1
|
Berridge CW, Devilbiss DM, Martin AJ, Spencer RC, Jenison RL. Stress degrades working memory-related frontostriatal circuit function. Cereb Cortex 2023; 33:7857-7869. [PMID: 36935095 PMCID: PMC10267631 DOI: 10.1093/cercor/bhad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/20/2023] Open
Abstract
Goal-directed behavior is dependent on neuronal activity in the prefrontal cortex (PFC) and extended frontostriatal circuitry. Stress and stress-related disorders are associated with impaired frontostriatal-dependent cognition. Our understanding of the neural mechanisms that underlie stress-related cognitive impairment is limited, with the majority of prior research focused on the PFC. To date, the actions of stress across cognition-related frontostriatal circuitry are unknown. To address this gap, the current studies examined the effects of acute noise-stress on the spiking activity of neurons and local field potential oscillatory activity within the dorsomedial PFC (dmPFC) and dorsomedial striatum (dmSTR) in rats engaged in a test of spatial working memory. Stress robustly suppressed responses of both dmPFC and dmSTR neurons strongly tuned to key task events (delay, reward). Additionally, stress strongly suppressed delay-related, but not reward-related, theta and alpha spectral power within, and synchrony between, the dmPFC and dmSTR. These observations provide the first demonstration that stress disrupts the neural coding and functional connectivity of key task events, particularly delay, within cognition-supporting dorsomedial frontostriatal circuitry. These results suggest that stress-related degradation of neural coding within both the PFC and striatum likely contributes to the cognition-impairing effects of stress.
Collapse
Affiliation(s)
- Craig W Berridge
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| | | | - Andrea J Martin
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| | - Robert C Spencer
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| | - Rick L Jenison
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
2
|
Dastgheib M, Kulanayagam A, Dringenberg HC. Is the role of sleep in memory consolidation overrated? Neurosci Biobehav Rev 2022; 140:104799. [PMID: 35905801 DOI: 10.1016/j.neubiorev.2022.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Substantial empirical evidence suggests that sleep benefits the consolidation and reorganization of learned information. Consequently, the concept of "sleep-dependent memory consolidation" is now widely accepted by the scientific community, in addition to influencing public perceptions regarding the functions of sleep. There are, however, numerous studies that have presented findings inconsistent with the sleep-memory hypothesis. Here, we challenge the notion of "sleep-dependency" by summarizing evidence for effective memory consolidation independent of sleep. Plasticity mechanisms thought to mediate or facilitate consolidation during sleep (e.g., neuronal replay, reactivation, slow oscillations, neurochemical milieu) also operate during non-sleep states, particularly quiet wakefulness, thus allowing for the stabilization of new memories. We propose that it is not sleep per se, but the engagement of plasticity mechanisms, active during both sleep and (at least some) waking states, that constitutes the critical factor determining memory formation. Thus, rather than playing a "critical" role, sleep falls along a continuum of behavioral states that vary in their effectiveness to support memory consolidation at the neural and behavioral level.
Collapse
Affiliation(s)
| | | | - Hans C Dringenberg
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
3
|
Klinteberg BA, Magnusson D. Aggressiveness and hyperactive behaviour as related to adrenaline excretion. EUROPEAN JOURNAL OF PERSONALITY 2020. [DOI: 10.1002/per.2410030203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The central question concerns the relationship between aspects of behaviour and physiological reactions. Measures of sympathetic‐adrenal activity in terms of adrenaline excretion in a normal and a stressful situation as well as teacher ratings of behaviour were analysed for a representative group of 86 boys aged 13. Adrenaline excretion was in both situations significantly negatively related to ratings of aggressiveness, motor restlessness, and concentration difficulties and also to the sum of the latter two, used as an indicator of hyperactive behaviour. The association between hyperactive behaviour and adrenaline excretion persisted in the stressful situation when aggressiveness was controlled, whereas there was no significant relationship between aggressiveness and adrenaline output when hyperactive behaviour was controlled. Furthermore, hyperactive boys differed significantly from non‐hyperactive boys in displaying lower adrenaline excretion in both situations. The results are discussed in terms of low sympathetic‐adrenal reactivity to external demands as a risk factor and as a possible indicator of vulnerability for social and/or pervasive conduct disturbances.
Collapse
Affiliation(s)
- Britt Af Klinteberg
- Department of Psychology, University of Stockholm, Sweden
- Department of Psychiatry and Psychology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
4
|
Jing W, Wang Y, Fang G, Chen M, Xue M, Guo D, Yao D, Xia Y. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats. Front Comput Neurosci 2016; 10:79. [PMID: 27536231 PMCID: PMC4971061 DOI: 10.3389/fncom.2016.00079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5–7 and 8–11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats.
Collapse
Affiliation(s)
- Wei Jing
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yanran Wang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Miaomiao Xue
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
5
|
Young G, Leung L, Campbell V, DeMelo J, Schieven J, Tilsworth R. The Electroencephalogram in Metabolic/Toxic Coma. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/00029238.1992.11080417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- G.B. Young
- EEG and Evoked Response Laboratory, Victoria Hospital London, Ontario Canada, N6A 4G5
| | - L.S. Leung
- Epilepsy Unit University Hospital London, Ontario Canada, N6A 5A5
| | - V. Campbell
- EEG and Evoked Response Laboratory, Victoria Hospital London, Ontario Canada, N6A 4G5
| | - J. DeMelo
- EEG and Evoked Response Laboratory, Victoria Hospital London, Ontario Canada, N6A 4G5
| | - J. Schieven
- EEG and Evoked Response Laboratory, Victoria Hospital London, Ontario Canada, N6A 4G5
| | - R. Tilsworth
- Dept. of Anesthesia Victoria Hospital London, Ontario Canada, N6A 4G5
| |
Collapse
|
6
|
|
7
|
Matulewicz P, Kuśmierczak M, Orzeł-Gryglewska J, Jurkowlaniec E. Hippocampal theta rhythm induced by rostral pontine nucleus stimulation in the conditions of pedunculopontine tegmental nucleus inactivation. Brain Res Bull 2013; 96:10-8. [DOI: 10.1016/j.brainresbull.2013.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
|
8
|
Kiss T, Feng J, Hoffmann W, Shaffer C, Hajós M. Rhythmic theta and delta activity of cortical and hippocampal neuronal networks in genetically or pharmacologically induced N-methyl-d-aspartate receptor hypofunction under urethane anesthesia. Neuroscience 2013; 237:255-67. [DOI: 10.1016/j.neuroscience.2013.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
9
|
Schmeichel BE, Berridge CW. Wake-promoting actions of noradrenergic α1 - and β-receptors within the lateral hypothalamic area. Eur J Neurosci 2013; 37:891-900. [PMID: 23252935 PMCID: PMC6135640 DOI: 10.1111/ejn.12084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/25/2012] [Accepted: 11/09/2012] [Indexed: 12/01/2022]
Abstract
Central norepinephrine exerts potent wake-promoting effects, in part through the actions of noradrenergic α1 - and β-receptors located in the medial septal and medial preoptic areas. The lateral hypothalamic area (LHA), including the lateral hypothalamus, perifornical area and adjacent dorsomedial hypothalamus, is implicated in the regulation of arousal and receives a substantial noradrenergic innervation. To date the functional significance of this innervation is unknown. The current studies examined the degree to which noradrenergic α1 - and β-receptor stimulation within the rat LHA modulates arousal. Specifically, these studies examined the wake-promoting effects of intra-tissue infusions (250 nL) of the α1 -receptor agonist phenylephrine (10, 20 and 40 nmol) and the β-receptor agonist isoproterenol (3, 10 and 30 nmol) in rats. Results show that stimulation of LHA α1 -receptors elicits robust and dose-dependent increases in waking. In contrast, β-receptor stimulation within the LHA had relatively modest arousal-promoting actions. Nonetheless, combined α1 - and β-receptor stimulation elicited additive wake-promoting effects. Arousal-promoting hypocretin/orexin (HCRT)-synthesising neurons are located within the LHA. Therefore, additional immunohistochemical studies examined whether α1 -receptor-dependent waking is associated with an activation of HCRT neurons as measured by Fos, the protein product of the immediate-early gene c-fos. Analyses indicate that although intra-LHA α1 -receptor agonist infusion elicited a robust increase in Fos immunoreactivity (ir) in this region, this treatment did not activate HCRT neurons as measured by Fos-ir. Collectively, these observations indicate that noradrenergic α1 -receptors within the LHA promote arousal via actions that are independent of HCRT neuronal activation.
Collapse
|
10
|
|
11
|
Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev 2012; 16:187-97. [PMID: 22296742 DOI: 10.1016/j.smrv.2011.12.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/21/2011] [Accepted: 12/13/2011] [Indexed: 01/02/2023]
Abstract
The locus coeruleus-noradrenergic system supplies norepinephrine throughout the central nervous system. State-dependent neuronal discharge activity of locus coeruleus noradrenergic neurons has long-suggested a role of this system in the induction of an alert waking state. Work over the past two decades provides unambiguous evidence that the locus coeruleus, and likely other noradrenergic nuclei, exert potent wake-promoting actions via an activation of noradrenergic β- and α₁-receptors located within multiple subcortical structures, including the general regions of the medial septal area, the medial preoptic area and, most recently, the lateral hypothalamus. Conversely, global blockade of β- and α₁-receptors or suppression of norepinephrine release results in profound sedation. The wake-promoting action of central noradrenergic neurotransmission has clinical implications for treatment of sleep/arousal disorders, such as insomnia and narcolepsy, and clinical conditions associated with excessive arousal, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Craig W Berridge
- Psychology Department, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
12
|
Neurochemical and electrophysiological changes induced by paradoxical sleep deprivation in rats. Behav Brain Res 2011; 225:39-46. [PMID: 21729722 DOI: 10.1016/j.bbr.2011.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/12/2011] [Accepted: 06/18/2011] [Indexed: 12/26/2022]
Abstract
The present study aims to investigate the effects of paradoxical sleep deprivation (PSD) on the waking EEG and amino acid neurotransmitters in the hippocampus and cortex of rats. Animals were deprived of paradoxical sleep for 72h by using the multiple platform method. The EEG power spectral analysis was carried out to assess the brain's electrophysiological changes due to sleep deprivation. The concentrations of amino acid neurotransmitters were assessed in the hippocampus and cortex using HPLC. Control data showed slight differences from normal animals in the delta, theta and alpha waves while an increase in the beta wave was obtained. After 24h of PSD, delta relative power increased and the rest of EEG wave's power decreased with respect to control. After 48h and 72h the spectral power analysis showed non-significant changes to control. The amino acid neurotransmitter analysis revealed a significant increase in cortical glutamate, glycine and taurine levels while in the hippocampus, glutamate, aspartate, glutamine and glycine levels increased significantly. Both the waking EEG and neurotransmitter analyses suggest that PSD induced neurochemical and electrophysiological changes that may affect brain proper functionality.
Collapse
|
13
|
Heilman KM, Watson RT, Valenstein E, Goldberg ME. Attention: Behavior and Neural Mechanisms. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
|
15
|
Huang ZB, Wang H, Rao XR, Zhong GF, Hu WH, Sheng GQ. Different effects of scopolamine on the retrieval of spatial memory and fear memory. Behav Brain Res 2010; 221:604-9. [PMID: 20553767 DOI: 10.1016/j.bbr.2010.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/10/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022]
Abstract
Retrieval of memory is fundamental for our life as individuals. The participation of cholinergic system in memory consolidation process has been extensively studied, but there are few data concerning the function of this system in memory retrieval process. In the current study, we inject non-selective muscarinic antagonist scopolamine peripherally 20 min before training or testing to see whether cholinergic modulation has effects on the acquisition or retrieval of spatial memory by water maze task and fear memory by inhibitory avoidance task. We find that the cholinergic system is essential for the acquisition of both spatial memory and fear memory. As for the memory retrieval, the cholinergic system has a positive role in the retrieval of spatial memory, because mice injected with scopolamine 20 min before the testing in the water maze show impaired spatial memory retrieval. Whereas injection of scopolamine 20 min before the testing in the inhibitory avoidance task does not cause memory retrieval deficits. That indicates the cholinergic system is not essential for the retrieval of fear memory.
Collapse
Affiliation(s)
- Zhen-Bo Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Jing J, Gillette R, Weiss KR. Evolving concepts of arousal: insights from simple model systems. Rev Neurosci 2010; 20:405-27. [PMID: 20397622 DOI: 10.1515/revneuro.2009.20.5-6.405] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arousal states strongly influence behavioral decisions. In general, arousal promotes activity and enhances responsiveness to sensory stimuli. Earlier work has emphasized general, or nonspecific, effects of arousal on multiple classes of behaviors. However, contemporary work indicates that arousal has quite specific effects on behavior. Here we review studies of arousal-related circuitry in molluscan model systems. Neural substrates for both general and specific effects of arousal have been identified. Based on the scope of their actions, we can distinguish two major classes of arousal elements: localized versus general. Actions of localized arousal elements are often limited to one class of behavior, and may thereby mediate specific effects of arousal. In contrast, general arousal elements may influence multiple classes of behaviors, and mediate both specific and nonspecific effects of arousal. One common way in which general arousal elements influence multiple behaviors is by acting on localized arousal elements of distinct networks. Often, effects on distinct networks have different time courses that may facilitate formation of specific behavioral sequences. This review highlights prominent roles of serotonergic systems in arousal that are conserved in gastropod molluscs despite extreme diversification of body forms, diet and ecological niches. The studies also indicate that the serotonergic elements can act as either localized or general arousal elements. We discuss the implications of these findings across animals.
Collapse
Affiliation(s)
- Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Consciousness as an experimental variable: Problems of definition, practice, and interpretation. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00044988] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
The P300 event-related potentials: A one-humped dromedary's saddle on a two-humped camel. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00058179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
Abstract
AbstractA comparative method of studying the biological bases of personality compares human trait dimensions with likely animal models in terms of genetic determination and common biological correlates. The approach is applied to the trait of sensation seeking, which is defined on the human level by a questionnaire, reports of experience, and observations of behavior, and on the animal level by general activity, behavior in novel situations, and certain types of naturalistic behavior in animal colonies. Moderately high genetic determination has been found for human sensation seeking, and marked strain differences in rodents have been found in open-field behavior that may be related to basic differences in brain neurochemistry. Agonistic and sociable behaviors in both animals and humans and the trait measure of sensation seeking in humans have been related to certain common biological correlates such as gonadal hormones, monoamine oxidase (MAO), and augmenting of the cortical evoked potential.The monoamine systems in the rodent brain are involved in general activity, exploratory behavior, emotionality, socialization, dominance, sexual and consummately behaviors, and intracranial self-stimulation. Preliminary studies have related norepinephrine and enzymes involved in its production and degradation to human sensation seeking. A model is suggested that relates mood, behavioral activity, sociability, and clinical states to activity of the central catecholamine neurotransmitters and to neuroregulators and other transmitters that act in opposite ways on behavior or stabilize activity in the arousal systems. Stimulation and behavioral activity act on the catecholamine systems in a brain–behavior feedback loop. At optimal levels of catecholamine systems activity (CSA) mood is positive and activity and sociability are adaptive. At very low or very high levels of CSA mood is dysphoric, activity is restricted or stereotyped, and the organism is unsocial or aggressively antisocial. Novelty, in the absence of threat, may be rewarding through activation of noradrenergic neurons.
Collapse
|
27
|
|
28
|
|
29
|
|
30
|
|
31
|
Are the origins of any mental process available to introspection? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00045076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
Abstract
AbstractAs neurophysiological investigations of sleep cycle control have provided an increasingly detailed picture of events at the cellular level, the concept that the sleep cycle is generated by the interaction of multiple, anatomically distributed sets of neurons has gradually replaced the hypothesis that sleep is generated by a single, highly localized neuronal oscillator.Cell groups that discharge during rapid-eye-movement (REM) sleep (REM-on) and neurons that slow or cease firing during REM sleep (REM-off) have long been thought to comprise at least two neurochemically distinct populations. The fact that putatively cholinoceptive and/or cholinergic (REM-on) and putatively aminergic (REM-off) cell populations discharge reciprocally over the sleep cycle suggests a causal interdependence.In some brain stem areas these cell groups are not anatomically segregated and may instead be neurochemically mixed (interpenetrated). This finding raises important theoretical and practical issues not anticipated in the original reciprocal-interaction model. The electrophysiological evidence concerning the REM-on and REM-off cell groups suggests a gradient of sleep-dependent membrane excitability changes that may be a function of the connectivity strength within an anatomically distributed neuronal network. The connectivity strength may be influenced by the degree of neurochemical interpenetration between the REM-on and REM-offcells. Recognition of these complexities forces us to revise the reciprocal-interaction model and to seek new methods to test its tenets.Cholinergic microinjection experiments indicate that some populations of REM-on cells can execute specific portions of the REM sleep syndrome or block the generation of REM sleep. This observation suggests that the order of activation within the anatomically distributed generator populations may be critical in determining behavioral outcome. Support for the cholinergic tenets of the reciprocal-interaction model has been reinforced by observations from sleep-disorders medicine.Specific predictions of the reciprocal-interaction model and suggestions for testing these predictions are enumerated for future experimental programs that aim to understand the cellular and molecular basis of the mammalian sleep cycle.
Collapse
|
48
|
|
49
|
|
50
|
|