
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia ResearchMental Health Center GlostrupGlostrupDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
29
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
30
|
Broeders TAA, Bhogal AA, Morsinkhof LM, Schoonheim MM, Röder CH, Edens M, Klomp DWJ, Wijnen JP, Vinkers CH. Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. J Psychopharmacol 2022; 36:489-497. [PMID: 35243931 PMCID: PMC9066676 DOI: 10.1177/02698811221077199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with psychotic disorders often show prominent cognitive impairment. Glutamate seems to play a prominent role, but its role in deep gray matter (DGM) regions is unclear. AIMS To evaluate glutamate levels within deep gray matter structures in patients with a psychotic disorder in relation to cognitive functioning, using advanced spectroscopic acquisition, reconstruction, and post-processing techniques. METHODS A 7-Tesla magnetic resonance imaging scanner combined with a lipid suppression coil and subject-specific water suppression pulses was used to acquire high-resolution magnetic resonance spectroscopic imaging data. Tissue fraction correction and registration to a standard brain were performed for group comparison in specifically delineated DGM regions. The brief assessment of cognition in schizophrenia was used to evaluate cognitive status. RESULTS Average glutamate levels across DGM structures (i.e. caudate, pallidum, putamen, and thalamus) in mostly medicated patients with a psychotic disorder (n = 16, age = 33, 4 females) were lower compared to healthy controls (n = 23, age = 24, 7 females; p = 0.005, d = 1.06). Stratified analyses showed lower glutamate levels in the caudate (p = 0.046, d = 0.76) and putamen p = 0.013, d = 0.94). These findings were largely explained by age differences between groups. DGM glutamate levels were positively correlated with psychomotor speed (r(30) = 0.49, p = 0.028), but not with other cognitive domains. CONCLUSIONS We find reduced glutamate levels across DGM structures including the caudate and putamen in patients with a psychotic disorder that are linked to psychomotor speed. Despite limitations concerning age differences, these results underscore the potential role of detailed in vivo glutamate assessments to understand cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Tommy AA Broeders
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Tommy AA Broeders, Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisan M Morsinkhof
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian H Röder
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirte Edens
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis WJ Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam/GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Li W, Xu J, Xiang Q, Zhuo K, Zhang Y, Liu D, Li Y. Neurometabolic and functional changes of default-mode network relate to clinical recovery in first-episode psychosis patients: A longitudinal 1H-MRS and fMRI study. Neuroimage Clin 2022; 34:102970. [PMID: 35240468 PMCID: PMC8889416 DOI: 10.1016/j.nicl.2022.102970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Antipsychotic treatment has improved the disrupted functional connectivity (FC) and neurometabolites levels of the default mode network (DMN) in schizophrenia patients, but a direct relationship between FC change, neurometabolic level alteration, and symptom improvement has not been built. This study examined the association between the alterations in DMN FC, the changes of neurometabolites levels in the medial prefrontal cortex (MPFC), and the improvementsinpsychopathology in a longitudinal study of drug-naïve first-episode psychosis (FEP) patients. METHODS Thirty-two drug-naïve FEP patients and 30 matched healthy controls underwent repeated assessments with the Positive and Negative Syndrome Scale (PANSS) and 3T proton magnetic resonance spectroscopy as well as resting-state functional magnetic resonance imaging. The levels of γ-aminobutyric acid, glutamate, N-acetyl-aspartate in MPFC, and the FC of DMN were measured. After 8-week antipsychotic treatment, 24 patients were re-examined. RESULTS After treatment, the changes in γ-aminobutyric acid were correlated with the alterations of FC between the MPFC and DMN, while the changes in N-acetyl-aspartate were associated with the alterations of FC between the posterior cingulate cortex/precuneus and DMN. The FC changes of both regions were correlated with patients PANSS positive score reductions. The structural equation modeling analyses revealed that the changes of DMN FC mediated the relationship between the changes of neurometabolites and the symptom improvements of the patients. CONCLUSIONS The derived neurometabolic-functional changes underlying the clinical recovery provide insights into the prognosis of FEP patients. It is noteworthy that this is an exploratory study, and future work with larger sample size is needed to validate our findings.
Collapse
Affiliation(s)
- Wenli Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Qiong Xiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Kaiming Zhuo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Dengtang Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Huashan Hospital, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Institute of Mental Health, Fudan University, Shanghai 200030, PR China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
32
|
Dopaminergic Activity in Antipsychotic-Naïve Patients Assessed With Positron Emission Tomography Before and After Partial Dopamine D 2 Receptor Agonist Treatment: Association With Psychotic Symptoms and Treatment Response. Biol Psychiatry 2022; 91:236-245. [PMID: 34743917 DOI: 10.1016/j.biopsych.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine activity has been associated with the response to antipsychotic treatment. Our study used a four-parameter model to test the association between the striatal decarboxylation rate of 18F-DOPA to 18F-dopamine (k3) and the effect of treatment on psychotic symptoms in antipsychotic-naïve patients with first-episode psychosis. We further explored the effect of treatment with a partial dopamine D2 receptor agonist (aripiprazole) on k3 and dopamine synthesis capacity (DSC) determined by the four-parameter model and by the conventional tissue reference method. METHODS Sixty-two individuals (31 patients and 31 control subjects) underwent 18F-DOPA positron emission tomography at baseline, and 15 patients were re-examined after 6 weeks. Clinical re-examinations were completed after 6 weeks (n = 28) and 6 months (n = 15). Symptoms were evaluated with the Positive and Negative Syndrome Scale. RESULTS High baseline decarboxylation rates (k3) were associated with more positive symptoms at baseline (p < .001) and with symptom improvement after 6 weeks (p = .006). Subregion analyses showed that baseline k3 for the putamen (p = .003) and nucleus accumbens (p = .013) and DSC values for the nucleus accumbens (p = .003) were associated with psychotic symptoms. The tissue reference method yielded no associations between DSC and symptoms or symptom improvement. Neither method revealed any effects of group or treatment on average magnitudes of k3 or DSC, whereas changes in dopamine synthesis were correlated with higher baseline values, implying a potential effect of treatment. CONCLUSIONS Striatal decarboxylation rate at baseline was associated with psychotic symptoms and treatment response. The strong association between k3 and treatment effect potentially implicate on new treatment strategies.
Collapse
|
33
|
Nielsen MØ, Kristensen TD, Borup Bojesen K, Glenthøj BY, Lemvigh CK, Ebdrup BH. Differential Effects of Aripiprazole and Amisulpride on Negative and Cognitive Symptoms in Patients With First-Episode Psychoses. Front Psychiatry 2022; 13:834333. [PMID: 35370857 PMCID: PMC8969108 DOI: 10.3389/fpsyt.2022.834333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Aripiprazole is hypothesized to have an effect on negative and cognitive symptoms in schizophrenia. Likewise, amisulpride is one of the only second-generation antipsychotics with which an effect on negative symptoms is reported. In the present study, we compare the effect of aripiprazole and amisulpride in initially antipsychotic-naïve patients with first-episode psychoses. METHODS Psychopathology and cognitive measures from two consecutive cohorts of antipsychotic-naïve first episode psychotic patients were obtained before and after 6 weeks of antipsychotic monotherapy with either aripiprazole or amisulpride. Matched healthy controls were included to account for retest effects on the cognitive measures. Analyses of variance (repeated-measures ANOVA) were performed to detect effect of time and possible cohort*time interactions. RESULTS Longitudinal data was obtained from 47 and 48 patients treated for 6 weeks with amisulpride or aripiprazole, respectively. For the Wallwork negative symptom dimension, there was a cohort*time interaction [F (1, 93) = 4.29, p = 0.041] and a significant effect of time [F (1, 93) = 6.03, p = 0.016], which was driven by an improvement in patients treated with aripiprazole [t (47) = 4.1, p < 0.001] and not observed in patients treated with amisulpride (p > 0.5). For the eight cognitive measures, no cohort*time interaction was found and neither was cognitive improvement in any of the cohorts when accounting for retest effect. CONCLUSION Patients treated with aripiprazole improved on negative symptoms, which was not the case for patients treated with amisulpride. This may point to a general effect of a partial D2 receptor agonist on negative symptoms in patients with first-episode psychoses. There was, however, no improvement in cognitive functions.
Collapse
Affiliation(s)
- Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tina Dam Kristensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Sandström KO, Baltzersen OB, Marsman A, Lemvigh CK, Boer VO, Bojesen KB, Nielsen MØ, Lundell H, Sulaiman DK, Sørensen ME, Fagerlund B, Lahti AC, Syeda WT, Pantelis C, Petersen ET, Glenthøj BY, Siebner HR, Ebdrup BH. Add-On MEmaNtine to Dopamine Antagonism to Improve Negative Symptoms at First Psychosis- the AMEND Trial Protocol. Front Psychiatry 2022; 13:889572. [PMID: 35669271 PMCID: PMC9163784 DOI: 10.3389/fpsyt.2022.889572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Antipsychotic drugs are primarily efficacious in treating positive symptoms by blocking the dopamine D2 receptor, but they fail to substantially improve negative symptoms and cognitive deficits. The limited efficacy may be attributed to the fact that the pathophysiology of psychosis involves multiple neurotransmitter systems. In patients with chronic schizophrenia, memantine, a non-competitive glutamatergic NMDA receptor antagonist, shows promise for ameliorating negative symptoms and improving cognition. Yet, it is unknown how memantine modulates glutamate levels, and memantine has not been investigated in patients with first-episode psychosis. AIMS This investigator-initiated double-blinded randomized controlled trial is designed to (1) test the clinical effects on negative symptoms of add-on memantine to antipsychotic medication, and (2) neurobiologically characterize the responders to add-on memantine. MATERIALS AND EQUIPMENT Antipsychotic-naïve patients with first-episode psychosis will be randomized to 12 weeks treatment with [amisulpride + memantine] or [amisulpride + placebo]. We aim for a minimum of 18 patients in each treatment arm to complete the trial. Brain mapping will be performed before and after 12 weeks focusing on glutamate and neuromelanin in predefined regions. Regional glutamate levels will be probed with proton magnetic resonance spectroscopy (MRS), while neuromelanin signal will be mapped with neuromelanin-sensitive magnetic resonance imaging (MRI). We will also perform structural and diffusion weighted, whole-brain MRI. MRS and MRI will be performed at an ultra-high field strength (7 Tesla). Alongside, participants undergo clinical and neuropsychological assessments. Twenty matched healthy controls will undergo similar baseline- and 12-week examinations, but without receiving treatment. OUTCOME MEASURES The primary endpoint is negative symptom severity. Secondary outcomes comprise: (i) clinical endpoints related to cognition, psychotic symptoms, side effects, and (ii) neurobiological endpoints related to regional glutamate- and neuromelanin levels, and structural brain changes. ANTICIPATED RESULTS We hypothesize that add-on memantine to amisulpride will be superior to amisulpride monotherapy in reducing negative symptoms, and that this effect will correlate with thalamic glutamate levels. Moreover, we anticipate that add-on memantine will restore regional white matter integrity and improve cognitive functioning. PERSPECTIVES By combining two licensed, off-patent drugs, AMEND aims to optimize treatment of psychosis while investigating the memantine response. Alongside, AMEND will provide neurobiological insights to effects of dual receptor modulation, which may enable future stratification of patients with first-episode psychosis before initial antipsychotic treatment. CLINICAL TRIAL REGISTRATION [ClinicalTrials.gov], identifier [NCT04789915].
Collapse
Affiliation(s)
- Katharina O Sandström
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Olga B Baltzersen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Daban K Sulaiman
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Warda T Syeda
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Frontal neural metabolite changes in schizophrenia and their association with cognitive control: A systematic review. Neurosci Biobehav Rev 2021; 132:224-247. [PMID: 34864431 PMCID: PMC8830497 DOI: 10.1016/j.neubiorev.2021.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
GABA levels are decreased in medial frontal brain areas of schizophrenia patients. Glutamate levels are lower in medial and lateral frontal areas in chronic patients. Working memory performance is associated with frontal GABA and Glu. Prediction errors are associated Glu and medial frontal GABA. Processing speed correlates with medial frontal GABA levels.
A large proportion of patients with schizophrenia exhibit deficits in cognitive control functions including working memory, processing speed and inhibitory control, which have been associated with frontal brain areas. In this systematic review, we investigated differences between chronic schizophrenia patients, first-episode (FEP) patients and healthy control groups in the neurometabolite levels of GABA, glutamate, glutamine and Glx in frontal brain areas. Additionally, we reviewed correlations between cognitive control functions or negative symptoms and these neurometabolite levels. Several studies reported decreased GABA or glutamate concentrations in frontal lobe areas, particularly in chronic schizophrenia patients, while the results were mixed for FEP patients. Working memory performance and prediction errors have been associated with frontal GABA and glutamate levels, and processing speed with frontomedial GABA levels in chronic patients. The relationship between metabolites and negative symptom severity was somewhat inconsistent. Future studies should take the participants' age, medication status or responsivity, disease stage and precise anatomical location of the voxel into account when comparing neurometabolite levels between schizophrenia patients and healthy controls.
Collapse
|
36
|
A preliminary genetic association study of GAD1 and GABAB receptor genes in patients with treatment-resistant schizophrenia. Mol Biol Rep 2021; 49:2015-2024. [PMID: 34845648 DOI: 10.1007/s11033-021-07019-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND GABAergic system dysfunction has been implicated in the etiology of schizophrenia and of cognitive impairments in particular. Patients with treatment-resistant schizophrenia (TRS) generally suffer from profound cognitive impairments in addition to severe positive symptoms, suggesting that GABA system dysfunction could be involved more closely in patients with TRS. METHODS AND RESULTS In the present study, exome sequencing was conducted on fourteen TRS patients, whereby four SNPs were identified on GAD1, GABBR1 and GABBR2 genes. An association study for five SNPs including these 4 SNPs and rs3749034 on GAD1 as then performed among 357 patients with TRS, 682 non-TRS patients and 508 healthy controls (HC). The results revealed no significant differences in allelic and/or genetic distributions for any of the five SNPs. However, several subanalyses in comparisons between schizophrenia and HC groups, as well as between the three groups, showed nominal-level significance for rs3749034 on GAD1 and rs10985765/rs3750344 on GABBR2. In particular, in comparisons of female subjects, rigorous analysis for rs3749034 showed a statistical difference between the schizophrenia and HC groups and between the TRS and HC groups. CONCLUSIONS Several positive results in subanalyses suggested that genetic vulnerability in the GABA system to schizophrenia or TRS could be affected by sex or sampling area, and overall, that rs3749034 on GAD1 and rs10985765 on GABBR2 could be related to TRS. In the present study, only a few SNPs were examined; it is possible that other important genetic variants in other regions of GABA-related genes were not captured in this preliminary study.
Collapse
|
37
|
Smucny J, Carter CS, Maddock RJ. Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 90:643-651. [PMID: 34344534 PMCID: PMC9303057 DOI: 10.1016/j.biopsych.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Magnetic resonance spectroscopy studies measuring brain glutamate separately from glutamine are helping elucidate schizophrenia pathophysiology. An expanded literature and improved methodologies motivate an updated meta-analysis examining effects of measurement quality and other moderating factors in characterizing abnormal glutamate levels in schizophrenia. METHODS Searching previous meta-analyses and the MEDLINE database identified 83 proton magnetic resonance spectroscopy datasets published through March 25, 2020. Three quality metrics were extracted-Cramér-Rao lower bound (CRLB), line width, and coefficient of variation. Pooled effect sizes (Hedges' g) were calculated with random-effects, inverse variance-weighted models. Moderator analyses were conducted using quality metrics, field strength, echo time, medication, age, and stage of illness. RESULTS Across 36 datasets (2086 participants), medial prefrontal cortex glutamate was significantly reduced in patients (g = -0.19, confidence interval [CI] = -0.07 to -0.32). CRLB and coefficient of variation quality subgroups significantly moderated this effect. Glutamate was significantly more reduced in studies with lower CRLB or coefficient of variation (g = -0.44, CI = -0.29 to -0.60, and g = -0.43, CI = -0.29 to -0.57, respectively). Studies using echo time ≤20 ms also showed significantly greater reduction in glutamate (g = -0.41, CI = -0.26 to -0.55). Across 11 hippocampal datasets, group differences and moderator effects were nonsignificant. Group effects in thalamus and dorsolateral prefrontal cortex were also nonsignificant. CONCLUSIONS High-quality measurements reveal consistently reduced medial prefrontal cortex glutamate in schizophrenia. Stricter CRLB criteria and reduced nuisance variance may increase the sensitivity of future studies examining additional regions and the pathophysiological significance of abnormal glutamate levels in schizophrenia.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California.
| |
Collapse
|
38
|
Soldatos RF, Cearns M, Nielsen MØ, Kollias C, Xenaki LA, Stefanatou P, Ralli I, Dimitrakopoulos S, Hatzimanolis A, Kosteletos I, Vlachos II, Selakovic M, Foteli S, Nianiakas N, Mantonakis L, Triantafyllou TF, Ntigridaki A, Ermiliou V, Voulgaraki M, Psarra E, Sørensen ME, Bojesen KB, Tangmose K, Sigvard AM, Ambrosen KS, Meritt T, Syeda W, Glenthøj BY, Koutsouleris N, Pantelis C, Ebdrup BH, Stefanis N. Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning. Schizophr Bull 2021; 48:122-133. [PMID: 34535800 PMCID: PMC8781312 DOI: 10.1093/schbul/sbab107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4-6-week remission following a first episode of psychosis. METHOD Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts. RESULTS Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P < .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P < .0001), demonstrating reliability. CONCLUSIONS Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians' assessment should be undertaken to evaluate the possible utility as a routine clinical tool.
Collapse
Affiliation(s)
- Rigas F Soldatos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany,To whom correspondence should be addressed; First Department of Psychiatry, Eginition Hospital, 72-74 Vasilissis Sofias Avenue, Athens 11527, Greece, tel: +302107289400, e-mail:
| | - Micah Cearns
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Costas Kollias
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Lida-Alkisti Xenaki
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Pentagiotissa Stefanatou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Irene Ralli
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Alex Hatzimanolis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Ioannis Kosteletos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Ilias I Vlachos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Stefania Foteli
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Nikolaos Nianiakas
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Leonidas Mantonakis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Theoni F Triantafyllou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Aggeliki Ntigridaki
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Vanessa Ermiliou
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Marina Voulgaraki
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Evaggelia Psarra
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anne M Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Toni Meritt
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikolaos Koutsouleris
- World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany,Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany
| | - Bjørn H Ebdrup
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia,Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikos Stefanis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece,World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany,University Mental Health, Neurosciences and Precision Medicine Research Institute, 2 Soranou Efesiou, 11527 Athens, Greece
| |
Collapse
|
39
|
Beck K, Arumuham A, Veronese M, Santangelo B, McGinnity CJ, Dunn J, McCutcheon RA, Kaar SJ, Singh N, Pillinger T, Borgan F, Stone J, Jauhar S, Sementa T, Turkheimer F, Hammers A, Howes OD. N-methyl-D-aspartate receptor availability in first-episode psychosis: a PET-MR brain imaging study. Transl Psychiatry 2021; 11:425. [PMID: 34385418 PMCID: PMC8361127 DOI: 10.1038/s41398-021-01540-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction is hypothesised to underlie psychosis but this has not been tested early in illness. To address this, we studied 40 volunteers (21 patients with first-episode psychosis and 19 matched healthy controls) using PET imaging with an NMDAR selective ligand, [18F]GE-179, that binds to the ketamine binding site to index its distribution volume ratio (DVR) and volume of distribution (VT). Hippocampal DVR, but not VT, was significantly lower in patients relative to controls (p = 0.02, Cohen's d = 0.81; p = 0.15, Cohen's d = 0.49), and negatively associated with total (rho = -0.47, p = 0.04), depressive (rho = -0.67, p = 0.002), and general symptom severity (rho = -0.74, p < 0.001). Exploratory analyses found no significant differences in other brain regions (anterior cingulate cortex, thalamus, striatum and temporal cortex). These findings are consistent with the NMDAR hypofunction hypothesis and identify the hippocampus as a key locus for relative NMDAR hypofunction, although further studies should test specificity and causality.
Collapse
Affiliation(s)
- Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mattia Veronese
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Joel Dunn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Stephen J Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nisha Singh
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- COMPASS Pathways plc, London, UK
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Teresa Sementa
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
40
|
Cui LB, Zhang YJ, Lu HL, Liu L, Zhang HJ, Fu YF, Wu XS, Xu YQ, Li XS, Qiao YT, Qin W, Yin H, Cao F. Thalamus Radiomics-Based Disease Identification and Prediction of Early Treatment Response for Schizophrenia. Front Neurosci 2021; 15:682777. [PMID: 34290581 PMCID: PMC8289251 DOI: 10.3389/fnins.2021.682777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests structural and functional disruptions of the thalamus in schizophrenia, but whether thalamus abnormalities are able to be used for disease identification and prediction of early treatment response in schizophrenia remains to be determined. This study aims at developing and validating a method of disease identification and prediction of treatment response by multi-dimensional thalamic features derived from magnetic resonance imaging in schizophrenia patients using radiomics approaches. Methods A total of 390 subjects, including patients with schizophrenia and healthy controls, participated in this study, among which 109 out of 191 patients had clinical characteristics of early outcome (61 responders and 48 non-responders). Thalamus-based radiomics features were extracted and selected. The diagnostic and predictive capacity of multi-dimensional thalamic features was evaluated using radiomics approach. Results Using radiomics features, the classifier accurately discriminated patients from healthy controls, with an accuracy of 68%. The features were further confirmed in prediction and random forest of treatment response, with an accuracy of 75%. Conclusion Our study demonstrates a radiomics approach by multiple thalamic features to identify schizophrenia and predict early treatment response. Thalamus-based classification could be promising to apply in schizophrenia definition and treatment selection.
Collapse
Affiliation(s)
- Long-Biao Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Lu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Hai-Jun Zhang
- Department of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Sa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Bojesen KB, Broberg BV, Fagerlund B, Jessen K, Thomas MB, Sigvard A, Tangmose K, Nielsen MØ, Andersen GS, Larsson HBW, Edden RA, Rostrup E, Glenthøj BY. Associations Between Cognitive Function and Levels of Glutamatergic Metabolites and Gamma-Aminobutyric Acid in Antipsychotic-Naïve Patients With Schizophrenia or Psychosis. Biol Psychiatry 2021; 89:278-287. [PMID: 32928500 PMCID: PMC9683086 DOI: 10.1016/j.biopsych.2020.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abnormal glutamate and GABA (gamma-aminobutyric acid) levels have been found in the early phase of schizophrenia and may underlie cognitive deficits. However, the association between cognitive function and levels of glutamatergic metabolites and GABA has not been investigated in a large group of antipsychotic-naïve patients. METHODS In total, 56 antipsychotic-naïve patients with schizophrenia or psychotic disorder and 51 healthy control subjects underwent magnetic resonance spectroscopy to measure glutamate, glutamate+glutamine (Glx), and GABA levels in dorsal anterior cingulate cortex (ACC) and glutamate and Glx levels in left thalamus. The cognitive domains of attention, working memory, and IQ were assessed. RESULTS The whole group of antipsychotic-naïve patients had lower levels of GABA in dorsal ACC (p = .03), and the subgroup of patients with a schizophrenia diagnosis had higher glutamate levels in thalamus (p = .01), but Glx levels in dorsal ACC and thalamus did not differ between groups. Glx levels in dorsal ACC were positively associated with working memory (logarithmically transformed: b = -.016 [higher score indicates worse performance], p = .005) and attention (b = .056, p = .035) in both patients and healthy control subjects, although the association with attention did not survive adjustment for multiple comparisons. CONCLUSIONS The findings suggest a positive association between glutamatergic metabolites and cognitive function that do not differ between patients and healthy control subjects. Moreover, our data indicate that decreased GABAergic levels in dorsal ACC are involved in schizophrenia and psychotic disorder, whereas increased glutamate levels in thalamus seem to be implicated in schizophrenia pathophysiology. The findings imply that first-episode patients with cognitive deficits may gain from glutamate-modulating compounds.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Faculty of Health and Medical Sciences, and Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Marie Bjerregaard Thomas
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gitte Saltoft Andersen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
42
|
Reid MA. Glutamate and Gamma-Aminobutyric Acid Abnormalities in Antipsychotic-Naïve Patients With Schizophrenia: Evidence From Empirical and Meta-analytic Studies Using Magnetic Resonance Spectroscopy. Biol Psychiatry 2021; 89:e1-e3. [PMID: 33357632 PMCID: PMC8221118 DOI: 10.1016/j.biopsych.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Meredith A. Reid
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University
| |
Collapse
|
43
|
Rubio JM, Malhotra AK, Kane JM. Towards a framework to develop neuroimaging biomarkers of relapse in schizophrenia. Behav Brain Res 2021; 402:113099. [PMID: 33417996 DOI: 10.1016/j.bbr.2020.113099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a chronic disorder that often requires long-term relapse-prevention treatment. This treatment is effective for most individuals, yet approximately 20-30 % of them may still relapse despite confirmed adherence. Alternatively, for about 15 % it may be safe to discontinue medications over the long term, but since there are no means to identify who those individuals will be, the recommendation is that all individuals receive long-term relapse-prevention treatment with antipsychotic maintenance. Thus, the current approach to prevent relapse in schizophrenia may be suboptimal for over one third of individuals, either by being insufficient to protect against relapse, or by unnecessarily exposing them to medication side effects. There is great need to identify biomarkers of relapse in schizophrenia to stratify treatment according to the risk and develop therapeutics targeting its pathophysiology. In order to develop a line of research that meets those needs, it is necessary to create a framework by identifying the challenges to this type of study as well as potential areas for biomarker identification and development. In this manuscript we review the literature to create such a framework.
Collapse
Affiliation(s)
- Jose M Rubio
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA.
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| | - John M Kane
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| |
Collapse
|
44
|
Peris-Yague A, Kiemes A, Cash D, Cotel MC, Singh N, Vernon AC, Modinos G. Region-specific and dose-specific effects of chronic haloperidol exposure on [ 3H]-flumazenil and [ 3H]-Ro15-4513 GABA A receptor binding sites in the rat brain. Eur Neuropsychopharmacol 2020; 41:106-117. [PMID: 33153853 PMCID: PMC7731940 DOI: 10.1016/j.euroneuro.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 11/02/2022]
Abstract
Postmortem studies suggest that schizophrenia is associated with abnormal expression of specific GABAA receptor (GABAAR) α subunits, including α5GABAAR. Positron emission tomography (PET) measures of GABAAR availability in schizophrenia, however, have not revealed consistent alterations in vivo. Animal studies using the GABAAR agonist [3H]-muscimol provide evidence that antipsychotic drugs influence GABAAR availability, in a region-specific manner, suggesting a potential confounding effect of these drugs. No such data, however, are available for more recently developed subunit-selective GABAAR radioligands. To address this, we combined a rat model of clinically relevant antipsychotic drug exposure with quantitative receptor autoradiography. Haloperidol (0.5 and 2 mg/kg/day) or drug vehicle were administered continuously to adult male Sprague-Dawley rats via osmotic mini-pumps for 28 days. Quantitative receptor autoradiography was then performed postmortem using the GABAAR subunit-selective radioligand [3H]-Ro15-4513 and the non-subunit selective radioligand [3H]-flumazenil. Chronic haloperidol exposure increased [3H]-Ro15-4513 binding in the CA1 sub-field of the rat dorsal hippocampus (p<0.01; q<0.01; d=+1.3), which was not dose-dependent. [3H]-flumazenil binding also increased in most rat brain regions (p<0.05; main effect of treatment), irrespective of the haloperidol dose. These data confirm previous findings that chronic haloperidol exposure influences the specific binding of non-subtype selective GABAAR radioligands and is the first to demonstrate a potential effect of haloperidol on the binding of a α1/5GABAAR-selective radioligand. Although caution should be exerted when extrapolating results from animals to patients, our data support a view that exposure to antipsychotics may be a confounding factor in PET studies of GABAAR in the context of schizophrenia.
Collapse
Affiliation(s)
- Alba Peris-Yague
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
45
|
Wenneberg C, Glenthøj BY, Glenthøj LB, Fagerlund B, Krakauer K, Kristensen TD, Hjorthøj C, Edden RAE, Broberg BV, Bojesen KB, Rostrup E, Nordentoft M. Baseline measures of cerebral glutamate and GABA levels in individuals at ultrahigh risk for psychosis: Implications for clinical outcome after 12 months. Eur Psychiatry 2020; 63:e83. [PMID: 32762779 PMCID: PMC7576532 DOI: 10.1192/j.eurpsy.2020.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background. Cerebral glutamate and gamma-aminobutyric acid (GABA) levels might predict clinical outcome in individuals at ultrahigh risk (UHR) for psychosis but have previously primarily been investigated in smaller cohorts. We aimed to study whether baseline levels of glutamate and GABA in anterior cingulate cortex (ACC) and glutamate in thalamus could predict remission status and whether baseline metabolites differed in the remission versus the nonremission group. We also investigated the relationship between baseline metabolite levels and severity of clinical symptoms, functional outcome, and cognitive deficits at follow-up. Methods. About 124 UHR individuals were recruited at baseline. In this, 74 UHR individuals were clinically and cognitively assessed after 12 months, while remission status was available for 81 (25 remission/56 nonremission). Glutamate and GABA levels were assessed at baseline using 3 T proton magnetic resonance spectroscopy. Psychopathology, symptom severity, and remission were assessed with the Comprehensive Assessment of At-Risk Mental States and Clinical Global Impression and functional outcome with the Social and Occupational Functioning Assessment Scale. Cognitive function was estimated with the Cambridge Neuropsychological Test Automated Battery. Results. There were no differences between baseline glutamate and GABA levels in subjects in the nonremission group compared with the remission group, and baseline metabolites could not predict remission status. However, higher baseline levels of GABA in ACC were associated with clinical global improvement (r = −0.34, N = 51, p = 0.01) in an explorative analysis. Conclusions. The variety in findings across studies suggests a probable multifactorial influence on clinical outcome in UHR individuals. Future studies should combine multimodal approaches to attempt prediction of long-term outcome.
Collapse
Affiliation(s)
- C Wenneberg
- Copenhagen Research Center for Mental Health, University of Copenhagen, Copenhagen, Denmark.,Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, FIUNIT, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Copenhagen, Denmark
| | - B Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - L B Glenthøj
- Copenhagen Research Center for Mental Health, University of Copenhagen, Copenhagen, Denmark.,Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - B Fagerlund
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - K Krakauer
- Copenhagen Research Center for Mental Health, University of Copenhagen, Copenhagen, Denmark.,Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, FIUNIT, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Copenhagen, Denmark
| | - T D Kristensen
- Copenhagen Research Center for Mental Health, University of Copenhagen, Copenhagen, Denmark.,Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - C Hjorthøj
- Copenhagen Research Center for Mental Health, University of Copenhagen, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - R A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - B V Broberg
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - K B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - E Rostrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, FIUNIT, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Copenhagen, Denmark
| | - M Nordentoft
- Copenhagen Research Center for Mental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Kim J, Plitman E, Iwata Y, Nakajima S, Mar W, Patel R, Chavez S, Chung JK, Caravaggio F, Chakravarty MM, Remington G, Gerretsen P, Graff-Guerrero A. Neuroanatomical profiles of treatment-resistance in patients with schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109839. [PMID: 31843627 DOI: 10.1016/j.pnpbp.2019.109839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/10/2019] [Accepted: 12/12/2019] [Indexed: 01/18/2023]
Abstract
Widespread structrual abnormalities in subcortical brain regions have been identified in patients with schizophrenia. However, only a few studies have examined the neuroanatomical profiles of patients with treatment-resistant schizophrenia. The aim of this study was to compare differences in subcortical and hippocampal volumes between: (i) treatment-resistant patients who are non-responders to both first-line antipsychotics and clozapine (URS), (ii) treatment-resistant patients who are non-responders to first-line antipsychotics but are responders to clozapine (CLZ-Resp), (iii) responders to first-line antipsychotics (FL-Resp), and (iv) healthy controls. T1-weighted images of 103 participants (27 URS, 29 CLZ-Resp, 21 FL-Resp, and 26 healthy controls) were obtained. Group differences in striatal, thalamic, globus pallidus, amygdala, and hippocampus volumes were examined. Multiple regression analyses were performed to examine the associations between subcortical and hippocampal volumes and participant characteristics. The FL-Resp group showed larger striatal and globus pallidus volumes compared to the URS group and larger post-commissural putamen and globus pallidus volumes compared to healthy controls. The URS group showed smaller thalamic volume compared to healthy controls. There were no subcortical or hippocampal volume differences between the URS and CLZ-Resp groups. Differences in subcortical and hippocampal structural volumes were not related to symptom severity or chlorpromazine antipsychotic dose equivalents. Our findings suggest different structural volume alterations in subcortical brain regions between treatment-resistant schizophrenia and responders to first-line antipsychotics. Whether subcortical structure compromise is a distinct pathophysiological marker of treatment-resistant schizophrenia, or a result of antipsychotic exposure, remains to be explored.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Wanna Mar
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Sofia Chavez
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada; Schizophrenia Division, CAMH, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Tarumi R, Tsugawa S, Noda Y, Plitman E, Honda S, Matsushita K, Chavez S, Sawada K, Wada M, Matsui M, Fujii S, Miyazaki T, Chakravarty MM, Uchida H, Remington G, Graff-Guerrero A, Mimura M, Nakajima S. Levels of glutamatergic neurometabolites in patients with severe treatment-resistant schizophrenia: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2020; 45:632-640. [PMID: 31842203 PMCID: PMC7021829 DOI: 10.1038/s41386-019-0589-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 01/20/2023]
Abstract
Approximately 30% of patients with schizophrenia do not respond to antipsychotics and are thus considered to have treatment-resistant schizophrenia (TRS). To date, only four studies have examined glutamatergic neurometabolite levels using proton magnetic resonance spectroscopy (1H-MRS) in patients with TRS, collectively suggesting that glutamatergic dysfunction may be implicated in the pathophysiology of TRS. Notably, the TRS patient population in these studies had mild-to-moderate illness severity, which is not entirely reflective of what is observed in clinical practice. In this present work, we compared glutamate + glutamine (Glx) levels in the dorsal anterior cingulate cortex (dACC) and caudate among patients with TRS, patients with non-TRS, and healthy controls (HCs), using 3T 1H-MRS (PRESS, TE = 35 ms). TRS criteria were defined by severe positive symptoms (i.e., ≥5 on 2 Positive and Negative Syndrome Scale (PANSS)-positive symptom items or ≥4 on 3 PANSS-positive symptom items), despite standard antipsychotic treatment. A total of 95 participants were included (29 TRS patients [PANSS = 111.2 ± 20.4], 33 non-TRS patients [PANSS = 49.8 ± 13.7], and 33 HCs). dACC Glx levels were higher in the TRS group vs. HCs (group effect: F[2,75] = 4.74, p = 0.011; TRS vs. HCs: p = 0.012). No group differences were identified in the caudate. There were no associations between Glx levels and clinical severity in either patient group. Our results are suggestive of greater heterogeneity in TRS relative to non-TRS with respect to dACC Glx levels, necessitating further research to determine biological subtypes of TRS.
Collapse
Affiliation(s)
- Ryosuke Tarumi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan ,grid.415439.eDepartment of Psychiatry, Komagino Hospital, Hachioji, Japan
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshihiro Noda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- 0000 0004 1936 8649grid.14709.3bCerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montreal, QC Canada
| | - Shiori Honda
- 0000 0004 1936 9959grid.26091.3cGraduate School of Media and Governance, Keio University, Tokyo, Japan
| | - Karin Matsushita
- 0000 0004 1936 9959grid.26091.3cFaculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Sofia Chavez
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Kyosuke Sawada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Mie Matsui
- 0000 0001 2308 3329grid.9707.9Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Shinya Fujii
- 0000 0004 1936 9959grid.26091.3cFaculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - M. Mallar Chakravarty
- 0000 0004 1936 8649grid.14709.3bCerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Hiroyuki Uchida
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan ,0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Gary Remington
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Ariel Graff-Guerrero
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan. .,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
48
|
Wenneberg C, Nordentoft M, Rostrup E, Glenthøj LB, Bojesen KB, Fagerlund B, Hjorthøj C, Krakauer K, Kristensen TD, Schwartz C, Edden RAE, Broberg BV, Glenthøj BY. Cerebral Glutamate and Gamma-Aminobutyric Acid Levels in Individuals at Ultra-high Risk for Psychosis and the Association With Clinical Symptoms and Cognition. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:569-579. [PMID: 32008981 DOI: 10.1016/j.bpsc.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies examining glutamate or gamma-aminobutyric acid (GABA) in ultra-high risk for psychosis (UHR) and the association with pathophysiology and cognition have shown conflicting results. We aimed to determine whether perturbed glutamate and GABA levels in the anterior cingulate cortex and glutamate levels in the left thalamus were present in UHR individuals and to investigate associations between metabolite levels and clinical symptoms and cognition. METHODS We included 122 UHR individuals and 60 healthy control subjects. Participants underwent proton magnetic resonance spectroscopy to estimate glutamate and GABA levels and undertook clinical and cognitive assessments. RESULTS We found no differences in metabolite levels between UHR individuals and healthy control subjects. In UHR individuals, we found negative correlations in the anterior cingulate cortex between the composite of glutamate and glutamine (Glx) and the Comprehensive Assessment of At-Risk Mental States composite score (p = .04) and between GABA and alogia (p = .01); positive associations in the anterior cingulate cortex between glutamate (p = .01) and Glx (p = .01) and spatial working memory and between glutamate (p = .04), Glx (p = .04), and GABA (p = .02) and set-shifting; and a positive association in the thalamus between glutamate and attention (p = .04). No associations between metabolites and clinical or cognitive scores were found in the healthy control subjects. CONCLUSIONS An association between glutamate and GABA levels and clinical symptoms and cognition found only in UHR individuals suggests a loss of the normal relationship between metabolite levels and cognitive function. Longitudinal studies with investigation of clinical and cognitive outcome and the association with baseline levels of glutamate and GABA could illuminate whether glutamatergic and GABAergic dysfunction predicts clinical outcome.
Collapse
Affiliation(s)
- Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Krakauer
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Tina Dam Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Camilla Schwartz
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
49
|
Wenneberg C, Glenthøj BY, Hjorthøj C, Buchardt Zingenberg FJ, Glenthøj LB, Rostrup E, Broberg BV, Nordentoft M. Cerebral glutamate and GABA levels in high-risk of psychosis states: A focused review and meta-analysis of 1H-MRS studies. Schizophr Res 2020; 215:38-48. [PMID: 31784336 DOI: 10.1016/j.schres.2019.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Disturbances in the brain glutamate and GABA (γ-aminobutyric acid) homeostasis may be markers of transition to psychosis in individuals at high-risk (HR). Knowledge of GABA and glutamate levels in HR stages could give an insight into changes in the neurochemistry underlying psychosis. Studies on glutamate in HR have provided conflicting data, and GABA studies have only recently been initialized. In this meta-analysis, we compared cerebral levels of glutamate and GABA in HR individuals with healthy controls (HC). We searched Medline and Embase for articles published on 1H-MRS studies on glutamate and GABA in HR states until April 9th, 2019. We identified a total of 28 eligible studies, of which eight reported GABA (243 HR, 356 HC) and 26 reported glutamate (299 HR, 279 HC) or Glx (glutamate + glutamine) (584 HR, 632 HC) levels. Sample sizes varied from 6 to 75 for HR and 10 to 184 for HC. Our meta-analysis of 1H-MRS studies on glutamate and GABA in HR states displayed significantly lower (P = 0.0003) levels of thalamic glutamate in HR individuals than in HC and significantly higher (P = 0.001) Glx in the frontal lobe of genetic HR individuals (1st-degree relatives) than in HC. No other significant differences in glutamate and GABA levels were found. Subject numbers in the studies on glutamate as well as GABA levels were generally small and the data conflicting. Our meta-analytical findings highlight the need for larger and more homogeneous studies of glutamate and GABA in high-risk states.
Collapse
Affiliation(s)
- Christina Wenneberg
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark; University of Copenhagen, Department of Public Health, Section of Epidemiology, Øster Farimagsgade 5, Postboks 2099, 1014, Copenhagen K, Denmark.
| | - Frederik Johan Buchardt Zingenberg
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark.
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark.
| |
Collapse
|