1
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
2
|
Ryczko D, Auclair F, Cabelguen JM, Dubuc R. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod. J Comp Neurol 2015; 524:1361-83. [PMID: 26470600 PMCID: PMC5019149 DOI: 10.1002/cne.23911] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023]
Abstract
In vertebrates, stimulation of the mesencephalic locomotor region (MLR) on one side evokes symmetrical locomotor movements on both sides. How this occurs was previously examined in detail in a swimmer using body undulations (lamprey), but in tetrapods the downstream projections from the MLR to brainstem neurons are not fully understood. Here we examined the brainstem circuits from the MLR to identified reticulospinal neurons in the salamander Notophthalmus viridescens. Using neural tracing, we show that the MLR sends bilateral projections to the middle reticular nucleus (mRN, rostral hindbrain) and the inferior reticular nucleus (iRN, caudal hindbrain). Ca2+ imaging coupled to electrophysiology in in vitro isolated brains revealed very similar responses in reticulospinal neurons on both sides to a unilateral MLR stimulation. As the strength of MLR stimulation was increased, the responses increased in size in reticulospinal neurons of the mRN and iRN, but the responses in the iRN were smaller. Bath‐application or local microinjections of glutamatergic antagonists markedly reduced reticulospinal neuron responses, indicating that the MLR sends glutamatergic inputs to reticulospinal neurons. In addition, reticulospinal cells responded to glutamate microinjections and the size of the responses paralleled the amount of glutamate microinjected. Immunofluorescence coupled with anatomical tracing confirmed the presence of glutamatergic projections from the MLR to reticulospinal neurons. Overall, we show that the brainstem circuits activated by the MLR in the salamander are organized similarly to those previously described in lampreys, indicating that the anatomo‐physiological features of the locomotor drive are well conserved in vertebrates. J. Comp. Neurol. 524:1361–1383, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Francois Auclair
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Marie Cabelguen
- INSERM U862 - Neurocentre Magendie, Motor System Diseases Team, Bordeaux Cedex, France
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Québec, Canada
| |
Collapse
|
3
|
Gracitelli CPB, Abe RY, Diniz-Filho A, Vaz-de-Lima FB, Paranhos A, Medeiros FA. Ophthalmology issues in schizophrenia. Curr Psychiatry Rep 2015; 17:28. [PMID: 25773224 PMCID: PMC4523638 DOI: 10.1007/s11920-015-0569-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a complex mental disorder associated with not only cognitive dysfunctions, such as memory and attention deficits, but also changes in basic sensory processing. Although most studies on schizophrenia have focused on disturbances in higher-order brain functions associated with the prefrontal cortex or frontal cortex, recent investigations have also reported abnormalities in low-level sensory processes, such as the visual system. At very early stages of the disease, schizophrenia patients frequently describe in detail symptoms of a disturbance in various aspects of visual perception that may lead to worse clinical symptoms and decrease in quality of life. Therefore, the aim of this review is to describe the various studies that have explored the visual issues in schizophrenia.
Collapse
Affiliation(s)
- Carolina P. B. Gracitelli
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA; Department of Ophthalmology, Federal University of São Paulo, Botucatu Street, 821. Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - Ricardo Y. Abe
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA; ; Department of Ophthalmology, University of Campinas, Vital Brasil Street, 251, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-970, Brazil
| | - Alberto Diniz-Filho
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA; ; Department of Ophthalmology and Otorhinolaryngology, Federal University of Minas Gerais, Alfredo Balena Avenue, 190 Santa Efigenia, Belo Horizonte, MG 30130-100, Brazil
| | | | - Augusto Paranhos
- Department of Ophthalmology, Federal University of São Paulo, Botucatu Street, 821. Vila Clementino, São Paulo, SP 04023-062, Brazil;
| | - Felipe A. Medeiros
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA;
| |
Collapse
|
4
|
|
5
|
Mobarkey N, Avital N, Heiblum R, Rozenboim I. The Effect of Parachlorophenylalanine and Active Immunization Against Vasoactive Intestinal Peptide on Reproductive Activities of Broiler Breeder Hens Photostimulated with Green Light1. Biol Reprod 2013; 88:83. [DOI: 10.1095/biolreprod.112.103697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
6
|
Villar-Cerviño V, Barreiro-Iglesias A, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2012; 519:1712-35. [PMID: 21452205 DOI: 10.1002/cne.22597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the importance of glutamate as a major excitatory neurotransmitter in the brain, the distribution of glutamatergic populations in the brain of most vertebrates is still unknown. Here, we studied for the first time the distribution of glutamatergic neurons in the forebrain of the sea lamprey (Petromyzon marinus), belonging to the most ancient group of vertebrates (agnathans). For this, we used in situ hybridization with probes for a lamprey vesicular glutamate transporter (VGLUT) in larvae and immunofluorescence with antiglutamate antibodies in both larvae and adults. We also compared glutamate and γ-aminobutyric acid (GABA) immunoreactivities in sections using double-immunofluorescence methods. VGLUT-expressing neurons were observed in the olfactory bulb, pallium, septum, subhippocampal lobe, preoptic region, thalamic eminence, prethalamus, thalamus, epithalamus, pretectum, hypothalamus, posterior tubercle, and nucleus of the medial longitudinal fascicle. Comparison of VGLUT signal and glutamate immunoreactivity in larval forebrain revealed a consistent distribution of positive cells, which were numerous in most regions. Glutamate-immunoreactive cell populations were also found in similar regions of the adult forebrain. These include mitral-like cells of the olfactory bulbs and abundant cells in the lateral pallium, septum, and various diencephalic regions, mainly in the prethalamus, thalamus, habenula, pineal complex, and pretectum. Only a small portion of the glutamate-immunoreactive cells showed colocalization with GABA, which was observed mainly in the olfactory bulb, telencephalon, hypothalamus, ventral thalamus, and pretectum. Comparison with glutamatergic cells observed in rodent forebrains suggests that the regional distribution of glutamatergic cells does not differ greatly in lampreys and mammals.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|
7
|
Jablonski MM, Freeman NE, Orr WE, Templeton JP, Lu L, Williams RW, Geisert EE. Genetic pathways regulating glutamate levels in retinal Müller cells. Neurochem Res 2010; 36:594-603. [PMID: 20882406 DOI: 10.1007/s11064-010-0277-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
Müller cells serve many functions including the regulation of extracellular glutamate levels. The product of two genes, Slc1a3 [aka solute carrier family 1 (glial high affinity glutamate transporter), member 3] and Glul (aka glutamine synthetase) are the primary role players that transport glutamate into the Müller cell and convert it into glutamine. In this study, we sought to identify the genetic regulation of both genes. Given their tightly coupled biological functions, we predicted that they would be similarly regulated. Using an array of 75 recombinant inbred strains of mice, we determined that Slc1a3 and Glul are differentially regulated by distinct chromosomal regions. Interestingly, despite their independent regulation, gene ontology analysis of tightly correlated genes reveals that the enriched and statistically significant molecular function categories of both directed acyclic graphs have substantial overlap, indicating that the shared functions of correlates of Slc1a3 and Glul include production and usage of ATP.
Collapse
Affiliation(s)
- Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Hu RG, Lim J, Donaldson PJ, Kalloniatis M. Characterization of the cystine/glutamate transporter in the outer plexiform layer of the vertebrate retina. Eur J Neurosci 2008; 28:1491-502. [DOI: 10.1111/j.1460-9568.2008.06435.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
May CA, Nakamura K, Fujiyama F, Yanagawa Y. Quantification and characterization of GABA-ergic amacrine cells in the retina of GAD67-GFP knock-in mice. Acta Ophthalmol 2008; 86:395-400. [PMID: 17995983 DOI: 10.1111/j.1600-0420.2007.01054.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Although the presence of gamma-aminobutyrate acid (GABA) in amacrine cells and its co-localization with other neuronal substances is well known, there exists only little information about their quantitative distribution in the mouse eye. The aim of the present study was to characterize GABA-ergic amacrine cells in the retina of the recently introduced glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mouse. METHODS Whole mounts of the retina were prepared and the GFP-positive neurons quantified. Immunofluorescence staining was performed with antibodies against GABA, calbindin (CB), calretinin (CR), parvalbumin (PV), choline acetyl transferase (ChAT), tyrosine hydroxylase (TH), vesicular glutamate transporter (VGluT) 1, VGluT2 and VGluT3. RESULTS Displaced GABA-ergic amacrine cells in the ganglion cell layer (GCL) showed a density of 1006 +/- 170 cells/mm(2). In the inner nuclear layer (INL), the density of amacrine cells was 8821 +/- 448 cells/mm(2) in the central region and 6825 +/- 408 cells/mm(2) in the peripheral region. GFP-positive amacrine cells co-localized with GABA (99%), CR (INL 18%, GCL 71.3%), CB (INL 6.3%), bNOS (INL 1%, GCL 4%), and ChAT (INL 17%, GCL 92.6%). No co-localization was seen with antibodies against PV, TH, and VGluT 1-3. CONCLUSIONS This study presents the first quantitative data concerning the co-localization of GABA-ergic neurons in the mouse retina with various neuronal markers.
Collapse
Affiliation(s)
- Christian Albrecht May
- Department of Anatomy, Carl Gustav Carus Medical Faculty, Technical University Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
10
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
11
|
Villar-Cerviño V, Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Holstein GR, Martinelli GP, Rodicio MC, Anadón R. Presence of glutamate, glycine, and gamma-aminobutyric acid in the retina of the larval sea lamprey: comparative immunohistochemical study of classical neurotransmitters in larval and postmetamorphic retinas. J Comp Neurol 2007; 499:810-27. [PMID: 17048230 DOI: 10.1002/cne.21136] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurochemistry of the retina of the larval and postmetamorphic sea lamprey was studied via immunocytochemistry using antibodies directed against the major candidate neurotransmitters [glutamate, glycine, gamma-aminobutyric acid (GABA), aspartate, dopamine, serotonin] and the neurotransmitter-synthesizing enzyme tyrosine hydroxylase. Immunoreactivity to rod opsin and calretinin was also used to distinguish some retinal cells. Two retinal regions are present in larvae: the central retina, with opsin-immunoreactive photoreceptors, and the lateral retina, which lacks photoreceptors and is mainly neuroblastic. We observed calretinin-immunostained ganglion cells in both retinal regions; immunolabeled bipolar cells were detected in the central retina only. Glutamate immunoreactivity was present in photoreceptors, ganglion cells, and bipolar cells. Faint to moderate glycine immunostaining was observed in photoreceptors and some cells of the ganglion cell/inner plexiform layer. No GABA-immunolabeled perikarya were observed. GABA-immunoreactive centrifugal fibers were present in the central and lateral retina. These centrifugal fibers contacted glutamate-immunostained ganglion cells. No aspartate, serotonin, dopamine, or TH immunoreactivity was observed in larvae, whereas these molecules, as well as GABA, glycine, and glutamate, were detected in neurons of the retina of recently transformed lamprey. Immunoreactivity to GABA was observed in outer horizontal cells, some bipolar cells, and numerous amacrine cells, whereas immunoreactivity to glycine was found in amacrine cells and interplexiform cells. Dopamine and serotonin immunoreactivity was found in scattered amacrine cells. Amacrine and horizontal cells did not express classical neurotransmitters (with the possible exception of glycine) during larval life, so transmitter-expressing cells of the larval retina appear to participate only in the vertical processing pathway.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fisher RS. Co-localization of glutamic acid decarboxylase and phosphate-activated glutaminase in neurons of lateral reticular nucleus in feline thalamus. Neurochem Res 2006; 32:177-86. [PMID: 16927169 DOI: 10.1007/s11064-006-9126-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2006] [Indexed: 11/24/2022]
Abstract
Immunohistochemical methods were used to label singly and/or in combination glutamic acid decarboxylase (GAD, the sole synthesizing enzyme for the inhibitory neurotransmitter gamma-aminobutyric acid) and phosphate-activated glutaminase (GLN, a synthesizing enzyme for glutamate) in neurons of lateral reticular nucleus (LRN) of thalamus of adult cats. (1) GAD- and GLN-immunoreactivity (IR) exhibited matching regional patterns of organization within LRN. (2) GAD- and GLN-IR co-localized within most if not all LRN neuronal cell bodies as shown by light microscopy. (3) GAD- and GLN-IR had distinct subcellular localizations in LRN neurons as shown by correlative light/electron microscopy. LRN neurons are important conceptual models where strongly inhibitory cells receive predominant excitatory glutamatergic afferents (from neocortex). Consistent with known actions of intermediary astrocytes, LRN neurons demonstrate GLN enrichment synergistically coupled with glutamatergic innervation to supplement the glutamate pool for GABA synthesis (via GAD) and for metabolic utilization (via the GABA shunt/tricarboxylic acid cycle) but not, apparently, for excitatory neurotransmission.
Collapse
Affiliation(s)
- Robin Scott Fisher
- Psychiatry and Neurobiology, Mental Retardation Research Center, UCLA Geffen School of Medicine, Room 301 Neuroscience Research Building, 635 Charles Young Drive South, Los Angeles, California 90095, USA.
| |
Collapse
|
13
|
Sasoh M, Ma N, Ito Y, Esaki K, Uji Y. Changes in Localization of Amino Acids in the Detached Cat Retina. Ophthalmic Res 2006; 38:74-82. [PMID: 16361867 DOI: 10.1159/000090267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 06/07/2005] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the distribution of amino acids (glutamate, aspartate, glutamine, GABA, glycine) in detached retinas with minimum postmortem artifact and to clarify the relation between amino acid distribution and histopathological change in the outer portion of detached retinas. METHODS Unilateral retinal detachment was produced in cats by injecting 0.25% sodium hyaluronate into the subretinal space using a glass micropipet. The eyes were fixed by perfusion for 10 min, 1, 3, 6 and 24 h, 2, 3 and 7 days after detachment and then examined under conventional light- and electron-microscopic immunocytochemistry. RESULTS For glutamate, aspartate and glutamine, the inner segments and perikarya of the photoreceptor cells, which were not immunopositive in the normal retinas, showed various degrees of immunoreactivity immediately after retinal detachment. Photoreceptor cells with the strong immunoreactivity developed necrosis. The staining pattern of GABA and glycine scarcely changed during the course of retinal detachment. CONCLUSIONS Excess intracellular glutamate, aspartate and glutamine in photoreceptor cells may cause a part of neuronal death after retinal detachment.
Collapse
Affiliation(s)
- Mikio Sasoh
- Department of Ophthalmology, Mie University School of Medicine, Tsu, Japan.
| | | | | | | | | |
Collapse
|
14
|
Rioux L, Gelber EI, Parand L, Kazi HA, Yeh J, Wintering R, Bilker W, Arnold SE. Characterization of olfactory bulb glomeruli in schizophrenia. Schizophr Res 2005; 77:229-39. [PMID: 15946825 DOI: 10.1016/j.schres.2005.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/15/2005] [Accepted: 04/19/2005] [Indexed: 01/24/2023]
Abstract
Olfactory deficits, observed in schizophrenia, may be associated with a disruption of synaptic transmission in the olfactory system. Using immunohistochemistry and optical densitometry, we assessed the integrity of the synaptic connection between olfactory receptor neurons and olfactory bulb target neurons in schizophrenia by comparing the level of eight proteins, expressed in the olfactory bulb glomeruli, among schizophrenia and control subjects. In schizophrenia, no change was observed in the levels of OMP, GAP43 and NCAM, proteins expressed by olfactory receptor neurons, suggesting an intact innervation of the olfactory bulb by these neurons. This was supported by the absence of change in calbindin level, which has been shown to decrease after the destruction of the olfactory epithelium. The level of synaptophysin, a pre-synaptic protein, was also unchanged. These findings suggested that axons of olfactory receptor neurons establish synapses with their olfactory bulb targets in schizophrenia. The absence of change in the level of poorly phosphorylated neurofilament of moderate and high molecular weight (NFM/HP) suggested no lack of dendritic innervation despite a previously seen reduction of glomerular MAP2 level in schizophrenia subjects. This and above findings were consistent with the absence of change in the level of beta-tubulin III, a protein expressed by neurons of both olfactory epithelium and bulb. Finally, we noted no significant decrease in trkB level, a neurotrophin receptor involved in the olfactory epithelium maintenance. This study showed no evidence of major structural alteration of the synapse between the olfactory epithelium and bulb in schizophrenia.
Collapse
Affiliation(s)
- Lise Rioux
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Granados-Dominguez M, Escamilla-Chimal EG, Fanjul-Moles ML. Photic regulation of c-Fos expression in the protocerebrum of crayfish. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Fyk-Kolodziej B, Qin P, Dzhagaryan A, Pourcho RG. Differential cellular and subcellular distribution of glutamate transporters in the cat retina. Vis Neurosci 2004; 21:551-65. [PMID: 15579221 DOI: 10.1017/s0952523804214067] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Indexed: 11/06/2022]
Abstract
Retrieval of glutamate from extracellular sites in the retina involves at least five excitatory amino acid transporters. Immunocytochemical analysis of the cat retina indicates that each of these transporters exhibits a selective distribution which may reflect its specific function. The uptake of glutamate into Müller cells or astrocytes appears to depend upon GLAST and EAAT4, respectively. Staining for EAAT4 was also seen in the pigment epithelium. The remaining transporters are neuronal with GLT-1α localized to a number of cone bipolar, amacrine, and ganglion cells and GLT-1v in cone photoreceptors and several populations of bipolar cells. The EAAC1 transporter was found in horizontal, amacrine, and ganglion cells. Staining for EAAT5 was seen in the axon terminals of both rod and cone photoreceptors as well as in numerous amacrine and ganglion cells. Although some of the glutamate transporter molecules are positioned for presynaptic or postsynaptic uptake at glutamatergic synapses, others with localizations more distant from such contacts may serve in modulatory roles or provide protection against excitoxic or oxidative damage.
Collapse
Affiliation(s)
- Bozena Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
17
|
Demonstration of cholinergic ganglion cells in rat retina: expression of an alternative splice variant of choline acetyltransferase. J Neurosci 2003. [PMID: 12684474 DOI: 10.1523/jneurosci.23-07-02872.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine acts as a neurotransmitter in the retina. Although previous physiological studies have indicated that some retinal ganglion cells may be cholinergic, several immunohistochemical studies using antibodies to choline acetyltransferase (ChAT) have stained only amacrine cells but not ganglion cells. Recently, we identified a splice variant of ChAT mRNA, lacking exons 6-9, in rat peripheral nervous system. The encoded protein was designated as ChAT of a peripheral type (pChAT), against which an antiserum was raised. In the present study, we examined expression of pChAT in rat retina, both at the protein level by immunohistochemistry using the antiserum and at the mRNA level by RT-PCR. Immunohistochemistry revealed that although no positive neurons were found in untreated intact retinas, many neurons became immunoreactive for pChAT after intravitreal injection of colchicine. Damage of the optic nerve was also effective in disclosing positive cells. Such positive neurons were shown to be ganglion cells by double labeling with a retrograde tracer that had been injected into the contralateral superior colliculus. Western blot analysis and RT-PCR revealed a corresponding band to the pChAT protein and to the amplified pChAT gene fragment, respectively, in retinal samples. In addition, ChAT activity was definitely detected in retinofugal fibers of the optic nerve. These results indicate the presence of cholinergic ganglion cells in rat retina.
Collapse
|
18
|
Mausset-Bonnefont AL, de Sèze R, Privat A. Immunohistochemistry as a tool for topographical semi-quantification of neurotransmitters in the brain. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2003; 10:148-55. [PMID: 12565685 DOI: 10.1016/s1385-299x(02)00206-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunohistochemistry is a powerful tool to detect neurotransmitter (NT) presence in different brain structures with a high spatial resolution. However, it is only scarcely used in quantitative approach due to lack of reproducibility and sensitivity. We developed a protocol of NT detection based on immunohistochemistry and image analysis to show that this approach could also be useful to evaluate NT content variations. We focused our study on the GABAergic system in the cerebellum and measured different accurate parameters, namely the optical density (O.D.), the stained area and the number of immunoreactive cells in each cerebellar cell layer. In order to modify the GABA content, we used gamma-vinyl-GABA (GVG), an inhibitor of GABA-transaminase, known to dramatically increase GABA concentration in the central nervous system (CNS) and especially in the cerebellum. We observed a significant increase in the three parameters measured in the molecular and the granular layers of the cerebellum after treatment with GVG, reflecting the well-established increase in GABA content after such a treatment. Therefore, our technical approach allows not only a precise determination of the effects in particular cell layers but also a semi-quantification of GABA content variations. This technique could be suitable for monitoring NT variations following any treatment.
Collapse
Affiliation(s)
- Anne Laure Mausset-Bonnefont
- INSERM U336, Développement, Plasticité et Vieillissement du Système Nerveux, Université Montpellier II, Place Eugène Bataillon, B.P. 106, 34095 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
19
|
Somogyi J. Differences in ratios of GABA, glycine and glutamate immunoreactivities in nerve terminals on rat hindlimb motoneurons: a possible source of post-synaptic variability. Brain Res Bull 2002; 59:151-61. [PMID: 12379445 DOI: 10.1016/s0361-9230(02)00843-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous pharmacological and physiological data on GABA and glycine receptor-dependent components of miniature inhibitory post-synaptic currents show that the electrophysiological characteristics of synaptic transmission from inhibitory synapses on spinal motoneurons are highly variable. Although post-synaptic factors are thought to be the major underlying cause of this variability, quantitative immunohistochemical data suggest that the transmitter content of afferents also vary from terminal to terminal. To examine whether ratios of amino acid staining densities vary similar to those of components of post-synaptic currents mediated by the corresponding receptors, we quantified immunogold labeling for GABA, glycine and the major excitatory transmitter, glutamate, in nerve terminals contacting the dendrites of motoneurons retrogradely labeled from the rat hindlimb muscle, biceps femoris. Nearly all terminals (94%) were immunoreactive for at least one amino acid and 64% of these contained two or three amino acids. All possible combinations of GABA, glycine and glutamate labeling were found. Over 70% of the terminals contained glycine, of which 60% also labeled for GABA. Of these GABA/glycine boutons, 40% also had glutamate. Half of all terminals contained GABA, but terminals immunoreactive for GABA alone were extremely rare. Immunoreactivity for glutamate occurred in 48% of all terminals and nearly 60% of these also contained glycine. Labeling densities for GABA, glycine and glutamate varied over a wide range from terminal to terminal. We hypothesize that this diversity in amino acid content may be a major underlying cause of variability in GABA- and glycine receptor-mediated components of miniature inhibitory post-synaptic currents in motoneurons.
Collapse
Affiliation(s)
- Jozsef Somogyi
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
20
|
Rieux C, Carney R, Lupi D, Dkhissi-Benyahya O, Jansen K, Chounlamountri N, Foster RG, Cooper HM. Analysis of immunohistochemical label of Fos protein in the suprachiasmatic nucleus: comparison of different methods of quantification. J Biol Rhythms 2002; 17:121-36. [PMID: 12002159 DOI: 10.1177/074873002129002410] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The induction of the proto-oncogene c-fos, and its phosphoprotein product Fos, has been extensively used to study the effects of light on the circadian pacemaker in the suprachiasmatic nucleus (SCN). Experimental approaches to the quantification of Fos induction have mainly been based on immunohistochemistry and subsequent measure of Fos immunoreactivity (IR) in sections of the SCN. In this study, the authors compare several methods of quantification using optical density image analysis or counts of Fos-IR labeled cells. To assess whether optical density measures using image analysis reflect the amount of Fos in brain tissue, the authors developed standards of known concentrations of Fos protein in an agar matrix. The agar standards were sectioned and treated simultaneously with sections of the SCN from animals exposed to different levels of irradiance. Optical density was found to be proportional to the quantity of Fos in the sections, indicating that this measure accurately reflects relative levels of Fos protein induction. Quantification by optical density analysis allows an objective measure in which the various parameters, conditions of illumination, and threshold can be maintained constant throughout the analysis. Counting cells by visual observation is more subjective because threshold values cannot be precisely defined and can vary according to the observer, illumination, degree of label, and other factors. In addition, cell counts involving direct visual observation, automated cell counts, or stereological methods do not take into account the difference in the density of label between cells, thus giving equal weight to lightly or densely stained cells. These measures are more or less weakly correlated with measures of optical density and thus do not accurately reflect the amount of bound Fos protein in the tissue sections. In contrast, labeled surface area as measured by image analysis shows a linear relationship with optical density. The main outcome of this study is that computer-assisted image analysis provides an accurate and rapid method to determine the relative amount of Fos protein in the SCN and the effects of light on intracellular signaling mechanisms involved in the circadian clock.
Collapse
Affiliation(s)
- C Rieux
- Institut National de la Santé de la Recherche Médicale Unité 371, Cerveau et Vision, Bron, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schwartz M. Harnessing the immune system for neuroprotection: therapeutic vaccines for acute and chronic neurodegenerative disorders. Cell Mol Neurobiol 2001; 21:617-27. [PMID: 12043837 DOI: 10.1023/a:1015139718466] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nerve injury causes degeneration of directly injured neurons and the damage spreads to neighboring neurons. Research on containing the damage has been mainly pharmacological, and has not recruited the immune system. We recently discovered that after traumatic injury to the central nervous system (spinal cord or optic nerve), the immune system apparently recognizes certain injury-associated self-compounds as potentially destructive and comes to the rescue with a protective antiself response mediated by a T-cell subpopulation that can recognize self-antigens. We further showed that individuals differ in their ability to manifest this protective autoimmunity, which is correlated with their ability to resist the development of autoimmune diseases. This finding led us to suggest that the antiself response must be tightly regulated to be expressed in a beneficial rather than a destructive way. In seeking to develop a neuroprotective therapy by boosting the beneficial autoimmune response to injury-associated self-antigens, we looked for an antigen that would not induce an autoimmune disease. Candidate vaccines were the safe synthetic copolymer Cop-1, known to cross-react with self-antigens, or altered myelin-derived peptides. Using these compounds as vaccines, we could safely boost the protective autoimmune response in animal models of acute and chronic insults of mechanical or biochemical origin. Since this vaccination is effective even when given after the insult, and because it protects against the toxicity of glutamate (the most common mediator of secondary degeneration), it can be used to treat chronic neurodegenerative disorders such as glaucoma, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Mausset AL, de Seze R, Montpeyroux F, Privat A. Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semi-quantitative immunohistochemistry. Brain Res 2001; 912:33-46. [PMID: 11520491 DOI: 10.1016/s0006-8993(01)02599-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The widespread use of cellular phones raises the problem of interaction of electromagnetic fields with the central nervous system (CNS). In order to measure these effects on neurotransmitter content in the CNS, we developed a protocol of neurotransmitter detection based on immunohistochemistry and image analysis. Gamma-vinyl-GABA (GVG), an inhibitor of the GABA-transaminase was injected in rats to increase GABA concentration in the CNS. The cellular GABA contents were then revealed by immunohistochemistry and semi-quantified by image analysis thanks to three parameters: optical density (O.D.), staining area, and number of positive cells. The increase in cerebellar GABA content induced by GVG 1200 mg/kg was reflected in these three parameters in the molecular and the granular layers. Therefore, control of immunohistochemistry parameters, together with appropriate image analysis, allowed both the location and the detection of variations in cellular neurotransmitter content. This protocol was used to investigate the effects of exposure to 900 MHz radiofrequencies on cerebellar GABA content. Both pulsed emission with a specific absorption rate (SAR) of 4 W/kg and continuous emission with high SAR (32 W/kg) were tested. We observed a selective diminution of the stained processes area in the Purkinje cell layer after exposure to pulsed radiofrequency and, in addition, a decrease in O.D. in the three cell layers after exposure to continuous waves. Whether this effect is, at least partly, due to a local heating of the tissues is not known. Overall, it appears that high energetic radiofrequency exposure induces a diminution in cellular GABA content in the cerebellum.
Collapse
Affiliation(s)
- A L Mausset
- Laboratoire de Biophysique Médicale, Faculté de Médecine de Nîmes, Avenue Kennedy, 30907 Cedex 2, Nîmes, France
| | | | | | | |
Collapse
|
23
|
Connaughton VP. Organization of ON- and OFF-pathways in the zebrafish retina: neurotransmitter localization, electrophysiological responses of bipolar cells, and patterns of axon terminal stratification. PROGRESS IN BRAIN RESEARCH 2001; 131:161-76. [PMID: 11420938 DOI: 10.1016/s0079-6123(01)31014-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- V P Connaughton
- Department of Biology, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA.
| |
Collapse
|
24
|
Effects of irradiance and stimulus duration on early gene expression (Fos) in the suprachiasmatic nucleus: temporal summation and reciprocity. J Neurosci 2001. [PMID: 11027243 DOI: 10.1523/jneurosci.20-20-07790.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The daily behavioral, physiological, and hormonal rhythms in mammals are regulated by an endogenous circadian clock located in the suprachiasmatic nucleus (SCN) and are synchronized by the natural 24 hr light/dark cycle. We studied the response properties (threshold, saturation, and linearity) of the photic system to irradiance by assaying light induction of Fos, the protein product of the immediate early gene c-fos. Fos expression was quantified by image analysis in the SCN and in the retina. Fos expression in the SCN and retina are unrelated because the response differs in terms of threshold, saturation, and range. In the SCN, Fos expression increases proportionately to increases in both irradiance and duration of light exposure. The photic system shows a linear temporal integration of photons for durations ranging from 3 sec to 47.5 min. The principal result of this study shows that in the SCN, Fos expression is directly proportional to the total number of photons rather than to irradiance or duration alone (reciprocity), and that integration occurs over a range of 5 log units of photon number. This report provides the first demonstration that the mechanism of photon integration by the circadian system is expressed at a cellular level in the SCN.
Collapse
|
25
|
Liu LO, Laabich A, Hardison A, Cooper NGF. Expression of ionotropic glutamate receptors in the retina of the rdta transgenic mouse. BMC Neurosci 2001; 2:7. [PMID: 11389773 PMCID: PMC32198 DOI: 10.1186/1471-2202-2-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Accepted: 05/23/2001] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The expression of retinal CaMKII is up-regulated in the retina of the rdta mouse in which rod photoreceptors are genetically ablated. As ionotropic glutamate receptors are known substrates of CAMKII, this study set out to determine if the protein levels of ionotropic glutamate receptors in the rdta mouse retina are also affected. RESULTS The NMDA receptor subunits (NR1, NR2A/B) and the GluR1; AMPA receptor subunit (GluR1) were examined in immunolabeled western blots. The results demonstrate that the amounts of NR1 and NR2A/B receptor subunits are significantly increased in crude synaptic membrane fractions isolated from retinae of the rdta mice when compared to their normal, littermate controls. The GluR1 receptor subunit and its phosphorylation are simultaneously increased in retinae of the rdta mice. CONCLUSIONS These data indicate that the NMDA receptors and AMPA (GluR1) receptors are altered in the retinae of rdta mice that lack rod photoreceptors. Because the rods are lost at an early stage in development, it is likely that these results are indicative of synaptic reorganization in the retina.
Collapse
Affiliation(s)
- Ling O Liu
- Department of Ophthalmology and Visual Science, University of Louisville School of Medicine, Louisville, Kentucky USA
| | - Aicha Laabich
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky USA
| | | | - Nigel GF Cooper
- Department of Ophthalmology and Visual Science, University of Louisville School of Medicine, Louisville, Kentucky USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky USA
| |
Collapse
|
26
|
Abstract
This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties, which are in some, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
27
|
Yoles E, Friedmann I, Barouch R, Shani Y, Schwartz M. Self-Protective mechanism awakened by glutamate in retinal ganglion cells. J Neurotrauma 2001; 18:339-49. [PMID: 11284553 DOI: 10.1089/08977150151071017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The progression of degeneration in chronic optic neuropathies or in animal models of optic nerve injury is thought to be caused, at least in part, by an increase in glutamate to abnormally high concentrations. We show here that glutamate, when injected in subtoxic amounts into the vitreal body of the rat eye, transduces a self-protecting signal that renders the retinal ganglion cells resistant to further toxicity, whether glutamate-derived or not. This neuroprotective effect is attained within 24 h and lasts at least 4 days. Western blot analysis of rat retinas revealed increased amounts of bcl-2 four days after injection of glutamate in either subtoxic or toxic (120 nmol) amounts, but not after saline injection. The effects of intravitreal glutamate or saline injection on the secretion of neurotrophins by retinal ganglion cells was evaluated in rat aqueous humor 6 h, 1 day, and 4 days after injection. Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 showed similar kinetic patterns in all of the eyes; that is, they increased to a peak 1 day after the injection and returned to normal by day 4. However, increased amounts the neurotrophin receptor TrkA within the retinal ganglion cell layer and nerve fiber layer were detected 1 day after injection of glutamate in either toxic or subtoxic amounts, but not after saline injection. This finding points to the possible involvement of neurotrophin receptors in regulation of the cellular responses to glutamate challenge. Identification of the intracellular signals that trigger the glutamate-induced self-protective mechanism would shed light on the genetic balance needed for survival, and guide the development of drugs for the up-regulation of desired genes and their products.
Collapse
Affiliation(s)
- E Yoles
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
28
|
Sun H, Crossland WJ. Quantitative assessment of localization and colocalization of glutamate, aspartate, glycine, and GABA immunoreactivity in the chick retina. THE ANATOMICAL RECORD 2000; 260:158-79. [PMID: 10993953 DOI: 10.1002/1097-0185(20001001)260:2<158::aid-ar60>3.0.co;2-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examined the posthatch chick retina for the frequency of occurrence of localization and colocalization of four amino acid transmitter candidates: glutamate (Glu), aspartate (Asp), gamma aminobutyric acid (GABA), and glycine (Gly) using postembedding methods. We support previous studies of Glu, Asp, GABA, and Gly localization in the direct and indirect functional pathways of the chick retina and extend these studies with new qualitative and quantitative observations. We found that photoreceptors show distinct cellular immunoreactivity for both Glu (Glu+) and Asp+, but not for Gly (Gly-) or GABA. Moreover, there is compartmentalization of Glu and Asp staining within the photoreceptors. All horizontal cells react strongly with Asp and Glu, about three-fourths are GABA+ and three-fourths of these are Gly+. Bipolar cells are uniformly Glu+, heterogeneously Asp+, occasionally Gly+, but GABA-. A majority of amacrine cells stain heterogeneously with all antibodies: 90% are Gly+, slightly more than half colocalize Glu, GABA, and Gly. Furthermore, amacrine cells in the outer two or three rows of cells are more likely to be stained by Gly than Glu, Asp, or GABA. Confirming previous studies, ganglion cells were mostly immunoreactive for Glu and Asp with fewer reactive for GABA and Gly. Strong and distinctly cellular immunoreactivity was found in both central and peripheral retina. Our findings show: 1) there is extensive colocalization of Glu, Asp, GABA, and Gly among most retinal neurons, including some cells that contain all four; 2) cells of the direct functional pathway tend to be labeled by Glu and Asp generally to the exclusion of GABA and Gly, while those of the indirect pathway tend to be labeled by GABA+ and/or Gly+ in addition to Glu+ and Asp+; 3) different cell body layers have distinct patterns of colocalization; and 4) there is no qualitative difference in staining patterns between peripheral and central retina.
Collapse
Affiliation(s)
- H Sun
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
29
|
Toimela T, Mäenpää H, Tähti H. Retinal müller cell culture. Altern Lab Anim 2000; 28:477-82. [PMID: 25419929 DOI: 10.1177/026119290002800317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A mini-review is presented of the current techniques for maintaining Müller cells in a culture. Within the retina, Müller cells are the predominant glial cells. These highly specialised cells extend over the entire neural retina. One of the most important of the various physiological functions of Müller cells is to regulate the balance of ions and neurotransmitters in the retina. Disturbance of these regulatory functions may lead to toxic effects on receptor and other neural cells in the neuroretina, and may be a common mechanism of clinical retinal neuropathy. The main excitatory neurotransmitter in the retina is glutamate. Müller cells regulate the amount of glutamate in the synaptic regions of the neural network in the retina. Accumulation of extra glutamate seems to be an important mechanism for initiating pathological changes leading to retinal damage. Many previous in vitro studies on the role of Müller cells in retinal toxicology have been based on the use of morphological and histochemical methods. In cell toxicology studies, it is important to develop culture techniques able to provide more cells for biochemical determinations.
Collapse
Affiliation(s)
- T Toimela
- University of Tampere, Medical School, 33014 University of Tampere, Finland
| | - H Mäenpää
- University of Tampere, Medical School, 33014 University of Tampere, Finland
| | - H Tähti
- University of Tampere, Medical School, 33014 University of Tampere, Finland
| |
Collapse
|
30
|
Chapter II Aspartate—neurochemical evidence for a transmitter role. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
32
|
Abstract
The synaptic input to OFF-center alpha ganglion cells in the cat retina was analyzed by electron microscopic reconstruction to quantify the bipolar and amacrine cell input and to determine the neurotransmitter content of the presynaptic cells. Cone bipolar cells were found to comprise 11% of the total input with their dyad synapses distributed across the dendritic tree. The remaining contacts were conventional synapses indicative of amacrine cells; postembedding immunogold labeling was used to characterize these cells as either GABA- or glycine-immunoreactive. Results showed the amacrine input to be equally divided between GABA and glycinergic contacts at each order of dendritic branching of the alpha cells. Among the GABA-positive neurons were A19 amacrine cells, the processes of which are characterized by a dense array of neurotubules. A major source of glycinergic input was from lobular appendages of AII amacrine cells with lesser contributions from other glycine-positive amacrine cells. The physiological role(s) of these amino acids must be interpreted in view of the multiple subpopulations of amacrine cells, which provide input to OFF-alpha cells, and the diversity in receptors at their synapses.
Collapse
Affiliation(s)
- M T Owczarzak
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
33
|
Abstract
Daily rhythms are a fundamental feature of all living organisms; most are synchronized by the 24 hr light/dark (LD) cycle. In most species, these rhythms are generated by a circadian system, and free run under constant conditions with a period close to 24 hr. To function properly the system needs a pacemaker or clock, an entrainment pathway to the clock, and one or more output signals. In vertebrates, the pineal hormone melatonin is one of these signals which functions as an internal time-keeping molecule. Its production is high at night and low during day. Evidence indicates that each melatonin producing cell of the pineal constitutes a circadian system per se in non-mammalian vertebrates. In addition to the melatonin generating system, they contain the clock as well as the photoreceptive unit. This is despite the fact that these cells have been profoundly modified from fish to birds. Modifications include a regression of the photoreceptive capacities, and of the ability to transmit a nervous message to the brain. The ultimate stage of this evolutionary process leads to the definitive loss of both the direct photosensitivity and the clock, as observed in the pineal of mammals. This review focuses on the functional properties of the cellular circadian clocks of non-mammalian vertebrates. How functions the clock? How is the photoreceptive unit linked to it and how is the clock linked to its output signal? These questions are addressed in light of past and recent data obtained in vertebrates, as well as invertebrates and unicellulars.
Collapse
Affiliation(s)
- J Falcón
- CNRS UMR 6558, Département des Neurosciences, Université de Poitiers, France.
| |
Collapse
|
34
|
Cohen ED. Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. J Neurophysiol 1998; 80:2975-90. [PMID: 9862900 DOI: 10.1152/jn.1998.80.6.2975] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The excitatory and inhibitory conductances driving the light-evoked currents (LECs) of cat and ferret ON- and OFF-center X ganglion cells were examined in sliced and isolated retina preparations using center spot stimulation in tetrodotoxin (TTX)-containing Ringer. ON-center X ganglion cells showed an increase in an excitatory conductance reversed positive to +20 mV during the spot stimulus. At spot offset, a transient inhibitory conductance was activated on many cells that reversed near ECl. OFF-center X ganglion cells showed increases in a sustained inhibitory conductance that reversed near ECl during spot stimulation. At spot offset, an excitatory conductance was activated that reversed positive to +20 mV. The light-evoked current kinetics of ON- and OFF-center X cells to spot stimulation did not significantly differ in form from their Y cell counterparts in TTX Ringer. When inhibition was blocked, current-voltage relations of the light-evoked excitatory postsynaptic currents (EPSCs) of both ON- and OFF-X cells were L-shaped and reversed near 0 mV. The EPSCs averaged between 300 and 500 pA at -80 mV. The metabotropic glutamate receptor agonist 2-amino-4-phosphonobutyric acid (APB), was used to block ON-center bipolar cell function. The LECs of ON-X ganglion cells were totally blocked in APB at all holding potentials. APB caused prominent reductions in the dark holding current and synaptic noise of ON-X cells. In contrast, the LECs of OFF-X ganglion cells remained in APB. An increase in the dark holding current was observed. The excitatory amino acid receptor antagonist combination of D-amino-5-phosphono-pentanoic acid (D-AP5) and 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxalinedione (NBQX) was used to block ionotropic glutamate receptor retinal neurotransmission. The LECs of all ON-X ganglion cells were totally blocked, and their holding currents were reduced similar to the actions of APB. For OFF-X ganglion cells, the antagonist combination always blocked the excitatory current at light-OFF; however, in many cells, the inhibitory current at light-ON remained. ON-center X ganglion cells receive active excitation during center illumination, and a transient inhibition at light-OFF. In contrast OFF-center X ganglion cells experience a sustained active inhibition during center illumination, and a shorter increase in excitation at light-offset. Cone bipolar cells provide a resting level of glutamate release on X ganglion cells on which their light-evoked currents are superimposed [corrected].
Collapse
Affiliation(s)
- E D Cohen
- Yale Vision Research Center, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| |
Collapse
|
35
|
Tian N, Hwang TN, Copenhagen DR. Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells. J Neurophysiol 1998; 80:1327-40. [PMID: 9744942 DOI: 10.1152/jn.1998.80.3.1327] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs) were identified and characterized with whole cell and perforated patch voltage-clamp recordings in adult mouse retinal ganglion cells. Pharmacological dissection revealed that all cells were driven by spontaneous synaptic inputs mediated by glutamate and gamma-aminobutyric acid-A (GABAA) receptors. One-half (7/14) of the cells also received glycinergic spontaneous synaptic inputs. Both GABAA and glycine receptor-mediated sIPSCs had rise times (10-90%) of < 1 ms. The decay times of the GABAA receptor-mediated sIPSCs were comparable with those of the glycine receptor-mediated sIPSCs. The average decay time constant for monoexponentially fitted sIPSCs was 63.2 +/- 74.1 ms (mean +/- SD, n = 3278). Glutamate receptor-mediated sEPSCs had an average rise time of 0.50 +/- 0.20 ms (n = 109) and an average monoexponential decay time constant of 5.9 +/- 8.6 ms (n = 2705). Slightly more than two-thirds of the spontaneous synaptic events were monoexponential (68% for sIPSCs and 76% for sEPSCs). The remainder of the events was biexponential. The amplitudes of the spontaneous synaptic events were not correlated with rise times, suggesting that the electrotonic filtering properties of the neurons and/or differences in the spatial location of synaptic inputs could not account for the difference between the decay time constants of the glutamate and GABAA/glycine receptor-mediated spontaneous synaptic events. The amplitudes of sEPSCs were similar to those recorded in tetrodotoxin (TTX), consistent with the events measured in control saline being the response to the release of a single quantum of transmitter. The range of the sIPSC amplitudes in control saline was wider than that recorded in TTX, consistent with some sIPSCs being evoked by presynaptic spikes having an average quantal size greater than one. The rates of sIPSCs and sEPSCs were determined under equivalent conditions by recording with perforated patch electrodes at potentials at which both types of event could be identified. Two groups of ganglion cell were observed; one group had an average sEPSCs/sIPSCs frequency ratio of 0.96 +/- 0.77 (n = 28) and another group had an average ratio of 6.63 +/- 0.82 (n = 7). These findings suggest that a subset of cells is driven much more strongly by excitatory synaptic inputs. We propose that this subset of cells could be OFF ganglion cells, consistent with the higher frequency of spontaneous action potentials found in OFF ganglion cells in other studies.
Collapse
Affiliation(s)
- N Tian
- Department of Ophthalmology, University of California, San Francisco School of Medicine 94143-0730, USA
| | | | | |
Collapse
|
36
|
Panzanelli P, Cantino D, Sassòe-Pognetto M. Co-localization of carnosine and glutamate in photoreceptors and bipolar cells of the frog retina. Brain Res 1997; 758:143-52. [PMID: 9203543 DOI: 10.1016/s0006-8993(97)00211-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunocytochemical methods were used to visualize carnosine (beta-alanyl-L-histidine)-like immunoreactivity (-LI) in the frog retina and to compare its localization with that of glutamate. Carnosine-LI was conspicuous in photoreceptors and bipolar cells. The axon terminals of labelled bipolar cells formed five bands in the inner plexiform layer. A few presumed amacrine and ganglion cells, as well as Müller cell endfeet, were also labelled. Post-embedding immunocytochemistry revealed particularly high levels of glutamate-LI in the synaptic axon terminals of bipolar cells, with a mean gold particle density 5 x higher than that of amacrine cells. Photoreceptor terminals were also labelled, but with a labelling intensity about half that of bipolar cells. Labelling of serial semithin sections showed co-localization of carnosine and glutamate in photoreceptors and bipolar cells. These findings are consistent with the notion that glutamate is the neurotransmitter of neuronal elements that transfer information vertically through the retina. We propose that carnosine may modulate GABA and/or glutamate receptors by virtue of its ability to chelate Zn2+ and other ions.
Collapse
Affiliation(s)
- P Panzanelli
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Italy
| | | | | |
Collapse
|