1
|
Xiong LL, Sun YF, Niu RZ, Xue LL, Chen L, Huangfu LR, Li J, Wang YY, Liu X, Wang WY, Zuo ZF, Wang TH. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. RESEARCH (WASHINGTON, D.C.) 2024; 7:0536. [PMID: 39574940 PMCID: PMC11579486 DOI: 10.34133/research.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Tree shrews (TSs) possess a highly developed visual system. Here, we establish an age-related single-cell RNA sequencing atlas of retina cells from 15 TSs, covering 6 major retina cell classes and 3 glial cell types. An age effect is observed on the cell subset composition and gene expression pattern. We then verify the cell subtypes and identify specific markers in the TS retina including CA10 for bipolar cells, MEGF11 for H1 horizontal cells, and SLIT2, RUNX1, FOXP2, and SPP1 for retinal ganglion cell subpopulations. The cross-species analysis elucidates the cell type-specific transcriptional programs, different cell compositions, and cell communications. The comparisons also reveal that TS cones and subclasses of bipolar and amacrine cells exhibit the closest relationship with humans and macaques. Our results suggests that TS could be used as a better disease model to understand age-dependent cellular and genetic mechanisms of the retina, particularly for the retinal diseases associated with cones.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Anesthesiology,
The Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yi-Fei Sun
- Department of Urology,
the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Rui-Ze Niu
- Mental Health Center of Kunming Medical University, Kunming 650034, Yunnan, China
| | - Lu-Lu Xue
- State Key Lab of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Chen
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yu-Ying Wang
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Xin Liu
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Zhong-Fu Zuo
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| |
Collapse
|
2
|
Gangi M, Maruyama T, Ishii T, Kaneda M. ON and OFF starburst amacrine cells are controlled by distinct cholinergic pathways. J Gen Physiol 2024; 156:e202413550. [PMID: 38836782 PMCID: PMC11153316 DOI: 10.1085/jgp.202413550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.
Collapse
Affiliation(s)
- Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Tipado Z, Kuypers KPC, Sorger B, Ramaekers JG. Visual hallucinations originating in the retinofugal pathway under clinical and psychedelic conditions. Eur Neuropsychopharmacol 2024; 85:10-20. [PMID: 38648694 DOI: 10.1016/j.euroneuro.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Psychedelics like LSD (Lysergic acid diethylamide) and psilocybin are known to modulate perceptual modalities due to the activation of mostly serotonin receptors in specific cortical (e.g., visual cortex) and subcortical (e.g., thalamus) regions of the brain. In the visual domain, these psychedelic modulations often result in peculiar disturbances of viewed objects and light and sometimes even in hallucinations of non-existent environments, objects, and creatures. Although the underlying processes are poorly understood, research conducted over the past twenty years on the subjective experience of psychedelics details theories that attempt to explain these perceptual alterations due to a disruption of communication between cortical and subcortical regions. However, rare medical conditions in the visual system like Charles Bonnet syndrome that cause perceptual distortions may shed new light on the additional importance of the retinofugal pathway in psychedelic subjective experiences. Interneurons in the retina called amacrine cells could be the first site of visual psychedelic modulation and aid in disrupting the hierarchical structure of how humans perceive visual information. This paper presents an understanding of how the retinofugal pathway communicates and modulates visual information in psychedelic and clinical conditions. Therefore, we elucidate a new theory of psychedelic modulation in the retinofugal pathway.
Collapse
Affiliation(s)
- Zeus Tipado
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
4
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
5
|
Reinhard J, Mueller-Buehl C, Wiemann S, Roll L, Luft V, Shabani H, Rathbun DL, Gan L, Kuo CC, Franzen J, Joachim SC, Faissner A. Neural extracellular matrix regulates visual sensory motor integration. iScience 2024; 27:108846. [PMID: 38318351 PMCID: PMC10839651 DOI: 10.1016/j.isci.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Visual processing depends on sensitive and balanced synaptic neurotransmission. Extracellular matrix proteins in the environment of cells are key modulators in synaptogenesis and synaptic plasticity. In the present study, we provide evidence that the combined loss of the four extracellular matrix components, brevican, neurocan, tenascin-C, and tenascin-R, in quadruple knockout mice leads to severe retinal dysfunction and diminished visual motion processing in vivo. Remarkably, impaired visual motion processing was accompanied by a developmental loss of cholinergic direction-selective starburst amacrine cells. Additionally, we noted imbalance of inhibitory and excitatory synaptic signaling in the quadruple knockout retina. Collectively, the study offers insights into the functional importance of four key extracellular matrix proteins for retinal function, visual motion processing, and synaptic signaling.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Cornelius Mueller-Buehl
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Veronika Luft
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Hamed Shabani
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany
| | - Daniel L. Rathbun
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany
| | - Lin Gan
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, 44892 Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
6
|
Li Y, Yu S, Jia X, Qiu X, He J. Defining morphologically and genetically distinct GABAergic/cholinergic amacrine cell subtypes in the vertebrate retina. PLoS Biol 2024; 22:e3002506. [PMID: 38363811 PMCID: PMC10914270 DOI: 10.1371/journal.pbio.3002506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/05/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
In mammals, retinal direction selectivity originates from GABAergic/cholinergic amacrine cells (ACs) specifically expressing the sox2 gene. However, the cellular diversity of GABAergic/cholinergic ACs of other vertebrate species remains largely unexplored. Here, we identified 2 morphologically and genetically distinct GABAergic/cholinergic AC types in zebrafish, a previously undescribed bhlhe22+ type and a mammalian counterpart sox2+ type. Notably, while sole sox2 disruption removed sox2+ type, the codisruption of bhlhe22 and bhlhe23 was required to remove bhlhe22+ type. Also, both types significantly differed in dendritic arbors, lamination, and soma position. Furthermore, in vivo two-photon calcium imaging and the behavior assay suggested the direction selectivity of both AC types. Nevertheless, the 2 types showed preferential responses to moving bars of different sizes. Thus, our findings provide new cellular diversity and functional characteristics of GABAergic/cholinergic ACs in the vertebrate retina.
Collapse
Affiliation(s)
- Yan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinling Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Yoshimatsu T, Baden T. New twists in the evolution of retinal direction selectivity. PLoS Biol 2024; 22:e3002538. [PMID: 38422167 PMCID: PMC10903858 DOI: 10.1371/journal.pbio.3002538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
In mammals, starburst amacrine cells are centrally involved in motion vision and a new study in PLOS Biology, by Yan and colleagues finds that zebrafish have them, too. They coexist with a second pair of starburst-like neurons, but neither appears to be strongly motion selective.
Collapse
Affiliation(s)
- Takeshi Yoshimatsu
- Department of the Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | - Tom Baden
- Center for Sensory Neuroscience and Computation, Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, United Kingdom
| |
Collapse
|
8
|
Jo A, Deniz S, Cherian S, Xu J, Futagi D, DeVries SH, Zhu Y. Modular interneuron circuits control motion sensitivity in the mouse retina. Nat Commun 2023; 14:7746. [PMID: 38008788 PMCID: PMC10679153 DOI: 10.1038/s41467-023-43382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023] Open
Abstract
Neural computations arise from highly precise connections between specific types of neurons. Retinal ganglion cells (RGCs) with similar stratification patterns are positioned to receive similar inputs but often display different response properties. In this study, we used intersectional mouse genetics to achieve single-cell type labeling and identified an object motion sensitive (OMS) AC type, COMS-AC(counter-OMS AC). Optogenetic stimulation revealed that COMS-AC makes glycinergic synapses with the OMS-insensitive HD2p-RGC, while chemogenetic inactivation showed that COMS-AC provides inhibitory control to HD2p-RGC during local motion. This local inhibition, combined with the inhibitory drive from TH2-AC during global motion, explains the OMS-insensitive feature of HD2p-RGC. In contrast, COMS-AC fails to make synapses with W3(UHD)-RGC, allowing it to exhibit OMS under the control of VGlut3-AC and TH2-AC. These findings reveal modular interneuron circuits that endow structurally similar RGC types with different responses and present a mechanism for redundancy-reduction in the retina to expand coding capacity.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Suraj Cherian
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daiki Futagi
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
10
|
Chen J, Gish CM, Fransen JW, Salazar-Gatzimas E, Clark DA, Borghuis BG. Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. iScience 2023; 26:107928. [PMID: 37810236 PMCID: PMC10550730 DOI: 10.1016/j.isci.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Evolution has equipped vertebrates and invertebrates with neural circuits that selectively encode visual motion. While similarities in the computations performed by these circuits in mouse and fruit fly have been noted, direct experimental comparisons have been lacking. Because molecular mechanisms and neuronal morphology in the two species are distinct, we directly compared motion encoding in these two species at the algorithmic level, using matched stimuli and focusing on a pair of analogous neurons, the mouse ON starburst amacrine cell (ON SAC) and Drosophila T4 neurons. We find that the cells share similar spatiotemporal receptive field structures, sensitivity to spatiotemporal correlations, and tuning to sinusoidal drifting gratings, but differ in their responses to apparent motion stimuli. Both neuron types showed a response to summed sinusoids that deviates from models for motion processing in these cells, underscoring the similarities in their processing and identifying response features that remain to be explained.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
| | - Caitlin M Gish
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Damon A Clark
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Katada Y, Kunimi H, Serizawa N, Lee D, Kobayashi K, Negishi K, Okano H, Tanaka KF, Tsubota K, Kurihara T. Starburst amacrine cells amplify optogenetic visual restoration through gap junctions. Mol Ther Methods Clin Dev 2023; 30:1-13. [PMID: 37324975 PMCID: PMC10265492 DOI: 10.1016/j.omtm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Ectopic induction of optogenetic actuators, such as channelrhodopsin, is a promising approach to restoring vision in the degenerating retina. However, the cell type-specific response of ectopic photoreception has not been well understood. There are limits to obtaining efficient gene expression in a specifically targeted cell population by a transgenic approach. In the present study, we established a murine model with high efficiency of gene induction to retinal ganglion cells (RGCs) and amacrine cells using an improved tetracycline transactivator-operator bipartite system (KENGE-tet system). To investigate the cell type-specific visual restorative effect, we expressed the channelrhodopsin gene into RGCs and amacrine cells using the KENGE-tet system. As a result, enhancement in the visual restorative effect was observed to RGCs and starburst amacrine cells. In conclusion, a photoresponse from amacrine cells may enhance the maintained response of RGCs and further increase or improve the visual restorative effect.
Collapse
Affiliation(s)
- Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiromitsu Kunimi
- Laboratory of Photobiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naho Serizawa
- Laboratory of Photobiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Nutritional Sciences, Toyo University, Kita-ku, Tokyo 115-8650, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, Inc, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Maruyama T, Ishii T, Kaneda M. Starburst amacrine cells form gap junctions in the early postnatal stage of the mouse retina. Front Cell Neurosci 2023; 17:1173579. [PMID: 37293630 PMCID: PMC10244514 DOI: 10.3389/fncel.2023.1173579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Although gap junctional coupling in the developing retina is important for the maturation of neuronal networks, its role in the development of individual neurons remains unclear. Therefore, we herein investigated whether gap junctional coupling by starburst amacrine cells (SACs), a key neuron for the formation of direction selectivity, occurs during the developmental stage in the mouse retina. Neurobiotin-injected SACs coupled with many neighboring cells before eye-opening. The majority of tracer-coupled cells were retinal ganglion cells, and tracer coupling was not detected between SACs. The number of tracer-coupled cells significantly decreased after eye-opening and mostly disappeared by postnatal day 28 (P28). Membrane capacitance (Cm), an indicator of the formation of electrical coupling with gap junctions, was larger in SACs before than after eye-opening. The application of meclofenamic acid, a gap junction blocker, reduced the Cm of SACs. Gap junctional coupling by SACs was regulated by dopamine D1 receptors before eye-opening. In contrast, the reduction in gap junctional coupling after eye-opening was not affected by visual experience. At the mRNA level, 4 subtypes of connexins (23, 36, 43, and 45) were detected in SACs before eye-opening. Connexin 43 expression levels significantly decreased after eye-opening. These results indicate that gap junctional coupling by SACs occurs during the developmental period and suggest that the elimination of gap junctions proceeds with the innate system.
Collapse
|
14
|
Wu J, Kim YJ, Dacey DM, Troy JB, Smith RG. Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. Vis Neurosci 2023; 40:E003. [PMID: 37218623 PMCID: PMC10207453 DOI: 10.1017/s0952523823000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Yeon Jin Kim
- Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Dennis M. Dacey
- Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - John B. Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
16
|
Noailles A, Kutsyr O, Mayordomo-Febrer A, Lax P, López-Murcia M, Sanz-González SM, Pinazo-Durán MD, Cuenca N. Sodium Hyaluronate-Induced Ocular Hypertension in Rats Damages the Direction-Selective Circuit and Inner/Outer Retinal Plexiform Layers. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35503230 PMCID: PMC9078050 DOI: 10.1167/iovs.63.5.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To assess the changes in retinal morphology in a rat model of chronic glaucoma induced by ocular hypertension. Methods Intraocular pressure (IOP) was surgically increased through weekly injections of sodium hyaluronate (HYA) in the anterior eye chamber of the left eye of male Wistar rats, whereas the right eyes were sham operated (salt solution). During the 10-week experimental period, IOP was measured weekly with a rebound tonometer. Retinal cryosections were prepared for histological/immunohistochemical analysis and morphometry. Results IOP was higher in HYA-treated eyes than in sham-operated eyes along the 10-week period, which was significant from the fourth to the nineth week. Ocular hypertension in HYA-treated eyes was associated with morphologic and morphometric changes in bipolar cells, ON-OFF direction-selective ganglion cells, ON/OFF starburst amacrine cells, and inner plexiform layer sublamina. Conclusions Serial HYA treatment in the rat anterior eye chamber results in mild-to-moderate elevated and sustained IOP and ganglion cell death, which mimics most human open-angle glaucoma hallmarks. The reduced number of direction-selective ganglion cells and starburst amacrine cells accompanied by a deteriorated ON/OFF plexus in this glaucoma model could lend insight to the abnormalities in motion perception observed in patients with glaucoma.
Collapse
Affiliation(s)
- Agustina Noailles
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| | - Oksana Kutsyr
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| | - Aloma Mayordomo-Febrer
- Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universidad CEU Cardenal Herrera, Valencia, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain.,Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, Valencia, Spain
| | - Pedro Lax
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| | - María López-Murcia
- Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universidad CEU Cardenal Herrera, Valencia, Spain.,Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, Valencia, Spain
| | - Silvia M Sanz-González
- OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain.,Cellular and Molecular Ophthalmo-biology Research Group, Department of Surgery, University of Valencia, Valencia, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain
| | - María Dolores Pinazo-Durán
- OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain.,Cellular and Molecular Ophthalmo-biology Research Group, Department of Surgery, University of Valencia, Valencia, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain
| | - Nicolás Cuenca
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Jain V, Hanson L, Sethuramanujam S, Michaels T, Gawley J, Gregg RG, Pyle I, Zhang C, Smith RG, Berson D, McCall MA, Awatramani GB. Gain control by sparse, ultra-slow glycinergic synapses. Cell Rep 2022; 38:110410. [PMID: 35196487 DOI: 10.1016/j.celrep.2022.110410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
In the retina, ON starburst amacrine cells (SACs) play a crucial role in the direction-selective circuit, but the sources of inhibition that shape their response properties remain unclear. Previous studies demonstrate that ∼95% of their inhibitory synapses are GABAergic, yet we find that the light-evoked inhibitory currents measured in SACs are predominantly glycinergic. Glycinergic inhibition is extremely slow, relying on non-canonical glycine receptors containing α4 subunits, and is driven by both the ON and OFF retinal pathways. These attributes enable glycine inputs to summate and effectively control the output gain of SACs, expanding the range over which they compute direction. Serial electron microscopic reconstructions reveal three specific types of ON and OFF narrow-field amacrine cells as the presumptive sources of glycinergic inhibition. Together, these results establish an unexpected role for specific glycinergic amacrine cells in the retinal computation of stimulus direction by SACs.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | | | - Tracy Michaels
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Jerram Gawley
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Ronald G Gregg
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Ian Pyle
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Chi Zhang
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Maureen A McCall
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
18
|
Cessac B. Retinal Processing: Insights from Mathematical Modelling. J Imaging 2022; 8:14. [PMID: 35049855 PMCID: PMC8780400 DOI: 10.3390/jimaging8010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
The retina is the entrance of the visual system. Although based on common biophysical principles, the dynamics of retinal neurons are quite different from their cortical counterparts, raising interesting problems for modellers. In this paper, I address some mathematically stated questions in this spirit, discussing, in particular: (1) How could lateral amacrine cell connectivity shape the spatio-temporal spike response of retinal ganglion cells? (2) How could spatio-temporal stimuli correlations and retinal network dynamics shape the spike train correlations at the output of the retina? These questions are addressed, first, introducing a mathematically tractable model of the layered retina, integrating amacrine cells' lateral connectivity and piecewise linear rectification, allowing for computing the retinal ganglion cells receptive field together with the voltage and spike correlations of retinal ganglion cells resulting from the amacrine cells networks. Then, I review some recent results showing how the concept of spatio-temporal Gibbs distributions and linear response theory can be used to characterize the collective spike response to a spatio-temporal stimulus of a set of retinal ganglion cells, coupled via effective interactions corresponding to the amacrine cells network. On these bases, I briefly discuss several potential consequences of these results at the cortical level.
Collapse
Affiliation(s)
- Bruno Cessac
- France INRIA Biovision Team and Neuromod Institute, Université Côte d'Azur, 2004 Route des Lucioles, BP 93, 06902 Valbonne, France
| |
Collapse
|
19
|
Mouse Lines with Cre-Mediated Recombination in Retinal Amacrine Cells. eNeuro 2022; 9:ENEURO.0255-21.2021. [PMID: 35045975 PMCID: PMC8856716 DOI: 10.1523/eneuro.0255-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Amacrine cells (ACs) are the most diverse neuronal cell type in the vertebrate retina. Yet little is known about the contribution of ACs to visual processing and retinal disease. A major challenge in evaluating AC function is genetic accessibility. A classic tool of mouse genetics, Cre-mediated recombination, can provide such access. We have screened existing genetically-modified mouse strains and identified multiple candidates that express Cre-recombinase in subsets of retinal ACs. The Cre-expressing mice were crossed to fluorescent-reporter mice to assay Cre expression. In addition, a Cre-dependent fluorescent reporter plasmid was electroporated into the subretinal space of Cre strains. Herein, we report three mouse lines (Tac1::IRES-cre, Camk2a-cre, and Scx-cre) that express Cre recombinase in sub-populations of ACs. In two of these lines, recombination occurred in multiple AC types and a small number of other retinal cell types, while recombination in the Camk2a-cre line appears specific to a morphologically distinct AC. We anticipate that these characterized mouse lines will be valuable tools to the community of researchers who study retinal biology and disease.
Collapse
|
20
|
Otgondemberel Y, Roh H, Fried SI, Im M. Spiking Characteristics of Network-Mediated Responses Arising in Direction-Selective Ganglion Cells of Rabbit and Mouse Retinas to Electric Stimulation for Retinal Prostheses. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2445-2455. [PMID: 34784280 PMCID: PMC8654582 DOI: 10.1109/tnsre.2021.3128878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To restore the sight of individuals blinded by outer retinal degeneration, numerous retinal prostheses have been developed. However, the performance of those implants is still hampered by some factors including the lack of comprehensive understanding of the electrically-evoked responses arising in various retinal ganglion cell (RGC) types. In this study, we characterized the electrically-evoked network-mediated responses (hereafter referred to as electric responses) of ON-OFF direction-selective (DS) RGCs in rabbit and mouse retinas for the first time. Interestingly, both species in common demonstrated strong negative correlations between spike counts of electric responses and direction selective indices (DSIs), suggesting electric stimulation activates inhibitory presynaptic neurons that suppress null direction responses for high direction tuning in their light responses. The DS cells of the two species showed several differences including different numbers of bursts. Also, spiking patterns were more heterogeneous across DS RGCs of rabbits than those of mice. The electric response magnitudes of rabbit DS cells showed positive and negative correlations with ON and OFF light response magnitudes to preferred direction motion, respectively. But the mouse DS cells showed positive correlations in both comparisons. Our Fano Factor (FF) and spike time tiling coefficient (STTC) analyses revealed that spiking consistencies across repeats were reduced in late electric responses in both species. Moreover, the response consistencies of DS RGCs were lower than those of non-DS RGCs. Our results indicate the species-dependent retinal circuits may result in different electric response features and therefore suggest a proper animal model may be crucial in prosthetic researches.
Collapse
|
21
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
22
|
Abstract
Our sense of sight relies on photoreceptors, which transduce photons into the nervous system's electrochemical interpretation of the visual world. These precious photoreceptors can be disrupted by disease, injury, and aging. Once photoreceptors start to die, but before blindness occurs, the remaining retinal circuitry can withstand, mask, or exacerbate the photoreceptor deficit and potentially be receptive to newfound therapies for vision restoration. To maximize the retina's receptivity to therapy, one must understand the conditions that influence the state of the remaining retina. In this review, we provide an overview of the retina's structure and function in health and disease. We analyze a collection of observations on photoreceptor disruption and generate a predictive model to identify parameters that influence the retina's response. Finally, we speculate on whether the retina, with its remarkable capacity to function over light levels spanning nine orders of magnitude, uses these same adaptational mechanisms to withstand and perhaps mask photoreceptor loss.
Collapse
Affiliation(s)
- Joo Yeun Lee
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
| | - Rachel A Care
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94143, USA
| | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
23
|
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021; 373:373/6553/eabd0830. [PMID: 34437090 DOI: 10.1126/science.abd0830] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
The ability to perceive and respond to environmental stimuli emerges in the absence of sensory experience. Spontaneous retinal activity prior to eye opening guides the refinement of retinotopy and eye-specific segregation in mammals, but its role in the development of higher-order visual response properties remains unclear. Here, we describe a transient window in neonatal mouse development during which the spatial propagation of spontaneous retinal waves resembles the optic flow pattern generated by forward self-motion. We show that wave directionality requires the same circuit components that form the adult direction-selective retinal circuit and that chronic disruption of wave directionality alters the development of direction-selective responses of superior colliculus neurons. These data demonstrate how the developing visual system patterns spontaneous activity to simulate ethologically relevant features of the external world and thereby instruct self-organization.
Collapse
Affiliation(s)
- Xinxin Ge
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali S Hamodi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aude Martinez Sabino
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
24
|
Titchener SA, Kvansakul J, Shivdasani MN, Fallon JB, Nayagam DAX, Epp SB, Williams CE, Barnes N, Kentler WG, Kolic M, Baglin EK, Ayton LN, Abbott CJ, Luu CD, Allen PJ, Petoe MA. Oculomotor Responses to Dynamic Stimuli in a 44-Channel Suprachoroidal Retinal Prosthesis. Transl Vis Sci Technol 2020; 9:31. [PMID: 33384885 PMCID: PMC7757638 DOI: 10.1167/tvst.9.13.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate oculomotor behavior in response to dynamic stimuli in retinal implant recipients. Methods Three suprachoroidal retinal implant recipients performed a four-alternative forced-choice motion discrimination task over six sessions longitudinally. Stimuli were a single white bar (“moving bar”) or a series of white bars (“moving grating”) sweeping left, right, up, or down across a 42″ monitor. Performance was compared with normal video processing and scrambled video processing (randomized image-to-electrode mapping to disrupt spatiotemporal structure). Eye and head movement was monitored throughout the task. Results Two subjects had diminished performance with scrambling, suggesting retinotopic discrimination was used in the normal condition and made smooth pursuit eye movements congruent to the moving bar stimulus direction. These two subjects also made stimulus-related eye movements resembling optokinetic reflex (OKR) for moving grating stimuli, but the movement was incongruent with stimulus direction. The third subject was less adept at the task, appeared primarily reliant on head position cues (head movements were congruent to stimulus direction), and did not exhibit retinotopic discrimination and associated eye movements. Conclusions Our observation of smooth pursuit indicates residual functionality of cortical direction-selective circuits and implies a more naturalistic perception of motion than expected. A distorted OKR implies improper functionality of retinal direction-selective circuits, possibly due to retinal remodeling or the non-selective nature of the electrical stimulation. Translational Relevance Retinal implant users can make naturalistic eye movements in response to moving stimuli, highlighting the potential for eye tracker feedback to improve perceptual localization and image stabilization in camera-based visual prostheses.
Collapse
Affiliation(s)
- Samuel A Titchener
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - Jessica Kvansakul
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia.,Bionics Institute, East Melbourne, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - D A X Nayagam
- Bionics Institute, East Melbourne, Australia.,Department of Pathology, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia
| | | | - Chris E Williams
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - Nick Barnes
- Data61, CSIRO, Canberra, Australia.,Research School of Engineering, Australian National University, Canberra, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Matthew A Petoe
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Persiconi I, Cosmi F, Guadagno NA, Lupo G, De Stefano ME. Dystrophin Is Required for the Proper Timing in Retinal Histogenesis: A Thorough Investigation on the mdx Mouse Model of Duchenne Muscular Dystrophy. Front Neurosci 2020; 14:760. [PMID: 32982660 PMCID: PMC7487415 DOI: 10.3389/fnins.2020.00760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter isoforms. Because of this, DMD patients may also experience different forms of cognitive impairment, neurological and autonomic disorders, and specific visual defects. DMD-related damages to the nervous system are established during development, suggesting a role for all dystrophin isoforms in neural circuit development and differentiation; however, to date, their function in retinogenesis has never been investigated. In this large-scale study, we analyzed whether the lack of Dp427 affects late retinogenesis in the mdx mouse, the most well studied animal model of DMD. Retinal gene expression and layer maturation, as well as neural cell proliferation, apoptosis, and differentiation, were evaluated in E18 and/or P0, P5, P10, and adult mice. In mdx mice, expression of Capn3, Id3 (E18-P5), and Dtnb (P5) genes, encoding proteins involved in different aspects of retina development and synaptogenesis (e.g., Calpain 3, DNA-binding protein inhibitor-3, and β-dystrobrevin, respectively), was transiently reduced compared to age-matched wild type mice. Concomitantly, a difference in the time required for the retinal ganglion cell layer to reach appropriate thickness was observed (P0–P5). Immunolabeling for specific cell markers also evidenced a significant dysregulation in the number of GABAergic amacrine cells (P5–P10), a transient decrease in the area immunopositive for the Vesicular Glutamate Transporter 1 (VGluT1) during ribbon synapse maturation (P10) and a reduction in the number of calretinin+ retinal ganglion cells (RGCs) (adults). Finally, the number of proliferating retinal progenitor cells (P5–P10) and apoptotic cells (P10) was reduced. These results support the hypothesis of a role for Dp427 during late retinogenesis different from those proposed in consolidated neural circuits. In particular, Dp427 may be involved in shaping specific steps of retina differentiation. Notably, although most of the above described quantitative alterations recover over time, the number of calretinin+ RGCs is reduced only in the mature retina. This suggests that alterations subtler than the timing of retinal maturation may occur, a hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Irene Persiconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Francesca Cosmi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Research in Neurobiology "Daniel Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Elbaz M, Buterman R, Ezra Tsur E. NeuroConstruct-based implementation of structured-light stimulated retinal circuitry. BMC Neurosci 2020; 21:28. [PMID: 32580768 PMCID: PMC7315481 DOI: 10.1186/s12868-020-00578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinal circuitry provides a fundamental window to neural networks, featuring widely investigated visual phenomena ranging from direction selectivity to fast detection of approaching motion. As the divide between experimental and theoretical visual neuroscience is fading, neuronal modeling has proven to be important for retinal research. In neuronal modeling a delicate balance is maintained between bio-plausibility and model tractability, giving rise to myriad modeling frameworks. One biologically detailed framework for neuro modeling is NeuroConstruct, which facilitates the creation, visualization and analysis of neural networks in 3D. RESULTS Here, we extended NeuroConstruct to support the generation of structured visual stimuli, to feature different synaptic dynamics, to allow for heterogeneous synapse distribution and to enable rule-based synaptic connectivity between cell populations. We utilized this framework to demonstrate a simulation of a dense plexus of biologically realistic and morphologically detailed starburst amacrine cells. The amacrine cells were connected to a ganglion cell and stimulated with expanding and collapsing rings of light. CONCLUSIONS This framework provides a powerful toolset for the investigation of the yet elusive underlying mechanisms of retinal computations such as direction selectivity. Particularly, we showcased the way NeuroConstruct can be extended to support advanced field-specific neuro-modeling.
Collapse
Affiliation(s)
- Miriam Elbaz
- Jerusalem College of Technology, Jerusalem, Israel
| | | | - Elishai Ezra Tsur
- Jerusalem College of Technology, Jerusalem, Israel. .,Neuro-Biomorphic Engineering Lab, Department of Mathematics and Computer Science, Open University of Israel, Raanana, Israel.
| |
Collapse
|
27
|
Abstract
There are functional and anatomical distinctions between the neural systems involved in the recognition of sounds in the environment and those involved in the sensorimotor guidance of sound production and the spatial processing of sound. Evidence for the separation of these processes has historically come from disparate literatures on the perception and production of speech, music and other sounds. More recent evidence indicates that there are computational distinctions between the rostral and caudal primate auditory cortex that may underlie functional differences in auditory processing. These functional differences may originate from differences in the response times and temporal profiles of neurons in the rostral and caudal auditory cortex, suggesting that computational accounts of primate auditory pathways should focus on the implications of these temporal response differences.
Collapse
|
28
|
Jain V, Murphy-Baum BL, deRosenroll G, Sethuramanujam S, Delsey M, Delaney KR, Awatramani GB. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. eLife 2020; 9:52949. [PMID: 32096758 PMCID: PMC7069718 DOI: 10.7554/elife.52949] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where directionally tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition ‘vetoes’ excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition shapes direction selectivity independently within small dendritic segments (<10µm) with remarkable accuracy. The data suggest that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | | | - Mike Delsey
- Department of Biology, University of Victoria, Victoria, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
29
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
30
|
Hanson L, Sethuramanujam S, deRosenroll G, Jain V, Awatramani GB. Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. eLife 2019; 8:42392. [PMID: 30714905 PMCID: PMC6377229 DOI: 10.7554/elife.42392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/01/2019] [Indexed: 01/18/2023] Open
Abstract
In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | - Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
31
|
Molecular Fingerprinting of On-Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. J Neurosci 2018; 39:78-95. [PMID: 30377226 DOI: 10.1523/jneurosci.1784-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.
Collapse
|
32
|
Yu AK, Datta S, McMackin MZ, Cortopassi GA. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules. Hum Mol Genet 2018; 26:4929-4936. [PMID: 29040550 DOI: 10.1093/hmg/ddx373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/28/2017] [Indexed: 11/14/2022] Open
Abstract
Inherited mitochondrial optic neuropathies, such as Leber's hereditary optic neuropathy (LHON) and Autosomal dominant optic atrophy (ADOA) are caused by mutant mitochondrial proteins that lead to defects in mitochondrial complex 1-driven ATP synthesis, and cause specific retinal ganglion cell (RGC) loss. Complex 1 defects also occur in patients with primary open angle glaucoma (POAG), in which there is specific RGC loss. The treatment of mitochondrial optic neuropathy in the US is only supportive. The Ndufs4 knockout (Ndufs4 KO) mouse is a mitochondrial complex 1-deficient model that leads to RGC loss and rapid vision loss and allows for streamlined testing of potential therapeutics. Preceding RGC loss in the Ndufs4 KO is the loss of starburst amacrine cells, which may be an important target in the mechanism of complex 1-deficient vision loss. Papaverine and zolpidem were recently shown to be protective of bioenergetic loss in cell models of optic neuropathy. Treatment of Ndufs4 KO mice with papaverine, zolpidem, and rapamycin-suppressed inflammation, prevented cell death, and protected from vision loss. Thus, in the Ndufs4 KO mouse model of mitochondrial optic neuropathy, papaverine and zolpidem provided significant protection from multiple pathophysiological features, and as approved drugs in wide human use could be considered for the novel indication of human optic neuropathy.
Collapse
Affiliation(s)
- Alfred K Yu
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandipan Datta
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Marissa Z McMackin
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Gino A Cortopassi
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| |
Collapse
|
33
|
Abstract
Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the Drosophila visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA; .,Current affiliation: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
34
|
Sethuramanujam S, Awatramani GB, Slaughter MM. Cholinergic excitation complements glutamate in coding visual information in retinal ganglion cells. J Physiol 2018; 596:3709-3724. [PMID: 29758086 DOI: 10.1113/jp275073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Starburst amacrine cells release GABA and ACh. This study explores the coordinated function of starburst-mediated cholinergic excitation and GABAergic inhibition to bistratified retinal ganglion cells, predominantly direction-selective ganglion cells (DSGCs). In rat retina, under our recording conditions, starbursts were found to provide the major excitatory drive to a sub-population of ganglion cells whose dendrites co-stratify with starburst dendrites (putative DSGCs). In mouse retina, recordings from genetically identified DSGCs at physiological temperatures reveal that ACh inputs dominate the response to small spot-high contrast light stimuli, with preferential addition of bipolar cell input shifting the balance towards glutamate for larger spot stimuli In addition, starbursts also appear to gate glutamatergic excitation to DSGCs by postsynaptic and possibly presynaptic inhibitory processes ABSTRACT: Starburst amacrine cells release both GABA and ACh, allowing them to simultaneously mediate inhibition and excitation. However, the precise pre- and postsynaptic targets for ACh and GABA remain under intense investigation. Most previous studies have focused on starburst-mediated postsynaptic GABAergic inhibition and its role in the formation of directional selectivity in ganglion cells. However, the significance of postsynaptic cholinergic excitation is only beginning to be appreciated. Here, we found that light-evoked responses measured in bi-stratified rat ganglion cells with dendrites that co-fasciculate with ON and OFF starburst dendrites (putative direction-selective ganglion cells, DSGCs) were abolished by the application of nicotinic receptor antagonists, suggesting ACh could act as the primary source of excitation. Recording from genetically labelled DSGCs in mouse retina at physiological temperatures revealed that cholinergic synaptic inputs dominated the excitation for high contrast stimuli only when the size of the stimulus was small. Canonical glutamatergic inputs mediated by bipolar cells were prominent when GABA/glycine receptors were blocked or when larger spot stimuli were utilized. In mouse DSGCs, bipolar cell excitation could also be unmasked through the activation of mGluR2,3 receptors, which we show suppresses starburst output, suggesting that GABA from starbursts serves to inhibit bipolar cell signals in DSGCs. Taken together, these results suggest that starbursts amplify excitatory signals traversing the retina, endowing DSGCs with the ability to encode fine spatial information without compromising their ability to encode direction.
Collapse
Affiliation(s)
- Santhosh Sethuramanujam
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA.,Department of Biology, University of Victoria, Victoria, BC, V8W2Y2, Canada
| | | | - Malcolm M Slaughter
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
35
|
Abstract
The long-held view that bipolar cells provide the exclusive excitatory drive to the mammalian inner retina has been challenged: new studies indicate that, instead, at least two cells that lack the dendrites characteristic for bipolar cells, and therefore resemble amacrine cells, excite inner retinal circuits using glutamate.
Collapse
|
36
|
Zhang C, Yu WQ, Hoshino A, Huang J, Rieke F, Reh TA, Wong ROL. Development of ON and OFF cholinergic amacrine cells in the human fetal retina. J Comp Neurol 2018; 527:174-186. [PMID: 29405294 DOI: 10.1002/cne.24405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Choline acetyltransferase (ChAT) expressing retinal amacrine cells are present across vertebrates. These interneurons play important roles in the development of retinal projections to the brain and in motion detection, specifically in generating direction-selective responses to moving stimuli. ChAT amacrine cells typically comprise two spatially segregated populations that form circuits in the 'ON' or 'OFF' synaptic layers of the inner retina. This stereotypic arrangement is also found across the adult human retina, with the notable exception that ChAT expression is evident in the ON but not OFF layer of the fovea, a region specialized for high-acuity vision. We thus investigated whether the human fovea exhibits a developmental path for ON and OFF ChAT cells that is retinal location-specific. Our analysis shows that at each retinal location, human ON and OFF ChAT cells differentiate, form their separate synaptic layers, and establish non-random mosaics at about the same time. However, unlike in the adult fovea, ChAT immunostaining is initially robust in both ON and OFF populations, up until at least mid-gestation. ChAT expression in the OFF layer in the fovea is therefore significantly reduced after mid-gestation. OFF ChAT cells in the human fovea and in the retinal periphery thus follow distinct maturational paths.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Akina Hoshino
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Jing Huang
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
The effect of intravitreal cholinergic drugs on motor control. Behav Brain Res 2018; 339:232-238. [DOI: 10.1016/j.bbr.2017.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022]
|
38
|
Leopoldo K, Joselevitch C. A neurociência computacional no estudo dos processos cognitivos. PSICOLOGIA USP 2018. [DOI: 10.1590/0103-656420160172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Nas últimas décadas o estudo de processos cognitivos vem sendo influenciado por duas tendências: a legitimação de diversas formas e níveis de estudo e a tentativa de integração multidisciplinar. A primeira teve grande importância na segunda metade do século XX, quando linhas de pesquisa na psicologia cognitiva e nas neurociências fortaleceram-se. Nesse sentido, destacam-se os três níveis de Marr (computacional, algorítmico e implementacional) como forma de estruturar o estudo dos processos cognitivos. A segunda tendência é mais recente e busca, apoiada na primeira, aprofundar o entendimento dos processos cognitivos em suas diversas escalas e integrar diversos paradigmas de estudos, buscando consiliência teórica. O intento deste artigo é apresentar a neurociência computacional e suas possíveis contribuições para a psicologia cognitiva, articulando, por meio dos três níveis de Marr, uma base teórica que explicite o papel de cada uma das disciplinas e as suas possíveis interações.
Collapse
|
39
|
Park EB, Gu YN, Jeon CJ. Immunocytochemical localization of cholinergic amacrine cells in the bat retina. Acta Histochem 2017; 119:428-437. [PMID: 28483062 DOI: 10.1016/j.acthis.2017.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to localize the cholinergic amacrine cells, one of the key elements of a functional retina, in the retina of a microbat, Rhinolophus ferrumequinum. The presence and localization of choline acetyltransferase-immunoreactive (ChAT-IR) cells in the microbat retina were investigated using immunocytochemistry, confocal microscopy, and quantitative analysis. These ChAT-IR cells were present in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL), as previously reported in various animals. However, the bat retina also contained some ChAT-IR cells in the outer part of the INL. The dendrites of these cells extended into the outer plexiform layer, and those of the cells in the inner INL extended within the outer part of the inner plexiform layer (IPL). The dendrites of the ChAT-IR cells in the GCL extended into the middle of the IPL and some fibers ramified up to the outer IPL. The average densities of ChAT-IR cells in the GCL, inner INL, and outer INL were 259±31cells/mm2, 469±48cells/mm2, and 59±8cells/mm2, respectively. The average total density of the ChAT-IR cells was 788±58cells/mm2 (mean±S.D.; n=3; 2799±182 cells/retina). We also found that the cholinergic amacrine cells in the bat retina contained calbindin, one of the calcium-binding proteins, but not calretinin or parvalbumin. As the cholinergic amacrine cells play key roles in the direction selectivity and optokinetic eye reflex in the other mammalian retinas, the present study might provide better information of the cytoarchitecture of bat retina and the basic sources for further physiological studies.
Collapse
Affiliation(s)
- Eun-Bee Park
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Ya-Nan Gu
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
40
|
Balasubramanian R, Bui A, Dong X, Gan L. Lhx9 Is Required for the Development of Retinal Nitric Oxide-Synthesizing Amacrine Cell Subtype. Mol Neurobiol 2017; 55:2922-2933. [PMID: 28456934 DOI: 10.1007/s12035-017-0554-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Abstract
Amacrine cells are the most diverse group of retinal neurons. Various subtypes of amacrine interneurons mediate a vast majority of image forming and non-image forming visual functions. The transcriptional regulation governing the development of individual amacrine cell subtypes is not well understood. One such amacrine cell subtype comprises neuronal nitric oxide synthase (nNOS/bNOS/NOS1)-expressing amacrine cells (NOACs) that regulate the release of nitric oxide (NO), a neurotransmitter with physiological and clinical implications in the retina. We have identified the LIM-homeodomain transcription factor LHX9 to be necessary for the genesis of NOACs. During retinal development, NOACs express Lhx9, and Lhx9-null retinas lack NOACs. Lhx9-null retinas also display aberrations in dendritic stratification at the inner plexiform layer. Our cell lineage-tracing studies show that Lhx9-expressing cells give rise to both the GAD65 and GAD67 expressing sub-populations of GABAergic amacrine cells. As development proceeds, Lhx9 is downregulated in the GAD65 sub-population of GABAergic cells and is largely restricted to the GAD67 sub-population of amacrine cells that NOACs are a part of. Taken together, we have uncovered Lhx9 as a new molecular marker that defines a subset of amacrine cells and show that it is necessary for the development of the NOAC subtype of amacrine cells.
Collapse
Affiliation(s)
- Revathi Balasubramanian
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.,Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY, 14642, USA.,Department of Ophthalmology, Columbia University, New York, NY, 10032, USA
| | - Andrew Bui
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Xuhui Dong
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA. .,Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
41
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
42
|
Percival KA, Venkataramani S, Smith RG, Taylor WR. Directional excitatory input to direction-selective ganglion cells in the rabbit retina. J Comp Neurol 2017; 527:270-281. [PMID: 28295340 DOI: 10.1002/cne.24207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Directional responses in retinal ganglion cells are generated in large part by direction-selective release of γ-aminobutyric acid from starburst amacrine cells onto direction-selective ganglion cells (DSGCs). The excitatory inputs to DSGCs are also widely reported to be direction-selective, however, recent evidence suggests that glutamate release from bipolar cells is not directional, and directional excitation seen in patch-clamp analyses may be an artifact resulting from incomplete voltage control. Here, we test this voltage-clamp-artifact hypothesis in recordings from 62 ON-OFF DSGCs in the rabbit retina. The strength of the directional excitatory signal varies considerably across the sample of cells, but is not correlated with the strength of directional inhibition, as required for a voltage-clamp artifact. These results implicate additional mechanisms in generating directional excitatory inputs to DSGCs.
Collapse
Affiliation(s)
- Kumiko A Percival
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Sowmya Venkataramani
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - W Rowland Taylor
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
43
|
Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells. Cell Rep 2017; 18:1356-1365. [DOI: 10.1016/j.celrep.2017.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 01/06/2023] Open
|
44
|
Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR. Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. Cell 2016; 166:1308-1323.e30. [PMID: 27565351 DOI: 10.1016/j.cell.2016.07.054] [Citation(s) in RCA: 745] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/10/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.
Collapse
Affiliation(s)
- Karthik Shekhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sylvain W Lapan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Evan Z Macosko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Xian Adiconis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joshua Z Levin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - James Nemesh
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology and Koch Institute, MIT, Cambridge, MA 02139, USA.
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA.
| |
Collapse
|
45
|
Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF, DiGregorio DA, Feller MB. A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina. Neuron 2016; 89:1317-1330. [PMID: 26985724 DOI: 10.1016/j.neuron.2016.02.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.
Collapse
Affiliation(s)
- Anna L Vlasits
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexandra Tran-Van-Minh
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Christian F Gainer
- Department of Optometry, University of California, Berkeley, Berkeley, CA 94704, USA
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France.
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
46
|
Abstract
In this issue of Neuron, Serbe et al. (2016) use cell-type-specific genetic tools to record and manipulate all major inputs to directionally selective neurons in Drosophila. Their results localize the site of motion computation and reveal unexpected complexity of temporal tuning in the underlying neural circuit.
Collapse
|
47
|
Species-specific wiring for direction selectivity in the mammalian retina. Nature 2016; 535:105-10. [PMID: 27350241 PMCID: PMC4959608 DOI: 10.1038/nature18609] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022]
Abstract
Directionally tuned signaling in starburst amacrine cell (SAC) dendrites lies at the heart of the direction selective (DS) circuit in the mammalian retina. The relative contributions of intrinsic cellular properties and network connectivity to SAC DS remain unclear. We present a detailed connectomic reconstruction of SAC circuitry in mouse retina and describe previously unknown features of synapse distributions along SAC dendrites: 1) input and output synapses are segregated, with inputs restricted to proximal dendrites; 2) the distribution of inhibitory inputs is fundamentally different from that observed in rabbit retina. An anatomically constrained SAC network model suggests that SAC-SAC wiring differences between mouse and rabbit retina underlie distinct contributions of synaptic inhibition to velocity and contrast tuning and receptive field structure. In particular, the model indicates that mouse connectivity enables SACs to encode lower linear velocities that account for smaller eye diameter, thereby conserving angular velocity tuning. These predictions are confirmed with calcium imaging of mouse SAC dendrites in response to directional stimuli.
Collapse
|
48
|
Sethuramanujam S, McLaughlin AJ, deRosenroll G, Hoggarth A, Schwab DJ, Awatramani GB. A Central Role for Mixed Acetylcholine/GABA Transmission in Direction Coding in the Retina. Neuron 2016; 90:1243-1256. [PMID: 27238865 DOI: 10.1016/j.neuron.2016.04.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
Abstract
A surprisingly large number of neurons throughout the brain are endowed with the ability to co-release both a fast excitatory and inhibitory transmitter. The computational benefits of dual transmitter release, however, remain poorly understood. Here, we address the role of co-transmission of acetylcholine (ACh) and GABA from starburst amacrine cells (SACs) to direction-selective ganglion cells (DSGCs). Using a combination of pharmacology, optogenetics, and linear regression methods, we estimated the spatiotemporal profiles of GABA, ACh, and glutamate receptor-mediated synaptic activity in DSGCs evoked by motion. We found that ACh initiates responses to motion in natural scenes or under low-contrast conditions. In contrast, classical glutamatergic pathways play a secondary role, amplifying cholinergic responses via NMDA receptor activation. Furthermore, under these conditions, the network of SACs differentially transmits ACh and GABA to DSGCs in a directional manner. Thus, mixed transmission plays a central role in shaping directional responses of DSGCs.
Collapse
Affiliation(s)
| | | | | | - Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - David J Schwab
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
49
|
Glasauer SMK, Wäger R, Gesemann M, Neuhauss SCF. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol 2016; 524:2363-78. [PMID: 27121676 DOI: 10.1002/cne.24029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor-ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapitulating endogenous expression of one of the two mglur6 paralogs in zebrafish. Investigating transgene as well as endogenous mglur6b expression within the zebrafish retina indicates that EGFP and mglur6b mRNA are not only expressed in bipolar cells, but also in a subset of ganglion and amacrine cells. The amacrine cells labeled in Tg(mglur6b:EGFP)zh1 constitute a novel cholinergic, non-GABAergic, non-starburst amacrine cell type described for the first time in teleost fishes. Apart from the retina, we found transgene expression in subsets of periventricular neurons of the hypothalamus, Purkinje cells of the cerebellum, various cell types of the optic tectum, and mitral/ruffed cells of the olfactory bulb. These findings suggest novel functions of mGluR6 besides sign inversion at ON bipolar cell dendrites, opening up the possibility that inhibitory glutamatergic signaling may be more prevalent than currently thought. J. Comp. Neurol. 524:2363-2378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stella M K Glasauer
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| | - Robert Wäger
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Stephan C F Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| |
Collapse
|
50
|
Li S, Woodfin M, Long SS, Fuerst PG. IPLaminator: an ImageJ plugin for automated binning and quantification of retinal lamination. BMC Bioinformatics 2016; 17:36. [PMID: 26772546 PMCID: PMC4715356 DOI: 10.1186/s12859-016-0876-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
Background Information in the brain is often segregated into spatially organized layers that reflect the function of the embedded circuits. This is perhaps best exemplified in the layering, or lamination, of the retinal inner plexiform layer (IPL). The neurites of the retinal ganglion, amacrine and bipolar cell subtypes that form synapses in the IPL are precisely organized in highly refined strata within the IPL. Studies focused on developmental organization and cell morphology often use this layered stratification to characterize cells and identify the function of genes in development of the retina. A current limitation to such analysis is the lack of standardized tools to quantitatively analyze this complex structure. Most previous work on neuron stratification in the IPL is qualitative and descriptive. Results In this study we report the development of an intuitive platform to rapidly and reproducibly assay IPL lamination. The novel ImageJ based software plugin we developed: IPLaminator, rapidly analyzes neurite stratification patterns in the retina and other neural tissues. A range of user options allows researchers to bin IPL stratification based on fixed points, such as the neurites of cholinergic amacrine cells, or to define a number of bins into which the IPL will be divided. Options to analyze tissues such as cortex were also added. Statistical analysis of the output then allows a quantitative value to be assigned to differences in laminar patterning observed in different models, genotypes or across developmental time. Conclusion IPLaminator is an easy to use software application that will greatly speed and standardize quantification of neuron organization. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0876-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biological Sciences, University of Idaho, 145 Life Science South, Moscow, ID, 83844, USA
| | - Michael Woodfin
- Department of Computer Sciences, Lewis-Clark State College, Lewiston, ID, 83501, USA
| | - Seth S Long
- Department of Computer Sciences, Lewis-Clark State College, Lewiston, ID, 83501, USA
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, 145 Life Science South, Moscow, ID, 83844, USA.
| |
Collapse
|