1
|
Swartz HM, Flood AB. Rethinking the Role of Biodosimetry to Assess Risks for Acute Radiation Syndrome in Very Large Radiation Events: Reconsidering Legacy Concepts. Radiat Res 2024; 201:440-448. [PMID: 38714319 DOI: 10.1667/rade-23-00141.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 05/09/2024]
Abstract
The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology and Dartmouth Institute of Health Policy and Clinical Practice, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Clin-EPR, LLC, Lyme, New Hampshire
| | - Ann Barry Flood
- Department of Radiology and Dartmouth Institute of Health Policy and Clinical Practice, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Clin-EPR, LLC, Lyme, New Hampshire
| |
Collapse
|
2
|
Wei Y, Dewji S. A comprehensive review of dose limits, triage systems and measurement tools for consequence management of nuclear and radiological emergencies. Radiat Phys Chem Oxf Engl 1993 2024; 217:111533. [PMID: 38882716 PMCID: PMC11170981 DOI: 10.1016/j.radphyschem.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During a radiological or nuclear emergency, occupational workers, members of the public, and emergency responders may be exposed to radionuclides, whether external or internal, through inhalation, ingestion, or wounds. In the case of internalized radiation exposure, prompt assessment of contamination is necessary to inform subsequent medical interventions. This review assembles the constituent considerations for managing nuclear and radiological incidents, focused on a parallel analysis of the evolution of radiation dose limits - notably in the emergency preparedness and response realm - alongside a discussion of triage systems and in vivo radionuclide detection tools. The review maps the development of international and national standards and regulations concerning radiation dose limits, illuminating how past incidents and accumulated knowledge have informed present emergency preparedness and response practices, specifically for internalized radiation. Additionally, the objectives and levels of radiation triage systems are explored in-depth, along with a global survey of practices and protocols. Finally, this review also focuses on in vivo detection systems and their capacities for radionuclide identification, prioritizing internalized gamma-emitting isotopes due to their broader relevance. Collectively, this study comprehensively addresses the intricacies of triage management following radiation emergencies, emphasizing the imperative for enhanced standardization and continued research in this critical domain.
Collapse
Affiliation(s)
- Y. Wei
- Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA, 30332-0405, USA
| | - S.A. Dewji
- Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA, 30332-0405, USA
| |
Collapse
|
3
|
Satyamitra MM, Perez-Horta Z, DiCarlo AL, Cassatt DR, Rios CI, Price PW, Taliaferro LP. NIH Policies and Regulatory Pathways to U.S. FDA licensure: Strategies to Inform Advancement of Radiation Medical Countermeasures and Biodosimetry Devices. Radiat Res 2022; 197:533-553. [PMID: 35113982 DOI: 10.1667/rade-21-00198.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases (NIAID), is tasked with the mandate of identifying biodosimetry tests to assess exposure and medical countermeasures (MCMs) to mitigate/treat injuries to individuals exposed to significant doses of ionizing radiation from a radiological/nuclear incident, hosted. To fulfill this mandate, the Radiation and Nuclear Countermeasures Program (RNCP), hosted a workshop in 2018 workshop entitled "Policies and Regulatory Pathways to U.S. FDA licensure: Radiation Countermeasures and Biodosimetry Devices." The purpose of the meeting was to facilitate the advancement of MCMs and biodosimetry devices by assessing the research devices and animal models used in preclinical studies; government policies on reproducibility, rigor and robustness; regulatory considerations for MCMs and biodosimetry devices; and lessons learned from sponsors of early stage MCM or biodosimetry devices. Meeting presentations were followed by a NIAID-led, open discussion among academic investigators, industry researchers and U.S. government representatives.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Zulmarie Perez-Horta
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| |
Collapse
|
4
|
Taliaferro LP, DiCarlo AL, Satyamitra MM. NIH Policies and Regulatory Pathways for the Advancement of Radiation Medical Countermeasures and Biodosimetry Tools to U.S. FDA Licensure. Radiat Res 2021; 197:475645. [PMID: 34919721 PMCID: PMC9762489 DOI: 10.1667/rade-21-00206.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| |
Collapse
|
5
|
DiCarlo AL, Homer MJ, Coleman CN. United States medical preparedness for nuclear and radiological emergencies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:10.1088/1361-6498/ac0d3f. [PMID: 34153947 PMCID: PMC8648948 DOI: 10.1088/1361-6498/ac0d3f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
With the end of the Cold War in 1991, U.S. Government (USG) investments in radiation science and medical preparedness were phased out; however, the events of 11 September, which involved a terroristic attack on American soil, led to the re-establishment of funding for both radiation preparedness and development of approaches to address injuries. Similar activities have also been instituted worldwide, as the global threat of a radiological or nuclear incident continues to be a concern. Much of the USG's efforts to plan for the unthinkable have centred on establishing clear lines of communication between agencies with responsibility for triage and medical response, and external stakeholders. There have also been strong connections made between those parts of the government that establish policies, fund research, oversee regulatory approval, and purchase and stockpile necessary medical supplies. Progress made in advancing preparedness has involved a number of subject matter meetings and tabletop exercises, publication of guidance documents, assessment of available resources, clear establishment of anticipated concepts of operation for multiple radiation and nuclear scenarios, and identification/mobilization of resources. From a scientific perspective, there were clear research gaps that needed to be addressed, which included the need to identify accurate biomarkers and design biodosimetry devices to triage large numbers of civilians, develop decorporation agents that are more amenable for mass casualty use, and advance candidate products to address injuries caused by radiation exposure and thereby improve survival. Central to all these activities was the development of several different animal constructs, since efficacy testing of these approaches requires extensive work in research models that accurately simulate what would be expected in humans. Recent experiences with COVID-19 have provided an opportunity to revisit aspects of radiation preparedness, and leverage those lessons learned to enhance readiness for a possible future radiation public health emergency.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States of America
| | - Mary J Homer
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services (HHS), Washington, DC, United States of America
| | - C Norman Coleman
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States of America
| |
Collapse
|
6
|
Taliaferro LP, Cassatt DR, Horta ZP, Satyamitra MM. Meeting Report: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome. Radiat Res 2021; 196:436-446. [PMID: 34237144 PMCID: PMC8532024 DOI: 10.1667/rade-21-00048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/03/2022]
Abstract
The National Institute of Allergy and Infectious Diseases, Radiation and Nuclear Countermeasures Program, was tasked by the United States Congress and the U.S. Department of Health and Human Services to identify and fund early-to-mid-stage development of medical countermeasures (MCMs) to treat radiation-induced injuries. In developing MCMs to treat various sub-syndromes (e.g., hematopoietic, gastrointestinal, lung), it is important to investigate whether a poly-pharmacy approach (i.e., drug cocktails) can provide additive benefits to mitigate injuries arising from the acute radiation syndrome (ARS). In addition, potential drug-drug interactions must be examined. For this reason, a workshop was held, which centered on understanding the current state of research investigating poly-pharmacy approaches to treat radiation injuries. The first session set the stage with an introduction to the concept of operations or support available for the response to a nuclear incident, as this is the key to any emergency response, including MCM availability and distribution. The second session followed the natural history of ARS in both humans and animal models to underscore the complexity of ARS and why a poly-pharmacy approach may be necessary. The third session featured talks from investigators conducting current MCM poly-pharmacy research. The meeting closed with a focus on regulatory considerations for the development of poly-pharmacy approaches or combination treatments for ARS.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | | | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
7
|
DiCarlo AL. Scientific research and product development in the United States to address injuries from a radiation public health emergency. JOURNAL OF RADIATION RESEARCH 2021; 62:752-763. [PMID: 34308479 PMCID: PMC8438480 DOI: 10.1093/jrr/rrab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The USA has experienced one large-scale nuclear incident in its history. Lessons learned during the Three-Mile Island nuclear accident provided government planners with insight into property damage resulting from a low-level release of radiation, and an awareness concerning how to prepare for future occurrences. However, if there is an incident resulting from detonation of an improvised nuclear device or state-sponsored device/weapon, resulting casualties and the need for medical treatment could overwhelm the nation's public health system. After the Cold War ended, government investments in radiation preparedness declined; however, the attacks on 9/11 led to re-establishment of research programs to plan for the possibility of a nuclear incident. Funding began in earnest in 2004, to address unmet research needs for radiation biomarkers, devices and products to triage and treat potentially large numbers of injured civilians. There are many biodosimetry approaches and medical countermeasures (MCMs) under study and in advanced development, including those to address radiation-induced injuries to organ systems including bone marrow, the gastrointestinal (GI) tract, lungs, skin, vasculature and kidneys. Biomarkers of interest in determining level of radiation exposure and susceptibility of injury include cytogenetic changes, 'omics' technologies and other approaches. Four drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of acute radiation syndrome (ARS), with other licensures being sought; however, there are still no cleared devices to identify radiation-exposed individuals in need of treatment. Although many breakthroughs have been made in the efforts to expand availability of medical products, there is still work to be done.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Corresponding author. Radiation and Nuclear Countermeasures Program, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Room 7B13, Rockville, MD, USA. Office Phone: 1-240-627-3492; Office Fax: 1-240-627-3113;
| |
Collapse
|
8
|
Human Consequences of Multiple Nuclear Detonations in New Delhi (India): Interdisciplinary Requirements in Triage Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041740. [PMID: 33670135 PMCID: PMC7916841 DOI: 10.3390/ijerph18041740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
The human casualties from simulated nuclear detonation scenarios in New Delhi, India are analyzed, with a focus on the distribution of casualties in urban environments and the theoretical application of a nuclear-specific triage system with significant innovation in interdisciplinary disaster management applicable generally to urban nuclear detonation medical response. Model estimates of nuclear war casualties employed ESRI’s ArcGIS 9.3, blast and prompt radiation were calculated using the Defense Nuclear Agency’s WE program, and fallout radiation was calculated using the Defense Threat Reduction Agency’s (DTRA’s) Hazard Prediction and Assessment Capability (HPAC) V404SP4, as well as custom GIS and database software applications. ESRI ArcGISTM programs were used to calculate affected populations from the Oak Ridge National Laboratory’s LandScanTM 2007 Global Population Dataset for areas affected by thermal, blast and radiation data. Trauma, thermal burn, and radiation casualties were thus estimated on a geographic basis for New Delhi, India for single and multiple (six) 25 kt detonations and a single 1 mt (1000 kt) detonation. Major issues related to the emergency management of a nuclear incident are discussed with specific recommendations for improvement. The consequences for health management of thermal burn and radiation patients is the worst, as burn patients require enormous resources to treat, and there will be little to no familiarity with the treatment of radiation victims. Of particular importance is the interdisciplinary cooperation necessary for such a large-scale emergency response event, which would be exemplified by efforts such as the application of a Nuclear Global Health Workforce.
Collapse
|
9
|
Sung AD, Yen RC, Jiao Y, Bernanke A, Lewis DA, Miller SE, Li Z, Ross JR, Artica A, Piryani S, Zhou D, Liu Y, Vo-Dinh T, Hoffman M, Ortel TL, Chao NJ, Chen BJ. Fibrinogen-Coated Albumin Nanospheres Prevent Thrombocytopenia-Related Bleeding. Radiat Res 2020; 194:162-172. [PMID: 32845987 DOI: 10.1667/rade-20-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/07/2020] [Indexed: 11/03/2022]
Abstract
Thrombocytopenia (TCP) may cause severe and life-threatening bleeding. While this may be prevented by platelet transfusions, transfusions are associated with potential complications, do not always work (platelet refractory) and are not always available. There is an urgent need for a synthetic alternative. We evaluated the ability of fibrinogen-coated nanospheres (FCNs) to prevent TCP-related bleeding. FCNs are made of human albumin polymerized into a 100-nm sphere and coated with fibrinogen. We hypothesized that FCNs would bind to platelets through fibrinogen-GPIIb/IIIa interactions, contributing to hemostasis in the setting of TCP. We used two murine models to test these effects: in the first model, BALB/c mice received 7.25 Gy total-body irradiation (TBI); in the second model, lower dose TBI (7.0 Gy) was combined with an anti-platelet antibody (anti-CD41) to induce severe TCP. Deaths in both models were due to gastrointestinal or intracranial bleeding. Addition of antiplatelet antibody to 7.0 Gy TBI significantly worsened TCP and increased mortality compared to 7.0 Gy TBI alone. FCNs significantly improved survival compared to saline control in both models, suggesting it ameliorated TCP-related bleeding. Additionally, in a saphenous vein bleeding model of antibody-induced TCP, FCNs shortened bleeding times. There were no clinical or histological findings of thrombosis or laboratory findings of disseminated intravascular coagulation after FCN treatment. In support of safety, fluorescence microscopy suggests that FCNs bind to platelets only upon platelet activation with collagen, limiting activity to areas of endothelial damage. To our knowledge, this is the first biosynthetic agent to demonstrate a survival advantage in TCP-related bleeding.
Collapse
Affiliation(s)
- Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | | | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | | | | | | | - Zhiguo Li
- Department of Biostatistics & Bioinformatics
| | - Joel R Ross
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | - Alexandra Artica
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | - Sadhna Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | - Dunhua Zhou
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | - Yang Liu
- Department of Biomedical Engineering, Pratt School of Engineering
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Pratt School of Engineering.,Department of Chemistry, Duke University, Durham, North Carolina
| | | | - Thomas L Ortel
- Division of Hematology, Department of Medicine.,Department of Pathology
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and Duke Cancer Institute
| |
Collapse
|
10
|
Radiation Injury Treatment Network Medical and Nursing Workforce Radiation: Knowledge and Attitude Assessment. Disaster Med Public Health Prep 2020; 16:170-176. [DOI: 10.1017/dmp.2020.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT
Objectives:
The Radiation Injury Treatment Network (RITN) is prepared to respond to a national disaster resulting in mass casualties with marrow toxic injuries. How effective existing RITN workforce education and training is, or whether health-care providers (HCPs) at these centers possess the knowledge and skills to care for patients following a radiation emergency is unclear. HCP knowledge regarding the medical effects and medical management of radiation-exposed patients, along with clinical competence and willingness to care for patients following a radiation emergency was assessed.
Methods:
An online survey was conducted to assess level of knowledge regarding the medical effects of radiation, medical/nursing management of patients, self-perception of clinical competence, and willingness to respond to radiation emergencies and nuclear events.
Results:
Attendance at previous radiation emergency management courses and overall knowledge scores were low for all respondents. The majority indicated they were willing to respond to a radiation event, but few believed they were clinically competent to do so.
Conclusions:
Despite willingness to respond, HCPs at RITN centers may not possess adequate knowledge of medical management of radiation patients, and appropriate response actions during a radiation emergency. RITN should increase the awareness of the importance of radiation education and training.
Collapse
|
11
|
Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) Science and the CBRNE Science Medical Operations Science Support Expert (CMOSSE). Disaster Med Public Health Prep 2020; 13:995-1010. [PMID: 31203830 DOI: 10.1017/dmp.2018.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.
Collapse
|
12
|
Dainiak N, Albanese J, Kaushik M, Balajee AS, Romanyukha A, Sharp TJ, Blakely WF. CONCEPTS OF OPERATIONS FOR A US DOSIMETRY AND BIODOSIMETRY NETWORK. RADIATION PROTECTION DOSIMETRY 2019; 186:130-138. [PMID: 30726970 DOI: 10.1093/rpd/ncy294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The USA must be prepared to provide a prompt, coordinated and integrated response for radiation dose and injury assessment for suspected radiation exposure, whether it involves isolated cases or mass casualties. Dose estimation for radiation accidents typically necessitates a multiple parameter diagnostics approach that includes clinical, biological and physical dosimetry to provide an early-phase radiation dose. A US Individual Dosimetry and Biodosimetry Network (US-IDBN) will increase surge capacity for civilian and military populations in a large-scale incident. The network's goal is to leverage available resources and provide an integrated biodosimetry capability, using multiple parameter diagnostics. Initial operations will be to expand an existing functional integration of two cytogenetic biodosimetry laboratories by developing Standard Operating Procedures, cross-training laboratorians, developing common calibration curves, supporting inter-comparison exercises and obtaining certification to process clinical samples. Integration with certified commercial laboratories will increase surge capacity to meet the needs of a mass-casualty incident.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Joseph Albanese
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Meetu Kaushik
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, PO Box 117, MS 39, Oak Ridge TN 37831, USA
| | | | - Thad J Sharp
- Naval Dosimetry Center, 8901 Wisconsin Avenue, Bethesda MD 20889, USA
| | - William F Blakely
- Uniformed Services University of the Health Sciences, Armed Forces Radiobiology Research Institute, 4555 South Palmer Road, Bldg. 42, Bethesda MD 20889-5648, USA
| |
Collapse
|
13
|
Cheema AK, Mehta KY, Rajagopal MU, Wise SY, Fatanmi OO, Singh VK. Metabolomic Studies of Tissue Injury in Nonhuman Primates Exposed to Gamma-Radiation. Int J Mol Sci 2019; 20:ijms20133360. [PMID: 31323921 PMCID: PMC6651211 DOI: 10.3390/ijms20133360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/29/2022] Open
Abstract
Exposure to ionizing radiation induces a complex cascade of systemic and tissue-specific responses that lead to functional impairment over time in the surviving population. However, due to the lack of predictive biomarkers of tissue injury, current methods for the management of survivors of radiation exposure episodes involve monitoring of individuals over time for the development of adverse clinical symptoms and death. Herein, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that were exposed to a single dose of 7.2 Gy whole-body 60Co γ-radiation that either survived or succumbed to radiation toxicities over a 60-day period. This study involved the delineation of the radiation effects in the liver, kidney, jejunum, heart, lung, and spleen. We found robust metabolic changes in the kidney and liver and modest changes in other tissue types at the 60-day time point in a cohort of NHPs. Remarkably, we found significant elevation of long-chain acylcarnitines in animals that were exposed to radiation across multiple tissue types underscoring the role of this class of metabolites as a generic indicator of radiation-induced normal tissue injury. These studies underscore the utility of a metabolomics approach for delineating anticipatory biomarkers of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20001, USA
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA
| | - Meena U Rajagopal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA
| | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA
- Scientific Research Department, Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA
- Scientific Research Department, Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, Bethesda, MD 20814, USA.
- Scientific Research Department, Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20814, USA.
| |
Collapse
|
14
|
National Assessment of Nursing Schools and Nurse Educators Readiness for Radiation Emergencies and Nuclear Events. Disaster Med Public Health Prep 2019; 13:936-945. [DOI: 10.1017/dmp.2019.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACTNurses will play a crucial role in responding to a public health emergency resulting from nuclear war or other large-scale release of radiation into the environment and in supporting the National Health Security Strategy. Schools of nursing are ultimately responsible for developing a competent nursing workforce prepared to assess a population’s public health emergency needs and respond to these low-frequency but high-impact events. This responsibility includes the provision of specific content and training regarding how to respond and care for patients and communities in the event of a nuclear or radiation emergency. To date, however, there has been a lack of empirical evidence focusing specifically on nursing schools’ capacity to prepare nurses for radiation emergencies and nuclear events, as well as perception of risk. This study employed a cross-sectional survey administered to a nationwide sample of nursing school administrators and faculty to assess content, faculty expertise, planning, and perception of risk related to radiation emergencies and nuclear events.
Collapse
|
15
|
DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK, Case CM. Use of Growth Factors and Other Cytokines for Treatment of Injuries During a Radiation Public Health Emergency. Radiat Res 2019; 192:99-120. [PMID: 31081742 DOI: 10.1667/rr15363.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the threat of a radiological or nuclear incident that could impact citizens, the U.S. Department of Health and Human Services tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- to mid-stage medical countermeasure (MCM) development to treat radiation-induced injuries. Given that the body's natural response to radiation exposure includes production of growth factors and cytokines, and that the only drugs approved by the U.S. Food and Drug Administration to treat acute radiation syndrome are growth factors targeting either the granulocyte (Neupogen® or Neulasta®) or granulocyte and macrophage (Leukine®) hematopoietic cell lineages, there is interest in understanding the role that these factors play in responding to and/or ameliorating radiation damage. Furthermore, in an environment where resources are scarce, such as what might be expected during a radiation public health emergency, availability of growth factor or other treatments may be limited. For these reasons, the NIAID partnered with the Radiation Injury Treatment Network (RITN), whose membership includes medical centers with expertise in the management of bone marrow failure, to explore the use of growth factors and other cytokines as MCMs to mitigate/treat radiation injuries. A workshop was convened that included government, industry and academic subject matter experts, with presentations covering the anticipated concept of operations during a mass casualty incident including triage and treatment, growth factors under development for a radiation indication, and how the practice of medicine can inform other potential approaches, as well as considerations for administration of these products to diverse civilian populations. This report reviews the information presented, and provides an overview of the discussions from a guided breakout session.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Zulmarie Perez Horta
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | | | - Ann A Jakubowski
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota.,c Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - William K Skinner
- d Uniformed Services University for Health Sciences (USUHS), Bethesda, Maryland
| | - Cullen M Case
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota
| |
Collapse
|
16
|
Veenema TG, Burkle FM, Dallas CE. The nursing profession: a critical component of the growing need for a nuclear global health workforce. Confl Health 2019; 13:9. [PMID: 30962816 PMCID: PMC6434856 DOI: 10.1186/s13031-019-0197-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/18/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Instability in the global geopolitical climate and the continuing spread of nuclear weapons and increase in their lethality has made the exchange of nuclear weapons or a terrorist attack upon a nuclear power plant a serious issue that demands appropriate planning for response. In response to this threat, the development of a nuclear global health workforce under the technical expertise of the International Atomic Energy Agency and the World Health Organization Radiation Emergency Medical Preparedness and Assistance Network has been proposed. MAIN BODY OF THE ABSTRACT As the largest component of the global healthcare workforce, nurses will play a critical role in both the leadership and health care effectiveness of a response to any public health emergency of international concern (PHEIC) resulting from the unprecedented numbers of trauma, thermal burn, and radiation affected patients that will require extensive involvement of the nursing professional community. SHORT CONCLUSION Lives can and will be saved if nurses are present. The clinical care of radiation contaminated patients (e.g. radiation burns, fluid management, infection control), thermal burn patients, and other health system response activities such as community screening for radiation exposure, triage, decontamination, administration of medical countermeasures and the provision of supportive emotional and mental health care will be overwhelmingly nurse intensive.
Collapse
Affiliation(s)
- Tener Goodwin Veenema
- National Academy of Medicine, Washington, DC USA
- Department of International Health, Nursing and Public Health, Johns Hopkins School of Nursing, Centre for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
| | - Frederick M. Burkle
- Harvard Humanitarian Initiative, Harvard University & T.H. Chan School of Public Health, Cambridge, USA
- Woodrow Wilson International Center for Scholars, Washington, DC USA
| | - Cham E. Dallas
- Department of Health Policy and Management, Institute for Disaster Management, University of Georgia, College of Public Health, Athens, USA
- Department of Emergency Medicine, Clinical Professor of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, USA
| |
Collapse
|
17
|
Yeddanapudi N, Clay MA, Durham DP, Hoffman CM, Homer MJ, Appler JM. Informing CONOPS and medical countermeasure deployment strategies after an improvised nuclear device detonation: the importance of delayed treatment efficacy data. Int J Radiat Biol 2018; 96:4-11. [PMID: 30403905 DOI: 10.1080/09553002.2018.1532618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose: In the wake of a nuclear detonation, individuals with acute radiation syndrome will be a significant source of morbidity and mortality. Mathematical modeling can compare response strategies developed for real-world chaotic conditions after a nuclear blast in order to identify optimal strategies for administering effective treatment to these individuals. To maximize responders' abilities to save lives it is critical to understand how treatment efficacy is impacted by real-world conditions and levels of supportive care. To illustrate the importance of these factors, we developed a mathematical model of cytokine administration 24 h after the blast with varying levels of supportive care described in the primary literature.Conclusion: The results highlight the proportionally higher life-saving benefit of administering cytokines to individuals with a moderate to high dose of radiation exposure, compared to those with a lower dose. However, the fidelity of mathematical models is dependent on the primary data informing them. We describe the data needed to fully explore the impact of timing, dosage, and fractional benefit of cytokines and supportive care treatment in non-optimal situations that could be seen after a nuclear detonation. Studies addressing these types of knowledge gaps are essential to evaluating the relative efficacy of countermeasures to refine existing plans and help develop new strategies and priorities.
Collapse
Affiliation(s)
- N Yeddanapudi
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | - M A Clay
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | - D P Durham
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | | | | | | |
Collapse
|
18
|
Kocev I, Achkoski J, Bogatinov D, Koceski S, Trajkovik V, Stevanoski G, Temelkovski B. Novel approach for automating medical emergency protocol in military environment. Technol Health Care 2018; 26:249-261. [PMID: 29286942 DOI: 10.3233/thc-170852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Categorization of the casualties in accordance with medical care priorities is crucial in a military environment. Automation of the triage process is still a challenging task. The goal of the paper is to propose a novel algorithm for automation of medical emergency protocol in the military environment by the creation of classifiers that can provide accurate prioritization of injured soldier cases. It is a part of a complex military telemedicine system that provides continuous monitoring of soldiers' vital data gathered on-site using an unobtrusive set of sensors. METHODS After pre-processing the collected raw physiological data and eliminating the outliers using Naïve Bayesian Classifier, the system is capable of calculating the risk level and categorizing the victims based on Markov Decision Process. The NBC has been trained with a dataset that has contained labels and 6 features. Training set has held 8000 randomly chosen samples. Twenty percent of the determined dataset has been used for the validation set. RESULTS For algorithm verification, several evaluation scenarios have been created. In each scenario, randomly generated vital sign data describing the hypothetical health condition of soldiers was contemporarily assessed by the system as well as by 50 experienced military medical physicians. CONCLUSION The obtained correlation result of the proposed algorithm and medical physicians' classifications is strong evidence that the system can be implemented in warfare emergency medicine.
Collapse
Affiliation(s)
- Ivica Kocev
- Faculty of Computer Sciences, University "Goce Delcev", Stip, Macedonia
| | - Jugoslav Achkoski
- Military Academy, "General Mihailo Apostolski", Skopje, University "Goce Delcev", Stip, Macedonia
| | - Dimitar Bogatinov
- Military Academy, "General Mihailo Apostolski", Skopje, University "Goce Delcev", Stip, Macedonia
| | - Saso Koceski
- Faculty of Computer Sciences, University "Goce Delcev", Stip, Macedonia
| | - Vladimir Trajkovik
- Faculty of Computer Science and Engineering, University "Ss. Cyril and Methodius", Macedonia
| | - Goce Stevanoski
- Military Academy, "General Mihailo Apostolski", Skopje, University "Goce Delcev", Stip, Macedonia
| | - Boban Temelkovski
- Military Academy, "General Mihailo Apostolski", Skopje, University "Goce Delcev", Stip, Macedonia.,Faculty of Computer Science and Engineering, University "Ss. Cyril and Methodius", Macedonia
| |
Collapse
|
19
|
Case C, Coleman CN, Bader JL, Hick J, Hanfling D. Guidance, Training and Exercises for Responding to an Improvised Nuclear Device: First Receivers, Public Health. HEALTH PHYSICS 2018; 114:165-172. [PMID: 30086007 DOI: 10.1097/hp.0000000000000759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
All large-scale emergencies and disaster incidents, including the detonation of an improvised nuclear device (IND), have life and death medical consequences. Responders must have realistic plans to save lives and reduce physical and psychological morbidity. Fifteen years after 9/11, considerable progress toward developing and implementing such plans has been made, but gaps in the management of response to an IND loom large. Another paper in this series reviewed gaps for first responders; this paper reviews gaps for first receivers and public health. Closing gaps requires the implementation of complex systems including.
Collapse
|
20
|
Koerner JF. Preparedness Is More Than a Plan: Medical Considerations for Radiation Response. HEALTH PHYSICS 2018; 114:128-135. [PMID: 30086001 DOI: 10.1097/hp.0000000000000755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goals herein are to describe and discuss existing plans for the medical preparedness and response to a radiological incident/nuclear detonation, present the systems approach to nuclear response, introduce methods to assess operational capabilities, and posit suggestions for the way forward to implementation. This discussion seeks to review where these U.S. government efforts began 10 y ago, then moves through the collective National progress in preparedness planning for an improvised nuclear device detonation and differentiates between important preparedness planning efforts and the challenges of understanding national implementation. Finally, a way forward for the immediate future is suggested.
Collapse
|
21
|
Proposed "Exposure And Symptom Triage" (EAST) Tool to Assess Radiation Exposure After a Nuclear Detonation. Disaster Med Public Health Prep 2017; 12:386-395. [PMID: 29911522 DOI: 10.1017/dmp.2017.86] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACTOne of the biggest medical challenges after the detonation of a nuclear device will be implementing a strategy to assess the severity of radiation exposure among survivors and to triage them appropriately. Those found to be at significant risk for radiation injury can be prioritized to receive potentially lifesaving myeloid cytokines and to be evacuated to other communities with intact health care infrastructure prior to the onset of severe complications of bone marrow suppression. Currently, the most efficient and accessible triage method is the use of sequential complete blood counts to assess lymphocyte depletion kinetics that correlate with estimated whole-body dose radiation exposure. However, even this simple test will likely not be available initially on the scale required to assess the at-risk population. Additional variables such as geographic location of exposure, sheltering, and signs and symptoms may be useful for initial sorting. An interdisciplinary working group composed of federal, state, and local public health experts proposes an Exposure And Symptom Triage (EAST) tool combining estimates of exposure from maps with clinical assessments and single lymphocyte counts if available. The proposed tool may help sort survivors efficiently at assembly centers near the damage and fallout zones and enable rapid prioritization for appropriate treatment and transport. (Disaster Med Public Health Preparedness. 2018; 12: 386-395).
Collapse
|
22
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
23
|
Chauhan V, Duncan D, Wilkins RC. Radiological/Nuclear Human Monitoring Tabletop Exercise: Recommendations and Lessons Identified. HEALTH PHYSICS 2017; 112:580-586. [PMID: 28441289 DOI: 10.1097/hp.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Health Canada is the lead department for coordinating the federal response to a Canadian nuclear emergency event. The framework to manage a radiological consequence is outlined in the Federal Nuclear Emergency Plan (FNEP). In 2014, a full scale exercise (FSX) was held to test the capacity of the federal government to handle a nuclear facility emergency disaster in Canada. The FSX provided a means to demonstrate the integration of various departments and agencies in response to such an event, and although a number of task teams within FNEP were tested, the capacity to monitor humans for exposure post-event was not played out fully. To address this, a table top exercise (TTX) was held in 2015 that brought together experts from human monitoring groups (HMGs) in partnership with Provincial and Municipal emergency response organizations. The TTX took the form of a facilitated discussion centered around two types of radiological/nuclear (RN) emergency scenarios that commenced post-release. The purpose of the exercise was to integrate these communities and identify knowledge gaps in policies and concepts of operations pertaining to the human monitoring aspects of RN events including biodosimetry, bioassay, portal monitors, whole body counting, and the provision of personal dosimetry. It also tested the interoperability between first responders/receivers and Federal, Provincial, and Municipal emergency response organizations. The end outcome was the identification of clear knowledge gaps in existing and newly developed concepts of operation in the human population monitoring response to an RN emergency in Canada; these and possible recommendations are captured in this report.
Collapse
Affiliation(s)
- Vinita Chauhan
- *Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9; † International Safety Research, Ottawa, Ontario, Canada K2E 7J6
| | | | | |
Collapse
|
24
|
Coleman CN, Koerner JF. Biodosimetry: Medicine, Science, and Systems to Support the Medical Decision-Maker Following a Large Scale Nuclear or Radiation Incident. RADIATION PROTECTION DOSIMETRY 2016; 172:38-46. [PMID: 27473694 PMCID: PMC6061193 DOI: 10.1093/rpd/ncw155] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The public health and medical response to a radiological or nuclear incident requires the capability to sort, assess, treat, triage and to ultimately discharge, refer or transport people to their next step in medical care. The size of the incident and scarcity of resources at the location of each medical decision point will determine how patients are triaged and treated. This will be a rapidly evolving situation impacting medical responders at regional, national and international levels. As capabilities, diagnostics and medical countermeasures improve, a dynamic system-based approach is needed to plan for and manage the incident, and to adapt effectively in real time. In that the concepts and terms can be unfamiliar and possibly confusing, resources and a concept of operations must be considered well in advance. An essential underlying tenet is that medical evaluation and care will be managed by healthcare professionals with biodosimetry assays providing critical supporting data.
Collapse
Affiliation(s)
- C Norman Coleman
- Chemical, Biological, Radiological, Nuclear and Explosive Branch, Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC 20201, USA
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John F Koerner
- Chemical, Biological, Radiological, Nuclear and Explosive Branch, Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC 20201, USA
| |
Collapse
|
25
|
Homer MJ, Raulli R, DiCarlo-Cohen AL, Esker J, Hrdina C, Maidment BW, Moyer B, Rios C, Macchiarini F, Prasanna PG, Wathen L. UNITED STATES DEPARTMENT OF HEALTH AND HUMAN SERVICES BIODOSIMETRY AND RADIOLOGICAL/NUCLEAR MEDICAL COUNTERMEASURE PROGRAMS. RADIATION PROTECTION DOSIMETRY 2016; 171:85-98. [PMID: 27590469 PMCID: PMC6280724 DOI: 10.1093/rpd/ncw226] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats.
Collapse
Affiliation(s)
- Mary J Homer
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Robert Raulli
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Andrea L DiCarlo-Cohen
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - John Esker
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Chad Hrdina
- Medical Utilization and Response Integration, Division of Medical Countermeasure Strategy and Requirements, Office of Policy and Planning, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Bert W Maidment
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - Brian Moyer
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| | - Carmen Rios
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - Francesca Macchiarini
- Radiation Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, 5601 Fishers Lane, Rockville, MD 20892-9828, USA
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute; National Institutes of Health, US Department of Health and Human Services , 9608 Medical Center Drive, Room 3W230, MSC9727 , Bethesda, MD 20892-9727, USA
| | - Lynne Wathen
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services , 330 Independence Ave., SW, Room G644, Washington, DC 20201, USA
| |
Collapse
|
26
|
Developing a Nuclear Global Health Workforce Amid the Increasing Threat of a Nuclear Crisis. Disaster Med Public Health Prep 2015; 10:129-44. [PMID: 26527407 DOI: 10.1017/dmp.2015.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study argues that any nuclear weapon exchange or major nuclear plant meltdown, in the categories of human systems failure and conflict-based crises, will immediately provoke an unprecedented public health emergency of international concern. Notwithstanding nuclear triage and management plans and technical monitoring standards within the International Atomic Energy Agency and the World Health Organization (WHO), the capacity to rapidly deploy a robust professional workforce with the internal coordination and collaboration capabilities required for large-scale nuclear crises is profoundly lacking. A similar dilemma, evident in the early stages of the Ebola epidemic, was eventually managed by using worldwide infectious disease experts from the Global Outbreak Alert and Response Network and multiple multidisciplinary WHO-supported foreign medical teams. This success has led the WHO to propose the development of a Global Health Workforce. A strategic format is proposed for nuclear preparedness and response that builds and expands on the current model for infectious disease outbreak currently under consideration. This study proposes the inclusion of a nuclear global health workforce under the technical expertise of the International Atomic Energy Agency and WHO's Radiation Emergency Medical Preparedness and Assistance Network leadership and supported by the International Health Regulations Treaty. Rationales are set forth for the development, structure, and function of a nuclear workforce based on health outcomes research that define the unique health, health systems, and public health challenges of a nuclear crisis. Recent research supports that life-saving opportunities are possible, but only if a rapidly deployed and robust multidisciplinary response component exists.
Collapse
|
27
|
Understanding Nursing's Role in Health Systems Response to Large-Scale Radiologic Disasters. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.jradnu.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Coleman CN, Sullivan JM, Bader JL, Murrain-Hill P, Koerner JF, Garrett AL, Weinstock DM, Case C, Hrdina C, Adams SA, Whitcomb RC, Graeden E, Shankman R, Lant T, Maidment BW, Hatchett RC. Public health and medical preparedness for a nuclear detonation: the nuclear incident medical enterprise. HEALTH PHYSICS 2015; 108:149-160. [PMID: 25551496 PMCID: PMC4295641 DOI: 10.1097/hp.0000000000000249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Resilience and the ability to mitigate the consequences of a nuclear incident are enhanced by (1) effective planning, preparation and training; (2) ongoing interaction, formal exercises, and evaluation among the sectors involved; (3) effective and timely response and communication; and (4) continuous improvements based on new science, technology, experience, and ideas. Public health and medical planning require a complex, multi-faceted systematic approach involving federal, state, local, tribal, and territorial governments; private sector organizations; academia; industry; international partners; and individual experts and volunteers. The approach developed by the U.S. Department of Health and Human Services Nuclear Incident Medical Enterprise (NIME) is the result of efforts from government and nongovernment experts. It is a "bottom-up" systematic approach built on the available and emerging science that considers physical infrastructure damage, the spectrum of injuries, a scarce resources setting, the need for decision making in the face of a rapidly evolving situation with limited information early on, timely communication, and the need for tools and just-in-time information for responders who will likely be unfamiliar with radiation medicine and uncertain and overwhelmed in the face of the large number of casualties and the presence of radioactivity. The components of NIME can be used to support planning for, response to, and recovery from the effects of a nuclear incident. Recognizing that it is a continuous work-in-progress, the current status of the public health and medical preparedness and response for a nuclear incident is provided.
Collapse
Affiliation(s)
- C. Norman Coleman
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, Telephone: (301) 496-5457, Fax: (301) 480-5439
| | - Julie M. Sullivan
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Judith L. Bader
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Paula Murrain-Hill
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - John F. Koerner
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Andrew L. Garrett
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - David M. Weinstock
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
- Radiation Injury Treatment Network, National Marrow Donor Program, Minneapolis, MN
| | - Cullen Case
- Radiation Injury Treatment Network, National Marrow Donor Program, Minneapolis, MN
| | - Chad Hrdina
- Office of Policy and Planning, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Steven A. Adams
- Division of Strategic National Stockpile, Office of Public Health Preparedness and Response; Centers for Disease Control and Prevention, Atlanta, GA
| | - Robert C. Whitcomb
- Radiation Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Robert Shankman
- Office of Emergency Management, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Timothy Lant
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Bert W. Maidment
- Radiation/Nuclear Countermeasures Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Richard C. Hatchett
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| |
Collapse
|
29
|
Culley JM, Svendsen E. A review of the literature on the validity of mass casualty triage systems with a focus on chemical exposures. Am J Disaster Med 2014; 9:137-50. [PMID: 25068943 PMCID: PMC4187211 DOI: 10.5055/ajdm.2014.0150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Mass casualty incidents (MCIs) include natural (eg, earthquake) or human (eg, terrorism or technical) events. They produce an imbalance between medical needs and resources necessitating the use of triage strategies. Triage of casualties must be performed accurately and efficiently if providers are to do the greatest good for the greatest number. There is limited research on the validation of triage system efficacy in determining the priority of care for victims of MCI, particularly those involving chemicals. OBJECTIVE To review the literature on the validation of current triage systems to assign on-site treatment status codes to victims of mass casualties, particularly those involving chemicals, using actual patient outcomes. METHODS The focus of this article is a systematic review of the literature to describe the influences of MCIs, particularly those involving chemicals, on current triage systems related to the on-site assignment of treatment status codes to a victim and the validation of the assigned code using actual patient outcomes. RESULTS There is extensive literature published on triage systems used for MCI but only four articles used actual outcome data to validate mass casualty triage outcomes including three for chemical events. Currently, the amount and type of data collected are not consistent or standardized and definitions are not universal. CONCLUSIONS Current literature does not provide needed evidence on the validity of triage systems for MCI in particular those involving chemicals. Well designed studies are needed to validate the reliability, sensitivity, and specificity of triage systems used for MCI including those involving chemicals.
Collapse
Affiliation(s)
- Joan M Culley
- Assistant Professor, College of Nursing, University of South Carolina Columbia, Columbia, South Carolina
| | - Erik Svendsen
- Associate Professor, Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
30
|
Coleman CN, Hrdina C, Casagrande R, Cliffer KD, Mansoura MK, Nystrom S, Hatchett R, Caro JJ, Knebel AR, Wallace KS, Adams SA. User-Managed Inventory: An Approach to Forward-Deployment of Urgently Needed Medical Countermeasures for Mass-Casualty and Terrorism Incidents. Disaster Med Public Health Prep 2013; 6:408-14. [DOI: 10.1001/dmp.2012.46a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABSTRACTThe user-managed inventory (UMI) is an emerging idea for enhancing the current distribution and maintenance system for emergency medical countermeasures (MCMs). It increases current capabilities for the dispensing and distribution of MCMs and enhances local/regional preparedness and resilience. In the UMI, critical MCMs, especially those in routine medical use (“dual utility”) and those that must be administered soon after an incident before outside supplies can arrive, are stored at multiple medical facilities (including medical supply or distribution networks) across the United States. The medical facilities store a sufficient cache to meet part of the surge needs but not so much that the resources expire before they would be used in the normal course of business. In an emergency, these extra supplies can be used locally to treat casualties, including evacuees from incidents in other localities. This system, which is at the interface of local/regional and federal response, provides response capacity before the arrival of supplies from the Strategic National Stockpile (SNS) and thus enhances the local/regional medical responders' ability to provide life-saving MCMs that otherwise would be delayed. The UMI can be more cost-effective than stockpiling by avoiding costs due to drug expiration, disposal of expired stockpiled supplies, and repurchase for replacement.(Disaster Med Public Health Preparedness. 2012;6:408-414)
Collapse
|
31
|
Coleman CN, Knebel AR, Hick JL, Weinstock DM, Casagrande R, Caro JJ, DeRenzo EG, Dodgen D, Norwood AE, Sherman SE, Cliffer KD, McNally R, Bader JL, Murrain-Hill P. Scarce Resources for Nuclear Detonation: Project Overview and Challenges. Disaster Med Public Health Prep 2013; 5 Suppl 1:S13-9. [DOI: 10.1001/dmp.2011.15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
|
33
|
Coleman CN, Adams S, Adrianopoli C, Ansari A, Bader JL, Buddemeier B, Caro JJ, Casagrande R, Case C, Caspary K, Chang AS, Chang HF, Chao N, Cliffer KD, Confer D, Deitchman S, DeRenzo EG, Dobbs A, Dodgen D, Donnelly EH, Gorman S, Grace MB, Hatchett R, Hick JL, Hrdina C, Jones R, Kane E, Knebel A, Koerner JF, Laffan AM, Larson L, Livinski A, MacKinney J, Maidment BW, Manning R, Marinissen MJ, Martin C, Michael G, Miller CW, Murrain-Hill P, Nemhauser JB, Norwood AE, Nystrom S, Raheem M, Redlener I, Sheehan K, Simon SL, Taylor TP, Toner E, Wallace KS, Weinstock DM, Whitcomb RC, Wieder J, Wiley AL, Yeskey K. Medical Planning and Response for a Nuclear Detonation: A Practical Guide. Biosecur Bioterror 2012; 10:346-71. [DOI: 10.1089/bsp.2012.1025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Coleman CN, Lurie N. Emergency medical preparedness for radiological/nuclear incidents in the United States. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2012; 32:N27-N32. [PMID: 22395159 DOI: 10.1088/0952-4746/32/1/n27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Office of the Assistant Secretary for Preparedness and Response in the Department of Health and Human Services develops health and medical response plans for all hazards--natural and human caused. While a nuclear power plant (NPP) incident will take time to evolve, a terrorist incident will have 'no-notice' so that extensive preparation and planning are essential. For radiological/nuclear (rad/nuc) incidents we have developed and continue to refine detailed plans and tools for medical responders for a nuclear detonation and a radiological dispersal device, which also serve for any type of rad/nuc incident. The plans are based on the best available basic science with the goal of providing planners and responders with just-in-time information and tools. There is much in common across the range of hazards, so that the products developed for rad/nuc incidents have helped overall preparedness. A major consideration in the development of new diagnostics, medical treatment and countermeasures for radiation injury is that of 'dual utility' with potential for routine medical use for cancer care. Participation and collaboration among nations helping the Japanese response to the Fukushima earthquake, tsunami and NPP disaster demonstrated the benefit of preparation and ongoing worldwide cooperation among experts.
Collapse
Affiliation(s)
- C Norman Coleman
- Office of the Assistant Secretary for Preparedness and Response (ASPR), and National Cancer Institute (NCI), Department of Health and Human Service (DHHS), Washington, DC, USA.
| | | |
Collapse
|
35
|
Rojavin Y, Seamon MJ, Tripathi RS, Papadimos TJ, Galwankar S, Kman N, Cipolla J, Grossman MD, Marchigiani R, Stawicki SPA. Civilian nuclear incidents: An overview of historical, medical, and scientific aspects. J Emerg Trauma Shock 2011; 4:260-72. [PMID: 21769214 PMCID: PMC3132367 DOI: 10.4103/0974-2700.82219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/31/2010] [Indexed: 11/06/2022] Open
Abstract
Given the increasing number of operational nuclear reactors worldwide, combined with the continued use of radioactive materials in both healthcare and industry, the unlikely occurrence of a civilian nuclear incident poses a small but real danger. This article provides an overview of the most important historical, medical, and scientific aspects associated with the most notable nuclear incidents to date. We have discussed fundamental principles of radiation monitoring, triage considerations, and the short- and long-term management of radiation exposure victims. The provision and maintenance of adequate radiation safety among first responders and emergency personnel are emphasized. Finally, an outline is included of decontamination, therapeutic, and prophylactic considerations pertaining to exposure to various radioactive materials.
Collapse
Affiliation(s)
- Yuri Rojavin
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ramesh AC, Kumar S. Triage, monitoring, and treatment of mass casualty events involving chemical, biological, radiological, or nuclear agents. J Pharm Bioallied Sci 2011; 2:239-47. [PMID: 21829319 PMCID: PMC3148628 DOI: 10.4103/0975-7406.68506] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 07/04/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022] Open
Abstract
In a mass casualty situation due to chemical, biological, radiological, or nuclear (CBRN) event, triage is absolutely required for categorizing the casualties in accordance with medical care priorities. Dealing with a CBRN event always starts at the local level. Even before the detection and analysis of agents can be undertaken, zoning, triage, decontamination, and treatment should be initiated promptly. While applying the triage system, the available medical resources and maximal utilization of medical assets should be taken into consideration by experienced triage officers who are most familiar with the natural course of the injury presented and have detailed information on medical assets. There are several triage systems that can be applied to CBRN casualties. With no one standardized system globally or nationally available, it is important for deploying a triage and decontamination system which is easy to follow and flexible to the available medical resources, casualty number, and severity of injury.
Collapse
Affiliation(s)
- Aruna C Ramesh
- Ramaiah Medical College and Hospitals, MSR Nagar, MSRIT Post, Bangalore - 560 054, India
| | | |
Collapse
|
37
|
Adalja AA, Watson M, Wollner S, Toner E. A possible approach to large-scale laboratory testing for acute radiation sickness after a nuclear detonation. Biosecur Bioterror 2011; 9:345-50. [PMID: 21988186 DOI: 10.1089/bsp.2011.0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
After the detonation of an improvised nuclear device, several key actions will be necessary to save the greatest number of lives possible. Among these tasks, the identification of patients with impending acute radiation sickness is a critical problem that so far has lacked a clear solution in national planning. We present one possible solution: the formation of a public-private partnership to augment the capacity to identify those at risk for acute radiation sickness.
Collapse
Affiliation(s)
- Amesh A Adalja
- Center for Biosecurity of UPMC, Baltimore, Maryland 21202, USA.
| | | | | | | |
Collapse
|
38
|
Grace MB, Cliffer KD, Moyer BR, Coleman CN, Prasher JM, Hatchett R, Mercier J, Manning RG, Bader JL, Disbrow GL, Kovacs GR. The U.S. government's medical countermeasure portfolio management for nuclear and radiological emergencies: synergy from interagency cooperation. HEALTH PHYSICS 2011; 101:238-247. [PMID: 21799340 DOI: 10.1097/hp.0b013e3182135fba] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Following the attacks of 11 September 2001, emergency preparedness within the U.S. Department of Health and Human Services, as well as at the Department of Defense and other federal agencies, received higher visibility, new mandates and increased funding. Emergency deployment teams increased the frequency of drills to enable better response to the health consequences of mass-casualty incidents. Interagency coordination has also continued to increase to more efficiently and effectively leverage federal resources toward emergency medical preparedness for both civilian and military populations.
Collapse
Affiliation(s)
- Marcy B Grace
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, 330 Independence Avenue SW, Room 644G, Washington, DC 20201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Murrain-Hill P, Coleman CN, Hick JL, Redlener I, Weinstock DM, Koerner JF, Black D, Sanders M, Bader JL, Forsha J, Knebel AR. Medical response to a nuclear detonation: creating a playbook for state and local planners and responders. Disaster Med Public Health Prep 2011; 5 Suppl 1:S89-97. [PMID: 21402817 DOI: 10.1001/dmp.2011.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
For efficient and effective medical responses to mass casualty events, detailed advanced planning is required. For federal responders, this is an ongoing responsibility. The US Department of Health and Human Services (DHHS) prepares playbooks with formal, written plans that are reviewed, updated, and exercised regularly. Recognizing that state and local responders with fewer resources may be helped in creating their own event-specific response plans, subject matter experts from the range of sectors comprising the Scarce Resources for a Nuclear Detonation Project, provided for this first time a state and local planner's playbook template for responding to a nuclear detonation. The playbook elements are adapted from DHHS playbooks with appropriate modification for state and local planners. Individualization by venue is expected, reflecting specific assets, populations, geography, preferences, and expertise. This playbook template is designed to be a practical tool with sufficient background information and options for step-by-step individualized planning and response.
Collapse
Affiliation(s)
- Paula Murrain-Hill
- Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Knebel AR, Coleman CN, Cliffer KD, Murrain-Hill P, McNally R, Oancea V, Jacobs J, Buddemeier B, Hick JL, Weinstock DM, Hrdina CM, Taylor T, Matzo M, Bader JL, Livinski AA, Parker G, Yeskey K. Allocation of scarce resources after a nuclear detonation: setting the context. Disaster Med Public Health Prep 2011; 5 Suppl 1:S20-31. [PMID: 21402809 DOI: 10.1001/dmp.2011.25] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this article is to set the context for this special issue of Disaster Medicine and Public Health Preparedness on the allocation of scarce resources in an improvised nuclear device incident. A nuclear detonation occurs when a sufficient amount of fissile material is brought suddenly together to reach critical mass and cause an explosion. Although the chance of a nuclear detonation is thought to be small, the consequences are potentially catastrophic, so planning for an effective medical response is necessary, albeit complex. A substantial nuclear detonation will result in physical effects and a great number of casualties that will require an organized medical response to save lives. With this type of incident, the demand for resources to treat casualties will far exceed what is available. To meet the goal of providing medical care (including symptomatic/palliative care) with fairness as the underlying ethical principle, planning for allocation of scarce resources among all involved sectors needs to be integrated and practiced. With thoughtful and realistic planning, the medical response in the chaotic environment may be made more effective and efficient for both victims and medical responders.
Collapse
Affiliation(s)
- Ann R Knebel
- Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Romm H, Wilkins RC, Coleman CN, Lillis-Hearne PK, Pellmar TC, Livingston GK, Awa AA, Jenkins MS, Yoshida MA, Oestreicher U, Prasanna PGS. Biological Dosimetry by the Triage Dicentric Chromosome Assay: Potential Implications for Treatment of Acute Radiation Syndrome in Radiological Mass Casualties. Radiat Res 2011; 175:397-404. [DOI: 10.1667/rr2321.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Davids MS, Case C, Hornung R, Chao NJ, Chute JP, Coleman CN, Weisdorf D, Confer DL, Weinstock DM. Assessing Surge Capacity for Radiation Victims with Marrow Toxicity. Biol Blood Marrow Transplant 2010; 16:1436-41. [DOI: 10.1016/j.bbmt.2010.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 04/07/2010] [Indexed: 02/02/2023]
|