1
|
Chen Z, Omori Y, Koren S, Shirokiya T, Kuroda T, Miyamoto A, Wada H, Fujiyama A, Toyoda A, Zhang S, Wolfsberg TG, Kawakami K, Phillippy AM, Mullikin JC, Burgess SM. De novo assembly of the goldfish ( Carassius auratus) genome and the evolution of genes after whole-genome duplication. SCIENCE ADVANCES 2019; 5:eaav0547. [PMID: 31249862 PMCID: PMC6594761 DOI: 10.1126/sciadv.aav0547] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
For over a thousand years, the common goldfish (Carassius auratus) was raised throughout Asia for food and as an ornamental pet. As a very close relative of the common carp (Cyprinus carpio), goldfish share the recent genome duplication that occurred approximately 14 million years ago in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies provides an exciting opportunity to link genotype to phenotype and to understand the dynamics of genome evolution and speciation. We generated a high-quality draft sequence and gene annotations of a "Wakin" goldfish using 71X PacBio long reads. The two subgenomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged substantially across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression levels across all tissues, while loss of conserved noncoding elements determined expression variance between different tissues. This assembly provides an important resource for comparative genomics and understanding the causes of goldfish variants.
Collapse
Affiliation(s)
- Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Takuya Shirokiya
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Takuo Kuroda
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Atsushi Miyamoto
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Hironori Wada
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Tyra G. Wolfsberg
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Adam M. Phillippy
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | - James C. Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, Bethesda, MD, USA
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Corresponding author.
| |
Collapse
|
2
|
Fasoli A, Dang J, Johnson JS, Gouw AH, Fogli Iseppe A, Ishida AT. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol 2017; 525:1707-1730. [PMID: 28035673 DOI: 10.1002/cne.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Fasoli
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - James Dang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Aaron H Gouw
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Alex Fogli Iseppe
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Ophthalmology and Vision Science, University of California, Sacramento, California
| |
Collapse
|
3
|
Pfister D, Yu C, Kim DS, Li J, Drewing A, Li L. Zebrafish Olfacto-Retinal Centrifugal Axon Projection and Distribution: Effects of Gonadotropin-Releasing Hormone and Dopaminergic Signaling. Dev Neurosci 2015; 38:27-33. [PMID: 26505192 DOI: 10.1159/000439524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
The terminalis neurons (TNs) have been described in teleost species. In zebrafish, the TNs are located in the olfactory bulb. The TNs synthesize and release gonadotropin-releasing hormone (GnRH) as one of the major neurotransmitters. The TNs project axons to many brain areas, which include the neural retina. In the retina, the TN axons synapse with dopaminergic interplexiform cells (DA-IPCs) and retinal ganglion cells (RGCs). In this research, we examine the role of GnRH and dopaminergic signaling in TN axon projection to the retina using the transgenic zebrafish Tg(GnRH-3::GFP). While the TNs developed at 34 h postfertilization (hpf), the first TN axons were not detected in the retina until 48-50 hpf, when the first DA-IPCs were differentiated. In developing embryos, inhibition of retinal GnRH signaling pathways severely interrupted the projection of TN axons to the retina. However, inhibition of retinal dopaminergic signaling produced little effect on TN axon projection. In adult retinas, inactivation of GnRH receptors disrupted the patterns of TN axon distribution, and depletion of DA-IPCs abolished the TN axons. When DA-IPCs regenerated, the TN axons reappeared. Together, the data suggest that in developing zebrafish retinas GnRH signaling is required for TN axon projection, whereas in adult retinas activation of GnRH and dopaminergic signaling transduction is required for normal distribution of the TN axons.
Collapse
Affiliation(s)
- Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Ind., USA
| | | | | | | | | | | |
Collapse
|
4
|
Connaughton VP, Wetzell B, Arneson LS, DeLucia V, L. Riley A. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism. J Neurochem 2015. [DOI: 10.1111/jnc.13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Bradley Wetzell
- Department of Psychology; American University; Washington District of Columbia USA
| | - Lynne S. Arneson
- Department of Biology; American University; Washington District of Columbia USA
| | - Vittoria DeLucia
- Department of Biology; American University; Washington District of Columbia USA
| | - Anthony L. Riley
- Department of Psychology; American University; Washington District of Columbia USA
| |
Collapse
|
5
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
6
|
Emran F, Dowling JE. Circadian Rhythms and Vision in Zebrafish. THE RETINA AND CIRCADIAN RHYTHMS 2014:171-193. [DOI: 10.1007/978-1-4614-9613-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Norton TT, Siegwart JT. Light levels, refractive development, and myopia--a speculative review. Exp Eye Res 2013; 114:48-57. [PMID: 23680160 PMCID: PMC3742693 DOI: 10.1016/j.exer.2013.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022]
Abstract
Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways.
Collapse
Affiliation(s)
- Thomas T Norton
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
8
|
Endeman D, Fahrenfort I, Sjoerdsma T, Steijaert M, Ten Eikelder H, Kamermans M. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina. J Physiol 2012; 590:5581-95. [PMID: 22890705 DOI: 10.1113/jphysiol.2012.240325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca(2+)-dependent Cl(-) channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl(-) channels that are gated by GABA released from HCs. Similar to activation of I(Cl(Ca)), opening of these GABA-gated Cl(-) channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABA(A) and GABA(C) receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca(2+)-dependent Cl(-) currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl(-) current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl(-) current shunts the current flow in the synaptic cleft. The Ca(2+)-dependent Cl(-) current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca(2)(+). Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the cone output.
Collapse
Affiliation(s)
- Duco Endeman
- The Netherlands Institute for Neuroscience, Retinal Signal Processing, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Kim DY, Jung CS. Gap junction contributions to the goldfish electroretinogram at the photopic illumination level. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:219-24. [PMID: 22802705 PMCID: PMC3394926 DOI: 10.4196/kjpp.2012.16.3.219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/15/2022]
Abstract
Understanding how the b-wave of the electroretinogram (ERG) is generated by full-field light stimulation is still a challenge in visual neuroscience. To understand more about the origin of the b-wave, we studied the contributions of gap junctions to the ERG b-wave. Many types of retinal neurons are connected to similar and different neighboring neurons through gap junctions. The photopic (cone-dominated) ERG, stimulated by a small light beam, was recorded from goldfish (Carassius auratus) using a corneal electrode. Data were obtained before and after intravitreal injection of agents into the eye under a photopic illumination level. Several agents were used to affect gap junctions, such as dopamine D1 and D2 receptor agonists and antagonists, a nitric oxide (NO) donor, a nitric oxide synthase (NOS) inhibitor, the gap junction blocker meclofenamic acid (MFA), and mixtures of these agents. The ERG b-waves, which were enhanced by MFA, sodium nitroprusside (SNP), SKF 38393, and sulpiride, remained following application of a further injection of a mixture with MFA. The ERG b-waves decreased following N(G)-nitro-L-arginine methyl ester (L-NAME), SCH 23390, and quinpirole administration but were enhanced by further injection of a mixture with MFA. These results indicate that gap junction activity influences b-waves of the ERG related to NO and dopamine actions.
Collapse
Affiliation(s)
- Doh-Yeon Kim
- Natural Sciences Section, Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | |
Collapse
|
10
|
Wang X, Huang L, Li Y, Li X, Li P, Ray J, Li L. Characterization of GFP-tagged GnRH-containing terminalis neurons in transgenic zebrafish. J Cell Physiol 2011; 226:608-15. [PMID: 20717967 DOI: 10.1002/jcp.22369] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The terminalis nerve (TN) has been described in all vertebrate species, in which it plays important roles in animal behavior and physiology. In teleost fish, the TN is located in the olfactory bulb and in its nerve tract. Here, we report a study on the characterization of the TN cell development, axon projection and physiology in zebrafish (Danio rerio). We have generated several lines of transgenic zebrafish [Tg (GnRH-3::GFP)] that express GFP in the TN cells. The transgenes are expressed under the transcriptional control of the zebrafish GnRH-3 promoter. During development, the first GFP-positive TN cell was identified at approximately 34 h post-fertilization (hpf). By 38 hpf, several clusters of TN cells were identified in the olfactory bulb and olfactory nerve tract. In the olfactory bulb, the TN cells projected axons caudally. In the forebrain, some of the TN axons extended caudally, but most crossed the midline of the brain at the commissural anterior. In the midbrain, some of the TN axons extended dorsally towards the tectum, whereas other axons extended caudally, or extended ventrally to the optic nerve where they entered the neural retina. We also examined the cell membrane property of the TN cells. Using patch-clamp techniques, we recorded spontaneous and evoked action potentials from isolated TN cells. We examined the expression of glutamate receptors in the TN cells. The data shed light on the mechanisms of TN function in the nervous system and in the regulation of animal physiology.
Collapse
Affiliation(s)
- Xiaokai Wang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Huang L, Li L. Characterization of voltage-activated ionic currents in the GnRH-containing terminalis nerve in transgenic zebrafish. Brain Res 2010; 1367:43-9. [PMID: 20951681 DOI: 10.1016/j.brainres.2010.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 12/29/2022]
Abstract
The terminalis nerve (TN) is in a class of cranial nerves that plays important roles in animal development, physiology and behavior. Here, we report a study on the characterization of voltage-activated ionic currents in GnRH-containing TN cells in zebrafish. The experiments were performed using acutely dissociated TN cells from the transgenic zebrafish Tg (GnRH-3::GFP). In the transgenic zebrafish, the TN cells express GFP under the transcriptional control of the zebrafish GnRH-3 promoter. In all of the GnRH-containing TN cells examined, we recorded both low-voltage-activated (LVA) and high-voltage-activated (HVA) calcium current (I(Ca)). The characteristics of the I(Ca) were similar to those described in other zebrafish cell types. However, the distribution patterns of the currents in the GnRH-containing TN cells were different in comparison to the distribution of the currents in other cell types. In addition, we characterized TTX-sensitive sodium current (I(Na)) and 4AP-sensitive and TEA-resistant potassium current (I(K)). The characteristics of voltage-activated I(Na) and I(K) in the GnRH-containing TN cells were similar to those described in other zebrafish cell types. Together, the data from this study revealed the electrophysiological properties of the GnRH-containing TN cells, thereby providing insight on the regulatory mechanisms of TN-signaling in animal physiology.
Collapse
Affiliation(s)
- Luoxiu Huang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
12
|
Zimov S, Yazulla S. Novel processes invaginate the pre-synaptic terminal of retinal bipolar cells. Cell Tissue Res 2008; 333:1-16. [PMID: 18449566 DOI: 10.1007/s00441-008-0611-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Mixed-rod cone bipolar (Mb) cells of goldfish retina have large synaptic terminals (10 microm in diameter) that make 60-90 ribbon synapses mostly onto amacrine cells and rarely onto ganglion cells and, in return, receive 300-400 synapses from gamma-aminobutyric acid (GABA)-ergic amacrine cells. Tissue viewed by electron microscopy revealed the presence of double-membrane-bound processes deep within Mb terminals. No membrane specializations were apparent on these invaginating processes, although rare vesicular fusion was observed. These invaginating dendrites were termed "InDents". Mb bipolar cells were identified by their immunoreactivity for protein kinase C. Double-label immunofluorescence with other cell-type-specific labels eliminated Müller cells, efferent fibers, other Mb bipolar cells, dopaminergic interplexiform cells, and somatostatin amacrine cells as a source of the InDents. Confocal analysis of double-labeled tissue clearly showed dendrites of GABA amacrine cells, backfilled ganglion cells, and dendrites containing PanNa immunoreactivity extending into and passing through Mb terminals. Nearly all Mb terminals showed evidence for the presence of InDents, indicating their common presence in goldfish retina. No PanNa immunoreactivity was found on GABA or ganglion cell InDents, suggesting that a subtype of glycine amacrine cell contained voltage-gated Na channels. Thus, potassium and calcium voltage-gated channels might be present on the InDents and on the Mb terminal membrane opposed to the InDents. In addition to synaptic signaling at ribbon and conventional synapses, Mb bipolar cells may exchange information with InDents by an alternative signaling mechanism.
Collapse
Affiliation(s)
- Sarah Zimov
- Graduate Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
13
|
Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L. Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 2007; 236:1339-46. [PMID: 17393486 DOI: 10.1002/dvdy.21130] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Dopamine plays important roles in the regulation of central nervous system (CNS) development and functions. In vertebrates, two families of dopamine receptors, collectively known as dopamine D1 and D2 receptors, have been identified. Recently, dopamine receptors have been targeted by pharmacological and therapeutic studies of neurological disorders, such as Parkinson's disease. Here, we report a study on the molecular characterization of dopamine D1 receptor in zebrafish (Danio rerio). We cloned the full-length cDNA of a zebrafish dopamine D1 receptor, designated as drd1. The sequence of drd1 shares high homology to the sequences of dopamine D1 receptors in mammalian, amphibian, and other fish species. drd1 is expressed in the CNS. The first drd1 expression was observed at approximately 30 hours postfertilization, at which time the expression was seen in the developing diencephalon and hindbrain. In developing retinas, the expression of drd1 was detected in the inner nuclear layer with the exception of the marginal zones. In adult retinas, drd1 expression was detected in most cell types in the inner and outer nuclear layers as well as ganglion cell layer. Differential expression of drd1 in developing and adult retinas may play various roles in regulating visual system functions.
Collapse
Affiliation(s)
- Ping Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu CJ, Gao Y, Li P, Li L. Synchronizing multiphasic circadian rhythms of rhodopsin promoter expression in rod photoreceptor cells. ACTA ACUST UNITED AC 2007; 210:676-84. [PMID: 17267653 DOI: 10.1242/jeb.02694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous circadian clocks regulate day-night rhythms of animal behavior and physiology. In zebrafish, the circadian clocks are located in the pineal gland and the retina. In the retina, each photoreceptor is considered a circadian oscillator. A critical question is whether the individual circadian oscillators are synchronized. If so, the mechanism that underlies the synchronization needs to be elucidated. We generated a transgenic zebrafish line that expresses short half-life GFP under the transcriptional control of the rhodopsin promoter. Time-lapse imaging of rhodopsin promoter-driven GFP expression revealed that during 24 h in constant darkness, rhodopsin promoter expression in rod photoreceptor cells fluctuated rhythmically. However, the pattern of fluctuation differed between individual cells. In some cells, peak expression was seen in the subjective early morning, whereas in other cells, peak expression was seen in the afternoon or at night. Light transiently decreased rhodopsin expression, thereby synchronizing the multiphasic circadian oscillation. The application of dopamine or dopamine D2 receptor agonist also synchronized the circadian rhythms of rhodopsin promoter expression. When the D2 receptors were pharmacologically blocked, light exposure produced no effect. This suggests that the synchronization of the circadian rhythms of rhodopsin promoter expression by light is mediated by dopamine D2 receptors. The mechanism that underlies the synchronization probably involves dopamine-mediated Ca2+ signaling pathways. Light, as well as dopamine, lowered Ca2+ influx into the rod cells, thereby resetting rhodopsin promoter expression to the initial phase.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
15
|
Villar-Cerviño V, Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Holstein GR, Martinelli GP, Rodicio MC, Anadón R. Presence of glutamate, glycine, and gamma-aminobutyric acid in the retina of the larval sea lamprey: comparative immunohistochemical study of classical neurotransmitters in larval and postmetamorphic retinas. J Comp Neurol 2007; 499:810-27. [PMID: 17048230 DOI: 10.1002/cne.21136] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurochemistry of the retina of the larval and postmetamorphic sea lamprey was studied via immunocytochemistry using antibodies directed against the major candidate neurotransmitters [glutamate, glycine, gamma-aminobutyric acid (GABA), aspartate, dopamine, serotonin] and the neurotransmitter-synthesizing enzyme tyrosine hydroxylase. Immunoreactivity to rod opsin and calretinin was also used to distinguish some retinal cells. Two retinal regions are present in larvae: the central retina, with opsin-immunoreactive photoreceptors, and the lateral retina, which lacks photoreceptors and is mainly neuroblastic. We observed calretinin-immunostained ganglion cells in both retinal regions; immunolabeled bipolar cells were detected in the central retina only. Glutamate immunoreactivity was present in photoreceptors, ganglion cells, and bipolar cells. Faint to moderate glycine immunostaining was observed in photoreceptors and some cells of the ganglion cell/inner plexiform layer. No GABA-immunolabeled perikarya were observed. GABA-immunoreactive centrifugal fibers were present in the central and lateral retina. These centrifugal fibers contacted glutamate-immunostained ganglion cells. No aspartate, serotonin, dopamine, or TH immunoreactivity was observed in larvae, whereas these molecules, as well as GABA, glycine, and glutamate, were detected in neurons of the retina of recently transformed lamprey. Immunoreactivity to GABA was observed in outer horizontal cells, some bipolar cells, and numerous amacrine cells, whereas immunoreactivity to glycine was found in amacrine cells and interplexiform cells. Dopamine and serotonin immunoreactivity was found in scattered amacrine cells. Amacrine and horizontal cells did not express classical neurotransmitters (with the possible exception of glycine) during larval life, so transmitter-expressing cells of the larval retina appear to participate only in the vertical processing pathway.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu CJ, Gao Y, Willis CL, Li P, Tiano JP, Nakamura PA, Hyde DR, Li L. Mitogen-associated protein kinase- and protein kinase A-dependent regulation of rhodopsin promoter expression in zebrafish rod photoreceptor cells. J Neurosci Res 2007; 85:488-96. [PMID: 17183589 DOI: 10.1002/jnr.21157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitogen-associated protein kinase (MAPK)- and protein kinase A (PKA)-dependent signal transductions play important roles in the regulation of gene expression. Both MAPK and PKA pathways can be activated by light exposure. In this study, we investigated the effect of light on MAPK and PKA signal transduction and their roles in the regulation of rhodopsin promoter expression by using transgenic zebrafish [Tg(rhod::GFP)]. The Tg(rhod::GFP) fish express short half-life GFP that is under the transcriptional control of the zebrafish rhodopsin promoter and can therefore be used for in vivo studies of rhodopsin gene transcription in live cells. Blue light plays a role in the regulation of rhodopsin promoter expression via an MAPK-mediated signal transduction cascade. Blue light excites cryptochromes (CRY), which activate the downstream PKC-dependent MAPK signal pathway. White light, on the other hand, regulates rhodopsin promoter expression via a G-protein-coupled cAMP-dependent PKA pathway. White light promotes dopamine release in the retina, which activates dopamine receptors and the downstream PKA pathway. Blocking MAPK signaling diminishes the blue light-induced increases in rhodopsin promoter expression, but this treatment has no effect on white light-mediated rhodopsin promoter expression. Conversely, blocking the PKA pathway diminishes the white light-induced rhodopsin promoter expression but does not affect rhodopsin promoter expression regulated by blue light. Together, the data suggest that MAPK and PKA regulate rhodopsin transcription through parallel signal transduction pathways.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang L, Maaswinkel H, Li L. Olfactoretinal centrifugal input modulates zebrafish retinal ganglion cell activity: a possible role for dopamine-mediated Ca2+ signalling pathways. J Physiol 2005; 569:939-48. [PMID: 16239263 PMCID: PMC1464265 DOI: 10.1113/jphysiol.2005.099531] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The vertebrate retina receives centrifugal input from the brain. In zebrafish, the major centrifugal input originates in the terminal nerve (TN). TN cell bodies are located in the olfactory bulb and ventral telencephalon. The TN projects axons to the retina where they branch in the inner plexiform layer (IPL) and synapse onto several inner retinal cell types, including dopaminergic interplexiform cells (DA-IPCs). This olfactoretinal centrifugal input plays a role in modulating retinal ganglion cell (RGC) activity, probably via dopamine-mediated Ca2+ signalling pathways. Normally, dopamine inhibits RGC firing by decreasing the inward Ca2+ current. Olfactory stimulation with amino acids decreases dopamine release in the retina, thereby reducing dopaminergic inhibition of RGCs. This model of olfacto-visual integration was directly tested by recording single-unit RGC activity in response to olfactory stimulation in the presence or absence of dopamine receptor blockers. Stimulation of the olfactory neurones increased RGC activity. However, this effect diminished when the dopamine D1 receptors were pharmacologically blocked. In isolated RGCs, the application of dopamine or a dopamine D1 receptor agonist decreased voltage-activated Ca2+ current and lowered Ca2+ influx. Together, the data suggest that olfactory input has a modulatory effect on RGC firing, and that this effect is mediated by dopamine D1 receptor-coupled Ca2+ signalling pathways.
Collapse
Affiliation(s)
- Luoxiu Huang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
18
|
Sekaran S, Cunningham J, Neal MJ, Hartell NA, Djamgoz MBA. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation. Eur J Neurosci 2005; 21:2199-208. [PMID: 15869516 DOI: 10.1111/j.1460-9568.2005.04051.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of indirect evidence have suggested that nitric oxide may play an important role during light adaptation of the vertebrate retina. We aimed to verify directly the effect of light on nitric oxide release in the isolated carp retina and to investigate the relationship between nitric oxide and dopamine, an established neuromodulator of retinal light adaptation. Using a biochemical nitric oxide assay, we found that steady or flicker light stimulation enhanced retinal nitric oxide production from a basal level. The metabotropic glutamate receptor agonist L-amino-4-phosphonobutyric acid, inhibited the light adaptation-induced nitric oxide production suggesting that the underlying cellular pathway involved centre-depolarizing bipolar cell activity. Application of exogenous dopamine to retinas in the dark significantly enhanced the basal production of nitric oxide and importantly, inhibition of endogenous dopaminergic activity completely suppressed the light-evoked nitric oxide release. The effect of dopamine was mediated through the D1 receptor subtype. Imaging of the nitric oxide-sensitive fluorescent indicator 4,5-diaminofluorescein di-acetate in retinal slices revealed that activation of D1 receptors resulted in nitric oxide production from two main spatial sources corresponding to the photoreceptor inner segment region and the inner nuclear layer. The results taken together would suggest that during the progression of retinal light adaptation there is a switch from dopaminergic to nitrergic control, probably to induce further neuromodulatory effects at higher levels of illumination and to enable more efficient spreading of the light adaptive signal.
Collapse
Affiliation(s)
- S Sekaran
- Department of Visual Neuroscience, Faculty of Medicine, Imperial College London, Charing Cross Campus, W6 8RF, UK.
| | | | | | | | | |
Collapse
|
19
|
Hayashida Y, Ishida AT. Dopamine receptor activation can reduce voltage-gated Na+ current by modulating both entry into and recovery from inactivation. J Neurophysiol 2005; 92:3134-41. [PMID: 15486428 PMCID: PMC3236027 DOI: 10.1152/jn.00526.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested whether dopamine receptor activation modulates the voltage-gated Na+ current of goldfish retinal ganglion cells, using a fast voltage-clamp amplifier, perforated-patch whole cell mode, and a physiological extracellular Na+ concentration. As found in other cells, activators of D1-type dopamine receptors and of protein kinase A reduced the amplitude of current activated by depolarizations from resting potential without altering the current kinetics or activation range. However, D1-type dopamine receptor activation also accelerated the rate of entry into inactivation during subthreshold depolarizations and slowed the rate of recovery from inactivation after single, brief depolarizations. Our results provide the first evidence in any preparation that D1-type receptor activation can produce both of these latter effects.
Collapse
Affiliation(s)
- Yuki Hayashida
- Section of Neurobiology, Physiology, and Behavior, University of California, One Shields Ave., Davis, CA 95616-8519, USA
| | | |
Collapse
|
20
|
Gao Y, Li P, Li L. Transgenic zebrafish that express tyrosine hydroxylase promoter in inner retinal cells. Dev Dyn 2005; 233:921-9. [PMID: 15895407 DOI: 10.1002/dvdy.20416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have generated a transgenic zebrafish line [Tg(Th:GFP)] that expresses green fluorescence proteins (GFP) driven by rat tyrosine hydroxylase (TH) promoter. In zebrafish, the transgene was expressed as early as 16 hr postfertilization (hpf). The first transgene expression was detected in the midbrain. Within a few hours of development, the expression spread to the forebrain and hindbrain. In the retina, the first transgene expression was detected at approximately 40 hpf, at which time a single GFP-positive cell was seen in the ventral-nasal patch of the retina. In late development, GFP spread across the inner retina. GFP was found in retinal cells that expressed TH or phenylethanolamine N-methyl-transferase (PNMT), the first and last enzymes for synthesis of catecholamine, respectively. This suggests that the transgene is expressed in catecholaminergic neurons. Of interest, GFP was also detected in some retinal cells that release gamma-aminobutyric acid. These latter data suggest that the transgene may also be expressed in noncatecholaminergic cells.
Collapse
Affiliation(s)
- Yan Gao
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
21
|
Mora-Ferrer C, Behrend K. Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG. Vision Res 2004; 44:2067-81. [PMID: 15149838 DOI: 10.1016/j.visres.2003.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 10/23/2003] [Indexed: 11/25/2022]
Abstract
The influence of dopamine (DA) through either D1- or D2-dopamine receptors (D1-/D2-R) onto temporal transfer properties of the retina has been investigated using the ERG. Single flash responses and flicker responses were measured in the vitreous under photopic illumination conditions after application of either D1-/D2-R agonists or antagonists. All DA-R drugs did change the single flash responses, but only blockade of D2-R or activation of D1-R also changed the temporal transfer properties. In the Bode plot the gain characteristic was changed and thereby the upper limit frequency reduced. The action of DA is discussed on the base of a membrane resonance model in the outer retina versus a feed-forward inhibition model in the inner retina.
Collapse
Affiliation(s)
- Carlos Mora-Ferrer
- Inst. Zoologie, Abt. III, J. Gutenberg Universität, Colonel Kleinmann Weg 2, SB II 55099 Mainz, Germany.
| | | |
Collapse
|
22
|
Cameron DA, Carney LH. Cellular patterns in the inner retina of adult zebrafish: quantitative analyses and a computational model of their formation. J Comp Neurol 2004; 471:11-25. [PMID: 14983472 DOI: 10.1002/cne.11040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms that control cellular pattern formation in the growing vertebrate central nervous system are poorly understood. In an effort to reveal mechanistic rules of cellular pattern formation in the central nervous system, quantitative spatial analysis and computational modeling techniques were applied to cellular patterns in the inner retina of the adult zebrafish. All the analyzed cell types were arrayed in nonrandom patterns tending toward regularity; specifically, they were locally anticlustered. Over relatively large spatial scales, only one cell type exhibited consistent evidence for pattern regularity, suggesting that cellular pattern formation in the inner retina is dominated by local anticlustering mechanisms. Cross-correlation analyses revealed independence between the patterns of different cell types, suggesting that cellular pattern formation may involve multiple, independent, homotypic anticlustering mechanisms. A computational model of cellular pattern formation in the growing zebrafish retina was developed, which featured an inhibitory, homotypic signaling mechanism, arising from differentiated cells, that controlled the spatial profile of cell fate decisions. By adjusting the spatial profile of this decaying-exponential signal, the model provided good estimates of all the cellular patterns that were observed in vivo, as objectively judged by quantitative spatial pattern analyses. The results support the hypothesis that cellular pattern formation in the inner retina of zebrafish is dominated by a set of anticlustering mechanisms that may control events at, or near, the spatiotemporal point of cell fate decision.
Collapse
Affiliation(s)
- David A Cameron
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, New York 13210, USA.
| | | |
Collapse
|
23
|
Ribelayga C, Mangel SC. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina. J Comp Neurol 2003; 467:243-53. [PMID: 14595771 DOI: 10.1002/cne.10927] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In fish and other vertebrate retinas, although dopamine release is regulated by both light and an endogenous circadian (24-hour) clock, light increases dopamine release to a greater extent than the clock. The clock increases dopamine release during the subjective day so that D2-like receptors are activated. It is not known, however, whether the retinal clock also activates D1 receptors, which display a much lower sensitivity to dopamine in intact tissue. Because activation of the D1 receptors on fish cone horizontal (H1) cells uncouples the gap junctions between the cells, we studied whether the clock regulates the extent of biocytin tracer coupling in the goldfish retina. Tracer coupling between H1 cells was extensive under dark-adapted conditions (low scotopic range) and similar in the subjective day, subjective night, day, and night. An average of approximately 180 cells were coupled in each dark-adapted condition. However, bright light stimulation or application of the D1 agonist SKF38393 (10 microM) dramatically reduced H1 cell coupling. The D2 agonist quinpirole (1 microM) or application of the D1 antagonist SCH23390 (10 microM) and/or the D2 antagonist spiperone (10 microM) had no effect on H1 cell coupling in dark-adapted retinas. These observations demonstrate that H1 cell gap junctional coupling and thus D1 receptor activity are not affected by endogenous dopamine under dark-adapted conditions. The results suggest that two different dopamine systems are present in the goldfish retina. One system is controlled by an endogenous clock that activates low threshold D2-like receptors in the day, whereas the second system is controlled by light and involves activation of higher threshold D1 receptors.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
24
|
Maaswinkel H, Li L. Olfactory input increases visual sensitivity in zebrafish: a possible function for the terminal nerve and dopaminergic interplexiform cells. J Exp Biol 2003; 206:2201-9. [PMID: 12771169 DOI: 10.1242/jeb.00397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centrifugal innervation of the neural retina has been documented in many species. In zebrafish Danio rerio, the only so-far described centrifugal pathway originates from terminal nerve (TN) cell bodies that are located in the olfactory bulb. Most of the TN axons terminate in the forebrain and midbrain, but some project via the optic nerve to the neural retina, where they synapse onto dopaminergic interplexiform cells (DA-IPCs). While the anatomical pathway between the olfactory and visual organs has been described, it is unknown if and how olfactory signals influence visual system functions. We demonstrate here that olfactory input is involved in the modulation of visual sensitivity in zebrafish. As determined by a behavioral assay and by electroretinographic (ERG) recording, zebrafish visual sensitivity was increased upon presentation of amino acids as olfactory stimuli. This effect, however, was observed only in the early morning hours when zebrafish are least sensitive to light. The effect of olfactory input on vision was eliminated after lesion of the olfactory bulbs or after the destruction of DA-IPCs. Intraocular injections of a dopamine D(2) but not a D(1) receptor antagonist blocked the effect of olfactory input on visual sensitivity. Although we cannot exclude the involvement of other anatomical pathways, our data suggest that the TN and DA-IPCs are the prime candidates for olfactory modulation of visual sensitivity.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Departments of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
25
|
Abstract
Mutagenesis screens in zebrafish have uncovered several hundred mutant alleles affecting the development of the retina and established the zebrafish as one of the leading models of vertebrate eye development. In addition to forward genetic mutagenesis approaches, gene function in the zebrafish embryo is being studied using several reverse genetic techniques. Some of these rely on the overexpression of a gene product, others take advantage of antisense oligonucleotides to block function of selected loci. Here we describe these methods in the context of the developing eye.
Collapse
Affiliation(s)
- Jarema Malicki
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
26
|
Ribelayga C, Wang Y, Mangel SC. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. J Physiol 2002; 544:801-16. [PMID: 12411525 PMCID: PMC2290614 DOI: 10.1113/jphysiol.2002.023671] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A circadian (24-hour) clock regulates the light responses of fish cone horizontal cells, second order neurones in the retina that receive synaptic contact from cones and not from rods. Due to the action of the clock, cone horizontal cells are driven by cones in the day, but primarily driven by rods at night. We show here that dopamine, a retinal neurotransmitter, acts as a clock signal for the day by increasing cone input and decreasing rod input to cone horizontal cells. The amount of endogenous dopamine released from in vitro retinae was greater during the subjective day than the subjective night. Application of dopamine or quinpirole, a dopamine D(2)-like agonist, during the subjective night increased cone input and eliminated rod input to the cells, a state usually observed during the subjective day. In contrast, application of spiperone, a D(2)-like antagonist, or forskolin, an activator of adenylyl cyclase, during the subjective day reduced cone input and increased rod input. SCH23390, a D(1) antagonist, had no effect. Application of R(p)-cAMPS, an inhibitor of cAMP-dependent protein kinase, or octanol, an alcohol that uncouples gap junctions, during the night increased cone input and decreased rod input. Because D(2)-like receptors are on photoreceptor cells, but not horizontal cells, the results suggest that the clock-induced increase in dopamine release during the day activates D(2)-like receptors on photoreceptor cells. The resultant decrease in intracellular cyclic AMP and protein kinase A activation then mediates the increase in cone input and decrease in rod input.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham, 35294, USA
| | | | | |
Collapse
|
27
|
Haamedi SN, Djamgoz MBA. Dopamine and nitric oxide control both flickering and steady-light-induced cone contraction and horizontal cell spinule formation in the teleost (carp) retina: serial interaction of dopamine and nitric oxide. J Comp Neurol 2002; 449:120-8. [PMID: 12115683 DOI: 10.1002/cne.10278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adaptation to ambient light, which is an important characteristic of the vertebrate visual system, involves cellular and subcellular (synaptic) plasticity of the retina. The present study investigated dopamine (DA) and nitric oxide (NO) as possible neurochemical modulators controlling cone photomechanical movements (PMMs) and horizontal cell (HC) spinules in relation to steady and flickering light adaptation in the carp retina. Haloperidol (HAL; a nonspecific DA receptor blocker) or cPTIO (a NO scavenger) largely inhibited the cone PMMs and HC spinule formation induced by either steady or flickering light. These results suggested that both DA and NO could be involved in the light-adaptation changes induced by either pattern of input and that DA and NO effects may not be completely independent. The possibility that NO and DA interact serially was evaluated pharmacologically by cross-antagonist application (i.e., DA + cPTIO or NO + HAL). When a NO donor was coapplied with HAL to dark-adapted eyecups, normal light-adaptive cone PMMs and HC spinules occurred. In contrast, when DA was applied in the presence of cPTIO, the dark-adapted state persisted. It was concluded 1) that DA and NO are both light-adaptive neurochemicals, released in the retina during either steady or flickering light; 2) that the effects of DA and NO on light-adaptive cone PMMs and HC spinules do not occur in parallel; and 3) that NO and DA act mainly in series, specifically as follows: Light --> DA --> NO --> Cone PMMs + HC spinules.
Collapse
Affiliation(s)
- Sakineh N Haamedi
- Neurobiology Group, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|
28
|
Abstract
Vertebrates can detect light intensity changes in vastly different photic environments, in part, because postreceptoral neurons undergo "network adaptation." Previous data implicated dopaminergic, cAMP-dependent inhibition of retinal ganglion cells in this process yet left unclear how this occurs and whether this occurs in darkness versus light. To test for light- and dopamine-dependent changes in ganglion cell cAMP levels in situ, we immunostained dark- and light-adapted retinas with anti-cAMP antisera in the presence and absence of various dopamine receptor ligands. To test for direct effects of dopamine receptor ligands and membrane-permeable protein kinase ligands on ganglion cell excitability, we recorded spikes from isolated ganglion cells in perforated-patch whole-cell mode before and during application of these agents by microperfusion. Our immunostainings show that light, endogenous dopamine, and exogenous dopamine elevate ganglion cell cAMP levels in situ by activating D1-type dopamine receptors. Our spike recordings show that D1-type agonists and 8-bromo cAMP reduce spike frequency and curtail sustained spike firing and that these effects entail protein kinase A activation. These effects resemble those of background light on ganglion cell responses to light flashes. Network adaptation could thus be produced, to some extent, by dopaminergic modulation of ganglion cell spike generation, a mechanism distinct from modulation of transmitter release onto ganglion cells or of transmitter-gated currents in ganglion cells. Combining these observations with results obtained in studies of photoreceptor, bipolar, and horizontal cells indicates that all three layers of neurons in the retina are equipped with mechanisms for adaptation to ambient light intensity.
Collapse
|
29
|
Mangel SC. Circadian clock regulation of neuronal light responses in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:505-18. [PMID: 11420966 DOI: 10.1016/s0079-6123(01)31040-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S C Mangel
- Department of Neurobiology, University of Alabama School of Medicine, CIRC 425, 1719 6th Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Yazulla S, Studholme KM, Fan SF, Mora-Ferrer C. Neuromodulation of voltage-dependent K+ channels in bipolar cells: immunocytochemical and electrophysiological studies. PROGRESS IN BRAIN RESEARCH 2001; 131:201-13. [PMID: 11420941 DOI: 10.1016/s0079-6123(01)31017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, SUNY Stony Brook, NY 11794-5230, USA.
| | | | | | | |
Collapse
|
31
|
Stenkamp DL, Powers MK, Carney LH, Cameron DA. Evidence for two distinct mechanisms of neurogenesis and cellular pattern formation in regenerated goldfish retinas. J Comp Neurol 2001; 431:363-81. [PMID: 11223808 DOI: 10.1002/1096-9861(20010319)431:4<363::aid-cne1076>3.0.co;2-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After its destruction by intraocular injection of ouabain, the goldfish retina regenerates, but little is known about the histogenesis of the new tissue, including the structure and formation of regenerated cell mosaic patterns. In an effort to determine how retinal cells are generated and spatially organized within retina regenerated after ouabain injection, in situ hybridization and immunocytochemical techniques were combined with computational analyses of two-dimensional spatial patterns of identified neurons. Labeling with specific opsin riboprobes revealed two distinct cone patterns in the ouabain-injected eyes, each of which was different from the relatively orderly cone patterns of native retina. Central, regenerated regions had sparse aggregates of cones, and a relatively lower density of each cone type. Peripheral regions of experimental retina, likely derived from the circumferential germinal zone, had high densities of all cone types, each of which tended to be distributed randomly. The spatial patterns of inner retinal neurons in experimental eyes were also disorganized with respect to native retina. These results indicate that although some aspects of retinal regeneration resemble normal retinal development and growth, ouabain-induced regeneration does not produce well-organized mosaics of neurons, indicating a failure of the developmental interactions needed for proper pattern formation, which in turn could compromise visual recovery. Furthermore, the distinct cone patterns in different regions of experimental retina support the hypothesis that new goldfish retina arises via two spatially and cellularly distinct mechanisms after exposure to ouabain.
Collapse
Affiliation(s)
- D L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA.
| | | | | | | |
Collapse
|
32
|
Marc RE, Liu W. Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses. J Comp Neurol 2000; 425:560-82. [PMID: 10975880 DOI: 10.1002/1096-9861(20001002)425:4<560::aid-cne7>3.0.co;2-d] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Presynaptic gamma-aminobutyrate-immunoreactive (GABA+) profiles were mapped in the cyprinid retina with overlay microscopy: a fusion of electron and optical imaging affording high-contrast ultrastructural and immunocytochemical visualization. GABA+ synapses, deriving primarily from amacrine cells (ACs), compose 92% of conventional synapses and 98% of the input to bipolar cells (BCs) in the inner plexiform layer. GABA+ AC synapses, the sign-inverting elements of signal processing, are deployed in micronetworks and distinctive synaptic source/target topologies. Nested feedback micronetworks are formed by three types of links (BC --> AC, reciprocal BC <-- AC, and AC --> AC synapses) arranged as nested BC<--> [AC --> AC] loops. Circuits using nested feedback can possess better temporal performance than those using simple reciprocal feedback loops. Concatenated GABA+ micronetworks of AC --> AC and AC --> AC --> AC chains are common and must be key elements for lateral spatial, temporal, and spectral signal processing. Concatenated inhibitions may represent exceptionally stable, low-gain, sign-conserving devices for receptive field construction. Some chain elements are GABA immunonegative (GABA-) and are, thus, likely glycinergic synapses. GABA+ synaptic baskets target the somas of certain GABA+ and GABA- cells, resembling cortical axosomatic synapses. Finally, all myelinated intraretinal profiles are GABA+, suggesting that some efferent systems are sources of GABAergic inhibition in the cyprinid retina and may comprise all axosomatic synapses. These micronetworks are likely the fundamental elements for receptive field shaping in the inner plexiform layer, although few receptive field models incorporate them as functional components. Conversely, simple feedback and feedforward synapses may often be chimeras: the result of an incomplete view of synaptic topology.
Collapse
Affiliation(s)
- R E Marc
- John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
33
|
Feigenspan A, Gustincich S, Raviola E. Pharmacology of GABA(A) receptors of retinal dopaminergic neurons. J Neurophysiol 2000; 84:1697-707. [PMID: 11024062 DOI: 10.1152/jn.2000.84.4.1697] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When the vertebrate retina is stimulated by light, a class of amacrine or interplexiform cells release dopamine, a modulator responsible for neural adaptation to light. In the intact retina, dopamine release can be pharmacologically manipulated with agonists and antagonists at GABA(A) receptors, and dopaminergic (DA) cells receive input from GABAergic amacrines. Because there are only 450 DA cells in each mouse retina and they cannot be distinguished in the living state from other cells on the basis of their morphology, we used transgenic technology to label DA cells with human placental alkaline phosphatase, an enzyme that resides on the outer surface of the cell membrane. We could therefore identify DA cells in vitro after dissociation of the retina and investigate their activity with whole cell voltage clamp. We describe here the pharmacological properties of the GABA(A) receptors of solitary DA cells. GABA application induces a large inward current carried by chloride ions. The receptors are of the GABA(A) type because the GABA-evoked current is blocked by bicuculline. Their affinity for GABA is very high with an EC(50) value of 7.4 microM. Co-application of benzodiazepine receptor ligands causes a strong increase in the peak current induced by GABA (maximal enhancement: CL-218872 220%; flunitrazepam 214%; zolpidem 348%) proving that DA cells express a type I benzodiazepine-receptor (BZ1). GABA-evoked currents are inhibited by Zn(2+) with an IC(50) of 58.9 +/- 8.9 microM. Furthermore, these receptors are strongly potentiated by the modulator alphaxalone with an EC(50) of 340 +/- 4 nM. The allosteric modulator loreclezole increases GABA receptor currents by 43% (1 microM) and by 107% (10 microM). Using outside-out patches, we measured in single-channel recordings a main conductance (29 pS) and two subconductance (20 and 9 pS) states. We have previously shown by single-cell RT-PCR and immunocytochemistry that DA cells express seven different GABA(A) receptor subunits (alpha1, alpha3, alpha4, beta1, beta3, gamma1, gamma2(S), and gamma2(L)) and by immunocytochemistry that all subunits are expressed in the intact retina. We show here that at least alpha1, beta3 and gamma2 subunits are assembled into functional receptors.
Collapse
Affiliation(s)
- A Feigenspan
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
34
|
Vandenbranden CA, Yazulla S, Studholme KM, Kamphuis W, Kamermans M. Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina. J Comp Neurol 2000; 423:440-51. [PMID: 10870084 DOI: 10.1002/1096-9861(20000731)423:3<440::aid-cne7>3.0.co;2-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the retina of vertebrates. Electrophysiological experiments in goldfish and salamander have shown that neuronal glutamate transporters play an important role in the clearance of glutamate from cone synaptic clefts. In this study, the localization of the glutamate transporter GLT-1 has been investigated immunocytochemically at the light and electron microscopical levels in the goldfish retina using a GLT-1-specific antibody. GLT immunoreactivity (IR) was observed at the light microscopical level in Müller cells, bipolar cells, the outer plexiform layer (OPL), and the inner plexiform layer (IPL). At the electron microscopical level, membrane-bound and cytoplasmic GLT-IR in the OPL was located in finger-like protrusions of the cone terminal located near the invaginating postsynaptic processes of bipolar and horizontal cells. GLT-IR was not observed in the vicinity of synaptic ribbons. This location of GLT-1 allows modulation of the glutamate concentration in the synaptic cleft, thereby shaping the dynamics of synaptic transmission between cones and second-order neurons. In the inner IPL, GLT-IR was observed in the cytoplasm and was membrane bound in mixed rod/cone bipolar cell terminals and cone bipolar cell terminals. The membrane-bound GLT-1 was generally observed at some distance from the synaptic ribbon. The morphology of the bipolar cell terminal together with the localization of GLT-1 suggests that at least these glutamate transporters are not primarily involved in rapid uptake of glutamate release by the bipolar cells. The GLT-IR in the cytoplasm of Müller cells was located throughout the entire goldfish retina from the outer limiting membrane to the inner limiting membrane. The location of GLT-1 in Müller cells is consistent with the role of Müller cells in converting glutamate to glutamine.
Collapse
Affiliation(s)
- C A Vandenbranden
- Research Unit, Retinal Signal Processing, The Netherlands Ophthalmic Research Institute, Amsterdam
| | | | | | | | | |
Collapse
|
35
|
Abstract
The visual sensitivity of zebrafish in which the retinal dopaminergic interplexiform cells (DA-IPCs) were destroyed by 6-hydroxydopamine was measured behaviorally. During the first 6-8 min of dark adaptation, visual thresholds of DA-IPC-depleted animals were similar to those of control animals. Thereafter, their visual thresholds were elevated so that by 14-18 min of dark adaptation, they were 2-3 log units above those of control animals. In DA-IPC-depleted animals, the electroretinogram was normal in terms of light sensitivity and waveform, but the light threshold for eliciting a ganglion cell discharge was raised by 1.8 log units as compared with control animals. No obvious rod system function was detected in DA-IPC-depleted animals as measured behaviorally. Partial rescue of the behavioral visual sensitivity loss in DA-IPC-depleted animals occurred when dopamine or a long-acting dopamine agonist (2-amino-6, 7-dihydroxy-1, 2, 3, 4-tetrahydronaphthalene hydrobromide) were injected intraocularly. Our data suggest that the principal visual defect shown by DA-IPC-depleted animals is attributable to effects occurring in the inner retina, mainly on rod signals. We also show that dopamine is involved in mediating the effect of the circadian clock on visual sensitivity.
Collapse
|
36
|
Cameron DA, Carney LH. Cell mosaic patterns in the native and regenerated inner retina of zebrafish: Implications for retinal assembly. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000117)416:3<356::aid-cne7>3.0.co;2-m] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Abstract
Dopamine, a neuromodulator in the vertebrate retina, is involved in numerous functions related to light adaptation. However, unlike in mammals, localization of retinal D1-dopamine receptors in nonmammalian vertebrates has been hampered due to a lack of antisera. To address this problem, an antiserum against the 18 C-terminal amino acids of the goldfish D1 receptor (gfD1r) was generated in chicken eggs and tested in retinae of goldfish and rat, and rat caudate putamen, by using immunoblots and light microscopic immunocytochemistry. No labeling was observed in any tissue or immunoblots with preabsorbed gfD1r antiserum. Immunoblot analysis of goldfish retina revealed a single band at about 101 kDa. The patterns of gfD1r immunoreactivity (gfD1r-IR), found in rat caudate putamen and rat retina were virtually identical to that previously reported with other D1-receptor ligands and antisera. In goldfish retina, gfD1r-IR was most intense over cell bodies in the ganglion cell layer, amacrine cells in the proximal inner nuclear layer (INL), and bipolar cells in the distal INL. Weaker gfD1r-IR was observed over horizontal cell bodies and both plexiform layers. Müller cells and axons of cone photoreceptors were labeled as well. Double labeling showed that all protein kinase C-immunoreactive bipolar cells (ON type) were gfD1r-IR on the soma, axon terminal, and dendrites. All glutamate decarboxylase-immunoreactive (i.e., gamma-aminobutyric acid utilizing) amacrine cells and horizontal cells were gfD1r-IR. Retinal D1r distribution is more extensive than dopamine neuron innervation, but is consistent with physiologic estimates of dopamine function, suggestive of both wiring and volume transmission of dopamine in the retina. The gfD1r antiserum displays cross-reactivity to dopamine receptors in a mammal and a nonmammal and should prove useful in future studies of dopaminergic systems.
Collapse
Affiliation(s)
- C Mora-Ferrer
- Department of Neurobiology and Behavior, SUNY, Stony Brook, New York 11794-5230, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Giant synaptic terminals of goldfish bipolar neurons allow direct studies of presynaptic mechanisms underlying neurotransmitter release and its modulation. Calcium influx via L-type calcium channels of the terminal triggers synaptic vesicle exocytosis, which can be monitored in isolated terminals by means of the associated changes in membrane capacitance. Information about the kinetics and calcium dependence of synaptic exocytosis has been obtained from capacitance measurements in these ribbon-type synaptic terminals.
Collapse
Affiliation(s)
- G Matthews
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794-5230, USA.
| |
Collapse
|
39
|
Nguyen-Legros J, Versaux-Botteri C, Vernier P. Dopamine receptor localization in the mammalian retina. Mol Neurobiol 1999; 19:181-204. [PMID: 10495103 DOI: 10.1007/bf02821713] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
After a short history of dopamine receptor discovery in the retina and a survey on dopamine receptor types and subtypes, the distribution of dopamine receptors in the retinal cells is described and correlated with their possible role in cell and retinal physiology. All the retinal cells probably bear dopamine receptors. For example, the recently discovered D1B receptor has a possible role in modulating phagocytosis by the pigment epithelium and a D4 receptor is likely to be involved in the inhibition of melatonin synthesis in photoreceptors. Dopamine uncouples horizontal and amacrine cell-gap junctions through D1-like receptors. Dopamine modulates the release of other transmitters by subpopulations of amacrine cells, including that of dopamine through a D2 autoreceptor. Ganglion cells express dopamine receptors, the role of which is still uncertain. Müller cells also are affected by dopamine. A puzzling action of dopamine is observed in the ciliary retina, in which D1- and D2-like receptors are likely to be involved in the cyclic regulation of intraocular pressure. Most of the dopaminergic actions appear to be extrasynaptic and the signaling pathways remain uncertain. Further studies are needed to better understand the multiple actions of dopamine in the retina, especially those that implicate rhythmic regulations.
Collapse
Affiliation(s)
- J Nguyen-Legros
- Laboratoire de Neurocytologie Oculaire, Inserm U 86, Paris, France
| | | | | |
Collapse
|
40
|
Yazulla S, Studholme KM. Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells. J Comp Neurol 1998; 396:131-40. [PMID: 9623892 DOI: 10.1002/(sici)1096-9861(19980622)396:1<131::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distributions of Shaker subfamily Kv1.1 and Kv1.2 and Shab subfamily Kv2.1 subunits of voltage-gated K+ channels were determined in the retina and ON bipolar cells of goldfish by using double-label light and electron microscopic immunocytochemistry. All labeling to be described was blocked by preabsorption of the primary antibodies with antigen. The retina was labeled throughout with all three antibodies. However, labeling was densest in the inner plexiform layer for Kv1.1, more concentrated in the outer nuclear layer for Kv2.1, and uniform throughout for Kv1.2. All ON mixed rod/cone (mb) and cone (cb) bipolar somata and the proximal portions of their axons and dendrites were labeled for anti-Kv1.1, Kv1.2, and Kv2.1. Labeling of axons rarely extended over the mb axon terminal. Only Kv1.2 antibodies labeled mb bipolar cell dendrites in the outer plexiform layer. No evidence for Kv1.1, 1.2, or 2.1 antibody labeling of OFF bipolar cells was found. Ultrastructurally, Kv1.2-immunoreactivity was associated with the plasma membrane of bipolar cell bodies and with dendrites that make narrow-cleft junctions with cone terminals (ON-type). Kv immunoreactivity was not found associated with presynaptic membranes in the inner plexiform layer and was found only rarely with membranes, postsynaptic to an amacrine cell process. Although both Shaker and Shab subfamilies include delayed rectifiers, their activation properties differ, suggesting differential modulation of K+ conductances in bipolar cells based not only on the presence or absence of rod photoreceptor input but also whether the bipolar cells are of the ON or OFF type.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, University at Stony Brook, New York 11794-5230, USA.
| | | |
Collapse
|
41
|
Wang Y, Harsanyi K, Mangel SC. Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J Neurophysiol 1997; 78:439-49. [PMID: 9242292 DOI: 10.1152/jn.1997.78.1.439] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the fish retina, horizontal cell electrical coupling and light responsiveness is regulated by activation of dopamine D1 receptors that are located on the horizontal cells themselves. The effects of dopamine and dopamine D2 receptor agonists and antagonists on cone horizontal cell light responses were studied in in vitro superfused goldfish retinas. Horizontal cell light responses and electrical coupling were assessed by monitoring responses to full-field stimuli and to small, centered (0.4 mm diam) spots of light, respectively. Dopamine (0.2-10 microM) application uncoupled horizontal cells and decreased their responses to full-field stimuli. Application of the D2 antagonist eticlopride (10-50 microM) produced similar effects, whereas quinpirole (0.1-10 microM), a D2 agonist, had the opposite effects. The uncoupling effect of eticlopride was blocked by prior application of SCH23390 (10 microM), a D1 receptor antagonist, and was eliminated after destruction of dopaminergic neurons by prior treatment of the retinas with 6-hydroxydopamine. The effects of these D2 drugs were observed following flickering light stimulation, but were not observed following sustained light stimulation. Application of the D2 antagonists sulpiride (0.5-20 microM) and spiperone (0.25-10 microM) uncoupled horizontal cells when the total concentration of divalent cations (Mg2+ and Ca2+) in the Ringer solution was 1.1 mM. However, when the concentration of divalent cations was 0.2 mM, spiperone had no effect on the horizontal cells and sulpiride increased coupling. In contrast, eticlopride uncoupled the cells and decreased their light responsiveness irrespective of the concentration of divalent cations. The effects of quinpirole also depended on the concentration of divalent cations; its coupling effect was reduced when the divalent cation concentration was increased from 0.2 to 1.0 mM. The results suggest that activation of D2 receptors in the fish retina by endogenous dopamine decreases dopamine release and is greater after flickering compared with sustained light stimulation. These D2 receptors thus function as presynaptic autoreceptors that inhibit dopamine release from dopaminergic cells. In addition, the results also indicate that the effectiveness of some D2 drugs at these receptors is dependent on the concentration of divalent cations.
Collapse
Affiliation(s)
- Y Wang
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham 35294, USA
| | | | | |
Collapse
|
42
|
Yazulla S, Studholme KM. Differential reinnervation of retinal bipolar cell dendrites and axon terminals by dopamine interplexiform cells following dopamine depletion with 6-OHDA. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970616)382:4<535::aid-cne7>3.0.co;2-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Nguyen-Legros J, Simon A, Caillé I, Bloch B. Immunocytochemical localization of dopamine D1 receptors in the retina of mammals. Vis Neurosci 1997; 14:545-51. [PMID: 9194321 DOI: 10.1017/s0952523800012207] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopamine is one of the major neurotransmitters in the retina. It is released from amacrine and interplexiform cells into both inner (IPL) and outer (OPL) plexiform layers. Several dopaminergic actions are known to occur through D1 receptors (D1R) but the precise location of these receptors has not been established. An antibody that recognizes the intracytoplasmic C-terminal of the rat D1R was used to detect D1R, immunohistochemically, in rats (Wistar and RCS), mouse, hamster, and macaque monkey retinas. The OPL was heavily stained in each species, consistent with the known actions of dopamine on horizontal cells. Three to five bands were observed in the IPL, depending on species. Three were in the a sublayer, the outermost of which was close to the amacrine cell layer, and may represent the massive dopamine input to the AII rod-amacrine cells. As observed in mice, where bipolar cells are D1-immunoreactive, the band located in sublayer 3 of the IPL may contain cone-bipolar cell terminals. A band of D1R-immunoreactivity in the b sublayer of the IPL contains ON-bipolar cell terminals and a second site of interaction between dopaminergic cells and the AII amacrine cells. This sublayer was absent from the RCS rat retina, suggesting a severe impairment of the rod-driven pathway following rod degeneration in these mutant rats. Cells in the ganglion cell layer exhibited relatively heavy staining, and may be ganglion cells or displaced amacrine cells. Some extrasynaptic localizations of D1R in the retina are suggested.
Collapse
Affiliation(s)
- J Nguyen-Legros
- INSERM U-86, Laboratoire de NeuroCytologie Oculaire, Paris, France
| | | | | | | |
Collapse
|
44
|
Kröger RH, Wagner HJ. Horizontal cell spinule dynamics in fish are affected by rearing in monochromatic light. Vision Res 1996; 36:3879-89. [PMID: 9068841 DOI: 10.1016/s0042-6989(96)00132-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Blue acaras (Aequidens pulcher, Cichlidae) were reared for 1 yr in white or monochromatic "red", "green" and "blue" lights to study the function and control mechanisms of horizontal cell (HC) spinules in the synaptic pedicles of cones. Ratios of spinules per synaptic ribbon (S/R) were determined in tangential sections in both single and double cones. We found that the S/R ratios in light adapted retinae decreased with decreasing wavelength of the rearing light in all cone types. Conversely, there was an increasing number of incompletely formed spinules with the highest frequency in the blue light group. Dark adaptation resulted in the complete degradation of mature spinules. However, significant numbers of incompletely degraded spinules were observed in the group reared in blue light. Fish reared in blue light which were transferred to white light formed mature spinules when light adapted and still had vestigial spinules when dark adapted. The mechanisms of spinule formation and degradation and the control of spinule dynamics appear to be fully developed in fish reared in monochromatic light. However, long-term chromatic deprivation seems to induce a compensatory modulation of spinule dynamics. A working hypothesis is formulated that interprets the observed effects as manifestations of differences in the activition of dopaminergic interplexiform cells (light adapted) and the sensitivity to glutamate of HCs (dark adapted). Our findings are consistent with the hypothesis that spinules are involved in sign-inverting feedback transmission from HCs to cones.
Collapse
Affiliation(s)
- R H Kröger
- Anatomisches Institut, Universität Tübingen, Germany
| | | |
Collapse
|
45
|
Yazulla S, Lin ZS, Studholme KM. Dopaminergic control of light-adaptive synaptic plasticity and role in goldfish visual behavior. Vision Res 1996; 36:4045-57. [PMID: 9068857 DOI: 10.1016/s0042-6989(96)00128-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dopamine has been implicated in processes of retinal light and dark adaptation. In goldfish retina, horizontal cell dendrites elaborate neurite processes (spinules) into cone terminals, in a light- and dopamine-dependent manner. However, the functions of retinal dopamine and the horizontal cell spinules in visual behavior are unknown. These issues were addressed in behavioral, electroretinographic, and anatomical studies of normal fish and those with unilateral depletion of retinal dopamine induced by intraocular (i.o.) injections with 6-hydroxydopamine (6-OHDA). Dopamine interplexiform cells (DA-IPC) disappear within 2 weeks after 6-OHDA injection; cell bodies appear at the marginal zone within 6 weeks at which time neurites slowly reinnervate the retina with a sparse plexus over the next 12 months. We found that dopamine depletion increased light sensitivity at photopic but not scotopic backgrounds by 2.5 log units, an effect mimicked by i.o. injections of dopamine D1 and D2 antagonists. The ERG b-wave increment thresholds were the same for control and dopamine depleted eyes, indicating a normal transition from rod to cone systems in the ON pathway. Light-dependent spinule formation was reduced by about 60% in dopamine-depleted retinas, but returned to normal by 3 months and 9 months after injection in the entire retina, even areas not directly innervated with DA-IPC processes. Spinule formation in vivo was inhibited 50% with i.o. injection of SCH 23390 in control retinas as well as throughout 3 month 6-OHDA injected retinas, including DA-IPC free areas. This latter result indicates a volume effect of dopamine, diffusing laterally through the retina over several millimeters, in regulating spinules. We conclude that DA-IPCs regulate sensitivity to background at photopic levels not via the ON pathway, but perhaps the OFF pathway. Goldfish display both increased sensitivity to light and a normal Purkinje shift in the ERG b-wave whether or not horizontal cell spinules are present, indicating that dopamine control of photopic vision in fish is not mediated through light-induced spinule formation of horizontal cell dendrites.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230, USA.
| | | | | |
Collapse
|
46
|
Cook JE, Kondrashev SL, Podugolnikova TA. Biplexiform ganglion cells, characterized by dendrites in both outer and inner plexiform layers, are regular, mosaic-forming elements of teleost fish retinae. Vis Neurosci 1996; 13:517-28. [PMID: 8782379 DOI: 10.1017/s0952523800008191] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biplexiform ganglion cells were labelled by retrograde transport of HRP in five species of marine fish from the neoteleost acanthopterygian orders Perciformes and Scorpaeniformes. Their forms and spatial distributions were studied in retinal flatmounts and thick sections. Biplexiform ganglion cells possessed sparsely branched, often varicose, dendrites that ramified through the inner nuclear layer (INL) to reach the outer plexiform layer (OPL), as well as conventional arborizations in the most sclerad part of the inner plexiform layer (IPL). Their somata were of above-average size and were displaced into the vitread border of the INL. Mean soma areas ranged from 99 +/- 6 microns2 in Bathymaster derjugini (Perciformes) to 241 +/- 12 microns2 in Hexagrammos stelleri (Scorpaeniformes), but were similar in each species to those of the outer-stratified alpha-like ganglion cells, whose dendritic trees occupied the same IPL sublamina. In the best-labelled specimens, biplexiform cells formed clear mosaics with spacings and degrees of regularity much like those of other large ganglion cells, but spatially independent of them. Biplexiform mosaics were plotted in three species, and analyzed by nearest-neighbor distance and spatial correlogram methods. The exclusion radius, an estimate of minimum mosaic spacing, ranged from 113 microns in Hexagrammos stelleri, through 150 microns in Ernogrammus hexagrammus (Perciformes), to 240 microns in Myoxocephalus stelleri (Scorpaeniformes). A spatial cross-correlogram analysis of the distributions of biplexiform and outer-stratified alpha-like cells in Hexagrammos demonstrated the spatial independence of their mosaics. Similar cells were previously observed not only in the freshwater cichlid Oreochromis spilurus (Perciformes) but also in the goldfish Carassius auratus (Cypriniformes) which, being an ostariophysan teleost, is only distantly related. Thus, biplexiform ganglion cells may be regular elements of all teleost fish retinae. Their functional role remains unknown.
Collapse
Affiliation(s)
- J E Cook
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | |
Collapse
|
47
|
Dalil-Thiney N, Versaux-Botteri C, Nguyen-Legros J. Electron microscopic demonstration of tyrosine hydroxylase-immunoreactive interplexiform cells in the lamprey retina. Neurosci Lett 1996; 207:159-62. [PMID: 8728474 DOI: 10.1016/0304-3940(96)12511-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To clarify the controversies about the existence (or not) of dopaminergic interplexiform cells in the lamprey retina, we have performed an immunocytochemical electron microscopic study of the retina of the river lamprey Lampetra fluviatilis, using anti-tyrosine hydroxylase antibody. We demonstrate the presence of immunoreactive processes in both inner (IPL) and outer (OPL) plexiform layers. The external processes are in close contact with horizontal cell processes and photoreceptor terminals in the OPL, but do not make classical synapses. Some of them are ensheathed within Müller cell cytoplasm. Thus, dopaminergic interplexiform cells do exist in Lampetra fluviatilis, but the absence of synapses rather supports a paracrine action of dopamine in the outer retina.
Collapse
Affiliation(s)
- N Dalil-Thiney
- Laboratoire de NeuroCytologie Oculaire, INSERM U-86, Paris, France
| | | | | |
Collapse
|
48
|
Djamgoz MB, Evans-Capp AJ, Wagner HJ. Intra-vitreal injection of substance P antibodies as an antagonist in the vertebrate (fish) retina. J Neurosci Methods 1996; 64:237-43. [PMID: 8699886 DOI: 10.1016/0165-0270(95)00109-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A method is described for using substance P (SP) antibodies as an antagonist in the retina of a cyprinid fish, the roach (Rutilus rutilus). Antibody solution (10 microliters) injected into the vitreous was found by immunohistochemical localization to penetrate the neural retina up to the level of the inner margin of the inner nuclear layer. Thus, the inner plexiform layer, where SP would normally be released, was well infiltrated. Similar penetration patterns were observed 2 or 24 h after injection. The physiological effectiveness of the antibody was demonstrated indirectly by measuring its effect upon the spatial coupling of the horizontal cells. Previous work suggested that SP stimulates dopamine release which normally uncouples the horizontal cell somata but not the syncytium of their axon terminals. In retinae isolated from antibody-injected eyes, the horizontal cell somata (but not axon terminals) were indeed found to be significantly more strongly coupled, consistent with the blockage of SP-induced, presumably tonic, release of dopamine. The results suggest that peptide antisera can be useful as pharmacological tools to investigate electrophysiological effects of neuropeptides in the retina as in other parts of the central nervous system.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
49
|
Behrens U, Wagner HJ. Localization of dopamined D1-receptors in vertebrate retinae. Neurochem Int 1995. [DOI: 10.1016/0197-0186(95)80008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Yazulla S, Studholme KM. Volume transmission of dopamine may modulate light-adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina. Vis Neurosci 1995; 12:827-36. [PMID: 8924407 DOI: 10.1017/s0952523800009391] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the recovery of light-adaptive spinule formation following dopamine depletion with intraocular injection of 6-hydroxydopamine (6-OHDA) and subsequent neogeneration of dopamine interplexiform cells (DA-IPC) at the marginal zone. DA-IPCs were gone by 2 weeks postinjection and appeared at the marginal zone by 6 weeks postinjection, at which time DA-IPC neurites grew toward the central retina, reaching within 0.5 mm of the central retina by 1 year. Retinas from day time, light-adapted fish at 2 weeks, 4 weeks, 3 months, and 1 year postinjection with 6-OHDA were processed for pre-embedding tyrosine hydroxylase immunoreactivity (TOH-IR) and compared to sham-injected and control retinas at the electron-microscopical (EM) level. Only 6-OHDA fish that tilted markedly toward the injected eye were used for these experiments. The tilt mimics the dorsal light reaction, indicating a 2-2.5 log unit increase in the photopic sensitivity of the 6-OHDA eye. Spinule formation was reduced by about 60% in the 2- and 4-week 6-OHDA retinas, but returned to control levels throughout the entire retina of 3-month and 1 year 6-OHDA retinas even though the central region of these retinas contained no detectable TOH-IR. Intraocular injection with 10 microM SCH 23390 (a D1 antagonist) reduced light-adaptive spinule formation by 50% both in control eyes as well as those eyes that were 3 months post 6-OHDA injected. The full return of spinule formation with only partial reinnervation of the retina with DA-IPC processes and their subsequent inhibition by SCH 23390 indicates that dopamine diffused large distances within the retina to regulate this synaptic plasticity (i.e. displayed volume transmission). Also, since all 6-OHDA injected fish displayed an increased photopic sensitivity in the injected eye when sacrificed, we suggest that horizontal cell spinules are not required for photopic luminosity coding in the outer retina.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, SUNY, Stony Brook 11794-5230, USA
| | | |
Collapse
|