1
|
Famiglietti EV. Mammalian Retinal Bipolar Cells: Morphological Identification and Systematic Classification in Rabbit Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613998. [PMID: 39345639 PMCID: PMC11429971 DOI: 10.1101/2024.09.19.613998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal bipolar cells (BCs) convey visual signals from photoreceptors to more than 50 types of rabbit retinal ganglion cells (Famiglietti, 2020). More than 40 years ago, 10-11 types of bipolar cell were recognized in rabbit and cat retinas (Famiglietti, 1981). Twenty years later 10 were identified in mouse, rat, and monkey (Gosh et al., 2004), while recent molecular genetic studies indicate that there are 15 types of bipolar cell in mouse retina (Shekhar et al., 2016). The present detailed study of more than 800 bipolar cells in ten Golgi-impregnated rabbit retinas indicates that there are 14-16 types of cone bipolar cell and one type of rod bipolar cell in rabbit retina. These have been carefully analyzed in terms of dendritic and axonal morphology, and axon terminal stratification with respect to fiducial starburst amacrine cells. In fortuitous proximity, several types of bipolar cell can be related to identified ganglion cells by stratification and by contacts suggestive of synaptic connection. These results are compared with other studies of rabbit bipolar cells. Homologies with bipolar cells of mouse and monkey are considered in functional terms.
Collapse
|
2
|
Rossetto IH, Ludington AJ, Simões BF, Van Cao N, Sanders KL. Dynamic Expansions and Retinal Expression of Spectrally Distinct Short-Wavelength Opsin Genes in Sea Snakes. Genome Biol Evol 2024; 16:evae150. [PMID: 38985750 PMCID: PMC11316226 DOI: 10.1093/gbe/evae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
The photopigment-encoding visual opsin genes that mediate color perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analyzed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; Hydrophis atriceps and Hydrophis fasciatus; and an individual Hydrophis curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognized. Alternatively, selection pressures specific to aquatic environments could favor improved chromatic distinction in just some lineages.
Collapse
Affiliation(s)
- Isaac H Rossetto
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nguyen Van Cao
- Department of Aquaculture Biotechnology, Vietnamese Academy of Science and Technology, Institute of Oceanography, Nha Trang, Khánh Hòa, Vietnam
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
3
|
Mizoguchi K, Sato M, Saito R, Koshikuni M, Sakakibara M, Manabe R, Harada Y, Uchikawa T, Ansai S, Kamei Y, Naruse K, Fukamachi S. Behavioral photosensitivity of multi-color-blind medaka: enhanced response under ultraviolet light in the absence of short-wavelength-sensitive opsins. BMC Neurosci 2023; 24:67. [PMID: 38097940 PMCID: PMC10722765 DOI: 10.1186/s12868-023-00835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.
Collapse
Affiliation(s)
- Kiyono Mizoguchi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Sato
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Rina Saito
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Koshikuni
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mana Sakakibara
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Ran Manabe
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Yumi Harada
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Tamaki Uchikawa
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Graduate School of Life Sciences, Tohoku University, Miyagi, 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Shoji Fukamachi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
4
|
Wan YC, Navarrete Méndez MJ, O'Connell LA, Uricchio LH, Roland AB, Maan ME, Ron SR, Betancourth-Cundar M, Pie MR, Howell KA, Richards-Zawacki CL, Cummings ME, Cannatella DC, Santos JC, Tarvin RD. Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs. Mol Biol Evol 2023; 40:msad206. [PMID: 37791477 PMCID: PMC10548314 DOI: 10.1093/molbev/msad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.
Collapse
Affiliation(s)
- Yin Chen Wan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - María José Navarrete Méndez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Lawrence H Uricchio
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Biology, Tufts University, Medford, MA, USA
| | - Alexandre-Benoit Roland
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Santiago R Ron
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Marcio R Pie
- Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
- Biology Department, Edge Hill University, Ormskirk, United Kingdom
| | - Kimberly A Howell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Molly E Cummings
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - David C Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York City, NY, USA
| | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Kim YJ, Packer O, Pollreisz A, Martin PR, Grünert U, Dacey DM. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. Proc Natl Acad Sci U S A 2023; 120:e2300545120. [PMID: 37098066 PMCID: PMC10160961 DOI: 10.1073/pnas.2300545120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna1090, Austria
| | - Paul R. Martin
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Washington National Primate Research Center, University of Washington, Seattle, WA98195
| |
Collapse
|
6
|
Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 2023; 493:40-66. [PMID: 36370769 PMCID: PMC9729497 DOI: 10.1016/j.ydbio.2022.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Natalie S Roberts
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
7
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
8
|
Chamberland L, Agnarsson I, Quayle IL, Ruddy T, Starrett J, Bond JE. Biogeography and eye size evolution of the ogre-faced spiders. Sci Rep 2022; 12:17769. [PMID: 36273015 PMCID: PMC9588044 DOI: 10.1038/s41598-022-22157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
Net-casting spiders (Deinopidae) comprise a charismatic family with an enigmatic evolutionary history. There are 67 described species of deinopids, placed among three genera, Deinopis, Menneus, and Asianopis, that are distributed globally throughout the tropics and subtropics. Deinopis and Asianopis, the ogre-faced spiders, are best known for their giant light-capturing posterior median eyes (PME), whereas Menneus does not have enlarged PMEs. Molecular phylogenetic studies have revealed discordance between morphology and molecular data. We employed a character-rich ultra-conserved element (UCE) dataset and a taxon-rich cytochrome-oxidase I (COI) dataset to reconstruct a genus-level phylogeny of Deinopidae, aiming to investigate the group's historical biogeography, and examine PME size evolution. Although the phylogenetic results support the monophyly of Menneus and the single reduction of PME size in deinopids, these data also show that Deinopis is not monophyletic. Consequently, we formally transfer 24 Deinopis species to Asianopis; the transfers comprise all of the African, Australian, South Pacific, and a subset of Central American and Mexican species. Following the divergence of Eastern and Western deinopids in the Cretaceous, Deinopis/Asianopis dispersed from Africa, through Asia and into Australia with its biogeographic history reflecting separation of Western Gondwana as well as long-distance dispersal events.
Collapse
Affiliation(s)
- Lisa Chamberland
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Ingi Agnarsson
- grid.14013.370000 0004 0640 0021Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland
| | - Iris L. Quayle
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Tess Ruddy
- grid.267778.b0000 0001 2290 5183Vassar College, Poughkeepsie, NY 12604 USA
| | - James Starrett
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Jason E. Bond
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
9
|
Rial RV, Canellas F, Akaârir M, Rubiño JA, Barceló P, Martín A, Gamundí A, Nicolau MC. The Birth of the Mammalian Sleep. BIOLOGY 2022; 11:biology11050734. [PMID: 35625462 PMCID: PMC9138988 DOI: 10.3390/biology11050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Mammals evolved from reptiles as a consequence of an evolutionary bottleneck. Some diurnal reptiles extended their activity, first to twilight and then to the entire dark time. This forced the change of the visual system. Pursuing maximal sensitivity, they abandoned the filters protecting the eyes against the dangerous diurnal light, which, in turn, forced immobility in lightproof burrows during light time. This was the birth of the mammalian sleep. Then, the Cretacic-Paleogene extinction of dinosaurs leaved free the diurnal niche and allowed the expansion of a few early mammals to diurnal life and the high variability of sleep traits. On the other hand, we propose that the idling rest is a state showing homeostatic regulation. Therefore, the difference between behavioral rest and wakeful idling is rather low: both show quiescence, raised sensory thresholds, reversibility, specific sleeping-resting sites and body positions, it is a pleasing state, and both are dependent of circadian and homeostatic regulation. Indeed, the most important difference is the unconsciousness of sleep and the consciousness of wakeful idling. Thus, we propose that sleep is a mere upgrade of the wakeful rest, and both may have the same function: guaranteeing rest during a part of the daily cycle. Abstract Mammals evolved from small-sized reptiles that developed endothermic metabolism. This allowed filling the nocturnal niche. They traded-off visual acuity for sensitivity but became defenseless against the dangerous daylight. To avoid such danger, they rested with closed eyes in lightproof burrows during light-time. This was the birth of the mammalian sleep, the main finding of this report. Improved audition and olfaction counterweighed the visual impairments and facilitated the cortical development. This process is called “The Nocturnal Evolutionary Bottleneck”. Pre-mammals were nocturnal until the Cretacic-Paleogene extinction of dinosaurs. Some early mammals returned to diurnal activity, and this allowed the high variability in sleeping patterns observed today. The traits of Waking Idleness are almost identical to those of behavioral sleep, including homeostatic regulation. This is another important finding of this report. In summary, behavioral sleep seems to be an upgrade of Waking Idleness Indeed, the trait that never fails to show is quiescence. We conclude that the main function of sleep consists in guaranteeing it during a part of the daily cycle.
Collapse
Affiliation(s)
- Rubén V. Rial
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-971-173-147; Fax: +34-971-173-184
| | - Francesca Canellas
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Mourad Akaârir
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - José A. Rubiño
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Barceló
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Aida Martín
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Antoni Gamundí
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - M. Cristina Nicolau
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
10
|
Fasick JI, Algrain H, Samuels C, Mahadevan P, Schweikert LE, Naffaa ZJ, Robinson PR. Spectral tuning and deactivation kinetics of marine mammal melanopsins. PLoS One 2021; 16:e0257436. [PMID: 34653198 PMCID: PMC8519484 DOI: 10.1371/journal.pone.0257436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.
Collapse
Affiliation(s)
- Jeffry I. Fasick
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Haya Algrain
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Courtland Samuels
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Zaid J. Naffaa
- Department of Biological Sciences, Kean University, Union, New Jersey, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
Liénard MA, Bernard GD, Allen A, Lassance JM, Song S, Childers RR, Yu N, Ye D, Stephenson A, Valencia-Montoya WA, Salzman S, Whitaker MRL, Calonje M, Zhang F, Pierce NE. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc Natl Acad Sci U S A 2021; 118:e2008986118. [PMID: 33547236 PMCID: PMC8017955 DOI: 10.1073/pnas.2008986118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142;
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Gary D Bernard
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Andrew Allen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Siliang Song
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Richard Rabideau Childers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
| | - Dajia Ye
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Adriana Stephenson
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
12
|
Yamaguchi K, Koyanagi M, Kuraku S. Visual and nonvisual opsin genes of sharks and other nonosteichthyan vertebrates: Genomic exploration of underwater photoreception. J Evol Biol 2020; 34:968-976. [DOI: 10.1111/jeb.13730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuaki Yamaguchi
- Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research (BDR) Kobe Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences Graduate School of Science Osaka City University Osaka Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research (BDR) Kobe Japan
| |
Collapse
|
13
|
Dominy NJ, Melin AD. Liminal Light and Primate Evolution. ANNUAL REVIEW OF ANTHROPOLOGY 2020. [DOI: 10.1146/annurev-anthro-010220-075454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adaptive origins of primates and anthropoid primates are topics of enduring interest to biological anthropologists. A convention in these discussions is to treat the light environment as binary—night is dark, day is light—and to impute corresponding selective pressure on the visual systems and behaviors of primates. In consequence, debate has tended to focus on whether a given trait can be interpreted as evidence of nocturnal or diurnal behavior in the primate fossil record. Such classification elides the variability in light, or the ways that primates internalize light in their environments. Here, we explore the liminality of light by focusing on what it is, its many sources, and its flux under natural conditions. We conclude by focusing on the intensity and spectral properties of twilight, and we review the mounting evidence of its importance as a cue that determines the onset or offset of primate activities as well as the entrainment of circadian rhythms.
Collapse
Affiliation(s)
- Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Sedano-Cruz RE, Osorio DC. MODELLING OF 3D-STRUCTURES OF THE RARE MELANOCORTIN-1-RECEPTOR MUTATIONS ASSOCIATED TO MELANISM IN THE BANANAQUIT. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.81432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Melanism in plumage color is often associated to the single nucleotide polymorphism of the melanocortin-1-receptor (MC1R). Despite the striking association between the substitution of a Glutamic-acid by for a Lysine at position 92 on the MC1R protein and a completely black plumage, an in-depth understanding of the effect of missense mutations on the conformational change and behavior of the MC1R in the lipid bilayer caused by the absence of a crystal structure is lacking. We examine the structural basis for receptor activation using DNA sequences from the GenBank to perform in silicoprotein homology-based modeling. Our tridimensional model shows that the Alanine for a 179-Threoninesubstitution is a structural complement of the charge-reversing effect associated to the substitution of a Glutamic-acid by for a Lysine at position 92 on the MC1R. We proposed the possibility of gradual evolution in stability and electrostatic properties of the MC1R by the sequential accumulation of these two rare substitutions. These two rare substitutions further perturb physical-chemical properties that may be necessary folding requirements of the constitutively active MC1R forms without altering of ligand binding affinity. The computational coarse-grained molecular dynamics of the MC1R binding affinities to the melanocyte-stimulating hormone predicted the disparity in ligand binding amongalleles. We speculate that the disparity in structural constraints and ligand binding among the alleles within heterozygous individuals may contribute as a mechanism to the plumage color variation in the Coereba flaveola.
Collapse
|
15
|
Vision in sharks and rays: Opsin diversity and colour vision. Semin Cell Dev Biol 2020; 106:12-19. [PMID: 32331993 DOI: 10.1016/j.semcdb.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.
Collapse
|
16
|
Yovanovich CAM, Pierotti MER, Rodrigues MT, Grant T. A dune with a view: the eyes of a neotropical fossorial lizard. Front Zool 2019; 16:17. [PMID: 31198433 PMCID: PMC6558795 DOI: 10.1186/s12983-019-0320-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Lizards are excellent models to study the adaptations of the visual system to different scenarios, and surface-dwelling representatives have been relatively well studied. In contrast, very little is known about the functional anatomy of the eyes of fossorial lineages, and properties such as the light transmission by the ocular media have never been characterised in any fossorial species. Some lizards in the family Gymnophthalmidae endemic to the sand dunes of North Eastern Brazil have evolved sand-burrowing habits and nocturnal activity. Lizards in the sister group to Gymnophthalmidae, the family Teiidae, have decidedly diurnal and epigeal lifestyles, yet they are equally poorly known in terms of visual systems. We focussed on the eye anatomy, photoreceptor morphology and light transmittance properties of the ocular media and oil droplets in the gymnophthalmid Calyptommatus nicterus and the teiid Ameivula ocellifera. Results The general organisation of the eyes of the fossorial nocturnal C. nicterus and the epigeal diurnal A. ocellifera is remarkably similar. The lenses are highly transmissive to light well into the ultraviolet part of the spectrum. The photoreceptors have the typical cone morphology, with narrow short outer segments and oil droplets. The main difference between the two species is that C. nicterus has only colourless oil droplets, whereas A. ocellifera has colourless as well as green-yellow and pale-orange droplets. Conclusions Our results challenge the assumption that fossorial lizards undergo loss of visual function, a claim that is usually guided by the reduced size and external morphology of their eyes. In the case of C. nicterus, the visual system is well suited for vision in bright light and shows specialisations that improve sensitivity in dim light, suggesting that they might perform some visually-guided behaviour above the surface at the beginning or the end of their daily activity period, when light levels are relatively high in their open dunes habitat. This work highlights how studies on the functional anatomy of sensory systems can provide insights into the habits of secretive species.
Collapse
Affiliation(s)
- Carola A M Yovanovich
- 1Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Michele E R Pierotti
- 1Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,2Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - Taran Grant
- 1Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Gutierrez EDA, Schott RK, Preston MW, Loureiro LO, Lim BK, Chang BSW. The role of ecological factors in shaping bat cone opsin evolution. Proc Biol Sci 2019; 285:rspb.2017.2835. [PMID: 29618549 DOI: 10.1098/rspb.2017.2835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength (Lws) and short-wavelength (Sws1) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Matthew W Preston
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Lívia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2 .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
18
|
Emerling CA. Regressed but Not Gone: Patterns of Vision Gene Loss and Retention in Subterranean Mammals. Integr Comp Biol 2019; 58:441-451. [PMID: 29697812 DOI: 10.1093/icb/icy004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regressive evolution involves the degradation of formerly useful traits as organisms invade novel ecological niches. In animals, committing to a strict subterranean habit can lead to regression of the eyes, likely due to a limited exposure to light. Several lineages of subterranean mammals show evidence of such degeneration, which can include decreased organization of the retina, malformation of the lens, and subcutaneous positioning of the eye. Advances in DNA sequencing have revealed that this regression co-occurs with a degradation of genomic loci encoding visual functions, including protein-coding genes. Other dim light-adapted vertebrates with normal ocular anatomy, such as nocturnal and aquatic species, also demonstrate evidence of visual gene loss, but the absence of comparative studies has led to the untested assumption that subterranean mammals are special in the degree of this genomic regression. Additionally, previous studies have shown that not all vision genes have been lost in subterranean mammals, but it is unclear whether they are under relaxed selection and will ultimately be lost, are maintained due to pleiotropy or if natural selection is favoring the retention of the eye and certain critical underlying loci. Here I report that vision gene loss in subterranean mammals tends to be more extensive in quantity and differs in distribution from other dim light-adapted mammals, although some committed subterranean mammals demonstrate significant overlap with nocturnal microphthalmic species. In addition, blind subterranean mammals retain functional orthologs of non-pleiotropic visual genes that are evolving at rates consistent with purifying selection. Together, these results suggest that although living underground tends to lead to major losses of visual functions, natural selection is maintaining genes that support the eye, perhaps as an organ for circadian and/or circannual entrainment.
Collapse
Affiliation(s)
- Christopher A Emerling
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France
| |
Collapse
|
19
|
Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance. Vision Res 2019; 158:109-119. [PMID: 30825468 DOI: 10.1016/j.visres.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/04/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
Most diurnal birds have cone-dominated retinae and tetrachromatic colour vision based on ultra-violet/violet-sensitive UV/V cones expressing short wavelength-sensitive opsin 1 (SWS1), S cones expressing short wavelength-sensitive opsin 2 (SWS2), M cones expressing medium wavelength-sensitive opsin (RH2) and L cones expressing long wavelength-sensitive opsin (LWS). Double cones (D) express LWS but do not contribute to colour vision. Each cone is equipped with an oil droplet, transparent in UV/V cones, but pigmented by carotenoids: galloxanthin in S, zeaxanthin in M, astaxanthin in L and a mixture in D cones. Owls (Strigiformes) are crepuscular or nocturnal birds with rod-dominated retinae and optical adaptations for high sensitivity. For eight species, the absence of functional SWS1 opsin has recently been documented, functional RH2 opsin was absent in three of these. Here we confirm the absence of SWS1 transcripts for the Long-eared owl (Asio otus) and demonstrate its absence for the Short-eared owl (Asio flammeus), Tawny owl (Strix aluco) and Boreal owl (Aegolius funereus). All four species had transcripts of RH2, albeit with low expression. All four species express all enzymes needed to produce galloxanthin, but lack CYP2J19 expression required to produce astaxanthin from dietary precursors. We also present ocular media transmittance of the Eurasian eagle owl (Bubo bubo) and Short-eared owl and predict spectral sensitivities of all photoreceptors of the Tawny owl. We conclude that owls, despite lacking UV/V cones, can detect UV light. This increases the sensitivity of their rod vision allowing them, for instance, to see UV-reflecting feathers as brighter signals at night.
Collapse
|
20
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Simões BF, Foley NM, Hughes GM, Zhao H, Zhang S, Rossiter SJ, Teeling EC. As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats. Mol Biol Evol 2019; 36:54-68. [PMID: 30476197 PMCID: PMC6340466 DOI: 10.1093/molbev/msy192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555-560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
Collapse
Affiliation(s)
- Bruno F Simões
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
- School of Earth Science, University of Bristol, Bristol, United Kingdom
- School of Biological Science, The University of Adelaide, South Australia, Australia
| | - Nicole M Foley
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Graham M Hughes
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Emma C Teeling
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
22
|
Nitezki T, Schulz N, Krämer S. Color matters: They would choose if they could (see)! Lab Anim 2018; 52:611-620. [DOI: 10.1177/0023677218766370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Concerning standardization of laboratory animal husbandry, only exiguous changes of habitat can potentially influence animal physiology or results of behavioral tests. Routinely, mice chow is dyed when different types of diets are dispensed. Given the fact that the dye itself has no effects on food odor or flavor, we wanted to test the hypothesis that the color of chow has an impact on food uptake in mice. Twelve-week-old male mice of different strains (C57BL/6J, DBA/2J, C3H/HeJ, BALB/cJ; n = 12/strain) were single-housed in PhenoMaster® cages. After acclimatization standard mice chow in different colors was administered. Food intake was monitored as a two-alternative choice test of different color combinations. All animals had an average food intake of 3 g/d and no preferences were observed when a combination of identically colored food was offered. Preference tests yielded significant aversion to blue food and significant attraction to yellow and green food in C57BL/6 and DBA/2J mice. In C3H/HeJ and BALB/cJ mice no color-related pattern occurred. Selected mice strains have known differences concerning functionality of their visual sense. C57BL/6 and DBA/2 mice are considered to be normal sighted at testing age, BALB/c is representative for albino strains and C3H mice carry mutations resulting in retinal alterations. Results suggesting that normal-sighted mice would be selective concerning food color when given the choice. Nevertheless, this does not influence overall quantity of food intake when animals were provided solely with food colored with a single dye. Moreover, visually impaired mice showed no color-related food preferences.
Collapse
Affiliation(s)
- Tina Nitezki
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Germany
| | | | - Stephanie Krämer
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Germany
- Department of Laboratory Animal Science and Animal Welfare, Justus-Liebig University Giessen, Germany
| |
Collapse
|
23
|
Wu J, Jiao H, Simmons NB, Lu Q, Zhao H. Testing the sensory trade-off hypothesis in New World bats. Proc Biol Sci 2018; 285:rspb.2018.1523. [PMID: 30158315 DOI: 10.1098/rspb.2018.1523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/04/2018] [Indexed: 01/03/2023] Open
Abstract
Detection of evolutionary shifts in sensory systems is challenging. By adopting a molecular approach, our earlier study proposed a sensory trade-off hypothesis between a loss of colour vision and an origin of high-duty-cycle (HDC) echolocation in Old World bats. Here, we test the hypothesis in New World bats, which include HDC echolocators that are distantly related to Old World HDC echolocators, as well as vampire bats, which have an infrared sensory system apparently unique among bats. Through sequencing the short-wavelength opsin gene (SWS1) in 16 species (29 individuals) of New World bats, we identified a novel SWS1 polymorphism in an HDC echolocator: one allele is pseudogenized but the other is intact, while both alleles are either intact or pseudogenized in other individuals. Strikingly, both alleles were found to be pseudogenized in all three vampire bats. Since pseudogenization, transcriptional or translational changes could separately result in functional loss of a gene, a pseudogenized SWS1 indicates a loss of dichromatic colour vision in bats. Thus, the same sensory trade-off appears to have repeatedly occurred in the two divergent lineages of HDC echolocators, and colour vision may have also been traded off against the infrared sense in vampire bats.
Collapse
Affiliation(s)
- Jinwei Wu
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hengwu Jiao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Nancy B Simmons
- Department of Mammalogy, American Museum of Natural History, New York, NY 10024, USA
| | - Qin Lu
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
24
|
Retention and losses of ultraviolet-sensitive visual pigments in bats. Sci Rep 2018; 8:11933. [PMID: 30093712 PMCID: PMC6085362 DOI: 10.1038/s41598-018-29646-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022] Open
Abstract
Ultraviolet (UV)-sensitive visual pigment and its corresponding ability for UV vision was retained in early mammals from their common ancestry with sauropsids. Subsequently, UV-sensitive pigments, encoded by the short wavelength-sensitive 1 (SWS1) opsin gene, were converted to violet sensitivity or have lost function in multiple lineages during the diversification of mammals. However, many mammalian species, including most bats, are suggested to retain a UV-sensitive pigment. Notably, some cave-dwelling fruit bats and high duty cycle echolocating bats have lost their SWS1 genes, which are proposed to be due to their roosting ecology and as a sensory trade-off between vision and echolocation, respectively. Here, we sequenced SWS1 genes from ecologically diverse bats and found that this gene is also non-functional in both common vampire bat (Desmodus rotundus) and white-winged vampire bat (Diaemus youngi). Apart from species with pesudogenes, our evolutionary and functional studies demonstrate that the SWS1 pigment of bats are UV-sensitive and well-conserved since their common ancestor, suggesting an important role across major ecological types. Given the constrained function of SWS1 pigments in these bats, why some other species, such as vampire bats, have lost this gene is even more interesting and needs further investigation.
Collapse
|
25
|
Malkemper EP, Peichl L. Retinal photoreceptor and ganglion cell types and topographies in the red fox (Vulpes vulpes
) and Arctic fox (Vulpes lagopus
). J Comp Neurol 2018; 526:2078-2098. [DOI: 10.1002/cne.24493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Erich Pascal Malkemper
- Department of General Zoology; Faculty of Biology, University of Duisburg-Essen; Essen Germany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences; Czech University of Life Sciences; Praha 6 Czech Republic
| | - Leo Peichl
- Max Planck Institute for Brain Research; Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Frankfurt am Main Germany
| |
Collapse
|
26
|
Schwab IR. The evolution of eyes: major steps. The Keeler lecture 2017: centenary of Keeler Ltd. Eye (Lond) 2018; 32:302-313. [PMID: 29052606 PMCID: PMC5811732 DOI: 10.1038/eye.2017.226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Ocular evolution is an immense topic, and I do not expect to cover all the details of this process in this manuscript. I will present some concepts about some of the major steps in the evolutionary process to stimulate your thinking about this interesting and complex topic. In the prebiotic soup, vision was not inevitable. Eyes were not preordained. Nor were their shapes, sizes, or current physiology. Sight is an evolutionary gift but it was not ineluctable. The existence of eyes is so basic to our profession that we often do not consider how and why vision appeared or evolved on earth at all. Although vision is a principal sensory modality for at least three major phyla and is present in three or four more phyla, there are other sensory mechanisms that could have been and were occasionally selected instead. Some animals rely on other sensory mechanisms such as audition, echolocation, or olfaction that are much more effective in their particular niche than would be vision. We may not believe those sensory mechanisms to be as robust as vision, but the creatures using those skills would argue otherwise. Why does vision exist at all? And why is it so dominant at least in the number of species that rely upon it for their principal sensory mechanism? How did vision begin? What were the important steps in the evolution of eyes? How did eyes differentiate along their various paths, and why?
Collapse
Affiliation(s)
- I R Schwab
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
27
|
Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in red carotenoid synthesis. Mol Phylogenet Evol 2018; 118:47-53. [DOI: 10.1016/j.ympev.2017.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/26/2023]
|
28
|
Jacobs GH. Photopigments and the dimensionality of animal color vision. Neurosci Biobehav Rev 2017; 86:108-130. [PMID: 29224775 DOI: 10.1016/j.neubiorev.2017.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022]
Abstract
Early color-matching studies established that normal human color vision is trichromatic. Subsequent research revealed a causal link between trichromacy and the presence in the retina of three classes of cone photopigments. Over the years, measurements of the photopigment complements of other species have expanded greatly and these are frequently used to predict the dimensionality of an animal's color vision. This review provides an account of how the linkage between the number of active photopigments and the dimensions of human color vision developed, summarizes the various mechanisms that can impact photopigment spectra and number, and provides an across-species survey to examine cases where the photopigment link to the dimensionality of color vision has been claimed. The literature reveals numerous instances where the human model fails to account for the ways in which the visual systems of other animals exploit information obtained from the presence of multiple photopigments in support of their behavior.
Collapse
Affiliation(s)
- Gerald H Jacobs
- Department of Psychological and Brain Science, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
29
|
Moritz GL, Ong PS, Perry GH, Dominy NJ. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0075. [PMID: 28193820 DOI: 10.1098/rstb.2016.0075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 11/12/2022] Open
Abstract
The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers (Tarsius syrichta). Second, to explore whether the dichromatic visual systems of Philippine and Bornean (Tarsius bancanus) tarsiers-which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW/OPN1LW-confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW, indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey-background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Gillian L Moritz
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences Building, Campus Box 90383, Durham, NC 27708, USA
| | - Perry S Ong
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, 513 Carpenter Building, University Park, PA 16802, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH 03755, USA .,Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, 78 College Street, Hanover, NH 03755, USA
| |
Collapse
|
30
|
Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr Opin Genet Dev 2017; 47:110-120. [PMID: 29102895 DOI: 10.1016/j.gde.2017.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023]
Abstract
Sensory systems provide valuable insight into the evolution of molecular mechanisms underlying organismal anatomy, physiology, and behaviour. Visual pigments, which mediate the first step in visual transduction, offer a unique window into the relationship between molecular variation and visual performance, and enhance our understanding of how ecology, life history, and physiology may shape genetic variation across a variety of organisms. Here we review recent work investigating vertebrate visual pigments from a number of perspectives. Opsin gene duplication, loss, differential expression, structural variation, and the physiological context in which they operate, have profoundly shaped the visual capabilities of vertebrates adapting to novel environments. We note the importance of conceptual frameworks in investigating visual pigment diversity in vertebrates, highlighting key examples including evolutionary transitions between different photic environments, major shifts in life history evolution and ecology, evolutionary innovations in visual system anatomy and physiology, as well as shifts in visually mediated behaviours and behavioural ecology. We emphasize the utility of studying visual pigment evolution in the context of these different perspectives, and demonstrate how the integrative approaches discussed in this review contribute to a better understanding of the underlying molecular processes mediating adaptation in sensory systems, and the contexts in which they occur.
Collapse
|
31
|
Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, Mindell DP, Bowie RCK, DeRisi JL, Dumbacher JP. Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes. Genome Biol Evol 2017; 9:2522-2545. [PMID: 28992302 PMCID: PMC5629816 DOI: 10.1093/gbe/evx158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates.
Collapse
Affiliation(s)
- Zachary R. Hanna
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - James B. Henderson
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Jeffrey D. Wall
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Jérôme Fuchs
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- UMR 7205 Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Charles Runckel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
- Runckel & Associates, Portland, Oregon, USA
| | - David P. Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - John P. Dumbacher
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
32
|
Brown TM. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. ACTA ACUST UNITED AC 2017; 219:1779-92. [PMID: 27307539 PMCID: PMC4920240 DOI: 10.1242/jeb.132167] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Circadian clocks are a near-ubiquitous feature of biology, allowing organisms to optimise their physiology to make the most efficient use of resources and adjust behaviour to maximise survival over the solar day. To fulfil this role, circadian clocks require information about time in the external world. This is most reliably obtained by measuring the pronounced changes in illumination associated with the earth's rotation. In mammals, these changes are exclusively detected in the retina and are relayed by direct and indirect neural pathways to the master circadian clock in the hypothalamic suprachiasmatic nuclei. Recent work reveals a surprising level of complexity in this sensory control of the circadian system, including the participation of multiple photoreceptive pathways conveying distinct aspects of visual and/or time-of-day information. In this Review, I summarise these important recent advances, present hypotheses as to the functions and neural origins of these sensory signals, highlight key challenges for future research and discuss the implications of our current knowledge for animals and humans in the modern world.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Scholtyßek C, Kelber A. [Color vision in animals : From color blind seals to tetrachromatic vision in birds]. Ophthalmologe 2017; 114:978-985. [PMID: 28752388 DOI: 10.1007/s00347-017-0543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The colors in which we see an object are not only dependent on the spectral composition of the reflected light but also represent an interpretation by our eyes and the trichromatic visual system. OBJECTIVE How do animals of other species see the world? RESULTS The majority of mammals do not have three but only two types of cones and therefore have dichromatic color vision. Marine mammals and some nocturnally active mammals even have only one type of cone and are completely color blind. In contrast, birds as well as many fish and reptiles see in the world in more color hues and with four types of cones. Many vertebrates, insects and crustaceans can see not only the spectrum perceived by us but also ultraviolet radiation as light. CONCLUSION In order to understand how animals of other species see the world, their visual systems must be understood and the animals must be tested in behavioral investigations.
Collapse
Affiliation(s)
- C Scholtyßek
- The Priory Road Complex, School of Experimental Psychology, Priory Road, BS8 1TU, Clifton, UK
| | - A Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Schweden.
| |
Collapse
|
34
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
35
|
Kim JW, Yang HJ, Oel AP, Brooks MJ, Jia L, Plachetzki DC, Li W, Allison WT, Swaroop A. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals. Dev Cell 2017; 37:520-32. [PMID: 27326930 DOI: 10.1016/j.devcel.2016.05.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/16/2016] [Accepted: 05/24/2016] [Indexed: 01/07/2023]
Abstract
Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Matthew John Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Charles Plachetzki
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Carvalho LS, Pessoa DMA, Mountford JK, Davies WIL, Hunt DM. The Genetic and Evolutionary Drives behind Primate Color Vision. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Spitschan M, Lucas RJ, Brown TM. Chromatic clocks: Color opponency in non-image-forming visual function. Neurosci Biobehav Rev 2017; 78:24-33. [PMID: 28442402 DOI: 10.1016/j.neubiorev.2017.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/30/2017] [Accepted: 04/15/2017] [Indexed: 12/25/2022]
Abstract
During dusk and dawn, the ambient illumination undergoes drastic changes in irradiance (or intensity) and spectrum (or color). While the former is a well-studied factor in synchronizing behavior and physiology to the earth's 24-h rotation, color sensitivity in the regulation of circadian rhythms has not been systematically studied. Drawing on the concept of color opponency, a well-known property of image-forming vision in many vertebrates (including humans), we consider how the spectral shifts during twilight are encoded by a color-opponent sensory system for non-image-forming (NIF) visual functions, including phase shifting and melatonin suppression. We review electrophysiological evidence for color sensitivity in the pineal/parietal organs of fish, amphibians and reptiles, color coding in neurons in the circadian pacemaker in mice as well as sporadic evidence for color sensitivity in NIF visual functions in birds and mammals. Together, these studies suggest that color opponency may be an important modulator of light-driven physiological and behavioral responses.
Collapse
Affiliation(s)
- Manuel Spitschan
- Stanford University, Department of Psychiatry & Behavioral Sciences, Stanford, CA, USA; VA Palo Alto Health Care System, Mental Illness Research Education and Clinical Center, Palo Alto, CA, USA.
| | - Robert J Lucas
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| | - Timothy M Brown
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| |
Collapse
|
38
|
Iwanicki TW, Novales Flamarique I, Ausiό J, Morris E, Taylor JS. Fine-tuning light sensitivity in the starry flounder (Platichthys stellatus) retina: Regional variation in photoreceptor cell morphology and opsin gene expression. J Comp Neurol 2017; 525:2328-2342. [DOI: 10.1002/cne.24205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Tom W. Iwanicki
- Department of Biology; University of Victoria; Victoria British Columbia Canada
| | - Iñigo Novales Flamarique
- Department of Biology; University of Victoria; Victoria British Columbia Canada
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia Canada
| | - Juan Ausiό
- Department of Biochemistry; University of Victoria; Victoria British Columbia Canada
| | - Emily Morris
- Department of Biology; University of Victoria; Victoria British Columbia Canada
| | - John S. Taylor
- Department of Biology; University of Victoria; Victoria British Columbia Canada
| |
Collapse
|
39
|
Marques DA, Taylor JS, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Convergent evolution of SWS2 opsin facilitates adaptive radiation of threespine stickleback into different light environments. PLoS Biol 2017; 15:e2001627. [PMID: 28399148 PMCID: PMC5388470 DOI: 10.1371/journal.pbio.2001627] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Repeated adaptation to a new environment often leads to convergent phenotypic changes whose underlying genetic mechanisms are rarely known. Here, we study adaptation of color vision in threespine stickleback during the repeated postglacial colonization of clearwater and blackwater lakes in the Haida Gwaii archipelago. We use whole genomes from 16 clearwater and 12 blackwater populations, and a selection experiment, in which stickleback were transplanted from a blackwater lake into an uninhabited clearwater pond and resampled after 19 y to test for selection on cone opsin genes. Patterns of haplotype homozygosity, genetic diversity, site frequency spectra, and allele-frequency change support a selective sweep centered on the adjacent blue- and red-light sensitive opsins SWS2 and LWS. The haplotype under selection carries seven amino acid changes in SWS2, including two changes known to cause a red-shift in light absorption, and is favored in blackwater lakes but disfavored in the clearwater habitat of the transplant population. Remarkably, the same red-shifting amino acid changes occurred after the duplication of SWS2 198 million years ago, in the ancestor of most spiny-rayed fish. Two distantly related fish species, bluefin killifish and black bream, express these old paralogs divergently in black- and clearwater habitats, while sticklebacks lost one paralog. Our study thus shows that convergent adaptation to the same environment can involve the same genetic changes on very different evolutionary time scales by reevolving lost mutations and reusing them repeatedly from standing genetic variation.
Collapse
Affiliation(s)
- David A. Marques
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| | - John S. Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Felicity C. Jones
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, California, United States of America
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Federica Di Palma
- Earlham Institute and University of East Anglia, Department of Biological Sciences, Norwich, United Kingdom
| | - David M. Kingsley
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, California, United States of America
| | - Thomas E. Reimchen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
40
|
Peichl L, Kaiser A, Rakotondraparany F, Dubielzig RR, Goodman SM, Kappeler PM. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. J Comp Neurol 2017; 527:13-37. [DOI: 10.1002/cne.24167] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Leo Peichl
- Max Planck Institute for Brain Research; Max-von-Laue-Straße 4, 60438 Frankfurt am Main Germany
- Ernst Strüngmann Institute for Neuroscience; Deutschordenstraße 46, 60528 Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany
| | - Alexander Kaiser
- Department Biology II; Ludwig-Maximilians University Munich; Großhaderner Straße 2-4, 82152 Martinsried-Planegg Germany
- Institute of Zoology; University of Veterinary Medicine Hannover; Bünteweg 17, 30559 Hannover Germany
| | - Felix Rakotondraparany
- Département de Zoologie et Biodiversité Animale; Université d’Antananarivo; BP 906, Antananarivo 101 Madagascar
| | - Richard R. Dubielzig
- School of Veterinary Medicine; University of Wisconsin; 2015 Linden Drive Madison Wisconsin 53706
| | - Steven M. Goodman
- The Field Museum of Natural History; 1400 South Lake Shore Drive, Chicago Illinois 60605
- Association Vahatra; BP 3972, Antananarivo 101 Madagascar
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center; Kellnerweg 4, 37077 Göttingen Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology; University Göttingen; Kellnerweg 6, 37077 Göttingen Germany
| |
Collapse
|
41
|
Sharkey CR, Fujimoto MS, Lord NP, Shin S, McKenna DD, Suvorov A, Martin GJ, Bybee SM. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci Rep 2017; 7:8. [PMID: 28127058 PMCID: PMC5428366 DOI: 10.1038/s41598-017-00061-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
Opsin proteins are fundamental components of animal vision whose structure largely determines the sensitivity of visual pigments to different wavelengths of light. Surprisingly little is known about opsin evolution in beetles, even though they are the most species rich animal group on Earth and exhibit considerable variation in visual system sensitivities. We reveal the patterns of opsin evolution across 62 beetle species and relatives. Our results show that the major insect opsin class (SW) that typically confers sensitivity to "blue" wavelengths was lost ~300 million years ago, before the origin of modern beetles. We propose that UV and LW opsin gene duplications have restored the potential for trichromacy (three separate channels for colour vision) in beetles up to 12 times and more specifically, duplications within the UV opsin class have likely led to the restoration of "blue" sensitivity up to 10 times. This finding reveals unexpected plasticity within the insect visual system and highlights its remarkable ability to evolve and adapt to the available light and visual cues present in the environment.
Collapse
Affiliation(s)
- Camilla R Sharkey
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA.
| | - M Stanley Fujimoto
- Computer Science Department, Brigham Young University, Provo, Utah, 84602, USA
| | - Nathan P Lord
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 081, Milledgeville, GA, 31061, USA
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, 3700 Walker Avenue, Memphis, TN, 38152, USA
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, 3700 Walker Avenue, Memphis, TN, 38152, USA
| | - Anton Suvorov
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| | - Gavin J Martin
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| |
Collapse
|
42
|
Kawamura S, Melin AD. Evolution of Genes for Color Vision and the Chemical Senses in Primates. EVOLUTION OF THE HUMAN GENOME I 2017. [DOI: 10.1007/978-4-431-56603-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
43
|
Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors. Sci Rep 2016; 6:33578. [PMID: 27645106 PMCID: PMC5028738 DOI: 10.1038/srep33578] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors.
Collapse
|
44
|
Lee S, Ishibashi S, Shimomura Y, Katsuura T. Effect of simultaneous exposure to extremely short pulses of blue and green light on human pupillary constriction. J Physiol Anthropol 2016; 35:20. [PMID: 27580696 PMCID: PMC5006526 DOI: 10.1186/s40101-016-0109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/19/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Soomin Lee
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1, Kashiwanoha, Kashiwa, 277-0882, Japan.
| | - Shougo Ishibashi
- Graduate School of Engineering, Chiba University, Chiba, Japan.,Present address: East Japan Railway Company, Tokyo, Japan
| | | | - Tetsuo Katsuura
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Kawamura S. Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics 2016; 38:779-791. [PMID: 27594978 PMCID: PMC4987397 DOI: 10.1007/s13258-016-0448-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
Abstract
Color provides a reliable cue for object detection and identification during various behaviors such as foraging, mate choice, predator avoidance and navigation. The total number of colors that a visual system can discriminate is largely dependent on the number of different spectral types of cone opsins present in the retina and the spectral separations among them. Thus, opsins provide an excellent model system to study evolutionary interconnections at the genetic, phenotypic and behavioral levels. Primates have evolved a unique ability for three-dimensional color vision (trichromacy) from the two-dimensional color vision (dichromacy) present in the majority of other mammals. This was accomplished via allelic differentiation (e.g. most New World monkeys) or gene duplication (e.g. Old World primates) of the middle to long-wavelength sensitive (M/LWS, or red-green) opsin gene. However, questions remain regarding the behavioral adaptations of primate trichromacy. Allelic differentiation of the M/LWS opsins results in extensive color vision variability in New World monkeys, where trichromats and dichromats are found in the same breeding population, enabling us to directly compare visual performances among different color vision phenotypes. Thus, New World monkeys can serve as an excellent model to understand and evaluate the adaptive significance of primate trichromacy in a behavioral context. I shall summarize recent findings on color vision evolution in primates and introduce our genetic and behavioral study of vision-behavior interrelationships in free-ranging sympatric capuchin and spider monkey populations in Costa Rica.
Collapse
Affiliation(s)
- Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
46
|
Fasick JI, Robinson PR. Adaptations of Cetacean Retinal Pigments to Aquatic Environments. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Springer MS, Emerling CA, Fugate N, Patel R, Starrett J, Morin PA, Hayashi C, Gatesy J. Inactivation of Cone-Specific Phototransduction Genes in Rod Monochromatic Cetaceans. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Adekanmbi AJ, Adekanmbi AA, Akinola OB. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis). SCIENTIFICA 2016; 2016:1535490. [PMID: 27242946 PMCID: PMC4876002 DOI: 10.1155/2016/1535490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina.
Collapse
Affiliation(s)
- Adejoke J. Adekanmbi
- Department of Anatomy, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, PMB 5017 GPO, Ibadan, Nigeria
- Department of Anatomy, College of Health Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Adefisayo A. Adekanmbi
- Department of Neurological Surgery, University College Hospital Ibadan, PMB 5017, Ibadan, Nigeria
| | - Oluwole B. Akinola
- Department of Anatomy, College of Health Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| |
Collapse
|
49
|
Melin AD, Wells K, Moritz GL, Kistler L, Orkin JD, Timm RM, Bernard H, Lakim MB, Perry GH, Kawamura S, Dominy NJ. Euarchontan Opsin Variation Brings New Focus to Primate Origins. Mol Biol Evol 2016; 33:1029-41. [PMID: 26739880 PMCID: PMC4776711 DOI: 10.1093/molbev/msv346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology, Dartmouth College, Hanover, NH Department of Anthropology and Archaeology, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB
| | - Konstans Wells
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD, Australia
| | - Gillian L Moritz
- Department of Biological Sciences, Class of 1978 Life Sciences Center, Dartmouth College, Hanover, NH Department of Evolutionary Anthropology, Duke University
| | - Logan Kistler
- Departments of Anthropology and Biology, Pennsylvania State University School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Joseph D Orkin
- Department of Anthropology and Archaeology, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB Department of Anthropology, Washington University in St. Louis
| | - Robert M Timm
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Maklarin B Lakim
- Sabah Parks, Lot 45 & 46 KK Times Square Coastal Highway, Kota Kinabalu, Sabah, Malaysia
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, NH Department of Biological Sciences, Class of 1978 Life Sciences Center, Dartmouth College, Hanover, NH
| |
Collapse
|
50
|
Soligo C, Smaers JB. Contextualising primate origins--an ecomorphological framework. J Anat 2016; 228:608-29. [PMID: 26830706 PMCID: PMC4804135 DOI: 10.1111/joa.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Ecomorphology - the characterisation of the adaptive relationship between an organism's morphology and its ecological role - has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill's Visual Predation Hypothesis, and Bob Sussman's Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, as morphology and environmental context must first be inferred before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species. Recent developments have led to important advancements, including phylogenetic comparative methods based on more realistic models of evolution, and improved methods for the inference of clade divergence times, as well as an improved fossil record. This contribution will review current perspectives on the origin and early evolution of primates, paying particular attention to their phylogenetic (including cladistic relationships and character evolution) and environmental (including chronology, geography, and physical environments) contextualisation, before attempting an up-to-date ecomorphological synthesis of primate origins.
Collapse
Affiliation(s)
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|