1
|
Andrade MÂ, Raposo A, Andrade A. Exploring the late maturation of an intrinsic episodic memory network: A resting-state fMRI study. Dev Cogn Neurosci 2024; 70:101453. [PMID: 39368283 PMCID: PMC11490684 DOI: 10.1016/j.dcn.2024.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
Previous research suggests that episodic memory relies on functional neural networks,which are present even in the absence of an explicit task. The regions that integrate.these networks and the developmental changes in intrinsic functional connectivity.remain elusive. In the present study, we outlined an intrinsic episodic memory network.(iEMN) based on a systematic selection of functional connectivity studies, and.inspected network differences in resting-state fMRI between adolescents (13-17 years.old) and adults (23-27 years old) from the publicly available NKI-Rockland Sample.Through a review of brain regions commonly associated with episodic memory.networks, we identified a potential iEMN composed by 14 bilateral ROIs, distributed.across temporal, frontal and parietal lobes. Within this network, we found an increase.in resting-state connectivity from adolescents to adults between the right temporal pole.and two regions in the right lateral prefrontal cortex. We argue that the coordination of.these brain regions, connecting areas of semantic processing and areas of controlled.retrieval, arises as an important feature towards the full maturation of the episodic.memory system. The findings add to evidence suggesting that adolescence is a key.period in memory development and highlights the role of intrinsic functional.connectivity in such development.
Collapse
Affiliation(s)
| | - Ana Raposo
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal
| | - Alexandre Andrade
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
2
|
Donders J, Ramos A. Correlates of performance on the Child and Adolescent Memory Profile (ChAMP) in a mixed pediatric sample. Child Neuropsychol 2024:1-12. [PMID: 38817122 DOI: 10.1080/09297049.2024.2361123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
This study aimed to determine some of the factors that influence performance on a comprehensive test of verbal and visual memory in children, the Child and Adolescent Memory Profile (ChAMP) in a mixed clinical sample (n = 178; 56% male, 67% White, median age 12 years). We used hierarchical linear regression analyses with ChAMP standard scores as the dependent variable, and parental education as well as Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V) factor index scores as the independent variables. WISC-V Processing Speed and (to a lesser extent) Working Memory were statistically significant predictors of most ChAMP Index scores. In addition, WISC-V Verbal Comprehension contributed to the model for ChAMP Verbal Memory, and WISC-V Visual Spatial to the model for ChAMP Visual Memory. In each case better performance on the WISC-V was predictive of higher scores on the ChAMP, with large effect sizes. WISC-V variables also mediated the positive effect of parental education on ChAMP scores. We conclude that clinicians should consider performance on measures of speed of processing, working memory, language and visual-spatial skills as potential influences on ChAMP results that may suggest a specific memory deficit.
Collapse
Affiliation(s)
- Jacobus Donders
- Department of Psychology, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI, USA
| | - Ashlee Ramos
- Department of Psychology, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI, USA
| |
Collapse
|
3
|
Alonso KW, Dahhan NZA, Riggs L, Tseng J, de Medeiros C, Scott M, Laughlin S, Bouffet E, Mabbott DJ. Network connectivity underlying episodic memory in children: Application of a pediatric brain tumor survivor injury model. Dev Sci 2024; 27:e13413. [PMID: 37218519 DOI: 10.1111/desc.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Episodic memory involves personal experiences paired with their context. The Medial Temporal, Posterior Medial, Anterior Temporal, and Medial Prefrontal networks have been found to support the hippocampus in episodic memory in adults. However, there lacks a model that captures how the structural and functional connections of these networks interact to support episodic memory processing in children. Using diffusion-weighted imaging, magnetoencephalography, and memory tests, we quantified differences in white matter microstructure, neural communication, and episodic memory performance, respectively, of healthy children (n = 23) and children with reduced memory performance. Pediatric brain tumor survivors (PBTS; n = 24) were used as a model, as they exhibit reduced episodic memory and perturbations in white matter and neural communication. We observed that PBTS, compared to healthy controls, showed significantly (p < 0.05) (1) disrupted white matter microstructure between these episodic memory networks through lower fractional anisotropy and higher mean and axial diffusivity, (2) perturbed theta band (4-7 Hz) oscillatory synchronization in these same networks through higher weighted phase lag indices (wPLI), and (3) lower episodic memory performance in the Transverse Patterning and Children's Memory Scale (CMS) tasks. Using partial-least squares path modeling, we found that brain tumor treatment predicted network white matter damage, which predicted inter-network theta hypersynchrony and lower verbal learning (directly) and lower verbal recall (indirectly via theta hypersynchrony). Novel to the literature, our findings suggest that white matter modulates episodic memory through effect on oscillatory synchronization within relevant brain networks. RESEARCH HIGHLIGHTS: Investigates the relationship between structural and functional connectivity of episodic memory networks in healthy children and pediatric brain tumor survivors Pediatric brain tumor survivors demonstrate disrupted episodic memory, white matter microstructure and theta oscillatory synchronization compared to healthy children Findings suggest white matter microstructure modulates episodic memory through effects on oscillatory synchronization within relevant episodic memory networks.
Collapse
Affiliation(s)
- Katie Wade Alonso
- The Hospital for Sick Children, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Lily Riggs
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Julie Tseng
- The Hospital for Sick Children, Toronto, Canada
| | | | - Ming Scott
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Donald J Mabbott
- The Hospital for Sick Children, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Nichols ES, Blumenthal A, Kuenzel E, Skinner JK, Duerden EG. Hippocampus long-axis specialization throughout development: A meta-analysis. Hum Brain Mapp 2023. [PMID: 37209288 DOI: 10.1002/hbm.26340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
The human adult hippocampus can be subdivided into the head, or anterior hippocampus and its body and tail, or posterior hippocampus, and a wealth of functional differences along the longitudinal axis have been reported. One line of literature emphasizes specialization for different aspects of cognition, whereas another emphasizes the unique role of the anterior hippocampus in emotional processing. While some research suggests that functional differences in memory between the anterior and posterior hippocampus appear early in development, it remains unclear whether this is also the case for functional differences in emotion processing. The goal of this meta-analysis was to determine whether the long-axis functional specialization observed in adults is present earlier in development. Using a quantitative meta-analysis, long-axis functional specialization was assessed using the data from 26 functional magnetic resonance imaging studies, which included 39 contrasts and 804 participants ranging in age from 4 to 21 years. Results indicated that emotion was more strongly localized to the anterior hippocampus, with memory being more strongly localized to the posterior hippocampus, demonstrating long-axis specialization with regard to memory and emotion in children similar to that seen in adults. An additional analysis of laterality indicated that while memory was left dominant, emotion was processed bilaterally.
Collapse
Affiliation(s)
- Emily S Nichols
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
| | - Anna Blumenthal
- Cervo Brain Research Centre, Université Laval, Quebec, Canada
| | | | | | - Emma G Duerden
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
- Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
5
|
Neuner I, Veselinović T, Ramkiran S, Rajkumar R, Schnellbaecher GJ, Shah NJ. 7T ultra-high-field neuroimaging for mental health: an emerging tool for precision psychiatry? Transl Psychiatry 2022; 12:36. [PMID: 35082273 PMCID: PMC8791951 DOI: 10.1038/s41398-022-01787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the huge symptom diversity and complexity of mental disorders, an individual approach is the most promising avenue for clinical transfer and the establishment of personalized psychiatry. However, due to technical limitations, knowledge about the neurobiological basis of mental illnesses has, to date, mainly been based on findings resulting from evaluations of average data from certain diagnostic groups. We postulate that this could change substantially through the use of the emerging ultra-high-field MRI (UHF-MRI) technology. The main advantages of UHF-MRI include high signal-to-noise ratio, resulting in higher spatial resolution and contrast and enabling individual examinations of single subjects. Thus, we used this technology to assess changes in the properties of resting-state networks over the course of therapy in a naturalistic study of two depressed patients. Significant changes in several network property measures were found in regions corresponding to prior knowledge from group-level studies. Moreover, relevant parameters were already significantly divergent in both patients at baseline. In summary, we demonstrate the feasibility of UHF-MRI for capturing individual neurobiological correlates of mental diseases. These could serve as a tool for therapy monitoring and pave the way for a truly individualized and predictive clinical approach in psychiatric care.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- JARA-BRAIN, Jülich/Aachen, Germany.
| | - Tanja Veselinović
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
6
|
Nayar K, Ventura LM, DeDios-Stern S, Oh A, Soble JR. The Impact of Learning and Memory on Performance Validity Tests in a Mixed Clinical Pediatric Population. Arch Clin Neuropsychol 2021; 37:50-62. [PMID: 34050354 DOI: 10.1093/arclin/acab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study examined the degree to which verbal and visuospatial memory abilities influence performance validity test (PVT) performance in a mixed clinical pediatric sample. METHOD Data from 252 consecutive clinical pediatric cases (Mage=11.23 years, SD=4.02; 61.9% male) seen for outpatient neuropsychological assessment were collected. Measures of learning and memory (e.g., The California Verbal Learning Test-Children's Version; Child and Adolescent Memory Profile [ChAMP]), performance validity (Test of Memory Malingering Trial 1 [TOMM T1]; Wechsler Intelligence Scale for Children-Fifth Edition [WISC-V] or Wechsler Adult Intelligence Scale-Fourth Edition Digit Span indices; ChAMP Overall Validity Index), and intellectual abilities (e.g., WISC-V) were included. RESULTS Learning/memory abilities were not significantly correlated with TOMM T1 and accounted for relatively little variance in overall TOMM T1 performance (i.e., ≤6%). Conversely, ChAMP Validity Index scores were significantly correlated with verbal and visual learning/memory abilities, and learning/memory accounted for significant variance in PVT performance (12%-26%). Verbal learning/memory performance accounted for 5%-16% of the variance across the Digit Span PVTs. No significant differences in TOMM T1 and Digit Span PVT scores emerged between verbal/visual learning/memory impairment groups. ChAMP validity scores were lower for the visual learning/memory impairment group relative to the nonimpaired group. CONCLUSIONS Findings highlight the utility of including PVTs as standard practice for pediatric populations, particularly when memory is a concern. Consistent with the adult literature, TOMM T1 outperformed other PVTs in its utility even among the diverse clinical sample with/without learning/memory impairment. In contrast, use of Digit Span indices appear to be best suited in the presence of visuospatial (but not verbal) learning/memory concerns. Finally, the ChAMP's embedded validity measure was most strongly impacted by learning/memory performance.
Collapse
Affiliation(s)
- Kritika Nayar
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lea M Ventura
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Pediatrics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Samantha DeDios-Stern
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
| | - Alison Oh
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jason R Soble
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Neurology, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Tsang DS, Kim L, Liu ZA, Janzen L, Khandwala M, Bouffet E, Laperriere N, Dama H, Keilty D, Craig T, Ramaswamy V, Hodgson DC, Mabbott D. Intellectual changes after radiation for children with brain tumors: which brain structures are most important? Neuro Oncol 2021; 23:487-497. [PMID: 33151327 DOI: 10.1093/neuonc/noaa217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The objective of this study was to evaluate the contribution of radiation dose to different intracranial structures on changes in intellectual function for children with brain tumors. METHODS We evaluated children with brain tumors treated in 2005-2017 who had longitudinal neuropsychological assessments and available photon dosimetric data (if radiation therapy [RT] given). Full Scale Intelligence Quotient (FSIQ) and index scores were evaluated (perceptual reasoning index [PRI], processing speed index [PSI], verbal comprehension index [VCI], and working memory index [WMI]). Multivariable linear mixed effects models were used to model endpoints, with age at RT and dose to different brain regions as fixed effects and patient-specific random intercepts. P-values (P*) were adjusted for multiple comparisons. RESULTS Sixty-nine patients were included, 56 of whom received RT. Median neuropsychological follow-up was 3.2 years. Right temporal lobe mean dose was strongly associated with decline in FSIQ (P* = 0.005); with each gray increase in mean dose, there was a decrease of 0.052 FSIQ points per year. Dose to 50% (D50) of the supratentorial brain was associated with decline in PSI (P* = 0.006) and WMI (P* = 0.001). Right and left hippocampus D50 were individually strongly associated with declines in VCI (P* = 0.009 for each). Presence of a ventriculoperitoneal shunt decreased FSIQ by 10 points. CONCLUSIONS We reported associations between dosimetry to specific brain regions and intellectual outcomes, with suggested avoidance structures during RT planning. These models can help clinicians anticipate changes in neurocognition post-RT and guide selection of an optimal RT plan.
Collapse
Affiliation(s)
- Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laurence Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Janzen
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Khandwala
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Normand Laperriere
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hitesh Dama
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dana Keilty
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tim Craig
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David C Hodgson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald Mabbott
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Fernández de Gamarra-Oca L, Zubiaurre-Elorza L, Junqué C, Solana E, Soria-Pastor S, Vázquez É, Delgado I, Macaya A, Ojeda N, Poca MA. Reduced hippocampal subfield volumes and memory performance in preterm children with and without germinal matrix-intraventricular hemorrhage. Sci Rep 2021; 11:2420. [PMID: 33510243 PMCID: PMC7844245 DOI: 10.1038/s41598-021-81802-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Preterm newborns with germinal matrix-intraventricular hemorrhage (GM-IVH) are at a higher risk of evidencing neurodevelopmental alterations. Present study aimed to explore the long-term effects that GM-IVH have on hippocampal subfields, and their correlates with memory. The sample consisted of 58 participants, including 36 preterm-born (16 with GM-IVH and 20 without neonatal brain injury), and 22 full-term children aged between 6 and 15 years old. All participants underwent a cognitive assessment and magnetic resonance imaging study. GM-IVH children evidenced lower scores in Full Intelligence Quotient and memory measures compared to their low-risk preterm and full-term peers. High-risk preterm children with GM-IVH evidenced significantly lower total hippocampal volumes bilaterally and hippocampal subfield volumes compared to both low-risk preterm and full-term groups. Finally, significant positive correlations between memory and hippocampal subfield volumes were only found in preterm participants together; memory and the right CA-field correlation remained significant after Bonferroni correction was applied (p = .002). In conclusion, memory alterations and both global and regional volumetric reductions in the hippocampus were found to be specifically related to a preterm sample with GM-IVH. Nevertheless, results also suggest that prematurity per se has a long-lasting impact on the association between the right CA-field volume and memory during childhood.
Collapse
Affiliation(s)
- Lexuri Fernández de Gamarra-Oca
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain.
| | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Hospital Clinic, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Elisabeth Solana
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataró, Mataró, Catalonia, Spain
| | - Élida Vázquez
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Ignacio Delgado
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Catalonia, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Maria A Poca
- Department of Neurosurgery and Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Kreidenhuber R, De Tiège X, Rampp S. Presurgical Functional Cortical Mapping Using Electromagnetic Source Imaging. Front Neurol 2019; 10:628. [PMID: 31249552 PMCID: PMC6584755 DOI: 10.3389/fneur.2019.00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Preoperative localization of functionally eloquent cortex (functional cortical mapping) is common clinical practice in order to avoid or reduce postoperative morbidity. This review aims at providing a general overview of magnetoencephalography (MEG) and high-density electroencephalography (hdEEG) based methods and their clinical role as compared to common alternatives for functional cortical mapping of (1) verbal language function, (2) sensorimotor cortex, (3) memory, (4) visual, and (5) auditory cortex. We highlight strengths, weaknesses and limitations of these functional cortical mapping modalities based on findings in the recent literature. We also compare their performance relative to other non-invasive functional cortical mapping methods, such as functional Magnetic Resonance Imaging (fMRI), Transcranial Magnetic Stimulation (TMS), and to invasive methods like the intracarotid Amobarbital Test (WADA-Test) or intracranial investigations.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany.,Department of Neurosurgery, University Hospital Halle, Halle, Germany
| |
Collapse
|
10
|
Pu Y, Cheyne DO, Cornwell BR, Johnson BW. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review. Front Neurosci 2018; 12:273. [PMID: 29755314 PMCID: PMC5932174 DOI: 10.3389/fnins.2018.00273] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.
Collapse
Affiliation(s)
- Yi Pu
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Brian R Cornwell
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Blake W Johnson
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Fatima Z, Kovacevic N, Misic B, McIntosh AR. Dynamic functional connectivity shapes individual differences in associative learning. Hum Brain Mapp 2018; 37:3911-3928. [PMID: 27353970 DOI: 10.1002/hbm.23285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023] Open
Abstract
Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zainab Fatima
- Baycrest Centre, Rotman Research Institute, Toronto, Canada.
| | | | - Bratislav Misic
- Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Anthony Randal McIntosh
- Baycrest Centre, Rotman Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Alvarado MC, Malkova L, Bachevalier J. Development of relational memory processes in monkeys. Dev Cogn Neurosci 2016; 22:27-35. [PMID: 27833046 DOI: 10.1016/j.dcn.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022] Open
Abstract
The present study tested whether relational memory processes, as measured by the transverse patterning problem, are late-developing in nonhuman primates as they are in humans. Eighteen macaques ranging from 3 to 36 months of age, were trained to solve a set of visual discriminations that formed the transverse patterning problem. Subjects were trained at 3, 4-6, 12, 15-24 or 36 months of age to solve three discriminations as follows: 1) A+ vs. B-; 2) B+ vs. C-; 3) C+ vs. A. When trained concurrently, subjects must adopt a relational strategy to perform accurately on all three problems. All 36 month old monkeys reached the criterion of 90% correct, but only one 24-month-old and one 15-month-old did, initially. Three-month-old infants performed at chance on all problems. Six and 12-month-olds performed at 75-80% correct but used a 'linear' or elemental solution (e.g. A>B>C), which only yields correct performance on two problems. Retraining the younger subjects at 12, 24 or 36 months yielded a quantitative improvement on speed of learning, and a qualitative improvement in 24-36 month old monkeys for learning strategy. The results suggest that nonspatial relational memory develops late in macaques (as in humans), maturing between 15 and 24 months of age.
Collapse
Affiliation(s)
- Maria C Alvarado
- Yerkes National Primate Research Center, Emory University, United States.
| | - Ludise Malkova
- Georgetown University, United States; National Institute of Mental Health, United States
| | | |
Collapse
|
13
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Melo-Sánchez G, Rodríguez-Díaz J, Torres-Jardón R, Styner M, Mukherjee PS, Lin W, Jewells V. A Critical Proton MR Spectroscopy Marker of Alzheimer's Disease Early Neurodegenerative Change: Low Hippocampal NAA/Cr Ratio Impacts APOE ɛ4 Mexico City Children and Their Parents. J Alzheimers Dis 2016; 48:1065-75. [PMID: 26402110 DOI: 10.3233/jad-150415] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Severe air pollution exposures produce systemic, respiratory, myocardial, and brain inflammation and Alzheimer's disease (AD) hallmarks in clinically healthy children. We tested whether hippocampal metabolite ratios are associated with contrasting levels of air pollution, APOE, and body mass index (BMI) in paired healthy children and one parent sharing the same APOE alleles. We used 1H-MRS to interrogate bilateral hippocampal single-voxel in 57 children (12.45 ± 3.4 years) and their 48 parents (37.5 ± 6.78 years) from a low pollution city versus Mexico City (MC). NAA/Cr, Cho/Cr, and mI/Cr metabolite ratios were analyzed. The right hippocampus NAA/Cr ratio was significantly different between cohorts (p = 0.007). The NAA/Cr ratio in right hippocampus in controls versus APOE ɛ4 MC children and in left hippocampus in MC APOE ɛ4 parents versus their children was significantly different after adjusting for age, gender, and BMI (p = 0.027 and 0.01, respectively). The NAA/Cr ratio is considered reflective of neuronal density/functional integrity/loss of synapses/higher pTau burden, thus a significant decrease in hippocampal NAA/Cr ratios may constitute a spectral marker of early neurodegeneration in young urbanites. Decreases in NAA/Cr correlate well with cognitive function, behavioral symptoms, and dementia severity; thus, since the progression of AD starts decades before clinical diagnosis, our findings support the hypothesis that under chronic exposures to fine particulate matter and ozone above the standards, neurodegenerative processes start in childhood and APOE ɛ4 carriers are at higher risk. Gene and environmental factors are critical in the development of AD and the identification and neuroprotection of young urbanites at high risk must become a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT, USA.,Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Saltillo, Saltillo, Coahuila, México
| | | | - Gastón Melo-Sánchez
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Saltillo, Saltillo, Coahuila, México
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martin Styner
- Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | | - Weili Lin
- Neuroradiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Valerie Jewells
- Neuroradiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Saury JM, Emanuelson I. Neuropsychological Assessment of Hippocampal Integrity. APPLIED NEUROPSYCHOLOGY-ADULT 2016; 24:140-151. [PMID: 27045585 DOI: 10.1080/23279095.2015.1113536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Finding methods to describe subcortical processes assisting cognition is an important concern for clinical neuropsychological practice. In this study, we reviewed the literature concerning the relationship between a neuropsychological instrument and the underlying neural substructure. We examined evidence indicating that one of the oldest neuropsychological tests still in use, the Rey Auditory Verbal Learning Test (RAVLT), includes reliable indicators of hippocampal integrity. We reviewed studies investigating the neural structures underlying seven tasks generated by the RAVLT, from the perspective of whether the performance of these tasks is dependent on the hippocampus. We found support for our hypothesis in five cases: learning capacity, proactive interference, immediate recall, delayed recall, and delayed recognition. No support for our hypothesis was found with regard to short-term memory and retroactive interference. The RAVLT appears to be a reliable tool for assessing the integrity of the hippocampus and for the early detection of dysfunction. There is a need for such assessments, due to the crucial role of the hippocampus in cognition, for instance, in terms of predicting future outcomes.
Collapse
Affiliation(s)
- Jean-Michel Saury
- a Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet , Danderyd University Hospital , Stockholm , Sweden
| | - Ingrid Emanuelson
- b Institution for Clinical Sciences, Department of Pediatrics , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
15
|
[MEG]PLS: A pipeline for MEG data analysis and partial least squares statistics. Neuroimage 2016; 124:181-193. [DOI: 10.1016/j.neuroimage.2015.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
|
16
|
|
17
|
Cosinschi A, Coskun M, Negretti L, Matzinger O, Jeanneret-Sozzi W, Vallet V, Moeckli R, Mirimanoff RO, Schiappacasse L, Ozsahin M, Bourhis J. A metastatic relapse associated with hippocampal dose sparing after whole-brain radiotherapy. Acta Oncol 2015; 54:1824-6. [PMID: 25279956 DOI: 10.3109/0284186x.2014.962664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Adrien Cosinschi
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Mehtap Coskun
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Laura Negretti
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Oscar Matzinger
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Wendy Jeanneret-Sozzi
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Véronique Vallet
- b Institute of Radiation Physics, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Raphaël Moeckli
- b Institute of Radiation Physics, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - René-Olivier Mirimanoff
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Luis Schiappacasse
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Mahmut Ozsahin
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| | - Jean Bourhis
- a Department of Radiation Oncology , Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
18
|
Garrett A, Gupta S, Reiss AL, Waring J, Sudheimer K, Anker L, Sosa N, Hallmayer JF, O'Hara R. Impact of 5-HTTLPR on hippocampal subregional activation in older adults. Transl Psychiatry 2015; 5:e639. [PMID: 26393485 PMCID: PMC5068801 DOI: 10.1038/tp.2015.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022] Open
Abstract
Studies have shown that a functional polymorphism of the serotonin transporter gene (5-HTTLPR) impacts performance on memory-related tasks and the hippocampal structures that subserve these tasks. The short (s) allele of 5-HTTLPR has been linked to greater susceptibility for impaired memory and smaller hippocampal volume compared to the long allele (l). However, previous studies have not examined the associations between 5-HTTLPR allele and activation in subregions of the hippocampus. In this study, we used functional magnetic resonance imaging (fMRI) to measure activation in hippocampal and temporal lobe subregions in 36 elderly non-clinical participants performing a face-name encoding and recognition task. Although there were no significant differences in task performance between s allele carriers and l homozygotes, right CA1 and right parahippocampal activation during recognition errors was significantly greater in individuals bearing the s allele. In an exploratory analysis, we determined that these effects were more pronounced in s allele carriers with the apolipoprotein ɛ4 allele. Our results suggest that older individuals with the s allele inefficiently allocate neural resources while making errors in recognizing face-name associations, which could negatively impact memory performance during more challenging tasks.
Collapse
Affiliation(s)
- A Garrett
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - S Gupta
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - A L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - J Waring
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra Pacific Mental Illness, Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - K Sudheimer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra Pacific Mental Illness, Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - L Anker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra Pacific Mental Illness, Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - N Sosa
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - J F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra Pacific Mental Illness, Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - R O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra Pacific Mental Illness, Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
19
|
D'Angelo MC, Kacollja A, Rabin JS, Rosenbaum RS, Ryan JD. Unitization supports lasting performance and generalization on a relational memory task: Evidence from a previously undocumented developmental amnesic case. Neuropsychologia 2015; 77:185-200. [PMID: 26232743 DOI: 10.1016/j.neuropsychologia.2015.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/26/2015] [Accepted: 07/26/2015] [Indexed: 11/17/2022]
Abstract
Recently, the amnesic case D.A. was shown to circumvent his relational memory impairments, as observed in the transverse patterning (TP) task, using a self-generated unitization strategy, and such performance benefits were maintained over extended delays (Ryan et al., 2013). "Unitization" encourages fusing of distinct items, through an action, into a single unit from which the relations among the items may then be derived. Here, we provide the first documentation of the developmental amnesic case, N.C., who presents with relatively circumscribed lesions to the extended hippocampal system, and with impaired episodic memory. Despite impairments on standard versions of TP, N.C. benefited from unitization, showed evidence of transfer to novel stimuli, and maintained his performance over extended delays. These findings suggest that self-generation is not a requirement for the successful implementation of unitization, and further provides the first evidence of rapid transfer and long-lasting success of a learning strategy in a human amnesic case.
Collapse
Affiliation(s)
- Maria C D'Angelo
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1.
| | - Arber Kacollja
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1
| | - Jennifer S Rabin
- York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1; York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Jennifer D Ryan
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1; University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
20
|
Tsoi SC, Aiya UV, Wasner KD, Phan ML, Pytte CL, Vicario DS. Hemispheric asymmetry in new neurons in adulthood is associated with vocal learning and auditory memory. PLoS One 2014; 9:e108929. [PMID: 25251077 PMCID: PMC4177556 DOI: 10.1371/journal.pone.0108929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- Biology Department, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Utsav V. Aiya
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kobi D. Wasner
- Psychology Department, Queens College, City University of New York, New York, New York, United States of America
| | - Mimi L. Phan
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- Biology Department, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Psychology Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|