1
|
Flis M, Czyżowski P, Rytlewski G, Grela ER. Insect Meal as a Dietary Protein Source for Pheasant Quails: Performance, Carcass Traits, Amino Acid Profile and Mineral Contents in Muscles. Animals (Basel) 2024; 14:2992. [PMID: 39457922 PMCID: PMC11503892 DOI: 10.3390/ani14202992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of the study was to determine the effects of replacing soybean meal with insect meal on the body weight and the chemical composition of selected muscle groups of common pheasant females and males, including the mineral composition and the amino acid profile of the thigh and breast muscles. The study was conducted on three feeding groups, namely one control and two experimental groups. In the control group, plant feed components were used, which are commonly used to feed pheasants in confined breeding facilities. In the experimental groups, 100 g (group II) and 200 g (group III) portions of insect meal were introduced instead of the plant-protein components. The experiment used a preparation of insect larvae (Hermetia illucens) containing approximately 52% crude protein. The pheasant diet supplementation applied contributed to an increase in the proportion of muscles in the carcasses, with the highest effectiveness obtained for a 20% addition of insect meal. Lower and significant differences were noted in the feed conversion by birds from the experimental groups, as compared to the control group. The chemical composition of the birds' muscles also changed. The experimental groups exhibited higher protein and fat contents and a lower water content. No significant changes in the amino acid profile or the mineral composition of the muscles were noted. The few exceptions concerned the methionine levels in both muscle groups and the isoleucine levels in the breast muscles. In most cases, the mineral composition did not vary significantly (p < 0.05). When supplementing the diet of breeding pheasants for improving meatiness, a 20% addition of insect meal is recommended, which affects the production effect of this trait while reducing feed consumption and maintaining the fatty acid profile.
Collapse
Affiliation(s)
- Marian Flis
- Department of Animal Ethology and Wildlife Management, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Piotr Czyżowski
- Department of Animal Ethology and Wildlife Management, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Grzegorz Rytlewski
- Polish Hunting Association Gdańsk District Board, 80-286 Gdańsk, Poland;
| | - Eugeniusz R. Grela
- Institute of Animal Nutrition and Bromatology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
2
|
Barbarestani SY, Samadi F, Zaghari M, Khademian S, Pirsaraei ZA, Kastelic JP. A review of antioxidant strategies to improve reproduction in aging male broiler breeders. GeroScience 2024:10.1007/s11357-024-01363-1. [PMID: 39348042 DOI: 10.1007/s11357-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
As only 10% of the broiler breeder flock is roosters, their fertility is very important. The rooster sperm plasma membrane has high concentrations of polyunsaturated fatty acids that are sensitive to oxidative stress. Lipid peroxidation can change membrane structure, permeability, and fluidity, adversely affecting the acrosome reaction and fertility. Aging roosters have decreases in sexual behavior, serum androgen concentrations, sperm quantity and quality, and fertility. Low fertility in aging roosters is attributed to an imbalanced testicular oxidant-antioxidant system, with increased reactive oxygen species (ROS) damaging spermatogenic epithelium. However, antioxidant components can enhance antioxidant defenses in aging broiler breeder roosters. Protection against oxidative damage, particularly in the testes, improves reproductive hormone concentrations, testicular histology, sperm membrane function, and mitochondrial activity and thereby improves semen volume, sperm concentration, viability, motility, and sperm polyunsaturated fatty acid content, sperm-egg penetration, fertility, and reproductive performance. This review summarizes antioxidants that could improve fertility and reproductive performance and delay or prevent age-related declines in broiler breeder roosters, with benefits for poultry production.
Collapse
Affiliation(s)
- Sarallah Yarmohammadi Barbarestani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran.
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Mojtaba Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Soroush Khademian
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zarbakht Ansari Pirsaraei
- Department of Animal Science, Sari Agricultural Science and Natural Resource University, Sari, Mazandaran, Iran
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Watson H, Nilsson JÅ, Smith E, Ottosson F, Melander O, Hegemann A, Urhan U, Isaksson C. Urbanisation-associated shifts in the avian metabolome within the annual cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173624. [PMID: 38821291 DOI: 10.1016/j.scitotenv.2024.173624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
While organisms have evolved to cope with predictable changes in the environment, the rapid rate of current global change presents numerous novel and unpredictable stressors to which organisms have had less time to adapt. To persist in the urban environment, organisms must modify their physiology, morphology and behaviour accordingly. Metabolomics offers great potential for characterising organismal responses to natural and anthropogenic stressors at the systems level and can be applied to any species, even without genomic knowledge. Using metabolomic profiling of blood, we investigated how two closely related species of passerine bird respond to the urban environment. Great tits Parus major and blue tits Cyanistes caeruleus residing in urban and forest habitats were sampled during the breeding (spring) and non-breeding (winter) seasons across replicated sites in southern Sweden. During breeding, differences in the plasma metabolome between urban and forest birds were characterised by higher levels of amino acids in urban-dwelling tits and higher levels of fatty acyls in forest-dwelling tits. The suggested higher rates of fatty acid oxidation in forest tits could be driven by habitat-associated differences in diet and could explain the higher reproductive investment and success of forest tits. High levels of amino acids in breeding urban tits could reflect the lack of lipid-rich caterpillars in the urban environment and a dietary switch to protein-rich spiders, which could be of benefit for tackling inflammation and oxidative stress associated with pollution. In winter, metabolomic profiles indicated lower overall levels of amino acids and fatty acyls in urban tits, which could reflect relaxed energetic demands in the urban environment. Our metabolomic profiling of two urban-adapted species suggests that their metabolism is modified by urban living, though whether these changes represent adaptative or non-adaptive mechanisms to cope with anthropogenic challenges remains to be determined.
Collapse
Affiliation(s)
- Hannah Watson
- Department of Biology, Lund University, 223 62 Lund, Sweden.
| | | | - Einar Smith
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Filip Ottosson
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Utku Urhan
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | |
Collapse
|
4
|
Ansari M. Recent strategies to mitigate reproductive aging in male broiler breeders: A review. Anim Reprod Sci 2024; 268:107570. [PMID: 39068813 DOI: 10.1016/j.anireprosci.2024.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The continued improvement of genetics, nutrition, and management has resulted in rapid growth, better feed efficiency, and higher meat yield with competitive prices in the broiler industry. Nowadays, however, it is well-documented that productive traits and fertility are negatively correlated, and male broiler breeders are exposed to a fertility decline after 45 wk of age. Considering a low male-to-female ratio in breeder flocks, roosters have a prominent impact on flock fertility. Consequently, strategies to maintain the fertility of male broiler breeders could guarantee the reproductive performance of commercial herds. Understanding reproductive aging demands deep insights into its molecular and physiological mechanisms. Over-weighting, Sertoli and Leydig cell dysfunctions, compromised antioxidant capacity, imbalance in sexual hormones, and epididymal lithiasis are among candidate culprits associated with reproductive aging in roosters. Nutritional and managing strategies have been successfully applied to modulate body weight, improve sperm fatty acid profile and antioxidant status, and boost spermatogenic and steroidogenic pathways. The current review characterizes the physiology and biochemistry of reproductive aging in male broiler breeders and then highlights strategies and their underlying mechanisms to mitigate this failure. In summary, applying one or more of the abovementioned strategies might result in consistent post-peak reproduction and benefit producers in the poultry industry.
Collapse
Affiliation(s)
- Mahdi Ansari
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran.
| |
Collapse
|
5
|
Liu Y, Zhang F, Hawkins JL, Elder JR, Baranzoni GM, Huang Z, Fratamico PM, Parveen S. Comparative Gene Expression Analysis of Salmonella Typhimurium DT104 in Ground Chicken Extract and Brain Heart Infusion Broth. Microorganisms 2024; 12:1461. [PMID: 39065229 PMCID: PMC11279075 DOI: 10.3390/microorganisms12071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella enterica Typhimurium DT104 (S. Typhimurium DT104) is an important foodborne pathogen that is associated with poultry and poultry products. Currently, there is very little information on the underlying molecular mechanisms that allow DT104 to survive and propagate in poultry meat and the poultry processing environment. The current study assessed the global gene expression of DT104 in ground chicken extract (GCE) compared to brain heart infusion (BHI) medium using RNA-Seq technology. DT104 was grown to the early stationary phase (ESP), inoculated into GCE or BHI, and then re-grown to the log phase before RNA was extracted and transcripts were quantified by RNA-Seq. Gene expression for DT104 grown in GCE was then compared to that of DT104 grown in BHI for samples grown to the ESP. Growth in GCE resulted in the up-regulated expression of genes related to translation, carnitine metabolism (23-283-fold change), and cobalamin (vitamin B12) biosynthesis (14-fold change). In particular, the presence of carnitine in chicken meat, and thus, in GCE, which lacks carbohydrates, may allow Salmonella to utilize this compound as a carbon and nitrogen source. This study demonstrates that RNA-Seq data can provide a comprehensive analysis of DT104 gene expression in a food model for poultry products. This study also provides additional evidence for the importance of metabolic adaptation in the ability of S. enterica to successfully adapt to and occupy niches outside of its host and provides potential targets that could be used to develop intervention strategies to control Salmonella in poultry.
Collapse
Affiliation(s)
- Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA (G.M.B.)
| | - Fangyuan Zhang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| | - Jabari L. Hawkins
- Food and Agricultural Sciences Graduate Program, Food and Resource Sciences, U.S. Department of Agriculture, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Jake R. Elder
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA (G.M.B.)
| | - Gian Marco Baranzoni
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA (G.M.B.)
| | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| | - Pina M. Fratamico
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA (G.M.B.)
| | - Salina Parveen
- Food and Agricultural Sciences Graduate Program, Food and Resource Sciences, U.S. Department of Agriculture, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
6
|
Al-Shammari KIA, Zamil SJ, Batkowska J. The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails. Poult Sci 2024; 103:103166. [PMID: 37939584 PMCID: PMC10665932 DOI: 10.1016/j.psj.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The experiment was implemented to assess the influence of dietary supplementation of laying quails with creatine monohydrate (CrM), L-carnitine (CAR) and their mixture (CrMCAR) as antioxidants against oxidative stress (OS) induced by 2.5 ppm lead acetate (LA) in drinking water on productive, physiological and microbial aspects. In total, 400 laying quail females at 10 wk of age were divided into a randomized design with 5 groups and 4 replicates of 20 birds each. Birds were fed ad libitum with a balanced diet for 8 wk. The control group was kept under no-stress conditions and was given fresh water without any additives (G1). While birds in other groups were exposed to OS induced experimentally by 2.5 ppm LA in drinking water with no feed additive (G2) or supplemented with 500 mg/kg CrM (G3) or 500 mg/kg CAR (G4) or combination of 250 mg/kg each of CrM and CAR (CrMCAR, G5) to feed mixture. Compared to G2, G5 demonstrated the reduction (P ≤ 0.05) of feed conversion ratio, feed intake, mortality and ileal total coliform, as well as serum and egg malondialdehyde and serum lipid hydroperoxide, uric acid, glucose, cholesterol, enzymatic activities (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, creatine phosphokinase, γ-glutamyl transferase), and heterophils/lymphocytes ratio. In the meanwhile, there was an increase (P ≤ 0.05) in egg production, egg mass, and weight with the improvement of egg quality, serum sex hormones level and ileal lactic acid bacteria for G5 followed by G4 and G3. Moreover, G5 enhanced (P ≤ 0.05), the total antioxidant capacity of egg and serum glutathione, superoxide dismutase, catalase, glutathione peroxidase, protein and calcium levels. Therefore, dietary CrMCAR, CAR and CrM have analogous influence to control by improving the antioxidant and physiological parameters which resulted in better productive performance and egg characteristics of stressed quails. These antioxidants, especially in their equal combination, are beneficial to alleviate oxidative stress incidence and can be recommended for poultry feeding under various aspects of environmental stresses.
Collapse
Affiliation(s)
| | - Sarah Jasim Zamil
- Department of Animal Production Techniques, Al-Musaib Technical College, Al-Furat Al-Awsat Technical University, Babylon, Iraq
| | - Justyna Batkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| |
Collapse
|
7
|
Kowalczuk-Vasilev E, Flis M, Bielak A, Klebaniuk R, Gugała D, Karpiński M, Rytlewski G, Grela ER. The Effect of a Diet Supplemented with Organic Minerals and l-Carnitine on Egg Production and Chemical Composition and on Some Blood Traits of Pheasant Hens ( Phasianus colchicus). Animals (Basel) 2023; 13:3428. [PMID: 37958183 PMCID: PMC10650838 DOI: 10.3390/ani13213428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The study aimed to determine the effect of replacing 75% of inorganic calcium, iron, zinc, and copper salts with organic forms (glycine chelates of these elements) with or without the addition of l-carnitine on some reproductive traits and the blood lipid and mineral profile, as well as mineral and fatty acid profile of pheasant egg yolk. The study was performed on three groups of pheasant hens using glycine chelates with calcitriol (group II) or analogical treatment with the addition of l-carnitine at the level of 100 mg/kg of feed (group III) instead of Ca, Fe, Cu, and Zn salts (control). The replacement of inorganic forms with glycinates contributed to an increase in the number of laid eggs with a concomitant lower share of rejected eggs. The supplementation of organic forms of minerals improved mineral absorption and bioavailability in blood serum as well as in the egg yolk of experimental groups. Egg yolk fat was characterized by a higher proportion of polyunsaturated fatty acids and a favorable ratio of PUFA ω-3/ω-6. The proposed nutritional supplementation of the pheasant's diet might be a good strategy for increasing the nutritional reserves of poultry and improving their reproduction.
Collapse
Affiliation(s)
- Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.K.-V.); (A.B.); (R.K.); (E.R.G.)
| | - Marian Flis
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (D.G.); (M.K.)
| | - Agata Bielak
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.K.-V.); (A.B.); (R.K.); (E.R.G.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.K.-V.); (A.B.); (R.K.); (E.R.G.)
| | - Dariusz Gugała
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (D.G.); (M.K.)
| | - Mirosław Karpiński
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (D.G.); (M.K.)
| | - Grzegorz Rytlewski
- Polish Hunting Association, District Board Gdańsk, 80-286 Gdańsk, Poland;
| | - Eugeniusz R. Grela
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.K.-V.); (A.B.); (R.K.); (E.R.G.)
| |
Collapse
|
8
|
Gvozdanović K, Kralik Z, Radišić Ž, Košević M, Kralik G, Djurkin Kušec I. The Interaction between Feed Bioactive Compounds and Chicken Genome. Animals (Basel) 2023; 13:1831. [PMID: 37889707 PMCID: PMC10251886 DOI: 10.3390/ani13111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
Consumer demand for high quality and safe foods that will have a positive impact on their health has increased in recent years. Today, it is possible to meet those demands by combining the genetic potential of domestic animals and applying different feeding strategies. Nutrigenomics is one of the "omics" sciences that studies the interaction between nutrients and the genome together with their influence on metabolic and physiological processes in the body. While nutrition of domestic animals is solely based on studying the influence of nutrients on animal health and production traits, nutrigenomics integrates the fields of nutrition, genomics, molecular genetics and bioinformatics. By understanding the molecular relationships between different forms and/or concentrations of nutrients in feed and genes, it is possible to answer the question of how small changes in the diet of farm animals can produce a quality product with positive effects on human health. The aim of this article is to describe how the manipulation of adding different nutrients in the feed affects the expression of different genes in chicken and consequently alters their phenotype.
Collapse
Affiliation(s)
- Kristina Gvozdanović
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Zlata Kralik
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Žarko Radišić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Manuela Košević
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Nutricin j.d.o.o., Đure Đakovića 6, 31326 Darda, Croatia
| | - Ivona Djurkin Kušec
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|
9
|
The Effect of Adding L-carnitine to Omega-3 Fatty Acid Diets on Productive Performance, Oxidative Stability, Cholesterol Content and Yolk Fatty Acid Profiles in Laying Hens. Poult Sci 2022; 101:102106. [PMID: 36088818 PMCID: PMC9471454 DOI: 10.1016/j.psj.2022.102106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
|
10
|
Eskandani M, Navidshad B, Eskandani M, Vandghanooni S, Aghjehgheshlagh FM, Nobakht A, Shahbazfar AA. The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens. Poult Sci 2022; 101:102162. [PMID: 36191516 PMCID: PMC9529590 DOI: 10.1016/j.psj.2022.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the production performance, antioxidant parameters, egg yolk cholesterol content, and expression of genes related to cholesterol metabolism in laying hens fed L-carnitine (LC) and L-carnitine-loaded solid lipid nanoparticles (LC-SLNs). A total of 350 Hy-Line (w-36) laying hens at 50 wk of age (1520.0 ± 0.7 g) were randomly assigned to 35 units (5 replicates and 50 hens in each treatment) with seven dietary treatments as a completely randomized design. The dietary treatments were corn-soybean meal-based diets, including 1) Control (basal diet); 2) Basal diet +50 mg/kg LC (50LC); 3) Basal diet +100 mg/kg LC (100LC); 4) Basal diet +150 mg/kg LC (150LC); 5) Basal diet +50 mg/kg LC-SLNs (50LC-SLNs); 6) Basal diet +100 mg/kg LC-SLNs (100LC-SLNs) and 7) Basal diet +150 mg/kg LC-SLNs (150LC-SLNs). Results showed that the 50LC-SLNs had the least feed conversion ratio (FCR) in all groups (P < 0.05). The dietary supplementation of 100LC-SLNs decreased (P < 0.01) the egg yolk cholesterol concentration from 14.71 to 11.76 mg/g yolk (25%). The 50LC-SLNs group produced the most total antioxidant capacity with a difference of 58.44% compared to the control group (P < 0.01). The greatest amount of total superoxide dismutase was found for 50LC-SLNs (P < 0.05), while the glutathione peroxidase was not affected by the experimental treatments (P > 0.05). Serum malondialdehyde levels were reduced by 50.52% in laying hens fed 50LC-SLNs compared to the control group (P < 0.05). The transcript level of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased (P < 0.01) in the LC and LC-SLNs groups. The expression of cholesterol 7α-hydroxylase was significantly increased (P < 0.01) in the plain LC (∼83%) and LC-SLNs (∼91%) groups. The inclusion of LC-SLNs in the diet increased (P < 0.05) the villus height and decreased villus width in all three parts of the small intestine. Dietary inclusion of LC was found to reduce egg yolk and serum cholesterol content by improving the production performance and antioxidant status. The LC-SLNs groups were more affected than the plain LC groups, which may be attributed to the increased bioavailability of LC.
Collapse
|
11
|
The effect of the application of diets with varied proportions of arginine and lysine on biochemical and antioxidant status in turkeys. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The aim of the study was to determine the effect of two proportions of arginine (95% and 105%) relative to lysine (Lys), where Lys content in the diet is in accordance with NRC (1994) recommendations or 10% higher, on the metabolism, antioxidant status, and growth performance of turkeys. The experiment had a 2x2 factorial design with two levels of Lys and Arg. The diets with a low level of Lys were according to the NRC (1994) requirements. In the diets with a high level of Lys, the content of Lys was increased by 10% relative to the low level Lys. The two Arg levels in the experimental diets were determined so as to provide 95% and 105% Arg relative to the content of dietary Lys. An increase in the amount of Lys in the diet of turkeys by 10% relative to NRC nutritional recommendations (1994) was not shown to improve growth performance, but had beneficial effects on the metabolism and antioxidant status of the birds, as evidenced by the improvement of hepatic indices (reduction of AST and ALT activity at 9th week of life) and renal indices (reduction of UREA at 9th week of life and reduction of TP and increase level of ALB levels at 16th week of life), as well as an increase in the level of glutathione with strong antioxidant properties at 16th week of life. In comparison to the lower level of Arg in the diet, an increase in the amount of this amino acid to 105% Lys did not improve growth performance, metabolism, or antioxidant status. An Arg level of 95% Lys can be used in a diet for turkeys containing 10% more Lys than the level recommended by the NRC (1994).
Collapse
|
12
|
Kuter E, Ӧnol AG. Increased dietary methionine levels and supplemental L-carnitine do not prevent the development of white striping in broiler chickens. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Mohammadi V, Sharifi SD, Sharafi M, Mohammadi-Sangcheshmeh A. Effects of dietary L-carnitine on puberty indices in the young breeder rooster. Heliyon 2021; 7:e06753. [PMID: 33898844 PMCID: PMC8060583 DOI: 10.1016/j.heliyon.2021.e06753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/23/2020] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of current study was to investigate the effect of dietary L-Carnitine (LC) in immature roosters on reproductive hormones, lipid profile and testicular histology at the time of maturity. Eighteen 12-wk-old breeder roosters (Ross 308) of similar weights were randomly allocated into 3 dietary treatments (LC-0: basic diet, LC-250: basic diet + 250 mg LC/kg of diet, LC-500: basic diet + 500 mg of LC/kg of diet) in 6 replicates. The feeding program and photoperiod regimen were performed based on ROSS 308 management handbook. Dietary LC supplementation markedly improved testicle weight and testicle index (p < 0.05). Comb height was also affected by LC supplementation (p < 0.05). The testicle weight and index, comb height, and shank lengths improved linearly with increasing levels of dietary LC (p < 0.05). The LC-250 and LC-500 diets significantly improved the number of sertoli cells (NSC), height epithelium seminiferous tubules (HEST), seminiferous tubules diameter (STD), spermiogenesis index (SI) and tubular differentiation index (TDI) of rooster's testis tissue (p < 0.05). The number of seminiferous tubules (NST) was affected by of the amount of LC (p < 0.05). The roosters on the LC-250 mg/kg diet had longer HEST compared to roosters that received the LC-500 mg/kg diet (p < 0.05). Testicular histology parameters increased in a linear and quadratic manner in response to increasing levels of LC (p < 0.05). Dietary LC significantly increased (p < 0.05) plasma concentrations of testosterone, GnRH, LH, FSH and High-Density Lipoprotein (HDL), but reduced the plasma concentration of Low-Density Lipoprotein (LDL). However, no significant differences were observed between LC-250 and LC-500 groups in these parameters. Plasma testosterone, GnRH, LH, LDL and HDL were affected in a linear and quadratic manner in response to increasing levels of LC (p < 0.05). Similarly, FSH increased linearly with increasing dietary LC (p < 0.05). Thus, adding up to 250g of LC per kg of the rooster chicken can improve reproductive hormones, blood lipids and testicular histology parameters at the time of maturity.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, P.O.Box: 11365/7117, Pakdasht, Tehran, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, P.O.Box: 11365/7117, Pakdasht, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdollah Mohammadi-Sangcheshmeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, P.O.Box: 11365/7117, Pakdasht, Tehran, Iran
| |
Collapse
|
14
|
Mohammadi V, Sharifi SD, Sharafi M, Mohammadi-Sangcheshmeh A, Shahverdi A, Alizadeh A. Manipulation of fatty acid profiles in roosters' testes, alteration in sexual hormones, improvements in testicular histology characteristics and elevation sperm quality factor by L-carnitine. Theriogenology 2020; 161:8-15. [PMID: 33278693 DOI: 10.1016/j.theriogenology.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of different levels of l-carnitine (LC) on sperm quality factor (SQF), alterations in testis fatty acid profiles, testicular histology and reproductive hormones in young roosters. Eighteen broiler breeders (Ross 308) weighed at 3 months of age. They were randomly classified while each group had six birds. There were three experimental groups based on the LC concentrations (i.e. LC-0, LC-250, LC-500 mg per kg of diet). After two weeks of adaptation, semen samples were collected and evaluated for seminal attributes every two weeks (from week 24 to week 34). At the end of the experiments, four roosters from each treatment group were sacrificed in order to analyze testicular histology, testis fatty acid profiles and reproductive hormones. Supplementing the diet with two of the LC levels for 22 weeks caused significant rise in sperm concentration, viability and SQF compared to that of the control group (P < 0.05). Quadratic analysis in terms of number of seminiferous tubules and spermatogenesis index were significant (P<0.05). Tubular differentiation index improved linearly by the increasing levels of LC supplementation (P<0.01). The analysis of fatty acid profiles showed that LC significantly (P < 0.05) reduced the percentages of C14:0, C21:0, total saturated fatty acids, total odd-chain fatty acids and n-6/n-3 ratio. Moreover, LC significantly increased the percentage of C20:5n-3 (Eicosapentaenoic acid; EPA) (P < 0.05). Analysis of the correlation coefficient revealed that the SQF is in consistency with EPA (r = 0.98; P < 0.04). In contrast, SQF negatively and significantly correlates with odd-chain fatty acids (r = - 0.99; P < 0.001). The desaturation index for C16 fatty acids (16:1cis/C16:0) negligibly increased linearly as LC was added to the diet (P < 0.05). Furthermore, LC caused the roosters to have significant (P < 0.05) high levels of total testosterone and FSH concentrations. The concentration of LH in different treatment groups, however, turned out to be similar in response to the different levels of LC. In conclusion, long-term supplementation of rooster diet with LC can have beneficial effects on SQF and testis histology. The benefits include alterations in testicular histology, reproductive hormones and testicular fatty acid profiles.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Mohsen Sharafi
- Department of Poultry Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Elokil AA, Bhuiyan AA, Liu HZ, Hussein MN, Ahmed HI, Azmal SA, Yang L, Li S. The capability of L-carnitine-mediated antioxidant on cock during aging: evidence for the improved semen quality and enhanced testicular expressions of GnRH1, GnRHR, and melatonin receptors MT 1/2. Poult Sci 2019; 98:4172-4181. [PMID: 31001634 DOI: 10.3382/ps/pez201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Precise natural anti-oxidative compounds have facilitated the research of infertile gametes and the development of novel bio-therapeutics, especially the molecules that are based on the reduction of oxidative stress, such as L-carnitine (LC). In addition to, the defect in the functioning of sperm mitochondrial and the decreasing seminal antioxidant ability due to aging, its essential role in permitting the mitochondrial import and oxidation of long chain fatty acids is worthy. Therefore, current study was designed to investigate the effects of dietary LC on semen quality, seminal antioxidant activity, and their implications for the fertility in aged cocks for 12 wk. Supplementation of the feed with two different doses of LC (50 and 150 mg/kg body weight/day) for 12 wk showed significantly increased in the reproductive activity of cock, in comparison to the control group. Seminal analysis showed that supplementation of LC significantly increased (P < 0.05) the sperm motility, concentration, livability, semen quality factor, seminal malondialdehyde concentration, catalase, and glutathione peroxidase activities. In addition, addition of LC significantly increased (P < 0.05) the plasma concentration of testosterone and prostaglandin E2 but posed no significant effect on the concentration of follicle-stimulating hormone. Furthermore, the findings of artificial insemination showed significant increased (P < 0.05) in the percentage of fertility in LC groups, while the percentage hatchability and mortality remained unchanged. Immunohistochemistry analysis revealed that LC significantly increased (P < 0.05) the testicular immunopositivity of MT1 and MT2. Moreover, the administration of LC to the aged cocks enhanced (P < 0.05) GnRH1 and GnRHR mRNA levels when compared with untreated cocks. The results of the present study suggest that LC treatment of aged cocks increases the seminal antioxidant enzymes and sexual hormones levels, which may improve the semen quality by increasing the expression of GnRH1 and melatonin receptors (MT1 and MT2) activities. Collectively, LC could be a suitable feed supplementation to increase reproductive activities through enhancing semen quality in aging cocks.
Collapse
Affiliation(s)
- Abdelmotaleb A Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Animal Production Department, Faculty of Agriculture, Moshtohor 13736, Benha University, Egypt
| | - Ali A Bhuiyan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Bangladesh Livestock Research Institute, Savar 1341, and Department of Livestock Services, Farmgate 1215, Dhaka, Bangladesh
| | - Hua-Zhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mona N Hussein
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Department of Histology and Cytology, Faculty of Veterinary Medicine, Moshtohor 13736, Benha University, Egypt
| | - Hafiz I Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Syed A Azmal
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Bangladesh Livestock Research Institute, Savar 1341, and Department of Livestock Services, Farmgate 1215, Dhaka, Bangladesh
| | - Liubin Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
16
|
|
17
|
Çetin E, Güçlü BK. Effect of dietary l-carnitine supplementation and energy level on oxidant/antioxidant balance in laying hens subjected to high stocking density. J Anim Physiol Anim Nutr (Berl) 2019; 104:136-143. [PMID: 31544992 DOI: 10.1111/jpn.13210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/25/2019] [Accepted: 08/24/2019] [Indexed: 12/01/2022]
Abstract
This study aimed to investigate the effect of l-carnitine and energy level and on oxidant/antioxidant balance in laying hens subjected to high stocking density. A total of 176, 32-week-old laying hens were assigned to eight groups with four replicates and hens in four groups were placed at the normal stocking densities of 500 cm2 /hen (four hens per cage) and in the remaining four groups were placed at the high stocking densities of 287.5 cm2 /hen (seven hens per cage). Hens received diets of high (2,850 kcal/kg ME) or normal (2,650 kcal/kg ME) energy which are supplemented with 0 or 200 mg/kg l-carnitine for 70 days. Results showed that exposure to high stocking density increased (p < .05) plasma malondialdehyde (MDA) and nitric oxide (NO) levels and decreased (p < .05) erythrocyte superoxide dismutase (SOD), catalase (CAT) and superoxide dismutase (GPx) activities. l-carnitine supplementation increased (p < .05) erythrocyte SOD, CAT and GPx activities, and decreased (p <.05) MDA and NO level in high stocking densities. The oxidan/antioxidan balance of birds was not influenced by increasing dietary energy level. The results of the present study indicate that the supplementation of l-carnitine to the birds subjected to high stocking density could effectively reverse the negative effects of high stocking density by improving oxidant/antioxidant balance. Therefore, l-carnitine supplementation at level of 200 mg/kg to diet may be as a favourable alternative to deal with oxidative stress caused by high stocking density in laying hens.
Collapse
Affiliation(s)
- Ebru Çetin
- Departments of Physiology Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| | - Berrin Kocaoğlu Güçlü
- Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
18
|
Ghoreyshi SM, Omri B, Chalghoumi R, Bouyeh M, Seidavi A, Dadashbeiki M, Lucarini M, Durazzo A, van den Hoven R, Santini A. Effects of Dietary Supplementation of L-Carnitine and Excess Lysine-Methionine on Growth Performance, Carcass Characteristics, and Immunity Markers of Broiler Chicken. Animals (Basel) 2019; 9:E362. [PMID: 31208135 PMCID: PMC6616641 DOI: 10.3390/ani9060362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
L-carnitine as well as lysine and methionine are amino acids of important nutritional and nutraceutical interest and are used in nutritional strategies as diet supplements to improve feed quality characteristics in animals and broiler chicken in particular. This study investigated the effect of different levels of L-carnitine and extra levels of lysine-methionine on growth performance, carcass characteristics, and some immune system markers. Two hundred seventy male Ross 308 broilers were a fed control diet (C) and eight different diets supplemented with an excess of amino acids. In the experimental diets, identified as D1, D2, D3, D4, D5, D6, D7, and D8, extra L-carnitine, lysine, and methionine were added in excess with respect to the American National Research Council (NRC) recommendations: L-carnitine equal to NRC (D1); control diet supplemented with lysine at 30% in excess of NRC, methionine at 30% in excess of NRC, and L-carnitine equal to NRC (D2); control diet supplemented with lysine equal to NRC, methionine equal to NRC, and L-carnitine at 15% in excess of NRC (D3); control diet supplemented control diet supplemented with lysine at 15% in excess of NRC, methionine at 15% in excess of NRC, and L-carnitine at 15% in excess of NRC (D4); control diet supplemented lysine at 30% in excess of NRC, methionine at 30% in excess of NRC, and L-carnitine at 15% in excess of NRC (D5); control diet supplemented with lysine equal to NRC recommendations, methionine equal to NRC recommendations, and L-carnitine at 75% in excess of NRC (D6); control diet supplemented with lysine at 15% in excess of NRC, methionine at 15% in excess of NRC, and L-carnitine at 75% in excess of NRC (D7); and control diet supplemented with lysine at 30% in excess of NRC, methionine at 30% in excess of NRC, and L-carnitine at 75% in excess of NRC (D8). During the starter and growth phases, feed intake was not affected by dietary treatment (p > 0.05). By contrast, body weight and FCR were both affected (p < 0.001) during the starter period. During the finisher phase, feed consumption was affected (p < 0.05) by dietary treatment. Feed intake of broilers fed on C, D3, D6, and D7 were statistically similar (p > 0.05) (1851.90, 1862.00, 1945.10, and 1872.80 g/pen/day, respectively) and were higher (p < 0.05) than 1564.40 g/pen/day (D5). With the exception of drumsticks, neck, back thoracic vertebrae, and proventriculus weights, economical carcass segments were not affected (p > 0.05) by the dietary supplementation of amino acids. Duodenum and ileum weights and lengths decreased with amino acid supplementation (p < 0.05). IgT and IgG titers against Sheep Red Blood Cells (SRBC) for both primary and secondary responses were not affected by dietary treatments (p > 0.05). Dietary amino acids supplementation did not affect IgM titer after the secondary challenge (p > 0.05) and had a significant effect (p < 0.05) on serum antibody titers in broilers vaccinated against Newcastle disease (NCD) and Gumboro 's disease at the 27th and 30th days, respectively.
Collapse
Affiliation(s)
| | - Besma Omri
- Laboratory of Improvement and Integrated Development of Animal Productivity and Food Resources, Department of Animal Science, College of Agriculture of Mateur, University of Carthage, Bizerte 7000, Tunisia.
| | - Raja Chalghoumi
- Laboratory of Improvement and Integrated Development of Animal Productivity and Food Resources, Department of Animal Science, College of Agriculture of Mateur, University of Carthage, Bizerte 7000, Tunisia.
| | - Mehrdad Bouyeh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 43, Iran.
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 43, Iran.
| | - Mohammad Dadashbeiki
- Department of Veterinary Science, Rasht Branch, Islamic Azad University, Rasht 43, Iran.
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | - Rene van den Hoven
- Clinical Unit of Equine Internal Medicine, Veterinarmedizinische Universitat, 1210 Wien, Austria.
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80138 Napoli, Italy.
| |
Collapse
|
19
|
Marcq C, Marlier D, Beckers Y. Improving adjuvant systems for polyclonal egg yolk antibody (IgY) production in laying hens in terms of productivity and animal welfare. Vet Immunol Immunopathol 2015; 165:54-63. [PMID: 25813905 DOI: 10.1016/j.vetimm.2015.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 01/22/2023]
Abstract
The antibody production in the egg yolks of immunized laying hens is seen as a way of improving animal welfare compared with conventional production by mammals. Immunoglobulin Y (IgY) technology, however, has still to address welfare issues linked to the widespread use of an adjuvant in vaccines. Currently, Freund's adjuvants, complete (FCA) or incomplete (FIA), remain the standard. This study sought to evaluate various approaches used to enhance egg yolk antibody production in terms of both productivity and avian welfare. The outer membrane protein (OMP) of Salmonella Typhimurium was used as the prototype antigen. At 20 weeks of age, 56 ISA Brown hens, with specific-Salmonella-free status, were divided into seven groups (n=8) and received an initial intramuscular immunization. Hens in the two negative control groups received phosphate buffered saline (PBS) or FIA alone. Hens in the other groups received 80μg of Salmonella OMP emulsified with one of the following adjuvants: 200μl of FIA alone (T1); 200μl of FIA supplemented with 8μg of C-phosphate-guanosine oligodeoxynucleotides (CpG-ODN) (T2); and 280μl of Montanide ISA 70 VG (T4). Birds in the T3 group received the antigen in emulsion with FIA and were given the tested immunostimulatory component (l-carnitine) via their feed (100mg/kg). A positive control group (PC) received FCA for the first and final immunizations and FIA for the other boosters. Immunization was repeated after 20, 46, 82 and 221 days. Eggs were collected regularly until 242 days after the first immunization and the anti-Salmonella Typhimurium activities in the yolk were determined by ELISA. After 242 days, the birds were euthanized and the injection sites were evaluated for gross and microscopic lesions. Among the tested immunostimulatory approaches, supplementation of FIA with CpG-ODN led to a significant and long-lasting enhancement of the specific antibody response. This treatment was even higher than the positive benchmark using FCA in the first immunization. The study results showed that a clinical examination of injection sites is insufficient for drawing conclusions about the local tolerance of vaccines. Tissue damage was noticeable in all treatment groups. The birds receiving the Montanide adjuvant, however, had fewer and less severe lesions. Given these limited side-effects, Montanide ISA 70 VG could provide the depot effect needed to ensure the immunomodulatory efficiency of CpG-ODN. The association of these two adjuvants could prove a promising alternative to Freund's adjuvants (FA).
Collapse
Affiliation(s)
- Christopher Marcq
- University of Liege - Gembloux Agro-Bio Tech, Animal Science Unit, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Didier Marlier
- University of Liege - Faculty of Veterinary Medicine, Department of Bird, Rabbit and Rodent Medicine, Boulevard de Colonster 20, Bât B42, B-4000 Liège, Belgium
| | - Yves Beckers
- University of Liege - Gembloux Agro-Bio Tech, Animal Science Unit, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| |
Collapse
|
20
|
Jia R, Bao Y, Zhang Y, Ji C, Zhao L, Zhang J, Gao C, Ma Q. Effects of dietary α-lipoic acid, acetyl-l-carnitine, and sex on antioxidative ability, energy, and lipid metabolism in broilers. Poult Sci 2014; 93:2809-17. [DOI: 10.3382/ps.2014-03921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
21
|
Ebrahimi M, Jafari Ahangari Y, Zamiri M, Akhlaghi A, Atashi H. Does preincubational in ovo injection of buffers or antioxidants improve the quality and hatchability in long-term stored eggs? Poult Sci 2012; 91:2970-6. [DOI: 10.3382/ps.2012-02246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|