1
|
Martin DA, Delgado AM, Calu DJ. Effects of psychedelic, DOI, on nucleus accumbens dopamine signaling to predictable rewards and cues in rats. Neuropsychopharmacology 2024; 49:1925-1933. [PMID: 38971932 PMCID: PMC11473690 DOI: 10.1038/s41386-024-01912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Psychedelics produce lasting therapeutic responses in neuropsychiatric diseases suggesting they may disrupt entrenched associations and catalyze learning. Here, we examine psychedelic 5-HT2A/2C agonist, DOI, effects on dopamine signaling in the nucleus accumbens (NAc) core, a region extensively linked to reward learning, motivation, and drug-seeking. We measure phasic dopamine transients following acute DOI administration in rats during well learned Pavlovian tasks in which sequential cues predict rewards. We find that DOI (0.0-1.2 mg/kg, i.p.) increases dopamine signals, photometrically measured using GRABDA optical sensor, to rewards and proximal reward cues, but not to the distal cues that predict these events. We determine that the elevated dopamine produced by DOI to reward cues occurs independently of DOI-induced changes in reward value. The increased dopamine associated with predictable reward cues and rewards supports DOI-induced increases in prediction error signaling. These findings lay a foundation for developing psychedelic strategies aimed at engaging error-driven learning mechanisms to disrupt entrenched associations or produce new associations.
Collapse
Affiliation(s)
- David A Martin
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Angel M Delgado
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Donna J Calu
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Hervig MES, Zühlsdorff K, Olesen SF, Phillips B, Božič T, Dalley JW, Cardinal RN, Alsiö J, Robbins TW. 5-HT 2A and 5-HT 2C receptor antagonism differentially modulate reinforcement learning and cognitive flexibility: behavioural and computational evidence. Psychopharmacology (Berl) 2024; 241:1631-1644. [PMID: 38594515 PMCID: PMC11269483 DOI: 10.1007/s00213-024-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
RATIONALE Cognitive flexibility, the ability to adapt behaviour in response to a changing environment, is disrupted in several neuropsychiatric disorders, including obsessive-compulsive disorder and major depressive disorder. Evidence suggests that flexibility, which can be operationalised using reversal learning tasks, is modulated by serotonergic transmission. However, how exactly flexible behaviour and associated reinforcement learning (RL) processes are modulated by 5-HT action on specific receptors is unknown. OBJECTIVES We investigated the effects of 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) antagonism on flexibility and underlying RL mechanisms. METHODS Thirty-six male Lister hooded rats were trained on a touchscreen visual discrimination and reversal task. We evaluated the effects of systemic treatments with the 5-HT2AR and 5-HT2CR antagonists M100907 and SB-242084, respectively, on reversal learning and performance on probe trials where correct and incorrect stimuli were presented with a third, probabilistically rewarded, stimulus. Computational models were fitted to task choice data to extract RL parameters, including a novel model designed specifically for this task. RESULTS 5-HT2AR antagonism impaired reversal learning only after an initial perseverative phase, during a period of random choice and then new learning. 5-HT2CR antagonism, on the other hand, impaired learning from positive feedback. RL models further differentiated these effects. 5-HT2AR antagonism decreased punishment learning rate (i.e. negative feedback) at high and low doses. The low dose also decreased reinforcement sensitivity (beta) and increased stimulus and side stickiness (i.e., the tendency to repeat a choice regardless of outcome). 5-HT2CR antagonism also decreased beta, but reduced side stickiness. CONCLUSIONS These data indicate that 5-HT2A and 5-HT2CRs both modulate different aspects of flexibility, with 5-HT2ARs modulating learning from negative feedback as measured using RL parameters and 5-HT2CRs for learning from positive feedback assessed through conventional measures.
Collapse
Affiliation(s)
- Mona El-Sayed Hervig
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- The Alan Turing Institute, British Library, London, NW1 2DVB, UK.
| | - Sarah F Olesen
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Benjamin Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Tadej Božič
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building, Cambridge, CB2 0SZ, UK
- Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Biomedical Campus, Box 190, Cambridge, CB2 0QQ, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
3
|
Basedow LA, Majić T, Hafiz NJ, Algharably EAE, Kreutz R, Riemer TG. Cognitive functioning associated with acute and subacute effects of classic psychedelics and MDMA - a systematic review and meta-analysis. Sci Rep 2024; 14:14782. [PMID: 38926480 PMCID: PMC11208433 DOI: 10.1038/s41598-024-65391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Classic psychedelics and MDMA have a colorful history of recreational use, and both have recently been re-evaluated as tools for the treatment of psychiatric disorders. Several studies have been carried out to assess potential long-term effects of a regular use on cognition, delivering distinct results for psychedelics and MDMA. However, to date knowledge is scarce on cognitive performance during acute effects of those substances. In this systematic review and meta-analysis, we investigate how cognitive functioning is affected by psychedelics and MDMA during the acute drug effects and the sub-acute ("afterglow") window. Our quantitative analyses suggest that acute cognitive performance is differentially affected by psychedelics when compared to MDMA: psychedelics impair attention and executive function, whereas MDMA primarily affects memory, leaving executive functions and attention unaffected. Our qualitative analyses reveal that executive functioning and creativity may be increased during a window of at least 24 h after the acute effects of psychedelics have subsided, whereas no such results have been observed for MDMA. Our findings may contribute to inform recommendations on harm reduction for recreational settings and to help fostering differential approaches for the use of psychedelics and MDMA within a therapeutic framework.
Collapse
Affiliation(s)
- Lukas A Basedow
- Department of Psychology, Clinical Psychology and Psychotherapy, Philipps-Universität Marburg, Gutenbergstraße 18, 35037, Marburg, Germany.
| | - Tomislav Majić
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry und Neurosciences, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicklas Jakob Hafiz
- Institute for Educational Quality Improvement (IQB), Humboldt-Universität zu Berlin, Berlin, Germany
| | - Engi A E Algharably
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas G Riemer
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
4
|
Casanova AF, Ort A, Smallridge JW, Preller KH, Seifritz E, Vollenweider FX. The influence of psilocybin on subconscious and conscious emotional learning. iScience 2024; 27:110034. [PMID: 38883812 PMCID: PMC11177198 DOI: 10.1016/j.isci.2024.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Serotonergic psychedelics hold promise as a treatment modality for various psychiatric disorders and are currently applied in psychedelic-assisted psychotherapy. We investigated the learning effects of the serotonin receptor agonist psilocybin in a probabilistic cue-reward task with emotional cues in the form of neutral or fearful faces, presented either consciously or subconsciously. This study represents the first investigation into reinforcement learning with psilocybin. Across different dosages, psilocybin preserved learning effects and was statistically noninferior compared to placebo, while suggesting a higher exploratory behavior. Notably, the 20 mg group exhibited significantly better learning rates against the placebo group. Psilocybin induced inferior results with subconscious cues compared to placebo, and better results with conscious neutral cues in some conditions. These findings suggest that modulating serotonin signaling in the brain with psilocybin sufficiently preservers reinforcement learning.
Collapse
Affiliation(s)
- Andrea F Casanova
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andres Ort
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - John W Smallridge
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Šabanović M, Lazari A, Blanco-Pozo M, Tisca C, Tachrount M, Martins-Bach AB, Lerch JP, Walton ME, Bannerman DM. Lasting dynamic effects of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) on cognitive flexibility. Mol Psychiatry 2024; 29:1810-1823. [PMID: 38321122 PMCID: PMC11371652 DOI: 10.1038/s41380-024-02439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Psychedelic drugs can aid fast and lasting remission from various neuropsychiatric disorders, though the underlying mechanisms remain unclear. Preclinical studies suggest serotonergic psychedelics enhance neuronal plasticity, but whether neuroplastic changes can also be seen at cognitive and behavioural levels is unexplored. Here we show that a single dose of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) affects structural brain plasticity and cognitive flexibility in young adult mice beyond the acute drug experience. Using ex vivo magnetic resonance imaging, we show increased volumes of several sensory and association areas one day after systemic administration of 2 mgkg-1 (±)-DOI. We then demonstrate lasting effects of (±)-DOI on cognitive flexibility in a two-step probabilistic reversal learning task where 2 mgkg-1 (±)-DOI improved the rate of adaptation to a novel reversal in task structure occurring one-week post-treatment. Strikingly, (±)-DOI-treated mice started learning from reward omissions, a unique strategy not typically seen in mice in this task, suggesting heightened sensitivity to previously overlooked cues. Crucially, further experiments revealed that (±)-DOI's effects on cognitive flexibility were contingent on the timing between drug treatment and the novel reversal, as well as on the nature of the intervening experience. (±)-DOI's facilitation of both cognitive adaptation and novel thinking strategies may contribute to the clinical benefits of psychedelic-assisted therapy, particularly in cases of perseverative behaviours and a resistance to change seen in depression, anxiety, or addiction. Furthermore, our findings highlight the crucial role of time-dependent neuroplasticity and the influence of experiential factors in shaping the therapeutic potential of psychedelic interventions for impaired cognitive flexibility.
Collapse
Affiliation(s)
- Merima Šabanović
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Cristiana Tisca
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Aurea B Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
| |
Collapse
|
6
|
Nist AN, Walsh SJ, Shahan TA. Ketamine produces no detectable long-term positive or negative effects on cognitive flexibility or reinforcement learning of male rats. Psychopharmacology (Berl) 2024; 241:849-863. [PMID: 38062167 DOI: 10.1007/s00213-023-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Patients with major depressive disorder (MDD) often experience abnormalities in behavioral adaptation following environmental changes (i.e., cognitive flexibility) and tend to undervalue positive outcomes but overvalue negative outcomes. The probabilistic reversal learning task (PRL) is used to study these deficits across species and to explore drugs that may have therapeutic value. Selective serotonin-reuptake inhibitors (SSRIs) have limited effectiveness in treating MDD and produce inconsistent effects in non-human versions of the PRL. As such, ketamine, a novel and potentially rapid-acting therapeutic, has begun to be examined using the PRL. Two previous studies examining the effects of ketamine in the PRL have shown conflicting results and only examined short-term effects of ketamine. OBJECTIVE This experiment examined PRL performance across a 2-week period following a single exposure to a ketamine dose that varied across groups. METHODS After five sessions of PRL training, groups of rats received an injection of either 0, 10, 20 or 30 mg/kg ketamine. One-hour post-injection, rats engaged in the PRL, and subsequently sessions continued daily for 2 weeks. Traditional behavioral and computational reinforcement learning-derived measures were examined. RESULTS Results showed that ketamine had acute effects 1-h post-injection, including a significant decrease in the value of the punishment learning rate. Beyond 1 h, ketamine produced no detectable improvements nor decrements in performance across 2 weeks. CONCLUSION Overall, the present results suggest that the range of ketamine doses examined do not have long-term positive or negative effects on cognitive flexibility or reward processing in healthy rats as measured by the PRL.
Collapse
Affiliation(s)
- Anthony N Nist
- Department of Psychology, Utah State University, Logan, USA.
| | - Stephen J Walsh
- Department of Mathematics and Statistics, Utah State University, Logan, USA
| | | |
Collapse
|
7
|
Luo Q, Kanen JW, Bari A, Skandali N, Langley C, Knudsen GM, Alsiö J, Phillips BU, Sahakian BJ, Cardinal RN, Robbins TW. Comparable roles for serotonin in rats and humans for computations underlying flexible decision-making. Neuropsychopharmacology 2024; 49:600-608. [PMID: 37914893 PMCID: PMC10789782 DOI: 10.1038/s41386-023-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. Cognitive flexibility is important for successful attainment of goals, as well as for social interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-compulsive disorder. However, a unifying mechanistic framework accounting for the role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate common effects of manipulating serotonin function across two species (rats and humans) on latent processes supporting choice behavior during probabilistic reversal learning, using computational modelling. The findings support a role of serotonin in behavioral flexibility and plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness') or reinforcement learning rates following manipulations intended to increase or decrease serotonin function. More specifically, the rate at which expected value increased following reward and decreased following punishment (reward and punishment 'learning rates') was greatest after sub-chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. Conversely, humans given a single dose of an SSRI (20 mg escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice repetition irrespective of the outcome produced, was likewise increased in rats after the 12-day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. These common effects of serotonergic manipulations on rats and humans-identified via computational modelling-suggest an evolutionarily conserved role for serotonin in plasticity and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Center for Computational Psychiatry, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
- NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christelle Langley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Benjamin U Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barbara J Sahakian
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
| | - Trevor W Robbins
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
8
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
9
|
Heifets BD, Olson DE. Therapeutic mechanisms of psychedelics and entactogens. Neuropsychopharmacology 2024; 49:104-118. [PMID: 37488282 PMCID: PMC10700553 DOI: 10.1038/s41386-023-01666-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Recent clinical and preclinical evidence suggests that psychedelics and entactogens may produce both rapid and sustained therapeutic effects across several indications. Currently, there is a disconnect between how these compounds are used in the clinic and how they are studied in preclinical species, which has led to a gap in our mechanistic understanding of how these compounds might positively impact mental health. Human studies have emphasized extra-pharmacological factors that could modulate psychedelic-induced therapeutic responses including set, setting, and integration-factors that are poorly modelled in current animal experiments. In contrast, animal studies have focused on changes in neuronal activation and structural plasticity-outcomes that are challenging to measure in humans. Here, we describe several hypotheses that might explain how psychedelics rescue neuropsychiatric disease symptoms, and we propose ways to bridge the gap between human and rodent studies. Given the diverse pharmacological profiles of psychedelics and entactogens, we suggest that their rapid and sustained therapeutic mechanisms of action might best be described by the collection of circuits that they modulate rather than their actions at any single molecular target. Thus, approaches focusing on selective circuit modulation of behavioral phenotypes might prove more fruitful than target-based methods for identifying novel compounds with rapid and sustained therapeutic effects similar to psychedelics and entactogens.
Collapse
Affiliation(s)
- Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, 95616, USA.
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
- Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Pouyan N, Younesi Sisi F, Kargar A, Scheidegger M, McIntyre RS, Morrow JD. The effects of Lysergic Acid Diethylamide (LSD) on the Positive Valence Systems: A Research Domain Criteria (RDoC)-Informed Systematic Review. CNS Drugs 2023; 37:1027-1063. [PMID: 37999867 PMCID: PMC10703966 DOI: 10.1007/s40263-023-01044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES The renewed interest in psychedelic research provides growing evidence of potentially unique effects on various aspects of reward processing systems. Using the Research Domain Criteria (RDoC) framework, as proposed by the National Institute of Mental Health, we aim to synthesize the existing literature concerning the impact of lysergic acid diethylamide (LSD) on the RDoC's Positive Valence Systems (PVS) domain, and to identify potential avenues for further research. METHODS Two LSD-related terms (lysergic acid diethylamide and LSD) and 13 PVS-related terms (reward, happiness, bliss, motivation, reinforcement learning, operant, conditioning, satisfaction, decision making, habit, valence, affect, mood) were used to search electronic databases such as PubMed, Scopus, PsychINFO, and Web of Science for relevant articles. A manual search of the reference list resulted in nine additional articles. After screening, articles and data were evaluated and included based on their relevance to the objective of investigating the effects of LSD on the PVS. Articles and data were excluded if they did not provide information about the PVS, were observational in nature, lacked comparators or reference groups, or were duplicates. A risk of bias assessment was performed using the National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) risk of bias (RoB) tool. Data from the included articles were collected and structured based on the RDoC bio-behavioral matrix, specifically focusing on the PVS domain and its three constituent constructs: reward responsiveness, reward learning, and reward valuation. RESULTS We reviewed 28 clinical studies with 477 participants. Lysergic acid diethylamide, assessed at self-report (23 studies), molecular (5 studies), circuit (4 studies), and paradigm (3 studies) levels, exhibited dose-dependent mood improvement (20 short-term and 3 long-term studies). The subjective and neural effects of LSD were linked to the 5-HT2A receptor (molecular). Animal studies (14 studies) suggested LSD could mildly reinforce conditioned place preference without aversion and reduce responsiveness to other rewards. Findings on reward learning were inconsistent but hinted at potential associative learning enhancements. Reward valuation measures indicated potential reductions in effort expenditure for other reinforcers. CONCLUSION Our findings are consistent with our previous work, which indicated classical psychedelics, primarily serotonin 2A receptor agonists, enhanced reward responsiveness in healthy individuals and patient populations. Lysergic acid diethylamide exhibits a unique profile in the reward learning and valuation constructs. Using the RDoC-based framework, we identified areas for future research, enhancing our understanding of the impact of LSD on reward processing. However, applying RDoC to psychedelic research faces limitations due to diverse study designs that were not initially RDoC-oriented. Limitations include subjective outcome measure selection aligned with RDoC constructs and potential bias in synthesizing varied studies. Additionally, some human studies were open-label, introducing potential bias compared to randomized, blinded studies.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Michigan Psychedelic Center (M-PsyC), and Chronic Pain and Fatigue Research Center (CPFRC), University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Aracell Zist Darou pharmaceutical, Tehran, Iran.
| | - Farnaz Younesi Sisi
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Kargar
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Clinical Pharmacy, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jonathan D Morrow
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
12
|
Calder A, Mock S, Friedli N, Pasi P, Hasler G. Psychedelics in the treatment of eating disorders: Rationale and potential mechanisms. Eur Neuropsychopharmacol 2023; 75:1-14. [PMID: 37352816 DOI: 10.1016/j.euroneuro.2023.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/25/2023]
Abstract
Eating disorders are serious illnesses showing high rates of mortality and comorbidity with other mental health problems. Psychedelic-assisted therapy has recently shown potential in the treatment of several common comorbidities of eating disorders, including mood disorders, post-traumatic stress disorder, and substance use disorders. The theorized therapeutic mechanisms of psychedelic-assisted therapy suggest that it could be beneficial in the treatment of eating disorders as well. In this review, we summarize preliminary data on the efficacy of psychedelic-assisted therapy in people with anorexia nervosa, bulimia nervosa, and binge eating disorder, which include studies and case reports of psychedelic-assisted therapy with ketamine, MDMA, psilocybin, and ayahuasca. We then discuss the potential therapeutic mechanisms of psychedelic-assisted therapy in these three eating disorders, including both general therapeutic mechanisms and those which are relatively specific to eating disorders. We find preliminary evidence that psychedelic-assisted therapy may be effective in the treatment of anorexia nervosa and bulimia nervosa, with very little data available on binge eating disorder. Regarding mechanisms, psychedelic-assisted therapy may be able to improve beliefs about body image, normalize reward processing, promote cognitive flexibility, and facilitate trauma processing. Just as importantly, it appears to promote general therapeutic factors relevant to both eating disorders and many of their common comorbidities. Lastly, we discuss potential safety concerns which may be associated with these treatments and present recommendations for future research.
Collapse
Affiliation(s)
- Abigail Calder
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland
| | - Seline Mock
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland
| | - Nicole Friedli
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland
| | - Patrick Pasi
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland.
| |
Collapse
|
13
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
14
|
Young JW. Development of cross-species translational paradigms for psychiatric research in the Research Domain Criteria era. Neurosci Biobehav Rev 2023; 148:105119. [PMID: 36889561 DOI: 10.1016/j.neubiorev.2023.105119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The past 30 years of IBNS has included research attempting to treat the cognitive and behavioral deficits observed in people with psychiatric conditions. Early work utilized drugs identified from tests thought to be cognition-relevant, however the high failure rate crossing the translational-species barrier led to focus on developing valid cross-species translational tests. The face, predictive, and neurobiological validities used to assess animal models of psychiatry can be used to validate these tests. Clinical sensitivity is another important aspect however, for if the clinical population targeted for treatment does not exhibit task deficits, then why develop treatments? This review covers some work validating cross-species translational tests and suggests future directions. Also covered is the contribution IBNS made to fostering such research and my role in IBNS, making it more available to all including fostering mentor/mentee programs plus spearheading diversity and inclusivity initiatives. All science needs support and IBNS has supported research recreating the behavioral abnormalities that define psychiatric conditions with the aim to improve the lives of people with such conditions.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
15
|
Ponomarenko P, Seragnoli F, Calder A, Oehen P, Hasler G. Can psychedelics enhance group psychotherapy? A discussion on the therapeutic factors. J Psychopharmacol 2023:2698811231155117. [PMID: 36855289 DOI: 10.1177/02698811231155117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Despite the growth of psychedelic research, psychedelic-assisted group psychotherapy (PAGP) has received little attention in comparison to individual psychedelic-assisted psychotherapy models. METHODS In this article, we aim to discuss the therapeutic potential of PAGP, as well as outline existing models and the challenges of this approach. Using Irvin Yalom's 11 therapeutic factors of group therapy as a basic framework, we analyse current literature from clinical studies and neurobiological research relative to the topic of PAGP. RESULTS We argue that combining psychedelic substances and group psychotherapy may prove beneficial for increasing group connectedness and interpersonal learning, potentially enhancing prosocial behaviour with direct opportunities to practice newly acquired knowledge about previously maladaptive behavioural patterns. Challenges regarding this approach include a more rigid therapy structure and potential loss of openness from patients, which may be ameliorated by adequate therapeutic training. CONCLUSION We hope for this article to support clinical research on PAGP by presenting a therapeutic framework and outlining its mechanisms and challenges.
Collapse
Affiliation(s)
| | | | - Abigail Calder
- Department of Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| | - Peter Oehen
- Private Practice for Psychiatry and Psychotherapy, Biberist, Switzerland
| | - Gregor Hasler
- Department of Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| |
Collapse
|
16
|
Bari BA, Moerke MJ, Jedema HP, Effinger DP, Cohen JY, Bradberry CW. Reinforcement learning modeling reveals a reward-history-dependent strategy underlying reversal learning in squirrel monkeys. Behav Neurosci 2022; 136:46-60. [PMID: 34570556 PMCID: PMC8863624 DOI: 10.1037/bne0000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insight into psychiatric disease and development of therapeutics relies on behavioral tasks that study similar cognitive constructs in multiple species. The reversal learning task is one popular paradigm that probes flexible behavior, aberrations of which are thought to be important in a number of disease states. Despite widespread use, there is a need for a high-throughput primate model that can bridge the genetic, anatomic, and behavioral gap between rodents and humans. Here, we trained squirrel monkeys, a promising preclinical model, on an image-guided deterministic reversal learning task. We found that squirrel monkeys exhibited two key hallmarks of behavior found in other species: integration of reward history over many trials and a side-specific bias. We adapted a reinforcement learning model and demonstrated that it could simulate squirrel monkey-like behavior, capture training-related trajectories, and provide insight into the strategies animals employed. These results validate squirrel monkeys as a model in which to study behavioral flexibility. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Bilal A. Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Megan J. Moerke
- NIDA Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Hank P. Jedema
- NIDA Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Devin P. Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeremiah Y. Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Charles W. Bradberry
- NIDA Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|