1
|
Limatola N, Chun JT, Schmitt JL, Lehn JM, Santella L. The Effect of Synthetic Polyamine BPA-C8 on the Fertilization Process of Intact and Denuded Sea Urchin Eggs. Cells 2024; 13:1477. [PMID: 39273047 PMCID: PMC11394060 DOI: 10.3390/cells13171477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs. Interestingly, however, according to our previous work, denuded sea urchin eggs devoid of the JC and VL do not fail to become fertilized by sperm. Instead, they are bound and penetratedby multiple sperm, raising the possibility that an alternative pathway independent of the VL-residing sperm receptor may be at work. In this research, we studied the roles of the JC and VL using intact and denuded eggs and the synthetic polyamine BPA-C8. BPA-C8 is known to bind to the negatively charged macromolecular complexes in the cells, such as the JC, VL, and the plasma membrane of echinoderm eggs, as well as to the actin filaments in fibroblasts. Our results showed that, when added to seawater, BPA-C8 significantly repressed the Ca2+ wave in the intact P. lividus eggs at fertilization. In eggs deprived of the VL and JC, BPA-C8 binds to the plasma membrane and increases fibrous structures connecting microvilli, thereby allowing the denuded eggs to revert towards monospermy at fertilization. However, the reduced Ca2+ signal in denuded eggs was nullified compared to the intact eggs because removing the JC and VL already decreased the Ca2+ wave. BPA-C8 does not cross the VL and the cell membrane of unfertilized sea urchin eggs to diffuse into the cytoplasm at variance with the fibroblasts. Indeed, the jasplakinolide-induced polymerization of subplasmalemmal actin filaments was inhibited in the eggs microinjected with BPA-C8, but not in the ones bath-incubated with the same dose of BPA-C8.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France; (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France; (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
2
|
Wang H, Luo J, Carlton C, McGinnis LK, Kinsey WH. Sperm-oocyte contact induces outside-in signaling via PYK2 activation. Dev Biol 2017; 428:52-62. [PMID: 28527703 PMCID: PMC5539980 DOI: 10.1016/j.ydbio.2017.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/20/2023]
Abstract
Fertilization is a multi-step process that begins with plasma membrane interactions that enable sperm - oocyte binding followed by fusion of the sperm and oocyte plasma membranes. Once membrane fusion has occurred, sperm incorporation involves actin remodeling events within the oocyte cortex that allow the sperm head to penetrate the cortical actin layer and gain access to the ooplasm. Despite the significance for reproduction, the control mechanisms involved in gamete binding, fusion, and sperm incorporation are poorly understood. While it is known that proline - rich tyrosine kinase 2 (PYK2 or PTK2b) kinase activity plays an important role in fertilization, its specific function has not been addressed. The present study made use of a zona-free mouse oocyte fertilization assay to investigate the relationship between PYK2 activity and sperm - oocyte binding and fusion, as well as localized changes in actin polymerization and sperm incorporation. In this assay, the majority of bound sperm had no apparent effect on the oocyte and only a few became incorporated into the ooplasm. However, a subset of bound sperm were associated with a localized response in which PYK2 was recruited to the oocyte cortex where it frequently co-localized with a ring or disk of f-actin. The frequency of sperm-oocyte binding sites that exhibited this actin response was reduced in pyk2-/- oocytes and the pyk2-/- oocytes proved less efficient at incorporating sperm, indicating that this protein kinase may have an important role in sperm incorporation. The response of PYK2 to sperm-oocyte interaction appeared unrelated to gamete fusion since PYK2 was recruited to sperm - binding sites under conditions where sperm - oocyte fusion was prevented and since PYK2 suppression or ablation did not prevent sperm - oocyte fusion. While a direct correlation between the PYK2 response in the oocyte and the successful incorporation of individual bound sperm remains to be established, these findings suggest a model in which the oocyte is not a passive participant in fertilization, but instead responds to sperm contact by localized PYK2 signaling that promotes actin remodeling events required to physically incorporate the sperm head into the ooplasm.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jinping Luo
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA; Applied StemCell Inc., Milpitas, CA 95035, USA
| | - Carol Carlton
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lynda K McGinnis
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA 90033, USA
| | - William H Kinsey
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
3
|
Ivonnet PI, Mohri T, McCulloh DH. Localized accumulation of cytosolic calcium near the fused sperm is associated with the calcium- and voltage-dependent block of sperm entry in the sea urchin egg. Mol Reprod Dev 2017; 84:1066-1075. [PMID: 28710864 DOI: 10.1002/mrd.22866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/20/2017] [Indexed: 11/09/2022]
Abstract
Interaction of the sperm and egg depolarizes the egg membrane, allowing the sperm to enter; however, if the egg membrane is not allowed to depolarize from its resting potential (e.g., by voltage-clamp), the sperm will not enter. Previous studies demonstrated that sperm entry into sea urchin eggs that are voltage-clamped at negative membrane potentials is regulated both by the egg's membrane potential and a voltage-dependent influx of calcium into the egg. In these cases, electrical or cytoplasmic continuity (sperm-egg membrane fusion) occurs at negative membrane potentials, but subsequent loss of cytoplasmic continuity results in failure of sperm entry (unfusion). The work presented herein examined where, in relation to the sperm, and when, in relation to the sperm-induced electrophysiological events, the egg's calcium influx occurs, and how these events relate to successful or failed sperm entry. When sperm entered the egg, elevation of intracellular calcium concentration ([Ca2+ ]i ) began near the fused sperm on average 5.9 s after sperm-egg membrane fusion. Conversely, when sperm failed to enter the egg, [Ca2+ ]i elevated near the site of sperm-egg fusion on average 0.7 s after sperm-egg membrane fusion, which is significantly earlier than in eggs for which sperm entered. Therefore, the accumulation of calcium near the site of sperm-egg fusion is spatially and temporally consistent with the mechanism that may be responsible for loss of cytoplasmic continuity and failure of sperm entry.
Collapse
Affiliation(s)
- Pedro I Ivonnet
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida
| | - Tatsuma Mohri
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida
| | - David H McCulloh
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
4
|
McGinnis LK, Luo J, Kinsey WH. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption. Mol Reprod Dev 2013; 80:260-72. [PMID: 23401167 DOI: 10.1002/mrd.22160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
5
|
Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 2006; 304:317-25. [PMID: 17239847 DOI: 10.1016/j.ydbio.2006.12.041] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/09/2023]
Abstract
Microvilli are found on the surface of many cell types, including the mammalian oocyte, where they are thought to act in initial contact of sperm and oocyte plasma membranes. CD9 is currently the only oocyte protein known to be required for sperm-oocyte fusion. We found CD9 is localized to the oocyte microvillar membrane using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) showed that CD9 null oocytes, which are unable to fuse with sperm, have an altered length, thickness and density of their microvilli. One aspect of this change in morphology was quantified using TEM by measuring the radius of curvature at the microvillar tips. A small radius of curvature is thought to promote fusibility and the radius of curvature of microvillar tips on CD9 wild-type oocytes was found to be half that of the CD9 null oocytes. We found that oocyte CD9 co-immunoprecipitates with two Ig superfamily cis partners, EWI-2 and EWI-F, which could have a role in linking CD9 to the oocyte microvillar actin core. We also examined latrunculin B-treated oocytes, which are known to have reduced fusion ability, and found altered microvillar morphology by SEM and TEM. Our data suggest that microvilli may participate in sperm-oocyte fusion. Microvilli could act as a platform to concentrate adhesion/fusion proteins and/or provide a membrane protrusion with a low radius of curvature. They may also have a dynamic interaction with the sperm that serves to capture the sperm cell and bring it into close contact with the oocyte plasma membrane.
Collapse
Affiliation(s)
- Kathryn E Runge
- Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
In marine invertebrates, as in most other organisms, normal development requires that only one sperm nucleus joins with the egg nucleus at fertilization. The principal mechanisms employed are (1) prevention of sperm-egg plasma membrane fusion and (2) modifications of the egg extracellular coat to prevent sperm binding and/or penetration. In a third strategy, fertilization is polyspermic, but only one sperm nucleus fuses with the egg nucleus. Other factors such as gamete density during spawning, chemotaxis, and localized sites for sperm entry may also affect the numbers of sperm reaching the egg.
Collapse
Affiliation(s)
- Meredith C Gould
- Instituto de Biología Celular y Molecular, Universidad Autónoma de Baja California, Ensenada 22800, B.C. Mexico.
| | | |
Collapse
|
7
|
McCulloh DH, Ivonnet PI, Landowne D, Chambers EL. Calcium influx mediates the voltage-dependence of sperm entry into sea urchin eggs. Dev Biol 2000; 223:449-62. [PMID: 10882529 DOI: 10.1006/dbio.2000.9742] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sperm entry was monitored in voltage-clamped sea urchin eggs following insemination in a variety of artificial seawaters. In regular seawater, maintaining the membrane potential at increasingly negative values progressively inhibits sperm entry. Reducing [Ca(2+)](o) relieves the inhibition, shifting the sperm entry vs voltage relationship toward more negative potentials. Raising [Ca(2+)](o) shifts the relationship in the other direction. Large changes in [Na(+)](o) or [Mg(2+)](o) do not affect sperm entry although changing [Na(+)](o) dramatically changes the currents following sperm attachment. Applying one of seven different calcium channel blockers or replacing Ca(2+) with Ba(2+) or Sr(2+) or microinjecting calcium chelators into the cytoplasm relieves the block to sperm entry at negative potentials. We conclude that the block to sperm entry at negative potentials is mediated by calcium which crosses the membrane and acts at an intracellular site.
Collapse
Affiliation(s)
- D H McCulloh
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida, 33101, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Carroll DJ, Ramarao CS, Mehlmann LM, Roche S, Terasaki M, Jaffe LA. Calcium release at fertilization in starfish eggs is mediated by phospholipase Cgamma. J Cell Biol 1997; 138:1303-11. [PMID: 9298985 PMCID: PMC2132564 DOI: 10.1083/jcb.138.6.1303] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1997] [Revised: 07/07/1997] [Indexed: 02/05/2023] Open
Abstract
Although inositol trisphosphate (IP3) functions in releasing Ca2+ in eggs at fertilization, it is not known how fertilization activates the phospholipase C that produces IP3. To distinguish between a role for PLCgamma, which is activated when its two src homology-2 (SH2) domains bind to an activated tyrosine kinase, and PLCbeta, which is activated by a G protein, we injected starfish eggs with a PLCgamma SH2 domain fusion protein that inhibits activation of PLCgamma. In these eggs, Ca2+ release at fertilization was delayed, or with a high concentration of protein and a low concentration of sperm, completely inhibited. The PLCgammaSH2 protein is a specific inhibitor of PLCgamma in the egg, since it did not inhibit PLCbeta activation of Ca2+ release initiated by the serotonin 2c receptor, or activation of Ca2+ release by IP3 injection. Furthermore, injection of a PLCgamma SH2 domain protein mutated at its phosphotyrosine binding site, or the SH2 domains of another protein (the phosphatase SHP2), did not inhibit Ca2+ release at fertilization. These results indicate that during fertilization of starfish eggs, activation of phospholipase Cgamma by an SH2 domain-mediated process stimulates the production of IP3 that causes intracellular Ca2+ release.
Collapse
Affiliation(s)
- D J Carroll
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| | | | | | | | | | | |
Collapse
|