1
|
Nimerovsky E, Kosteletos S, Lange S, Becker S, Lange A, Andreas LB. Homonuclear Simplified Preservation of Equivalent Pathways Spectroscopy. J Phys Chem Lett 2024; 15:6272-6278. [PMID: 38856103 PMCID: PMC11194807 DOI: 10.1021/acs.jpclett.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Recently developed homonuclear transverse mixing optimal control pulses (hTROP) revealed an elegant way to enhance the detected signal in multidimensional magic-angle spinning (MAS) nuclear magnetic resonance experiments. Inspired by their work, we present two homonuclear simplified preservation of equivalent pathways spectroscopy (hSPEPS) sequences for recoupling CA-CO and CA-CB dipolar couplings under fast and ultrafast MAS rates, theoretically enabling a √2 improvement in sensitivity for each indirect dimension. The efficiencies of hSPEPS are evaluated for non-deuterated samples of influenza A M2 and bacterial rhomboid protease GlpG under two different external magnetic fields (600 and 1200 MHz) and MAS rates (55 and 100 kHz). Three-dimensional (H)CA(CO)NH, (H)CO(CA)NH, and (H)CB(CA)NH spectra demonstrate the high robustness of hSPEPS elements to excite carbon-carbon correlations, especially in the (H)CB(CA)NH spectrum, where hSPEPS outperforms the J-based sequence by a factor of, on average, 2.85.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Spyridon Kosteletos
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Sascha Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Stefan Becker
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Adam Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Loren B. Andreas
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
2
|
Amyx-Sherer K, Reichhardt C. Challenges and opportunities in elucidating the structures of biofilm exopolysaccharides: A case study of the Pseudomonas aeruginosa exopolysaccharide called Pel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:361-369. [PMID: 37919227 DOI: 10.1002/mrc.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Biofilm formation protects bacteria from antibiotic treatment and host immune responses, making biofilm infections difficult to treat. Within biofilms, bacterial cells are entangled in a self-produced extracellular matrix that typically includes exopolysaccharides. Molecular-level descriptions of biofilm matrix components, especially exopolysaccharides, have been challenging to attain due to their complex nature and lack of solubility and crystallinity. Solid-state nuclear magnetic resonance (NMR) has emerged as a key tool to determine the structure of biofilm matrix exopolysaccharides without degradative sample preparation. In this review, we discuss challenges of studying biofilm matrix exopolysaccharides and opportunities to develop solid-state NMR approaches to study these generally intractable materials. We specifically highlight investigations of the exopolysaccharide called Pel made by the opportunistic pathogen, Pseudomonas aeruginosa. We provide a roadmap for determining exopolysaccharide structure and discuss future opportunities to study such systems using solid-state NMR. The strategies discussed for elucidating biofilm exopolysaccharide structure should be broadly applicable to studying the structures of other glycans.
Collapse
Affiliation(s)
- Kristen Amyx-Sherer
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Adler A, Bangera M, Beugelink JW, Bahri S, van Ingen H, Moores CA, Baldus M. A structural and dynamic visualization of the interaction between MAP7 and microtubules. Nat Commun 2024; 15:1948. [PMID: 38431715 PMCID: PMC10908866 DOI: 10.1038/s41467-024-46260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Microtubules (MTs) are key components of the eukaryotic cytoskeleton and are essential for intracellular organization, organelle trafficking and mitosis. MT tasks depend on binding and interactions with MT-associated proteins (MAPs). MT-associated protein 7 (MAP7) has the unusual ability of both MT binding and activating kinesin-1-mediated cargo transport along MTs. Additionally, the protein is reported to stabilize MTs with its 112 amino-acid long MT-binding domain (MTBD). Here we investigate the structural basis of the interaction of MAP7 MTBD with the MT lattice. Using a combination of solid and solution-state nuclear magnetic resonance (NMR) spectroscopy with electron microscopy, fluorescence anisotropy and isothermal titration calorimetry, we shed light on the binding mode of MAP7 to MTs at an atomic level. Our results show that a combination of interactions between MAP7 and MT lattice extending beyond a single tubulin dimer and including tubulin C-terminal tails contribute to formation of the MAP7-MT complex.
Collapse
Affiliation(s)
- Agnes Adler
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Mamata Bangera
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, WC1E 7HX, UK
| | - J Wouter Beugelink
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Heubach CA, Hasanbasri Z, Abdullin D, Reuter A, Korzekwa B, Saxena S, Schiemann O. Differentiating between Label and Protein Conformers in Pulsed Dipolar EPR Spectroscopy with the dHis-Cu 2+ (NTA) Motif. Chemistry 2023; 29:e202302541. [PMID: 37755452 DOI: 10.1002/chem.202302541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Pulsed dipolar EPR spectroscopy (PDS) in combination with site-directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)-nitrilotriacetic acid [Cu2+ (NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDa Yersinia outer protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron-electron double resonance (PELDOR aka DEER) and relaxation-induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis-Cu2+ (NTA) motif; this result suggests that the α-helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+ (NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His-null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis-Cu2+ (NTA) motif in PDS experiments.
Collapse
Affiliation(s)
- Caspar A Heubach
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Zikri Hasanbasri
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Arne Reuter
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Benedict Korzekwa
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
- Leibniz-Center for Diabetes Research, University of Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Sunil Saxena
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| |
Collapse
|
5
|
Nimerovsky E, Najbauer EÉ, Becker S, Andreas LB. Great Offset Difference Internuclear Selective Transfer. J Phys Chem Lett 2023; 14:3939-3945. [PMID: 37078685 PMCID: PMC10150390 DOI: 10.1021/acs.jpclett.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Carbon-carbon dipolar recoupling sequences are frequently used building blocks in routine magic-angle spinning NMR experiments. While broadband homonuclear first-order dipolar recoupling sequences mainly excite intra-residue correlations, selective methods can detect inter-residue transfers and long-range correlations. Here, we present the great offset difference internuclear selective transfer (GODIST) pulse sequence optimized for selective carbonyl or aliphatic recoupling at fast magic-angle spinning, here, 55 kHz. We observe a 3- to 5-fold increase in intensities compared with broadband RFDR recoupling for perdeuterated microcrystalline SH3 and for the membrane protein influenza A M2 in lipid bilayers. In 3D (H)COCO(N)H and (H)CO(CO)NH spectra, inter-residue carbonyl-carbonyl correlations up to about 5 Å are observed in uniformly 13C-labeled proteins.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Eszter Éva Najbauer
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
6
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
7
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
8
|
Cerofolini L, Parigi G, Ravera E, Fragai M, Luchinat C. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101828. [PMID: 36240720 DOI: 10.1016/j.ssnmr.2022.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.
Collapse
Affiliation(s)
- Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Florence Data Science, Università degli Studi di Firenze, Italy.
| | - Marco Fragai
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Conroy DW, Xu Y, Shi H, Gonzalez Salguero N, Purusottam RN, Shannon MD, Al-Hashimi HM, Jaroniec CP. Probing Watson-Crick and Hoogsteen base pairing in duplex DNA using dynamic nuclear polarization solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2200681119. [PMID: 35857870 PMCID: PMC9335254 DOI: 10.1073/pnas.2200681119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The majority of base pairs in double-stranded DNA exist in the canonical Watson-Crick geometry. However, they can also adopt alternate Hoogsteen conformations in various complexes of DNA with proteins and small molecules, which are key for biological function and mechanism. While detection of Hoogsteen base pairs in large DNA complexes and assemblies poses considerable challenges for traditional structural biology techniques, we show here that multidimensional dynamic nuclear polarization-enhanced solid-state NMR can serve as a unique spectroscopic tool for observing and distinguishing Watson-Crick and Hoogsteen base pairs in a broad range of DNA systems based on characteristic NMR chemical shifts and internuclear dipolar couplings. We illustrate this approach using a model 12-mer DNA duplex, free and in complex with the antibiotic echinomycin, which features two central adenine-thymine base pairs with Watson-Crick and Hoogsteen geometry, respectively, and subsequently extend it to the ∼200 kDa Widom 601 DNA nucleosome core particle.
Collapse
Affiliation(s)
- Daniel W. Conroy
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Yu Xu
- bDepartment of Chemistry, Duke University, Durham, NC 27708
| | - Honglue Shi
- bDepartment of Chemistry, Duke University, Durham, NC 27708
| | | | - Rudra N. Purusottam
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Matthew D. Shannon
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Hashim M. Al-Hashimi
- bDepartment of Chemistry, Duke University, Durham, NC 27708
- cDepartment of Biochemistry, Duke University Medical Center, Durham, NC 27710
- dDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- 1To whom correspondence may be addressed. or
| | - Christopher P. Jaroniec
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- 1To whom correspondence may be addressed. or
| |
Collapse
|
10
|
Nicastro G, Lucci M, Oregioni A, Kelly G, Frenkiel TA, Taylor IA. CP-MAS and solution NMR studies of allosteric communication in CA-assemblies of HIV-1. J Mol Biol 2022; 434:167691. [PMID: 35738429 DOI: 10.1016/j.jmb.2022.167691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
Solution and solid-state NMR spectroscopy are highly complementary techniques for studying structure and dynamics in very high molecular weight systems. Here we have analysed the dynamics of HIV-1 capsid (CA) assemblies in presence of the cofactors IP6 and ATPγS and the host-factor CPSF6 using a combination of solution state and cross polarisation magic angle spinning (CP-MAS) solid-state NMR. In particular, dynamical effects on ns to µs and µs to ms timescales are observed revealing diverse motions in assembled CA. Using CP-MAS NMR, we exploited the sensitivity of the amide/Cα-Cβ backbone chemical shifts in DARR and NCA spectra to observe the plasticity of the HIV-1 CA tubular assemblies and also map the binding of cofactors and the dynamics of cofactor-CA complexes. In solution, we measured how the addition of host- and co-factors to CA -hexamers perturbed the chemical shifts and relaxation properties of CA-Ile and -Met methyl groups using transverse-relaxation-optimized NMR spectroscopy to exploit the sensitivity of methyl groups as probes in high-molecular weight proteins. These data show how dynamics of the CA protein assembly over a range of spatial and temporal scales play a critical role in CA function. Moreover, we show that binding of IP6, ATPγS and CPSF6 results in local chemical shift as well as dynamic changes for a significant, contiguous portion of CA, highlighting how allosteric pathways communicate ligand interactions between adjacent CA protomers.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Massimo Lucci
- CIRMMP, University of Florence, Via L. Sacconi, 6 50019 Sesto Fiorentino (FI), Italy
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tom A Frenkiel
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
11
|
Conformational Changes in Ff Phage Protein gVp upon Complexation with Its Viral Single-Stranded DNA Revealed Using Magic-Angle Spinning Solid-State NMR. Viruses 2022; 14:v14061264. [PMID: 35746735 PMCID: PMC9231167 DOI: 10.3390/v14061264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gene V protein (gVp) of the bacteriophages of the Ff family is a non-specific single-stranded DNA (ssDNA) binding protein. gVp binds to viral DNA during phage replication inside host Escherichia coli cells, thereby blocking further replication and signaling the assembly of new phage particles. gVp is a dimer in solution and in crystal form. A structural model of the complex between gVp and ssDNA was obtained via docking the free gVp to structures of short ssDNA segments and via the detection of residues involved in DNA binding in solution. Using solid-state NMR, we characterized structural features of the gVp in complex with full-length viral ssDNA. We show that gVp binds ssDNA with an average distance of 5.5 Å between the amino acid residues of the protein and the phosphate backbone of the DNA. Torsion angle predictions and chemical shift perturbations indicate that there were considerable structural changes throughout the protein upon complexation with ssDNA, with the most significant variations occurring at the ssDNA binding loop and the C-terminus. Our data suggests that the structure of gVp in complex with ssDNA differs significantly from the structure of gVp in the free form, presumably to allow for cooperative binding of dimers to form the filamentous phage particle.
Collapse
|
12
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
13
|
Aguion PI, Marchanka A. Strategies for RNA Resonance Assignment by 13C/ 15N- and 1H-Detected Solid-State NMR Spectroscopy. Front Mol Biosci 2021; 8:743181. [PMID: 34746232 PMCID: PMC8563574 DOI: 10.3389/fmolb.2021.743181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) is an established tool that can be applied to non-soluble or non-crystalline biomolecules of any size or complexity. The ssNMR method advances rapidly due to technical improvements and the development of advanced isotope labeling schemes. While ssNMR has shown significant progress in structural studies of proteins, the number of RNA studies remains limited due to ssNMR methodology that is still underdeveloped. Resonance assignment is the most critical and limiting step in the structure determination protocol that defines the feasibility of NMR studies. In this review, we summarize the recent progress in RNA resonance assignment methods and approaches for secondary structure determination by ssNMR. We critically discuss advantages and limitations of conventional 13C- and 15N-detected experiments and novel 1H-detected methods, identify optimal regimes for RNA studies by ssNMR, and provide our view on future ssNMR studies of RNA in large RNP complexes.
Collapse
Affiliation(s)
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
14
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Porat-Dahlerbruch G, Goldbourt A, Polenova T. Virus Structures and Dynamics by Magic-Angle Spinning NMR. Annu Rev Virol 2021; 8:219-237. [PMID: 34586870 DOI: 10.1146/annurev-virology-011921-064653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Techniques for atomic-resolution structural biology have evolved during the past several decades. Breakthroughs in instrumentation, sample preparation, and data analysis that occurred in the past decade have enabled characterization of viruses with an unprecedented level of detail. Here we review the recent advances in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for structural analysis of viruses and viral assemblies. MAS NMR is a powerful method that yields information on 3D structures and dynamics in a broad range of experimental conditions. After a brief introduction, we discuss recent structural and functional studies of several viruses investigated with atomic resolution at various levels of structural organization, from individual domains of a membrane protein reconstituted into lipid bilayers to virus-like particles and intact viruses. We present examples of the unique information revealed by MAS NMR about drug binding, conduction mechanisms, interactions with cellular host factors, and DNA packaging in biologically relevant environments that are inaccessible by other methods.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA;
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA; .,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
16
|
Abstract
In this chapter, we describe the preparatory and spectroscopic procedures for conducting solid-state NMR experiments on microtubules (MTs) obtained from human cells and their complexes with microtubule-associated proteins (MAPs). Next to labeling and functional assembly of MTs and MT-MAP complexes, we discuss solid-state NMR approaches, including fast MAS and hyperpolarization methods that can be used to examine these systems. Such studies can provide novel insight into the dynamic properties of MTs and MT-MAP complexes.
Collapse
|
17
|
Porat G, Lusky OS, Dayan N, Goldbourt A. Nonuniformly sampled exclusively- 13 C/ 15 N 4D solid-state NMR experiments: Assignment and characterization of IKe phage capsid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:237-246. [PMID: 32603513 DOI: 10.1002/mrc.5072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
An important step in the process of protein research by NMR is the assignment of chemical shifts. In the coat protein of IKe bacteriophage, there are 53 residues making up a long helix resulting in relatively high spectral ambiguity. Assignment thus requires the collection of a set of three-dimensional (3D) experiments and the preparation of sparsely labeled samples. Increasing the dimensionality can facilitate fast and reliable assignment of IKe and of larger proteins. Recent progress in nonuniform sampling techniques made the application of multidimensional NMR solid-state experiments beyond 3D more practical. 4D 1 H-detected experiments have been demonstrated in high-fields and at spinning speeds of 60 kHz and higher but are not practical at spinning speeds of 10-20 kHz for fully protonated proteins. Here, we demonstrate the applicability of a nonuniformly sampled 4D 13 C/15 N-only correlation experiment performed at a moderate field of 14.1 T, which can incorporate sufficiently long acquisition periods in all dimensions. We show how a single CANCOCX experiment, supported by several 2D carbon-based correlation experiments, is utilized for the assignment of heteronuclei in the coat protein of the IKe bacteriophage. One sparsely labeled sample was used to validate sidechain assignment of several hydrophobic-residue sidechains. A comparison to solution NMR studies of isolated IKe coat proteins embedded in micelles points to key residues involved in structural rearrangement of the capsid upon assembly of the virus. The benefits of 4D to a quicker assignment are discussed, and the method may prove useful for studying proteins at relatively low fields.
Collapse
Affiliation(s)
- Gal Porat
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Orr Simon Lusky
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Nir Dayan
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Schulich Faculty of Chemistry, Technion-Institute of Technology, Haifa, Israel
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| |
Collapse
|
18
|
|
19
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
20
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
21
|
Hassan A, Quinn CM, Struppe J, Sergeyev IV, Zhang C, Guo C, Runge B, Theint T, Dao HH, Jaroniec CP, Berbon M, Lends A, Habenstein B, Loquet A, Kuemmerle R, Perrone B, Gronenborn AM, Polenova T. Sensitivity boosts by the CPMAS CryoProbe for challenging biological assemblies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106680. [PMID: 31951864 PMCID: PMC7060763 DOI: 10.1016/j.jmr.2019.106680] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/09/2023]
Abstract
Despite breakthroughs in MAS NMR hardware and experimental methodologies, sensitivity remains a major challenge for large and complex biological systems. Here, we report that 3-4 fold higher sensitivities can be obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments that are otherwise time-prohibitive, such as 2D 15N-15N proton-driven spin diffusion and 15N-13C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins - demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of applications, especially for biological systems suffering from low intrinsic sensitivity and at physiological temperatures.
Collapse
Affiliation(s)
- Alia Hassan
- Bruker Biospin Corporation, Fällanden, Switzerland.
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Brent Runge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Hanh H Dao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Mélanie Berbon
- CNRS, CBMN, UMR5248, University of Bordeaux, F-33600 Pessac, France
| | - Alons Lends
- CNRS, CBMN, UMR5248, University of Bordeaux, F-33600 Pessac, France
| | | | - Antoine Loquet
- CNRS, CBMN, UMR5248, University of Bordeaux, F-33600 Pessac, France
| | | | | | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
Luo Y, Xiang S, Hooikaas PJ, van Bezouwen L, Jijumon AS, Janke C, Förster F, Akhmanova A, Baldus M. Direct observation of dynamic protein interactions involving human microtubules using solid-state NMR spectroscopy. Nat Commun 2020; 11:18. [PMID: 31896752 PMCID: PMC6940360 DOI: 10.1038/s41467-019-13876-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Microtubules are important components of the eukaryotic cytoskeleton. Their structural organization is regulated by nucleotide binding and many microtubule-associated proteins (MAPs). While cryo-EM and X-ray crystallography have provided detailed views of interactions between MAPs with the microtubule lattice, little is known about how MAPs and their intrinsically disordered regions interact with the dynamic microtubule surface. NMR carries the potential to directly probe such interactions but so far has been precluded by the low tubulin yield. We present a protocol to produce [13C, 15N]-labeled, functional microtubules (MTs) from human cells for solid-state NMR studies. This approach allowed us to demonstrate that MAPs can differently modulate the fast time-scale dynamics of C-terminal tubulin tails, suggesting distinct interaction modes. Our results pave the way for in-depth NMR studies of protein dynamics involved in MT assembly and their interactions with other cellular components.
Collapse
Affiliation(s)
- Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - ShengQi Xiang
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- MOE Key Lab for Membrane-less Organelles & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Peter Jan Hooikaas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Laura van Bezouwen
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - A S Jijumon
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405, Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405, Orsay, France
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Fritz M, Kraus J, Quinn CM, Yap GPA, Struppe J, Sergeyev IV, Gronenborn AM, Polenova T. Measurement of Accurate Interfluorine Distances in Crystalline Organic Solids: A High-Frequency Magic Angle Spinning NMR Approach. J Phys Chem B 2019; 123:10680-10690. [PMID: 31682453 DOI: 10.1021/acs.jpcb.9b08919] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-range interatomic distance restraints are critical for the determination of molecular structures by NMR spectroscopy, both in solution and in the solid state. Fluorine is a powerful NMR probe in a wide variety of contexts, owing to its favorable magnetic properties, ease of incorporation into biological molecules, and ubiquitous use in synthetic organic molecules designed for diverse applications. Because of the large gyromagnetic ratio of the 100% naturally abundant 19F isotope, interfluorine distances as long as 20 Å are accessible in magic-angle spinning (MAS) dipolar recoupling experiments. Herein, we present an approach for the determination of accurate interfluorine distances in multispin systems, using the finite pulse radio frequency driven recoupling (fpRFDR) at high MAS frequencies of 40-60 kHz. We use a series of crystalline "molecular ruler" solids, difluorobenzoic acids and 7F-L-tryptophan, for which the intra- and intermolecular interfluorine distances are known. We describe the optimal experimental conditions for accurate distance determinations, including the choice of a phase cycle, the relative advantages of selective inversion one-dimensional versus two-dimensional correlation experiments, and the appropriate numerical simulation protocols. An optimal strategy for the analysis of RFDR exchange curves in organic solids with extended spin interaction networks is presented, which, even in the absence of crystal structures, can be potentially incorporated into NMR structure determination.
Collapse
Affiliation(s)
- Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
24
|
Yarava JR, Nishiyama Y, Raghothama S, Ramanathan KV. Conformational investigation of peptides using solid-state NMR spectroscopy-A study of polymorphism of β-turn peptides containing diprolines. Chem Biol Drug Des 2019; 95:394-407. [PMID: 31755652 DOI: 10.1111/cbdd.13649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 11/16/2019] [Indexed: 11/26/2022]
Abstract
The construction of complex protein folds relies on the precise conversion of a linear polypeptide chain into a compact 3-dimensional structure. In this context, study of isolated secondary structural modules containing short stretches of amino acids assumes significance. Additionally, peptides, both natural and synthetic, play a major role as potential drugs. With a view to understand the local conformations adopted by peptides in the solid state, we propose a multinuclear NMR approach utilizing spectra of nuclei in their natural isotopic abundance. Various solid-state NMR experiments have been utilized for assignment of the spectra. Additionally, the gauge-including projector augmented-wave (GIPAW) calculations were used to confirm the assignments. Particularly, the utility of the double-quantum-single-quantum correlation experiments is highlighted for the purpose of assignment and for inferring the conformation across the peptide bond. The methodology is illustrated for the case of designed peptides containing diproline residues occurring at the β-turns for identifying their cis-trans conformational polymorphism. The proposed method promises to be of use in the study of conformations of small- to medium-sized peptides such as antimicrobial peptides and in the study of polymorphism leading to applications in drug development protocols.
Collapse
Affiliation(s)
- Jayasubba Reddy Yarava
- NMR Research Centre, Indian Institute of Science, Bangalore, India.,Department of Physics, Indian Institute of Science, Bangalore, India
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Japan.,RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Japan
| | | | | |
Collapse
|
25
|
Lv G, Kumar A, Huang Y, Eliezer D. A Protofilament-Protofilament Interface in the Structure of Mouse α-Synuclein Fibrils. Biophys J 2019; 114:2811-2819. [PMID: 29925018 DOI: 10.1016/j.bpj.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Fibrillar α-synuclein (AS) is the major component of Lewy bodies, the pathological hallmark of Parkinson's disease. Using solid-state nuclear magnetic resonance (ssNMR), we previously reported a structural characterization of mouse AS (mAS) fibrils and found that the secondary structure of the mAS fibrils is highly similar to a form of human AS (hAS) fibrils. Recently, a three-dimensional structure of these same hAS fibrils was determined by ssNMR and scanning transmission electron microscopy. Using medium- and long-range distance restraints obtained from ssNMR spectra, we found that the single protofilament structure of mAS fibrils is also similar to that of the hAS fibrils. However, residue-specific water accessibility of mAS fibrils probed by water polarization transfer ssNMR measurements indicates that residues S42-T44 and G84-V95 are largely protected from water even though they are located at the edge of the protofilament. Some of the corresponding resonances also exhibit peak doubling. These observations suggest that these residues may be involved in, to our knowledge, a novel protofilament-protofilament interface. We propose a structural model of mAS fibrils that incorporates this dimer interface.
Collapse
Affiliation(s)
- Guohua Lv
- Department of Biochemistry, Weill Cornell Medical College, New York, New York; Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India; Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
26
|
Daube D, Vogel M, Suess B, Corzilius B. Dynamic nuclear polarization on a hybridized hammerhead ribozyme: An explorative study of RNA folding and direct DNP with a paramagnetic metal ion cofactor. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:21-30. [PMID: 31078101 DOI: 10.1016/j.ssnmr.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
While uniform isotope labeling of ribonucleic acids (RNA) can simply and efficiently be achieved by in-vitro transcription, the specific introduction of nucleotides in larger constructs is non-trivial and often ineffective. Here, we demonstrate how a medium-sized (67-mer), biocatalytically relevant RNA (hammerhead ribozyme, HHRz) can be formed by spontaneous hybridization of two differently isotope-labeled strands, each individually synthesized by in-vitro transcription. This allows on the one hand for a significant reduction in the number of isotope-labeled nucleotides and thus spectral overlap particularly under magic-angle spinning (MAS) dynamic nuclear polarization (DNP) NMR conditions, on the other hand for orthogonal 13C/15N-labeling of complementary strands and thus for specific investigation of structurally or functionally relevant inter-strand and/or inter-stem contacts. By this method, we are able to confirm a non-canonical interaction due to single-site resolution and unique spectral assignments by two-dimensional 13C-13C (PDSD) as well as 15N-13C (TEDOR) correlation spectroscopy under "conventional" DNP enhancement. This contact is indicative of the ribozyme's functional conformation, and is present in frozen solution irrespective of the presence or absence of a Mg2+ co-factor. Finally, we use different isotope-labeling schemes in order to investigate the distance dependence of paramagnetic interactions and direct metal-ion DNP if the diamagnetic Mg2+ is substituted by paramagnetic Mn2+.
Collapse
Affiliation(s)
- Diane Daube
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt am Main, Germany
| | - Marc Vogel
- Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt am Main, Germany; Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Department LL&M, Universität Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany.
| |
Collapse
|
27
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Russell RW, Fritz MP, Kraus J, Quinn CM, Polenova T, Gronenborn AM. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some 'with a little help from a friend'. JOURNAL OF BIOMOLECULAR NMR 2019; 73:333-346. [PMID: 30847635 PMCID: PMC6693955 DOI: 10.1007/s10858-019-00233-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
We present a systematic investigation into the attainable accuracy and precision of protein structures determined by heteronuclear magic angle spinning solid-state NMR for a set of four proteins of varied size and secondary structure content. Structures were calculated using synthetically generated random sets of C-C distances up to 7 Å at different degrees of completeness. For single-domain proteins, 9-15 restraints per residue are sufficient to derive an accurate model structure, while maximum accuracy and precision are reached with over 15 restraints per residue. For multi-domain proteins and protein assemblies, additional information on domain orientations, quaternary structure and/or protein shape is needed. As demonstrated for the HIV-1 capsid protein assembly, this can be accomplished by integrating MAS NMR with cryoEM data. In all cases, inclusion of TALOS-derived backbone torsion angles improves the accuracy for small number of restraints, while no further increases are noted for restraint completeness above 40%. In contrast, inclusion of TALOS-derived torsion angle restraints consistently increases the precision of the structural ensemble at all degrees of distance restraint completeness.
Collapse
Affiliation(s)
- Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Matthew P Fritz
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 19716, Newark, DE, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, 15261, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Grohe K, Nimerovsky E, Singh H, Vasa SK, Söldner B, Vögeli B, Rienstra CM, Linser R. Exact distance measurements for structure and dynamics in solid proteins by fast-magic-angle-spinning NMR. Chem Commun (Camb) 2019; 55:7899-7902. [PMID: 31199417 DOI: 10.1039/c9cc02317h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fast-magic-angle-spinning solid-state NMR is a developing technique for determination of protein structure and dynamics. Proton-proton correlations usually lead to rough distance restraints, a serious hurdle towards high-resolution structures. Analogous to the "eNOE" concept in solution, an integrative approach for more accurate restraints enables improved structural accuracy with minimal analytical effort.
Collapse
Affiliation(s)
- Kristof Grohe
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany. and Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Evgeny Nimerovsky
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Himanshu Singh
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany. and Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany. and Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Benedikt Söldner
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Chad M Rienstra
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Rasmus Linser
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany. and Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| |
Collapse
|
30
|
Gupta R, Zhang H, Lu M, Hou G, Caporini M, Rosay M, Maas W, Struppe J, Ahn J, Byeon IJL, Oschkinat H, Jaudzems K, Barbet-Massin E, Emsley L, Pintacuda G, Lesage A, Gronenborn AM, Polenova T. Dynamic Nuclear Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Combined with Molecular Dynamics Simulations Permits Detection of Order and Disorder in Viral Assemblies. J Phys Chem B 2019; 123:5048-5058. [PMID: 31125232 DOI: 10.1021/acs.jpcb.9b02293] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR spectroscopy in viral capsids from HIV-1 and bacteriophage AP205. Viruses regulate their life cycles and infectivity through modulation of their structures and dynamics. While static structures of capsids from several viruses are now accessible with near-atomic-level resolution, atomic-level understanding of functionally important motions in assembled capsids is lacking. We observed up to 64-fold signal enhancements by DNP, which permitted in-depth analysis of these assemblies. For the HIV-1 CA assemblies, a remarkably high spectral resolution in the 3D and 2D heteronuclear data sets permitted the assignment of a significant fraction of backbone and side-chain resonances. Using an integrated DNP MAS NMR and molecular dynamics (MD) simulation approach, the conformational space sampled by the assembled capsid at cryogenic temperatures was mapped. Qualitatively, a remarkable agreement was observed for the experimental 13C/15N chemical shift distributions and those calculated from substructures along the MD trajectory. Residues that are mobile at physiological temperatures are frozen out in multiple conformers at cryogenic conditions, resulting in broad experimental and calculated chemical shift distributions. Overall, our results suggest that DNP MAS NMR measurements in combination with MD simulations facilitate a thorough understanding of the dynamic signatures of viral capsids.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Huilan Zhang
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Marc Caporini
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Melanie Rosay
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | | | | | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Str. 10 , 13125 Berlin , Germany
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | - Emeline Barbet-Massin
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimques , Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne , Switzerland
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | | | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
31
|
Stevanato G, Kubicki DJ, Menzildjian G, Chauvin AS, Keller K, Yulikov M, Jeschke G, Mazzanti M, Emsley L. A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design. J Am Chem Soc 2019; 141:8746-8751. [DOI: 10.1021/jacs.9b03723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gabriele Stevanato
- Laboratory of
Magnetic Resonance, Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dominik Józef Kubicki
- Laboratory of
Magnetic Resonance, Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Georges Menzildjian
- Laboratory of
Magnetic Resonance, Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne-Sophie Chauvin
- Group of Coordination
Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Katharina Keller
- Laboratory of Inorganic
Chemistry, Department of Chemistry, Laboratory, ETH Zurich, 8093 Zurich, Switzerland
| | - Maxim Yulikov
- Laboratory of Inorganic
Chemistry, Department of Chemistry, Laboratory, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Inorganic
Chemistry, Department of Chemistry, Laboratory, ETH Zurich, 8093 Zurich, Switzerland
| | - Marinella Mazzanti
- Group of Coordination
Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory of
Magnetic Resonance, Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Perez A, Gaalswyk K, Jaroniec CP, MacCallum JL. High Accuracy Protein Structures from Minimal Sparse Paramagnetic Solid‐State NMR Restraints. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Perez
- Department of Chemistry University of Florida Gainesville FL USA
| | - Kari Gaalswyk
- Department of Chemistry University of Calgary Calgary Alberta Canada
| | | | | |
Collapse
|
33
|
Perez A, Gaalswyk K, Jaroniec CP, MacCallum JL. High Accuracy Protein Structures from Minimal Sparse Paramagnetic Solid-State NMR Restraints. Angew Chem Int Ed Engl 2019; 58:6564-6568. [PMID: 30913341 DOI: 10.1002/anie.201811895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/01/2019] [Indexed: 11/08/2022]
Abstract
There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid-state NMR restraints with physics-based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi-quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid-state NMR data for the model protein GB1 labeled with Cu2+ -EDTA at six different sites. We are able to determine the structure to 0.9 Å accuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.
Collapse
Affiliation(s)
- Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | | - Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Lu M, Wang M, Sergeyev IV, Quinn CM, Struppe J, Rosay M, Maas W, Gronenborn AM, Polenova T. 19F Dynamic Nuclear Polarization at Fast Magic Angle Spinning for NMR of HIV-1 Capsid Protein Assemblies. J Am Chem Soc 2019; 141:5681-5691. [PMID: 30871317 PMCID: PMC6521953 DOI: 10.1021/jacs.8b09216] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report remarkably high, up to 100-fold, signal enhancements in 19F dynamic nuclear polarization (DNP) magic angle spinning (MAS) spectra at 14.1 T on HIV-1 capsid protein (CA) assemblies. These enhancements correspond to absolute sensitivity ratios of 12-29 and are of similar magnitude to those seen for 1H signals in the same samples. At MAS frequencies above 20 kHz, it was possible to record 2D 19F-13C HETCOR spectra, which contain long-range intra- and intermolecular correlations. Such correlations provide unique distance restraints, inaccessible in conventional experiments without DNP, for protein structure determination. Furthermore, systematic quantification of the DNP enhancements as a function of biradical concentration, MAS frequency, temperature, and microwave power is reported. Our work establishes the power of DNP-enhanced 19F MAS NMR spectroscopy for structural characterization of HIV-1 CA assemblies, and this approach is anticipated to be applicable to a wide range of large biomolecular systems.
Collapse
Affiliation(s)
- Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Ivan V. Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Melanie Rosay
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Werner Maas
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
35
|
Aladin V, Vogel M, Binder R, Burghardt I, Suess B, Corzilius B. Complex Formation of the Tetracycline‐Binding Aptamer Investigated by Specific Cross‐Relaxation under DNP. Angew Chem Int Ed Engl 2019; 58:4863-4868. [DOI: 10.1002/anie.201811941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Victoria Aladin
- Institute of Physical and Theoretical ChemistryInstitute of Biophysical ChemistryCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University Frankfurt Max-von-Laue-Str. 7–9 60438 Frankfurt am Main Germany
| | - Marc Vogel
- Fachbereich BiologieTechnische Universität Darmstadt Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Robert Binder
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Beatrix Suess
- Fachbereich BiologieTechnische Universität Darmstadt Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical ChemistryInstitute of Biophysical ChemistryCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University Frankfurt Max-von-Laue-Str. 7–9 60438 Frankfurt am Main Germany
| |
Collapse
|
36
|
Aladin V, Vogel M, Binder R, Burghardt I, Suess B, Corzilius B. Complex Formation of the Tetracycline‐Binding Aptamer Investigated by Specific Cross‐Relaxation under DNP. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Victoria Aladin
- Institute of Physical and Theoretical ChemistryInstitute of Biophysical ChemistryCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University Frankfurt Max-von-Laue-Str. 7–9 60438 Frankfurt am Main Germany
| | - Marc Vogel
- Fachbereich BiologieTechnische Universität Darmstadt Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Robert Binder
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Irene Burghardt
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Beatrix Suess
- Fachbereich BiologieTechnische Universität Darmstadt Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical ChemistryInstitute of Biophysical ChemistryCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University Frankfurt Max-von-Laue-Str. 7–9 60438 Frankfurt am Main Germany
| |
Collapse
|
37
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
38
|
Liliya V, Dmitry O. Deuterium Rotating Frame NMR Relaxation Measurements in the Solid State under Static Conditions for Quantification of Dynamics. Chemphyschem 2019; 20:333-342. [PMID: 30079456 PMCID: PMC6499496 DOI: 10.1002/cphc.201800454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/07/2022]
Abstract
The feasibility of static deuterium rotating frame NMR relaxation measurements for characterization of slow timescale motions in powder systems is demonstrated. Using a model compound dimethyl sulfone-d6 , we show that these measurements yield conformational exchange rates and activation energy values in accordance with results obtained with other techniques. Furthermore, we demonstrate that the full Liouvillian approach as opposed to the Redfield approximation is necessary to analyze the experimental data.
Collapse
Affiliation(s)
- Vugmeyster Liliya
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Ostrovsky Dmitry
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
39
|
|
40
|
Wang M, Lu M, Fritz MP, Quinn CM, Byeon IJL, Byeon CH, Struppe J, Maas W, Gronenborn AM, Polenova T. Fast Magic-Angle Spinning 19 F NMR Spectroscopy of HIV-1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 2018; 57:16375-16379. [PMID: 30225969 PMCID: PMC6279522 DOI: 10.1002/anie.201809060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 01/18/2023]
Abstract
19 F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS) 19 F solid-state NMR spectroscopy in assemblies of HIV-1 capsid protein. Tryptophan residues with fluorine substitution at the 5-position of the indole ring were used as the reporters. The 19 F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin-diffusion and radio-frequency-driven-recoupling experiments were performed at MAS frequencies of 35 kHz and 40-60 kHz, respectively. Fast MAS frequencies of 40-60 kHz are essential for consistently establishing 19 F-19 F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS 19 F NMR spectroscopy for structural analysis in large biological assemblies.
Collapse
Affiliation(s)
- Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Matthew P. Fritz
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
| | - In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Chang-Hyeock Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Werner Maas
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
| |
Collapse
|
41
|
Klein A, Vasa SK, Linser R. Automated projection spectroscopy in solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 72:163-170. [PMID: 30430291 DOI: 10.1007/s10858-018-0215-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Given that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Center for Integrated Protein Science (CiPSM), Munich, Germany
| | - Suresh K Vasa
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Center for Integrated Protein Science (CiPSM), Munich, Germany
| | - Rasmus Linser
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
- Center for Integrated Protein Science (CiPSM), Munich, Germany.
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.
| |
Collapse
|
42
|
Mukhopadhyay D, Gupta C, Theint T, Jaroniec CP. Peptide bond conformation in peptides and proteins probed by dipolar coupling-chemical shift tensor correlation solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:152-160. [PMID: 30396157 PMCID: PMC6289736 DOI: 10.1016/j.jmr.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 05/30/2023]
Abstract
Multidimensional magic-angle spinning solid-state NMR experiments are described that permit cis and trans peptide bonds in uniformly 13C,15N-labeled peptides and proteins to be unambiguously distinguished in residue-specific manner by determining the relative orientations of the amide 13C' CSA and 1H-15N dipolar coupling tensors. The experiments are demonstrated for model peptides glycylglycine and 2,5-diketopiperazine containing trans and cis peptide bonds, respectively. Subsequently, the measurements are extended to two representative proteins that contain exclusively trans peptide bonds, microcrystalline B3 immunoglobulin domain of protein G and Y145Stop human prion protein amyloid fibrils, to illustrate their applicability to a wide range of protein systems.
Collapse
Affiliation(s)
- Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Chitrak Gupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
43
|
Demers JP, Fricke P, Shi C, Chevelkov V, Lange A. Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:51-78. [PMID: 30527136 DOI: 10.1016/j.pnmrs.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 05/26/2023]
Abstract
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
44
|
Wang M, Lu M, Fritz MP, Quinn CM, Byeon IL, Byeon C, Struppe J, Maas W, Gronenborn AM, Polenova T. Fast Magic‐Angle Spinning
19
F NMR Spectroscopy of HIV‐1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingzhang Wang
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Manman Lu
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Matthew P. Fritz
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
| | - In‐Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Chang‐Hyeock Byeon
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Jochem Struppe
- Bruker Biospin Corporation 15 Fortune Drive Billerica MA USA
| | - Werner Maas
- Bruker Biospin Corporation 15 Fortune Drive Billerica MA USA
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| |
Collapse
|
45
|
Zinke M, Fricke P, Lange S, Zinn‐Justin S, Lange A. Protein-Protein Interfaces Probed by Methyl Labeling and Proton-Detected Solid-State NMR Spectroscopy. Chemphyschem 2018; 19:2457-2460. [PMID: 29917302 PMCID: PMC6220863 DOI: 10.1002/cphc.201800542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/18/2022]
Abstract
Proton detection and fast magic-angle spinning have advanced biological solid-state NMR, allowing for the backbone assignment of complex protein assemblies with high sensitivity and resolution. However, so far no method has been proposed to detect intermolecular interfaces in these assemblies by proton detection. Herein, we introduce a concept based on methyl labeling that allows for the assignment of these moieties and for the study of protein-protein interfaces at atomic resolution.
Collapse
Affiliation(s)
- Maximilian Zinke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pascal Fricke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sascha Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sophie Zinn‐Justin
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRSUniversité Paris-Sud Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Adam Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für BiologieHumboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
46
|
Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol 2018; 206:73-89. [PMID: 30205196 DOI: 10.1016/j.jsb.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| |
Collapse
|
47
|
Laguri C, Silipo A, Martorana AM, Schanda P, Marchetti R, Polissi A, Molinaro A, Simorre JP. Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. ACS Chem Biol 2018; 13:2106-2113. [PMID: 29965728 DOI: 10.1021/acschembio.8b00271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharides (LPS) are complex glycolipids forming the outside layer of Gram-negative bacteria. Their hydrophobic and heterogeneous nature greatly hampers their structural study in an environment similar to the bacterial surface. We have studied LPS purified from E. coli and pathogenic P. aeruginosa with long O-antigen polysaccharides assembled in solution as vesicles or elongated micelles. Solid-state NMR with magic-angle spinning permitted the identification of NMR signals arising from regions with different flexibilities in the LPS, from the lipid components to the O-antigen polysaccharides. Atomic scale data on the LPS enabled the study of the interaction of gentamicin antibiotic bound to P. aeruginosa LPS, for which we could confirm that a specific oligosaccharide is involved in the antibiotic binding. The possibility to study LPS alone and bound to a ligand when it is assembled in membrane-like structures opens great prospects for the investigation of proteins and antibiotics that specifically target such an important molecule at the surface of Gram-negative bacteria.
Collapse
Affiliation(s)
- Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Alba Silipo
- University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy
| | - Alessandra M. Martorana
- University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy
| | - Paul Schanda
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Roberta Marchetti
- University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy
| | - Alessandra Polissi
- University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy
| | - Antonio Molinaro
- University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy
| | | |
Collapse
|
48
|
Marchanka A, Kreutz C, Carlomagno T. Isotope labeling for studying RNA by solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:151-164. [PMID: 29651587 DOI: 10.1007/s10858-018-0180-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Marchanka
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany
| | - Christoph Kreutz
- Organic Chemistry, University of Innsbruck (CCB), Innrain 80/82, 6020, Innsbruck, Austria
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hanover, Germany.
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstraße 7, 38124, Brunswick, Germany.
| |
Collapse
|
49
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
50
|
Hwang S, Fricke P, Zinke M, Giller K, Wall JS, Riedel D, Becker S, Lange A. Comparison of the 3D structures of mouse and human α-synuclein fibrils by solid-state NMR and STEM. J Struct Biol 2018; 206:43-48. [PMID: 29678776 PMCID: PMC6470123 DOI: 10.1016/j.jsb.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 01/23/2023]
Abstract
Intra-neuronal aggregation of α-synuclein into fibrils is the molecular basis for α-synucleinopathies, such as Parkinson's disease. The atomic structure of human α-synuclein (hAS) fibrils was recently determined by Tuttle et al. using solid-state NMR (ssNMR). The previous study found that hAS fibrils are composed of a single protofilament. Here, we have investigated the structure of mouse α-synuclein (mAS) fibrils by STEM and isotope-dilution ssNMR experiments. We found that in contrast to hAS, mAS fibrils consist of two or even three protofilaments which are connected by rather weak interactions in between them. Although the number of protofilaments appears to be different between hAS and mAS, we found that they have a remarkably similar secondary structure and protofilament 3D structure as judged by secondary chemical shifts and intra-molecular distance restraints. We conclude that the two mutant sites between hAS and mAS (positions 53 and 87) in the fibril core region are crucial for determining the quaternary structure of α-synuclein fibrils.
Collapse
Affiliation(s)
- Songhwan Hwang
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Maximilian Zinke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Joseph S Wall
- Brookhaven National Laboratory, Upton, 11967 NY, USA
| | - Dietmar Riedel
- Electron Microscopy Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|