1
|
Abo-Sriea TM, Ismael E, Sobhi BM, Hassan NH, Elleithy EMM, Omar SA, Soliman AM, Fahmy KNED, Ramadan A. Impact of dietary-nucleotides and Saccharomyces cerevisiae-derivatives on growth-performance, antioxidant-capacity, immune-response, small-intestine histomorphometry, caecal- Clostridia, and litter-hygiene of broiler-chickens treated with florfenicol. Int J Vet Sci Med 2024; 12:11-24. [PMID: 38487499 PMCID: PMC10939105 DOI: 10.1080/23144599.2024.2324411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Stress in poultry production is energy-demanding. Nucleotides and yeast cell-wall products are essential nutrients for broiler performance, gut function, and immune response. Antibiotics, like florfenicol, negatively affect the immune system. A total of 600 one-d-old broiler chickens (Cobb-500) were weighed and randomly allotted into four groups with three replicates each. The control group (G1) received the basal diet, G2 received a diet supplemented with a combination of nucleotides and Saccharomyces cerevisiae derivatives (250 g/Ton), G3 received the basal diet and medicated with florfenicol (25 mg/Kg body weight) in drinking water for 5 days, while G4 received a combination of nucleotides and Saccharomyces cerevisiae-derivatives (250 g/Ton) and medicated with florfenicol in drinking water. Growth performance criteria were recorded weekly. Blood, intestinal contents, small-intestine sections, and litter samples were collected to measure birds' performance, carcass yields, leukocytic counts, antioxidant capacity, antibody titres, phagocytic index, caecal Clostridia, intestinal histomorphometry, and litter hygiene. Nucleotide-supplemented groups (G2 and G4) revealed significant (p ≤ 0.05) improvements in feed conversion, and body weight, but not for carcass yields in comparison to the control. Dietary nucleotides in G2 elevated blood total proteins, leucocytic count, antioxidant capacity, and phagocytic index, while they lowered blood lipids and litter moisture and nitrogen (p ≤ 0.05). Dietary nucleotides in G4 ameliorated the immunosuppressive effect of florfenicol (p ≤ 0.05) indicated in reducing caecal Clostridia, improving duodenal and ileal villi length, and increasing blood albumin and globulin levels, and phagocytosis%. Supplementing diets with nucleotides and yeast products has improved the immune system and provided a healthier gut for broilers.
Collapse
Affiliation(s)
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Basant Mohsen Sobhi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H. Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtihal M. M. Elleithy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sherif AbdElmonam Omar
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Nasr El-Din Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Hamal EK, Alfassi G, Antonenko M, Rein DM, Cohen Y. Cellulose-coated emulsion micro-particles self-assemble with yeasts for cellulose bio-conversion. Sci Rep 2024; 14:5499. [PMID: 38448579 PMCID: PMC10918086 DOI: 10.1038/s41598-024-56204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
In the quest for alternative renewable energy sources, a new self-assembled hybrid configuration of cellulose-coated oil-in-water emulsion particles with yeast was formed. In this research, the addition of yeasts (S. cerevisiae) to the micro-particle emulsion revealed a novel self-assembly configuration in which the yeast cell is connected to surrounding cellulose-coated micro-particles. This hybrid configuration may enhance the simultaneous saccharification and fermentation process by substrate channeling. Glucose produced by hydrolysis of the cellulose shells coating the micro-particles, catalyzed by cellulytic enzymes attached to their coating, is directly fermented to ethanol by the yeasts to which the particles are connected. The results indicate ethanol yield of 62%, based on the cellulose content of the emulsion, achieved by the yeast/micro-particle hybrids. The functionality of this hybrid configuration is expected to serve as a micro-reactor for a cascade of biochemical reactions in a "one-pot" consolidated process transforming cellulose to valuable chemicals, such as biodiesel.
Collapse
Affiliation(s)
- Ester Korkus Hamal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Gilad Alfassi
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Margarita Antonenko
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yachin Cohen
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
3
|
Chin XH, Elhalis H, Chow Y, Liu SQ. Enhancing food safety in soybean fermentation through strategic implementation of starter cultures. Heliyon 2024; 10:e25007. [PMID: 38312583 PMCID: PMC10835011 DOI: 10.1016/j.heliyon.2024.e25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented soybean products have played a significant role in Asian diets for a long time. Due to their diverse flavours, nutritional benefits, and potential health-promoting properties, they have gained a huge popularity globally in recent years. Traditionally, soybean fermentation is conducted spontaneously, using microorganisms naturally present in the environment, or inoculating with traditional starter cultures. However, many potential health risks are associated with consumption of these traditionally fermented soybean products due to the presence of food pathogens, high levels of biogenic amines and mycotoxins. The use of starter culture technology in fermentation has been well-studied in recent years and confers significant advantages over traditional fermentation methods due to strict control of the microorganisms inoculated. This review provides a comprehensive review of microbial safety and health risks associated with consumption of traditional fermented soybean products, and how adopting starter culture technology can help mitigate these risks to ensure the safety of these products.
Collapse
Affiliation(s)
- Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| | - Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| |
Collapse
|
4
|
Christensen B, Schulze H, Kiarie EG, Huber LA. Dose-response of inactivated yeast in diets of late gestating and lactating gilts on immunoglobulin transfer and offspring preweaning growth performance. J Anim Sci 2024; 102:skae177. [PMID: 38970329 PMCID: PMC11287866 DOI: 10.1093/jas/skae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024] Open
Abstract
Fifty gilts (initial body weight [BW] 190.7 ± 4.2 kg) were recruited on day 85 of gestation and were used until day 19 of lactation to assess the dose-response of inactivated yeast via hydrolyzation (HY) inclusion on offspring growth and immunoglobulin (Ig) transfer prior to weaning. Gilts were assigned to one of the 5 experimental diets: a control with no HY (HY0) or inclusion of 0.25% (HY0.25), 0.5% (HY0.5), 1.0% (HY1.0), or 1.2% (HY1.2) HY. Gilts were weighed on days 85 and 110 of gestation and days 1 and 19 (weaning) after farrowing. Offspring were weighed on days 1 and 19 of age. On lactation day 1 (approximately 24 h after farrowing), colostrum, gilt plasma, and plasma from 2 median BW piglets were collected and on day 19, plasma from each gilt and 2 median BW piglets per litter were collected for determination of Ig concentrations. Contrast statements were used to assess the linear, quadratic, cubic, and quartic effects of HY inclusion. The inclusion of HY had minimal effects on gilt BW or litter characteristics at birth (total number born and born alive, piglet birth weight). Lactation average daily feed intake of the gilts tended to increase then decrease with increasing HY inclusion (quadratic; P = 0.085). Piglet preweaning average daily gain (linear, quadratic, and quartic; P < 0.05) and BW at weaning (quadratic and quartic; P < 0.05) increased then decreased with increasing HY inclusion. On lactation day 1, colostrum and gilt plasma Ig concentrations were not affected by dietary treatment (P > 0.10) but piglet IgA and IgM decreased then increased with HY inclusion level (cubic; P < 0.05). On lactation day 19, piglet plasma IgG tended to increase with HY inclusion (linear; P = 0.099). In summary, increasing HY inclusion in late gestating and lactating gilt diets improved immune transfer in the first 24 h after birth and piglet preweaning growth rates and BW at weaning. Therefore, maternal feeding of HY could be used as a strategy to improve offspring immunocompetence and BW at weaning, with possible carryover benefits for the postweaning phase.
Collapse
Affiliation(s)
- Brenda Christensen
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Hagen Schulze
- Livalta, AB Agri Ltd., Peterborough, Cambridgeshire PE2 6FL, UK
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| |
Collapse
|
5
|
Marchante JA, Ruiz-Sáez L, Muñoz S, Sanjuán J, Pérez-Mendoza D. Quantification of Mixed-Linkage β-Glucan (MLG) in Bacteria. Methods Mol Biol 2024; 2751:133-143. [PMID: 38265714 DOI: 10.1007/978-1-0716-3617-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Prokaryotes are known to produce and secrete a broad range of biopolymers with a high functional and structural heterogeneity, often with critical duties in the bacterial physiology and ecology. Among these, exopolysaccharides (EPS) play relevant roles in the interaction of bacteria with eukaryotic hosts. EPS can help to colonize the host and assist in bacterial survival, making this interaction more robust by facilitating the formation of structured biofilms. In addition, they are often key molecules in the specific recognition mechanisms involved in both beneficial and pathogenic bacteria-host interactions. A novel EPS known as MLG (Mixed-Linkage β-Glucan) was recently discovered in rhizobia, where it participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of their legume host plants. MLG is the first and, so far, the only reported linear Mixed-Linkage β-glucan in bacteria, containing a perfect alternation of β (1 → 3) and β (1 → 4) bonds. A phylogenetic study of MLG biosynthetic genes suggests that far from being exclusive of rhizobia, different soil and plant-associated bacteria likely produce MLG, adding this novel polymer to the plethora of surface polysaccharides that help bacteria thrive in the changing environment and to establish successful interactions with their hosts.In this work, a quantification method for MLG is proposed. It relays on the hydrolysis of MLG by a specific enzyme (lichenase), and the subsequent quantification of the released disaccharide (laminaribiose) by the phenol-sulfuric acid method. The protocol has been set up and optimized for its use in 96-well plates, which makes it suitable for high-throughput screening (HTS) approaches. This method stands out by its fast processing, technical simplicity, and capability to handle multiple samples and biological replicates at a time.
Collapse
Affiliation(s)
- Juan Antonio Marchante
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Lucía Ruiz-Sáez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Muñoz
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
6
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Qui NH, Linh NT. Effects of dietary β-glucan and rice fermented on growth performance, fatty acids, and Newcastle disease immune response in turkey broilers. Saudi J Biol Sci 2023; 30:103736. [PMID: 37521751 PMCID: PMC10382931 DOI: 10.1016/j.sjbs.2023.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
Poultry production has been developing in Vietnam with challenges of disease. Thus, feed additive should be investigated not only growth but also health enhancement. Here, we aimed to determine the effects of Saccharomyces cerevisiae-fermented rice (FR) and β-glucan on turkey's growth performance, carcass characteristics, immune and fatty acid (FA) profiles. A total of 180 turkey chicks aged 1-56 days were randomly assigned to five sextuplicate groups and the birds had ad libitum feed and water access throughout the experiment. The five treatment groups were given the same diet with different proportions of FR and β-glucan. Broilers supplemented with 4% β-glucan and 4% FR presented the highest and second-highest growth performance, respectively. The 4% β-glucan and 4% FR treatments resulted in the highest carcass characteristic values without significantly affecting the breast or thigh meat pH or cooking loss. The 4% β-glucan and 4% FR treatments maximally increased the Newcastle disease (ND) antibody titers at 28, 42 and 56 days, respectively as well as thymus organ index. The foregoing treatments did not significantly affect the blood profiles relative to the control. However, the 4% FR treatment lowered the blood cholesterol levels (p > 0.05). The total FA profiles did not significantly differ among treatments. Nevertheless, both the β-glucan and FR treatments increased the MUFA levels compared to that of the control (p > 0.05). Hence, the dietary administration of 4% β-glucan and FR to turkey broilers could effectively improve their growth performance and immunity.
Collapse
|
8
|
Cai W, Fu L, Liu H, Yi J, Yang F, Hua L, He L, Han D, Zhu X, Yang Y, Jin J, Dai J, Xie S. Dietary yeast glycoprotein supplementation improves the growth performance, intestinal health and disease resistance of largemouth bass ( Micropterus salmoides) fed low-fishmeal diets. Front Immunol 2023; 14:1164087. [PMID: 37256124 PMCID: PMC10225706 DOI: 10.3389/fimmu.2023.1164087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
The active ingredients extracted from yeast are important for regulating animal health. The aim of the current research was to explore the impacts of dietary yeast glycoprotein (YG) on the growth performance, intestinal morphology, antioxidant capacity, immunity and disease resistance of largemouth bass (Micropterus salmoides). A total of 375 juvenile fish (6.00 ± 0.03 g) were allocated into 15 fiberglass tanks. Triplicate tanks were assigned to each diet. The dietary YG inclusion was as follows: the first group was given a high fishmeal diet (40% fishmeal, 0% YG) (FM) and the second group was given a low fishmeal diet (30% fishmeal and 15% soybean meal, 0% YG) (LFM). The fish in the third, fourth and fifth groups were fed the LFM diet supplemented with 0.5% (LFM+YG0.5), 1.0% (LFM+YG1.0) and 2.0% (LFM+YG2.0) YG, respectively. After a 60- day feeding trial, a challenge test using A. hydrophila was carried out. The results showed that the final body weight (FBW) and weight gain rate (WGR) in the LFM+YG2.0 group were significantly higher than those in the LFM group and were no significantly different from those in the FM group. This may be partially related to the activation of the target of rapamycin (TOR) signaling pathway. Dietary YG supplementation enhanced intestinal physical barriers by upregulating the intestinal tight junction protein related genes (claudin1, occludin and zo2) and improving the structural integrity of the gut, which may be partially associated with AMPK signaling pathway. Moreover, dietary YG increased the antioxidant capacity in the gut, upregulated intestinal anti-inflammatory factors (il-10, il1-1β and tgf-β) and downregulated proinflammatory factors (il-1β and il-8), which may be partially related to the Nrf2/Keap1 signaling pathways. The results of the challenge test indicated that dietary supplementation with 0.5 or 1.0% YG can increase the disease tolerance of largemouth bass against A. hydrophila. In conclusion, the present results indicated that dietary supplementation with YG promotes the growth performance, intestinal immunity, physical barriers and antioxidant capacity of largemouth bass. In addition, 1.0% of dietary YG is recommended for largemouth bass based on the present results.
Collapse
Affiliation(s)
- Wanjie Cai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lele Fu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haokun Liu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianhua Yi
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, China
| | - Fan Yang
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, China
| | - Luohai Hua
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linyue He
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| | - Xiaoming Zhu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| | - Yunxia Yang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinjun Dai
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, China
| | - Shouqi Xie
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Dietary 1,3-β-Glucans Affect Growth, Breast Muscle Composition, Antioxidant Activity, Inflammatory Response, and Economic Efficiency in Broiler Chickens. Life (Basel) 2023; 13:life13030751. [PMID: 36983906 PMCID: PMC10054407 DOI: 10.3390/life13030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Recently, researchers have been intensively looking for novel, safe antibiotic alternatives because of the prevalence of many clinical and subclinical diseases affecting bird flocks and the risks of using antibiotics in subtherapeutic doses as feed additives. The present study intended to evaluate the potential use of 1,3-β-glucans (GLC) as antibiotic alternative growth promotors and assessed the effect of their dietary inclusion on the growth performance, carcass traits, chemical composition of breast muscles, economic efficiency, blood biochemical parameters, liver histopathology, antioxidant activity, and the proinflammatory response of broiler chickens. This study used 200 three-day-old ROSS broiler chickens (50 chicks/group, 10 chicks/replicate, with an average body weight of 98.71 ± 0.17 g/chick). They were assigned to four experimental groups with four dietary levels of GLC, namely 0, 50, 100, and 150 mg kg−1, for a 35-day feeding period. Birds fed diets containing GLC showed an identical different growth rate to the control group. However, the total feed intake (TFI) increased quadratically in the GLC50 and GLC100 groups as compared to that in the control group. GLC addition had no significant effect on the weights of internal and immune organs, except for a decrease in bursal weight in the GLC150 group (p = 0.01). Dietary GLC addition increased the feed cost and total cost at 50 and 100 mg kg−1 doses. The percentages of n-3 and n-6 PUFA in the breast muscle of broiler chickens fed GLC-supplemented diets increased linearly in a dose-dependent manner (p < 0.01). The serum alanine aminotransferase (ALT) level and the uric acid level were quadratically increased in the GLC150 group. The serum levels of total antioxidant capacity, catalase, superoxide dismutase, interleukin-1β, and interferon-gamma linearly increased, while the MDA level decreased in the GLC-fed groups in a dose-dependent manner. Normal histological characterization of different liver structures in the different groups with moderate round cells was noted as a natural immune response around the hepatic portal area. The different experimental groups showed an average percentage of positive immunostaining to the proinflammatory marker transforming growth factor-beta with an increase in the dose of GLC addition. The results suggest that GLC up to 100 mg kg−1 concentration can be used as a feed additive in the diets of broiler chickens and shows no adverse effects on their growth, dressing percentage, and internal organs. GLC addition in diets improves the antioxidant activity and immune response in birds. GLC help enrich the breast muscle with n-3 and n-6 polyunsaturated fatty acids.
Collapse
|
11
|
De Cloet CA, Maina AN, Schulze H, Bédécarrats GY, Kiarie EG. Egg production, egg quality, organ weight, bone ash, and plasma metabolites in 30-week-old Lohmann LSL lite hens fed corn and soybean meal-based diets supplemented with enzymatically treated yeast. Poult Sci 2023; 102:102527. [PMID: 36796245 PMCID: PMC9958482 DOI: 10.1016/j.psj.2023.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Highly prolific modern hens are susceptible to metabolic disorders that could be modulated by functional feedstuffs such as enzymatically treated yeast (ETY). Therefore, we assessed the dose-response of ETY on hen-day egg production (HDEP), egg quality attributes, organ weight, bone ash, and plasma metabolites in laying hens. A total of 160 thirty-week-old Lohmann LSL lite hens were placed in 40 enriched cages (4 birds/cage) based on body weight (BW) and allocated to 5 diets in a completely randomized design for a 12-wk trial. The diets were isocaloric and isonitrogenous corn and soybean meal based supplemented with 0.0, 0.025, 0.05, 0.1, or 0.2% ETY. Feed and water were provided ad libitum; HDEP and feed intake (FI) were monitored weekly, whereas egg components, eggshell breaking strength (ESBS), and thickness (EST) were monitored biweekly, and albumen IgA concentration was measured on wk 12. At the end of the trial, 2 birds/cage were bled for plasma and necropsied for liver, spleen, and bursa weight, ceca digesta for short chain fatty acids (SCFA) and tibia and femur for ash content. Supplemental ETY reduced HDEP quadratically (P = 0.03); the HDEP was 98, 98, 96, 95, and 94% for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. However, ETY linearly and quadratically (P = 0.01) increased egg weight (EW) and egg mass (EM). Specifically, EM was 57.9, 60.9, 59.9, 58.9, and 59.2 g/b for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. Egg albumen increased linearly (P = 0.01), and egg yolk decreased linearly (P = 0.03) in response to ETY. In response to ETY, the ESBS and plasma Ca increased linearly and quadratically (P ≤ 0.03). Plasma concentration of total protein and albumin increased quadratically (P ≤ 0.05) with ETY. Diets had no (P > 0.05) effects on FI, FCR, bone ash, SCFA, and IgA. In conclusion, 0.1% or higher ETY reduced egg production rate; however, linear improvement in EW and shell quality linked to larger albumen and higher plasma protein and Ca suggested modulation in protein and calcium metabolism.
Collapse
Affiliation(s)
- Colin A. De Cloet
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, USA
| | - Anderson N. Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, USA
| | | | | | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, USA,Corresponding author:
| |
Collapse
|
12
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Xie C, Wu X. Microbiome-metabolome analysis reveals alterations in the composition and metabolism of caecal microbiota and metabolites with dietary Enteromorpha polysaccharide and Yeast glycoprotein in chickens. Front Immunol 2022; 13:996897. [PMID: 36311785 PMCID: PMC9614668 DOI: 10.3389/fimmu.2022.996897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiome is responsible for the fermentation of complex carbohydrates and orchestrates the immune system through gut microbiota-derived metabolites. In our previous study, we reported that supplementation of Enteromorpha polysaccharide (EP) and yeast glycoprotein (YG) in combination synergistically improved antioxidant activities, serum lipid profile, and fatty acid metabolism in chicken. However, the mechanism of action of these polysaccharides remains elusive. The present study used an integrated 16S-rRNA sequencing technology and untargeted metabolomics technique to reveal the mechanism of action of EP+YG supplementation in broiler chickens fed basal diet or diets supplemented with EP+YG (200mg/kg EP + 200mg/kg YG). The results showed that EP+YG supplementation altered the overall structure of caecal microbiota as evidenced by β diversities analysis. Besides, EP+YG supplementation changed the microbiota composition by altering the community profile at the phylum and genus levels. Furthermore, Spearman correlation analysis indicated a significant correlation between altered microbiota genera vs serum cytokine levels and microbiota genera vs volatile fatty acids production. Predicted functional analysis showed that EP+YG supplementation significantly enriched amino acid metabolism, nucleotide metabolism, glycan biosynthesis and metabolism, energy metabolism, and carbohydrate metabolism. Metabolomics analysis confirmed that EP+YG supplementation modulates a myriad of caecal metabolites by increasing some metabolites, including pyruvic acid, pyridoxine, spermidine, spermine, and dopamine, and decreasing metabolites related to lipid metabolisms such as malonic acid, oleic acid, and docosahexaenoic acid. The quantitative enrichment analysis results further showed that glycolysis/gluconeogenesis, citric acid cycle, tyrosine metabolism, glycine, serine, and threonine metabolism, and cysteine and methionine metabolism were the most important enriched pathways identified with enrichment ratio >11, whereas, fatty acid biosynthesis and biosynthesis of unsaturated fatty acids pathways were suppressed. Together, the 16S-rRNA and untargeted metabolomics results uncovered that EP+YG supplementation modulates intestinal microbiota and their metabolites, thereby influencing the important metabolism pathways, suggesting a potential feed additive.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Bei Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Tiantian Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- *Correspondence: Xin Wu,
| |
Collapse
|
14
|
Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Wang J, Mulu B, Taye M, Wu X. Enteromorpha polysaccharide and yeast glycoprotein mixture improves growth, antioxidant activity, serum lipid profile and regulates lipid metabolism in broiler chickens. Poult Sci 2022; 101:102064. [PMID: 36055019 PMCID: PMC9445391 DOI: 10.1016/j.psj.2022.102064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to analyze the growth performance, antioxidant activity, serum lipid profile, meat quality, and lipid metabolism of broiler chickens fed mixtures containing Enteromorpha polysaccharide (EP) and yeast glycoprotein (YG). A total of 400 one-day-old broiler chickens were randomly divided into 4 treatment groups of 10 replicates with 10 birds each replicate. The dietary treatments consisted of the control group (fed basal diet), and diets supplemented with Enteromorpha polysaccharide (EP; 400 mg/kg), yeast glycoprotein (YG;400 mg/kg), and EP+YG (200 mg/kg EP + 200 mg/kg YG). Compared with the control group, EP+YG supplementation enhanced growth performance and significantly reduced (P < 0.05) serum total triglyceride (TG), cholesterol (CHOL), and low-density lipoprotein LDL levels, and increased high-density lipoprotein (HDL) levels. Besides, birds fed EP+YG supplemented diet exhibited higher (P < 0.05) serum catalase (CAT), total antioxidant capacity, superoxide dismutase (SOD), and lower malonaldehyde (MDA) activities, and upregulated expressions of related genes, such as nuclear factor-erythroid factor 2-related factor 2 (NRF2), SOD1, and glutathione peroxidase 4 (GPX4) in the liver and intestinal tissues than the control group. Interestingly, higher (P < 0.05) serum SOD and lower MDA contents were observed in the EP+YG group than in either EP or YG group, suggesting a synergetic effect. Breast meat from EP+YG supplemented group had significantly higher redness value (a*), and lower pH24, total saturated fatty acid profiles, C14:0, C16:0, C18:0 fatty acid, atherogenic index, and thrombogenicity index than meat from the control group (P < 0.05). Furthermore, the mRNA expressions of fatty acid synthesis genes were downregulated (P < 0.05), whereas lipid β-oxidation-related genes were upregulated (P < 0.05) in the liver of the EP+YG supplemented group than in the control group. Overall, our data suggest that dietary EP+YG inclusion may have a synergistic effect, and therefore improve growth performance, regulate serum biochemical indexes, enhance antioxidant activity, and modulate lipid metabolism in broilers, indicating that it is a potential feed additive for chickens.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Bei Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Tiantian Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Jianlin Wang
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, 443003, China
| | - Bekalu Mulu
- Animal Production and Technology Department, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mengistie Taye
- Animal Production and Technology Department, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
15
|
Yeast-Derived Products: The Role of Hydrolyzed Yeast and Yeast Culture in Poultry Nutrition—A Review. Animals (Basel) 2022; 12:ani12111426. [PMID: 35681890 PMCID: PMC9179594 DOI: 10.3390/ani12111426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Yeast and yeast-derived products are largely employed in animal nutrition to support animals’ health and to improve their performance. Thanks to their components, including mannans, β-glucans, nucleotides, vitamins, and other compounds, yeasts have numerous beneficial effects. Among yeast-derived products, hydrolyzed yeasts and yeast cultures have received less attention, but, although the results are somewhat conflicting, in most of the cases, the available literature shows improved performance and health in poultry. Thus, the aim of this review is to provide an overview of hydrolyzed-yeast and yeast-culture employment in poultry nutrition, exploring their effects on the production performance, immune response, oxidative status, gut health, and nutrient digestibility. A brief description of the main yeast bioactive compounds is also provided. Abstract Yeasts are single-cell eukaryotic microorganisms that are largely employed in animal nutrition for their beneficial effects, which are owed to their cellular components and bioactive compounds, among which are mannans, β-glucans, nucleotides, mannan oligosaccharides, and others. While the employment of live yeast cells as probiotics in poultry nutrition has already been largely reviewed, less information is available on yeast-derived products, such as hydrolyzed yeast (HY) and yeast culture (YC). The aim of this review is to provide the reader with an overview of the available body of literature on HY and YC and their effects on poultry. A brief description of the main components of the yeast cell that is considered to be responsible for the beneficial effects on animals’ health is also provided. HY and YC appear to have beneficial effects on the poultry growth and production performance, as well as on the immune response and gut health. Most of the beneficial effects of HY and YC have been attributed to their ability to modulate the gut microbiota, stimulating the growth of beneficial bacteria and reducing pathogen colonization. However, there are still many areas to be investigated to better understand and disentangle the effects and mechanisms of action of HY and YC.
Collapse
|
16
|
Christensen B, Zhu C, Mohammadigheisar M, Schulze H, Huber LA, Kiarie EG. Growth performance, immune status, gastrointestinal tract ecology and function in nursery pigs fed enzymatically treated yeast without or with pharmacological levels of zinc. J Anim Sci 2022; 100:6552239. [PMID: 35323958 PMCID: PMC9047176 DOI: 10.1093/jas/skac094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Growth performance and physiological responses of nursery piglets when fed enzymatically treated yeast (HY40) and pharmacological ZnO alone or in combination, were investigated. A total of 144 pigs (21d old, BW 7.32±0.55 kg) were placed in 36 pens (4 pigs/pen). Pigs were randomly assigned to one of four dietary treatments (n=9): [1] control corn-wheat-soybean meal diet (control), [2] control + HY40 (HY40), [3] control +ZnO and [4] control + HY40 + ZnO (HY40+ZnO). Inclusion of HY40 and ZnO was 0.5% and 3,000 ppm in phase I (d 0 to 14), respectively, and halved in phase II (d 15 to 42). All diets contained 0.2% TiO2 for determination of apparent total tract digestibility (ATTD) of components. Body weight and feed disappearance was recorded weekly. One pig per pen was sacrificed for organ weights, blood, and tissue samples on d 14. Except for phase II, when HY40+ZnO pigs had greater average daily feed intake (P=0.004) than all other treatments, there were no (P>0.05) interactions between HY40 and ZnO on growth performance. Pigs fed HY40 or ZnO containing diets were heavier (P<0.05) than pigs fed without by the end of the study. On d 14, pigs fed additives exhibited higher (P≤0.009) ATTD of dry matter (DM) and gross energy (GE) than control pigs. On d 28, pigs fed control, HY40 and HY40+ZnO had greater (P≤0.022) ATTD of DM, crude protein, and GE than piglets fed ZnO only. Pigs fed HY40+ZnO had lower ileal digesta E. coli concentration (P<0.05) than HY40 and control pigs. Ileal digesta of pigs fed ZnO diets had higher lactobacillus to E. coli ratio (1.44 vs. 1.20; P=0.001), exhibited higher concentrations of acetic (P=0.01) and butyric acid (P=0.01) but lower lactic (P=0.02) and total short chain fatty acids (P=0.033) than pigs fed non-ZnO diets. Greater (P<0.05) mRNA expression of nutrient transporters, tight junction proteins and fecal excretion of zinc (Zn) was observed in ZnO pigs relative to non-ZnO pigs. Pigs fed HY40 diets had greater (P=0.002) villus height to crypt depth ratio (VH:CD) than non-HY40 pigs. The concentration of plasma IgA was higher (P=0.04) in HY40+ZnO pigs relative to other pigs whereas HY40 pigs showed higher (P<0.001) jejunal IgA than non-HY40 pigs. Although the mode of action of HY40 and ZnO differed, the present study indicated that HY40 improved growth performance and jejunal function and immunity, making HY40 an effective alternative to pharmacological ZnO for nursery pigs.
Collapse
Affiliation(s)
- Brenda Christensen
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Cuilan Zhu
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
17
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
18
|
Namted S, Poungpong K, Loongyai W, Rakangthong C, Bunchasak C. Improving growth performance and blood profile by feeding autolyzed yeast to improve pork carcass and meat quality. Anim Sci J 2021; 92:e13666. [PMID: 34873796 DOI: 10.1111/asj.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 01/26/2023]
Abstract
The 63 commercial pigs were divided into three groups consisting of seven replicates of three piglets each. The experimental diets were (1) control diet, (2) diet with autolyzed yeast (AY) 0.5%, and (3) diet with AY 1.0%. Compared to the control group, using AY 0.5% in the diet reduced average daily feed intake (ADFI) and improved feed conversion ratio (FCR) (p < 0.05). The blood urea nitrogen (BUN) and neutrophil/lymphocyte ratio (N/L) in blood decreased with the addition of AY 0.5% (p < 0.05). The pH at 6-h postmortem of meat in the 0.5% AY diet group was higher than for the control group (p < 0.05). Backfat thickness (p = 0.09) and P2-backfat thickness (p = 0.07) tended to decrease, while the fat free index (FFI; p = 0.07) tended to increase with 0.5% AY supplementation. The protein percentage (p = 0.07) and the a* value (redness) (p = 0.08) in the meat tended to increase, and the springiness increased with 0.5% AY supplementation (p < 0.05). An appropriate level of AY supplementation can impact positively on the physiological functions in swine with a consequent seems to improve in qualitative traits of the meat quality.
Collapse
Affiliation(s)
- Siriporn Namted
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Kanokporn Poungpong
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Wiriya Loongyai
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Choawit Rakangthong
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Chaiyapoom Bunchasak
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
19
|
Schwartz B, Vetvicka V. Review: β-glucans as Effective Antibiotic Alternatives in Poultry. Molecules 2021; 26:molecules26123560. [PMID: 34200882 PMCID: PMC8230556 DOI: 10.3390/molecules26123560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of microbial challenges in commercial poultry farming causes significant economic losses. Antibiotics have been used to control diseases involving bacterial infection in poultry. As the incidence of antibiotic resistance turns out to be a serious problem, there is increased pressure on producers to reduce antibiotic use. With the reduced availability of antibiotics, poultry producers are looking for feed additives to stimulate the immune system of the chicken to resist microbial infection. Some β-glucans have been shown to improve gut health, to increase the flow of new immunocytes, increase macrophage function, stimulate phagocytosis, affect intestinal morphology, enhance goblet cell number and mucin-2 production, induce the increased expression of intestinal tight-junctions, and function as effective anti-inflammatory immunomodulators in poultry. As a result, β-glucans may provide a new tool for producers trying to reduce or eliminate the use of antibiotics in fowl diets. The specific activity of each β-glucan subtype still needs to be investigated. Upon knowledge, optimal β-glucan mixtures may be implemented in order to obtain optimal growth performance, exert anti-inflammatory and immunomodulatory activity, and optimized intestinal morphology and histology responses in poultry. This review provides an extensive overview of the current use of β glucans as additives and putative use as antibiotic alternative in poultry.
Collapse
Affiliation(s)
- Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
- Correspondence:
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
20
|
Selecká E, Levkut M, Revajová V, Levkutová M, Karaffová V, Ševčíková Z, Herich R, Levkut M. Research Note: Immunocompetent cells in blood and intestine after administration of Lacto-Immuno-Vital in drinking water of broiler chickens. Poult Sci 2021; 100:101282. [PMID: 34214747 PMCID: PMC8258679 DOI: 10.1016/j.psj.2021.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The understanding of the synbiotics´ impact on the host is incomplete. To improve the knowledge, we study the effect of Lacto-Immuno-Vital synbiotic preparation in chickens on local and systemic immune response by evaluation of immunocompetent cells in the peripheral blood and jejunal mucosa. Hematological method was used for determination of white blood cell count, and flow cytometry for measurement the functions of phagocytes and subpopulation of lymphocytes (CD3, CD4, CD8, IgM, and IgA). Cell Qest programme (Germany) was used for analysing of data obtained from flow cytometer and GraphPad Prism version 4.0 for comparison by paired t test between control and experimental groups. The experiment was conducted in a commercial broiler chicken fattening farm, the birds were handled and sacrificed in a humane manner. A flock of 64,400 one-day-old Hybrid ROSS 308 chickens were included in the 42-d experiment. The chickens were randomly divided into 2 equal groups, experimental and control, and each group of chickens was housed in a different hall while maintaining the same conditions. The chickens in the experimental group (Lactovital) received 500 g of Lacto-Immuno-Vital (Hajduvet Kft., Hungary) in 1,000 L of drinking water. Lacto-Immuno-Vital was administered daily from the first day (D1) to D7 of the experiment. From D 7 to D 22 it was given in a pulsed manner (every third day) at a dose of 300 g in 1,000 L of drinking water. Control group received only the standard diet. For immune analyses 6 randomly chosen chickens from experimental and control group were taken from the halls. The sampling days were set at D 8 and D 22 of the experiment. Samples of peripheral blood were collected from vena subclavia. The chickens were euthanized and whole jejunum was taken during necropsy into Hanks ice solution (pH 7.2–7.3). Administration of Lacto-Immuno-Vital in drinking water of nonstressed broilers during fattening period in commercial production increased phagocytic activity and phagocytic index. The number of IgA+ and CD8+ cells in lamina propria of intestine was decreased in chickens fed diet supplemented with Lacto-Immuno-Vital in drinking water. We suggest that increased phagocytic activity and decreased number of immunocompetent cells in mucosa of intestine was caused by improved systemic and local immune system function.
Collapse
Affiliation(s)
- E Selecká
- Medivet, Školská 457/23, Dobrá Niva, Slovakia
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - V Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia.
| | - M Levkutová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - V Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - Z Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - R Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia; Institute of Neuroimmunology, Slovak Academy of Science, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| |
Collapse
|
21
|
Omara II, Pender CM, White MB, Dalloul RA. The Modulating Effect of Dietary Beta-Glucan Supplementation on Expression of Immune Response Genes of Broilers during a Coccidiosis Challenge. Animals (Basel) 2021; 11:ani11010159. [PMID: 33445562 PMCID: PMC7827683 DOI: 10.3390/ani11010159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Avian coccidiosis is the leading parasitic disease in the poultry industry and means to control its damages continue to be explored. This study evaluated the feeding effects of a yeast-derived β-glucan on expression of immune response genes in the spleen, thymus, and bursa of commercial broiler chickens during an Eimeria challenge. The study consisted of two dietary treatments (0% or 0.1% β-glucan) each with or without a coccidiosis challenge. There were significant effects from dietary β-glucan, Eimeria challenge, and their interaction for several gene targets in the spleen, thymus, and bursa on days 10 and 14 of age. Based on the current results, supplementation of dietary β-glucan in Eimeria-challenged birds enhanced and modulated the expression of immune response genes during coccidiosis. Abstract This study investigated the effects of a yeast-derived β-glucan (Auxoferm YGT) supplementation on mRNA expression of immune response genes in the spleen, thymus, and bursa of broiler chickens during a mixed Eimeria infection. Day (d)-old chicks (n = 1440) were fed diets containing 0% or 0.1% YGT. On d 8 post-hatch, half the replicate pens (n = 8) were challenged with a mixed inoculum of E. acervulina, E. maxima, and E. tenella. On d 10 and d 14 post-hatch, the spleen, thymus, and bursa were collected to evaluate mRNA abundance by quantitative real-time PCR. Data were analyzed using PROC GLIMMIX model (2-way interaction) and differences were established by LS-MEANS with significance reported at p ≤ 0.05. In spleen tissues at d 10, expression of interleukin (IL)-10 and inducible nitric oxide synthase (iNOS) were elevated in both 0.1% YGT-fed challenged and non-challenged birds. In thymus tissues at d 14, expression of IL-10, IL-17F, interferon (IFN)-γ, iNOS, and macrophage migration inhibitory factor (MIF) were elevated in challenged birds fed 0.1% YGT. In bursal tissues at d 10 and d 14, expression of IL-10, IFN-γ, iNOS (d 10 only), and MIF were elevated in 0.1% YGT-fed challenged and non-challenged birds. Dietary β-glucan supplementation to chicken diets modulated their immune response to the Eimeria challenge.
Collapse
Affiliation(s)
- Islam I. Omara
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
- Animal and Poultry Division, Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Chasity M. Pender
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
| | - Mallory B. White
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
| | - Rami A. Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
22
|
Levkut M, Karaffová V, Levkutová M, Seman V, Revajová V, Ševčíková Z, Herich R, Levkut M. Influence of Lacto-Immuno-Vital on growth performance and gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum of broiler chickens. Poult Sci 2020; 99:6569-6575. [PMID: 33248572 PMCID: PMC7705053 DOI: 10.1016/j.psj.2020.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022] Open
Abstract
The effects of Lacto-Immuno-Vital synbiotic preparation on gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum and on BW gain in broiler chickens were studied. A flock of 64,400 1-day-old Hybrid ROSS 308 chickens was inducted in the 42-day experiment. The chickens were divided into 2 equally size groups in separate halls. The chickens in the experimental (E) group received 500 g of Lacto-Immuno-Vital in 1,000 L of drinking water. The preparation was administered daily from the first day (day 1) to day 7 of the experiment. From day 7 to day 22, it was given in pulsed manner (every third day) at a dose of 300 g in 1,000 L of drinking water. The broiler chickens in the E group gained more weight (P < 0.001) compared with control from day 10 to day 42. Death of animals during feeding period was 1,078 chickens in the E group compared with 1,115 dead chickens in the control group. Feed conversion ratio was 1.61 kg of supplemented diet/kg of BW in the E group compare with 1.67 kg of nonsupplemented diet/kg of BW in control. The relative expression of IgA gene in the jejunum was upregulated on day 22 in the E group compared with control (P < 0.05), whereas relative expression of MUC-2 gene was upregulated in the E group compared with control on day 8 and day 22 (P < 0.05; P < 0.001). Similarly, relative expression of IGF-2 gene was upregulated in the E group compared with control on both samplings (P < 0.01). The composition of Lacto-Immuno-Vital synbiotic preparation showed beneficial effects on growth performance, feed conversion ratio, morbidity, mortality, and selected parameters of mucosal immunity in the chicken jejunum.
Collapse
Affiliation(s)
- M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - V Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic.
| | - M Levkutová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - V Seman
- Regional Association of Veterinary Doctors, Trebišov, Slovak Republic
| | - V Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Z Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - R Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic; Neuroimmunological Institute SAS, Bratislava, Slovak Republic
| |
Collapse
|
23
|
Single cell ICP-MS using on line sample introduction systems: Current developments and remaining challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Abstract
A relevant trend in winemaking is to reduce the use of chemical compounds in both the vineyard and winery. In organic productions, synthetic chemical fertilizers, pesticides, and genetically modified organisms must be avoided, aiming to achieve the production of a “safer wine”. Safety represents a big threat all over the world, being one of the most important goals to be achieved in both Western society and developing countries. An occurrence in wine safety results in the recovery of a broad variety of harmful compounds for human health such as amines, carbamate, and mycotoxins. The perceived increase in sensory complexity and superiority of successful uninoculated wine fermentations, as well as a thrust from consumers looking for a more “natural” or “organic” wine, produced with fewer additives, and perceived health attributes has led to more investigations into the use of non-Saccharomyces yeasts in winemaking, namely in organic wines. However, the use of copper and sulfur-based molecules as an alternative to chemical pesticides, in organic vineyards, seems to affect the composition of grape microbiota; high copper residues can be present in grape must and wine. This review aims to provide an overview of organic wine safety, when using indigenous and/or non-Saccharomyces yeasts to perform fermentation, with a special focus on some metabolites of microbial origin, namely, ochratoxin A (OTA) and other mycotoxins, biogenic amines (BAs), and ethyl carbamate (EC). These health hazards present an increased awareness of the effects on health and well-being by wine consumers, who also enjoy wines where terroir is perceived and is a characteristic of a given geographical area. In this regard, vineyard yeast biota, namely non-Saccharomyces wine-yeasts, can strongly contribute to the uniqueness of the wines derived from each specific region.
Collapse
|
25
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
26
|
Mahfuz S, Long S, Piao X. Role of medicinal mushroom on growth performance and physiological responses in broiler chicken. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- S.U. Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Nutrition, Sylhet Agricultural University, Sylhet, Bangladesh
| | - S.F. Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - X.S. Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Gomes TA, Zanette CM, Spier MR. An overview of cell disruption methods for intracellular biomolecules recovery. Prep Biochem Biotechnol 2020; 50:635-654. [DOI: 10.1080/10826068.2020.1728696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tatiane Aparecida Gomes
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Cristina Maria Zanette
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
- Food Engineering Department, Midwestern State University (UNICENTRO), Guarapuava, Brazil
| | - Michele Rigon Spier
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
28
|
Mahfuz S, Piao XS. Application of Moringa ( Moringa oleifera) as Natural Feed Supplement in Poultry Diets. Animals (Basel) 2019; 9:ani9070431. [PMID: 31323953 PMCID: PMC6680523 DOI: 10.3390/ani9070431] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/22/2023] Open
Abstract
Application of natural herbs with a view to enhancing production performance and health status has created an important demand in poultry production. With the increasing concerns on this issue, greater attention paid to alternatives to antibiotics for organic meat and egg production has led to a great demand. This study was conducted with view to assessing the possible role of M. oleifera as a natural feed supplement in poultry ration. Various scientific findings and published research articles were considered concerning issues including the study background, objectives, major findings, and conclusions of the review. M oleifera is known as a miracle tree because of its wealthy resource of various nutrients with high biological values. M. oleifera has been used as a growth promoter, immune enhancer, antioxidant, and has a hypo-cholesterol effect on chickens. It has both nutritional and therapeutic values. However, there is still much confusion in past published articles involving the major roles of M. oleifera in production performance and health status of chickens. Taking this into account, the present study highlights an outline of the experimental uses of M. oleifera on growth performance, egg production performance, egg quality, and health status in broilers and laying hens justified with the past findings to the present. The knowledge gaps from the past studies are considered, and the feasibility of M. oleifera in poultry ration is suggested. The findings have motivated further study on M. oleifera to find out the most active ingredients and their optimal doses in both broiler and laying hen rations. Finally, the present study highlights that supplementation of M. oleifera may play a role in the immunity, sound health, and production performance in poultry.
Collapse
Affiliation(s)
- Shad Mahfuz
- State Key laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiang Shu Piao
- State Key laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
de Oliveira CAF, Vetvicka V, Zanuzzo FS. β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comp Immunol Microbiol Infect Dis 2018; 62:1-6. [PMID: 30711038 DOI: 10.1016/j.cimid.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Several reports have shown the positive effects of β-glucans on the immune. Howeverthese studies have a broad experimental design including β-glucans compounds. Consequently, a study using the same β-glucan molecule, administration route and experimental design is needed to compare the effects of β-glucan across vertebrate species. For this end, during 28 days we fed four different vertebrate species: mice, dogs, piglets and chicks, with two β-glucan molecules (BG01 and BG02). We measured the serum interleukin 2 as an indicator of innate immune response, the neutrophils and monocytes phagocytosis index as a cellular response and antibody formation as an adaptive response. The results clearly showed that the different β-glucan molecules exhibited biologically differently behaviors, but both molecules stimulate the immune system in a similar pattern in these four species. This finding suggests that vertebrates shared similar mechanisms/patterns in recognizing the β-glucans and confirms the benefits of β-glucans across different vertebrate species.
Collapse
Affiliation(s)
- Carlos A F de Oliveira
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| | - Vaclav Vetvicka
- University of Louisville, Department of Pathology, Louisville, KY, USA.
| | - Fábio S Zanuzzo
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| |
Collapse
|