1
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
2
|
Galaraga K, Rogaeva A, Biniam N, Daigle M, Albert PR. CaMKIV-Mediated Phosphorylation Inactivates Freud-1/CC2D1A Repression for Calcium-Dependent 5-HT1A Receptor Gene Induction. Int J Mol Sci 2024; 25:6194. [PMID: 38892382 PMCID: PMC11172825 DOI: 10.3390/ijms25116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Calcium calmodulin-dependent protein kinase (CaMK) mediates calcium-induced neural gene activation. CaMK also inhibits the non-syndromic intellectual disability gene, Freud-1/CC2D1A, a transcriptional repressor of human serotonin-1A (5-HT1A) and dopamine-D2 receptor genes. The altered expression of these Freud-1-regulated genes is implicated in mental illnesses such as major depression and schizophrenia. We hypothesized that Freud-1 is blocked by CaMK-induced phosphorylation. The incubation of purified Freud-1 with either CaMKIIα or CaMKIV increased Freud-1 phosphorylation that was partly prevented in Freud-1-Ser644Ala and Freud-1-Thr780Ala CaMK site mutants. In human SK-N-SH neuroblastoma cells, active CaMKIV induced the serine and threonine phosphorylation of Freud-1, and specifically increased Freud-1-Thr780 phosphorylation in transfected HEK-293 cells. The activation of purified CaMKIIα or CaMKIV reduced Freud-1 binding to its DNA element on the 5-HT1A and dopamine-D2 receptor genes. In SK-N-SH cells, active CaMKIV but not CaMKIIα blocked the Freud-1 repressor activity, while Freud-1 Ser644Ala, Thr780Ala or dual mutants were resistant to inhibition by activated CaMKIV or calcium mobilization. These results indicate that the Freud-1 repressor activity is blocked by CaMKIV-induced phosphorylation at Thr780, resulting in the up-regulation of the target genes, such as the 5-HT1A receptor gene. The CaMKIV-mediated inhibition of Freud-1 provides a novel de-repression mechanism to induce 5-HT1A receptor expression for the regulation of cognitive development, behavior and antidepressant response.
Collapse
Affiliation(s)
| | | | | | | | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada; (K.G.); (A.R.); (N.B.); (M.D.)
| |
Collapse
|
3
|
Zhong K, An X, Kong Y. The effectiveness of five-element music therapy for post-stroke depression: A systematic review and meta-analysis. Heliyon 2024; 10:e26603. [PMID: 38444465 PMCID: PMC10912230 DOI: 10.1016/j.heliyon.2024.e26603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Five-element music therapy is widely utilized as a complementary approach in stroke rehabilitation, particularly for addressing post-stroke depression (PSD). This study systematically evaluates the clinical impact of five-element music therapy on individuals experiencing PSD. Methods A comprehensive search of nine electronic databases, encompassing published and unpublished gray literature up to February 15, 2022, was conducted. Two investigators independently reviewed and extracted data, evaluating bias risk according to predefined criteria. Meta-analysis was performed using RevMan 5.4 software. Results Inclusive of 20 studies involving 1561 individuals with PSD, the meta-analysis revealed a significant difference in favor of five-element music therapy for relieving depression (standardized mean difference [SMD] = -1.07, 95% confidence interval [CI]: -1.34 to -0.81, P < 0.00001), improving daily living abilities (SMD = 2.49, 95% CI 1.00 to 3.98, P < 0.00001), and elevating serum 5-hydroxytryptamine(5-HT) levels (SMD = 0.87, 95% CI 0.56 to 1.17, P < 0.00001). Conclusion Five-element music therapy demonstrated efficacy in improving depressive symptoms, daily living skills, and serum 5-HT levels in individuals experiencing PSD.The review was registered on International Prospective Register of Systematic Reviews (registration number CRD 42022332282).
Collapse
Affiliation(s)
- Kelong Zhong
- Chengdu University of Traditional Chinese Medicine, China
| | - Xuemei An
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Yun Kong
- Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
4
|
Rashvand Z, Najmabadi H, Kahrizi K, Mozhdehipanah H, Moradi M, Estaki Z, Taherkhani K, Nikzat N, Najafipour R, Omrani MD. Identification of a Novel Variant in CC2D1A Gene Linked to Autosomal Recessive Intellectual Disability 3 in an Iranian Family and Investigating the Structure and Pleiotropic Effects of this Gene. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:25-41. [PMID: 38375126 PMCID: PMC10874518 DOI: 10.22037/ijcn.v18i1.42188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/10/2023] [Indexed: 02/21/2024]
Abstract
Objectives Intellectual disability (ID) represents a significant health challenge due to its diverse and intricate nature. A multitude of genes play a role in brain development and function, with defects in these genes potentially leading to ID. Considering that many of these genes have yet to be identified, and those identified have only been found in a small number of patients, no complete description of the phenotype created by these genes is available. CC2D1A is one of the genes whose loss-of-function mutation leads to a rare form of non-syndromic ID-3(OMIM*610055), and four pathogenic variants have been reported in this gene so far. Materials & Methods n the current study, two affected females were included with an initial diagnosis of ID who were from an Iranian family with consanguineous marriage. Whole-exome sequencing was used to identify the probable genetic defects. The Genotypic and phenotypic characteristics of the patients were compared with a mutation in the CC2D1A gene, and then the structure of the gene and its reported variants were investigated. Results The patients carried a novel homozygous splicing variant (NM_017721, c.1641+1G>A) in intron 14, which is pathogenic according to the ACMG guideline. Loss-of-function mutations in CC2D1A have severe phenotypic consequences such as ID, autism spectrum disorder (ASD), and seizures. However, missense mutations lead to ASD with or without ID, and in some patients, they cause ciliopathy. Conclusion This study reports the fifth novel, probably pathogenic variant in the CC2D1A gene. Comparing the clinical and molecular genetic features of the patients with loss-of-function mutation helped to describe the phenotype caused by this gene more precisely. Investigating the CC2D1A gene's mutations and structure revealed that it performs multiple functions. The DM14 domain appears more pivotal in triggering severe clinical symptoms, including ID, than the C2 domain.
Collapse
Affiliation(s)
- Zahra Rashvand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Mozhdehipanah
- Depatment of Neurology Boali Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Moradi
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zohreh Estaki
- Department of Pediatric Dentistry, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Khadijeh Taherkhani
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nooshin Nikzat
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Miyagishi H, Tsuji M, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Kosuge Y, Ishige K, Takeda H. Possible role of transcriptional regulation of 5-HT 1A receptor in the midbrain on unadaptation to stress in mice. Brain Res 2022; 1783:147859. [PMID: 35245487 DOI: 10.1016/j.brainres.2022.147859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
The ability to adapt to stress is an essential defensive function of a living body, and disturbance of this ability in the brain may contribute to the development of affective illness. Previously, we reported that mice exposed to unadaptable restraint stress show emotional abnormality. Moreover, this emotional abnormality was alleviated by chronic treatment with flesinoxan, a serotonin (5-HT)1A receptor agonist. 5-HT1A receptor expression is regulated by several transcription factors such as nuclear deformed epidermal autoregulatory factor (NUDR/Deaf-1) and five prime repressors under dual repression binding protein 1 (Freud-1). The present study was designed to investigate the expression levels of 5-HT1A receptor and its transcription factors in the midbrain and hippocampus of stress-adaptive and -unadaptive mice. Mice were exposed to 14 days of repeated adaptable (1 h/day) or repeated unadaptable (4 h/day) restraint stress, or were left in their home cage (non-stressed groups). In a western blot analysis, a significant increase in the expression levels of 5HT1A receptor protein were observed in the hippocampal membrane fraction in stress-adaptive mice. In contrast, the expression levels of 5-HT1A receptor protein in stress-unadaptive mice were significantly increased in both cytoplasmic and membrane fraction of the midbrain. Furthermore, real-time PCR analysis revealed that, in the midbrain of stress-unadaptive mice, the expression levels of 5-HT1A receptor mRNA and Freud-1 or NUDR mRNA were significantly increased and decreased, respectively. These results suggest that increased expression of 5-HT1A receptor due to decrease in the expression of Freud-1 and NUDR in the midbrain may play a pivotal role in the emotional abnormality of stress-unadaptive mice.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| |
Collapse
|
6
|
Henley JM, Seager R, Nakamura Y, Talandyte K, Nair J, Wilkinson KA. SUMOylation of synaptic and synapse-associated proteins: An update. J Neurochem 2021; 156:145-161. [PMID: 32538470 PMCID: PMC8218484 DOI: 10.1111/jnc.15103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.
Collapse
Affiliation(s)
- Jeremy M. Henley
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Richard Seager
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Yasuko Nakamura
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Karolina Talandyte
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Jithin Nair
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Kevin A. Wilkinson
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| |
Collapse
|
7
|
Martin V, Mathieu L, Diaz J, Salman H, Alterio J, Chevarin C, Lanfumey L, Hamon M, Austin MC, Darmon M, Stockmeier CA, Masson J. Key role of the 5-HT1A receptor addressing protein Yif1B in serotonin neurotransmission and SSRI treatment. J Psychiatry Neurosci 2020; 45:344-355. [PMID: 32459080 PMCID: PMC7850149 DOI: 10.1503/jpn.190134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Altered function of serotonin receptor 1A (5-HT1AR) has been consistently implicated in anxiety, major depressive disorder and resistance to antidepressants. Mechanisms by which the function of 5-HT1AR (expressed as an autoreceptor in serotonergic raphe neurons and as a heteroreceptor in serotonin [5-HT] projection areas) is altered include regulation of its expression, but 5-HT1AR trafficking may also be involved. METHODS We investigated the consequences of the lack of Yif1B (the 5-HT1AR trafficking protein) on 5-HT neurotransmission in mice, and whether Yif1B expression might be affected under conditions known to alter 5-HT neurotransmission, such as anxious or depressive states or following treatment with fluoxetine (a selective serotonin reuptake inhibitor) in humans, monkeys and mice. RESULTS Compared with wild-type mice, Yif1B-knockout mice showed a significant decrease in the forebrain density of 5-HT projection fibres and a hypofunctionality of 5-HT1A autoreceptors expressed on raphe 5-HT neurons. In addition, social interaction was less in Yif1B-knockout mice, which did not respond to the antidepressant-like effect of acute fluoxetine injection. In wild-type mice, social defeat was associated with downregulated Yif1B mRNA in the prefrontal cortex, and chronic fluoxetine treatment increased Yif1B expression. The expression of Yif1B was also downregulated in the postmortem prefrontal cortex of people with major depressive disorder and upregulated after chronic treatment with a selective serotonin reuptake inhibitor in monkeys. LIMITATIONS We found sex differences in Yif1B expression in humans and monkeys, but not in mice under the tested conditions. CONCLUSION These data support the concept that Yif1B plays a critical role in 5-HT1AR functioning and brain 5-HT homeostasis. The opposite changes in its expression observed in anxious or depressive states and after therapeutic fluoxetine treatment suggest that Yif1B might be involved in vulnerability to anxiety and depression, and fluoxetine efficacy.
Collapse
Affiliation(s)
- Vincent Martin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Lionel Mathieu
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jorge Diaz
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Haysam Salman
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jeanine Alterio
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Caroline Chevarin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Laurence Lanfumey
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michel Hamon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Mark C Austin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michèle Darmon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Craig A Stockmeier
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Justine Masson
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| |
Collapse
|
8
|
Tian L, Pu J, Liu Y, Gui S, Zhong X, Song X, Xu S, Zhang H, Wang H, Zhou W, Xie P. Metabolomic analysis of animal models of depression. Metab Brain Dis 2020; 35:979-990. [PMID: 32440806 DOI: 10.1007/s11011-020-00574-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our understanding of the molecular mechanisms of depression remains largely unclear. Previous studies have shown that the prefrontal cortex (PFC) is among most important brain regions that exhibits metabolic changes in depression. A comprehensive analysis based on candidate metabolites in the PFC of animal models of depression will provide valuable information for understanding the pathogenic mechanism underlying depression. METHODS Candidate metabolites that are potentially involved in the metabolic changes of the PFC in animal models of depression were retrieved from the Metabolite Network of Depression Database. The significantly altered metabolic pathways were revealed by canonical pathway analysis, and the relationships among altered pathways were explored by pathway crosstalk analysis. Additionally, drug-associated pathways were investigated using drug-associated metabolite set enrichment analysis. The interrelationships among metabolites, proteins, and other molecules were analyzed by molecular network analysis. RESULTS Among 88 candidate metabolites, 87 altered canonical pathways were identified, and the top five ranked pathways were tRNA charging, the endocannabinoid neuronal synapse pathway, (S)-reticuline biosynthesis II, catecholamine biosynthesis, and GABA receptor signaling. Pathway crosstalk analysis revealed that these altered pathways were grouped into three interlinked modules involved in amino acid metabolism, nervous system signaling/neurotransmitters, and nucleotide metabolism. In the drug-associated metabolite set enrichment analysis, the main enriched drug pathways were opioid-related and antibiotic-related action pathways. Furthermore, the most significantly altered molecular network was involved in amino acid metabolism, molecular transport, and small molecule biochemistry. CONCLUSIONS This study provides important clues for the metabolic characteristics of the PFC in depression.
Collapse
Affiliation(s)
- Lu Tian
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaogang Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xuemian Song
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Shaohua Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Hanpin Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Peng Xie
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
9
|
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019; 161:34-45. [DOI: 10.1016/j.biochi.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
|
10
|
Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, Oaks AW, Manzini MC. Male-Specific cAMP Signaling in the Hippocampus Controls Spatial Memory Deficits in a Mouse Model of Autism and Intellectual Disability. Biol Psychiatry 2019; 85:760-768. [PMID: 30732858 PMCID: PMC6474812 DOI: 10.1016/j.biopsych.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Zamarbide
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adele Mossa
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pablo Muñoz-Llancao
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Molly K Wilkinson
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Heather L Pond
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adam W Oaks
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
11
|
Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation. J Neurosci 2019; 39:4959-4975. [PMID: 30992372 DOI: 10.1523/jneurosci.2395-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 11/21/2022] Open
Abstract
Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.
Collapse
|
12
|
Wu X, Ding M, Liu Y, Xia X, Xu FL, Yao J, Wang BJ. hsa-miR-3177-5p and hsa-miR-3178 Inhibit 5-HT1A Expression by Binding the 3'-UTR Region in vitro. Front Mol Neurosci 2019; 12:13. [PMID: 30766477 PMCID: PMC6365703 DOI: 10.3389/fnmol.2019.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal expression of the 5-HT1A receptor, which is encoded by the HTR1A gene, leads to susceptibilities to neuropsychiatric disorders such as depression, anxiety, and schizophrenia. miRNAs regulate gene expression by recognizing the 3'-UTR region of mRNA. This study evaluated the miRNAs that might identify and subsequently determine the regulatory mechanism of HTR1A gene. Using the HEK-293, U87, SK-N-SH and SH-SY5Y cell lines, we determined the functional sequence of the 3'-UTR region of the HTR1A gene and predicted miRNA binding. Dual luciferase reporter assay and Western Blot were used to confirm the effect of miRNA mimics and inhibitors on endogenous 5-HT1A receptors. In all cell lines, gene expression of the -17 bp to +443 bp fragment containing the complete sequence of the 3'-UTR region was significantly decreased, although mRNA quantification was not different. The +375 bp to +443 bp sequence, which exhibited the most significant change in relative chemiluminescence intensity, was recognized by hsa-miR-3177-5p and hsa-miR-3178. In HEK-293 and U87 cells, hsa-miR-3177-5p significantly inhibited the 5-HT1A receptor expression, while a hsa-miR-3178 inhibitor up-regulated HTR1A gene expression in SK-N-SH and SH-SY5Y cells. By constructing the pmirGLO-vector with the mutated HTR1A gene, we further confirmed that hsa-miR-3177-5p recognized the HTR1A gene tgtacaca at +377 bp to +384 bp, and the +392 bp to +399 bp fragment cgcgccca was identified by hsa-miR-3178. hsa-miR-3177-5p and hsa-miR-3178 had significant inhibitory effects on expression of the HTR1A gene and 5-HT1A receptor and may directly participate in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yi Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, Johnson MW, Lin J, Gonzalez DM, Boehler JF, Wu GK, Klann E, Walsh CA, Manzini MC. Cc2d1a Loss of Function Disrupts Functional and Morphological Development in Forebrain Neurons Leading to Cognitive and Social Deficits. Cereb Cortex 2018; 27:1670-1685. [PMID: 26826102 DOI: 10.1093/cercor/bhw009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loss-of-function (LOF) mutations in CC2D1A cause a spectrum of neurodevelopmental disorders, including intellectual disability, autism spectrum disorder, and seizures, identifying a critical role for this gene in cognitive and social development. CC2D1A regulates intracellular signaling processes that are critical for neuronal function, but previous attempts to model the human LOF phenotypes have been prevented by perinatal lethality in Cc2d1a-deficient mice. To overcome this challenge, we generated a floxed Cc2d1a allele for conditional removal of Cc2d1a in the brain using Cre recombinase. While removal of Cc2d1a in neuronal progenitors using Cre expressed from the Nestin promoter still causes death at birth, conditional postnatal removal of Cc2d1a in the forebrain via calcium/calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter-driven Cre generates animals that are viable and fertile with grossly normal anatomy. Analysis of neuronal morphology identified abnormal cortical dendrite organization and a reduction in dendritic spine density. These animals display deficits in neuronal plasticity and in spatial learning and memory that are accompanied by reduced sociability, hyperactivity, anxiety, and excessive grooming. Cc2d1a conditional knockout mice therefore recapitulate features of both cognitive and social impairment caused by human CC2D1A mutation, and represent a model that could provide much needed insights into the developmental mechanisms underlying nonsyndromic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Adam W Oaks
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Marta Zamarbide
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Dimira E Tambunan
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefania Di Costanzo
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Heather L Pond
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Mark W Johnson
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jeff Lin
- Department of Psychology, The George Washington University, Washington, DC 20052, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica F Boehler
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Guangying K Wu
- Department of Psychology, The George Washington University, Washington, DC 20052, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - M Chiara Manzini
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
14
|
Schroeder M, Drori Y, Ben-Efraim YJ, Chen A. Hypothalamic miR-219 regulates individual metabolic differences in response to diet-induced weight cycling. Mol Metab 2018; 9:176-186. [PMID: 29398616 PMCID: PMC5870106 DOI: 10.1016/j.molmet.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/23/2022] Open
Abstract
Consumption of a low calorie diet is the most common approach to lose weight. While generally effective at first, it is frequently followed by a relapse where the pre-diet weight is regained, and often exceeded. This pattern of repeated weight loss/regain is referred to as weight cycling and the resulting metabolic response varies greatly between individuals. Objective We attempted to address the issue of individual differences in the response to weight cycling in male mice. Methods We first exposed adult wild type mice to repeated cycles of high/low fat food. Next, using a lentiviral approach, we knocked-down or over-expressed miR-219 in the ventromedial hypothalamus (VMH) of an additional mouse cohort and performed a full metabolic assessment. Results Exposure of wild type males to weight cycling resulted in the division of the cohort into subsets of resistant versus metabolic-syndrome-prone (MS) animals, which differed in their metabolic profile and hypothalamic miR-219 levels. Lentiviral knock-down of miR-219 in the VMH led to exacerbation of metabolic syndrome. In contrast, over-expression of miR-219 resulted in moderation of the metabolic syndrome phenotype. Conclusions Our results suggest a role for miR-219 in the mediation of the metabolic phenotype resulting from repeated weight cycling. Repeated cycles of high fat diet induce different responses in adult males. Low miR-219 in ventromedial hypothalamus are linked to metabolic-syndrome proneness. Lentiviral knockdown of miR-219 induces metabolic-syndrome-prone phenotype. Lentiviral overexpression of miR-219 provides moderate protection from metabolic-syndrome.
Collapse
Affiliation(s)
- Mariana Schroeder
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, 80804, Germany.
| | - Yonat Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Yair J Ben-Efraim
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, 80804, Germany.
| |
Collapse
|
15
|
Abrogated Freud-1/Cc2d1a Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior. J Neurosci 2017; 37:11967-11978. [PMID: 29101244 DOI: 10.1523/jneurosci.1668-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022] Open
Abstract
Freud-1/Cc2d1a represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knock-out of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knock-out (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behavior was seen upon knock-out of Freud-1 on the 5-HT1A autoreceptor-negative background; rather, a reduction in depression-like behavior emerged. These studies implicate transcriptional dysregulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors, such as Freud-1, to restore transcriptional balance may augment response to antidepressant treatment.SIGNIFICANCE STATEMENT Altered regulation of the 5-HT1A autoreceptor has been implicated in human anxiety, major depression, suicide, and resistance to antidepressants. This study uniquely identifies a single transcription factor, Freud-1, as crucial for 5-HT1A autoreceptor expression in vivo Disruption of Freud-1 in serotonin neurons in mice links upregulation of 5-HT1A autoreceptors to anxiety/depression-like behavior and provides a new model of antidepressant resistance. Treatment strategies to reestablish transcriptional regulation of 5-HT1A autoreceptors could provide a more robust and sustained antidepressant response.
Collapse
|
16
|
Astroglial MicroRNA-219-5p in the Ventral Tegmental Area Regulates Nociception in Rats. Anesthesiology 2017; 127:548-564. [PMID: 28582325 DOI: 10.1097/aln.0000000000001720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The authors previously reported that noncoding microRNA miR-219-5p is down-regulated in the spinal cord in a nociceptive state. The ventral tegmental area also plays critical roles in modulating nociception, although the underlying mechanism remains unknown. The authors hypothesized that miR-219-5p in the ventral tegmental area also may modulate nociception. METHODS The authors studied the bidirectional regulatory role of ventral tegmental area miR-219-5p in a rat complete Freund's adjuvant model of inflammatory nociception by measuring paw withdrawal latencies. Using molecular biology technologies, the authors measured the effects of astroglial coiled-coil and C2 domain containing 1A/nuclear factor κB cascade and dopamine neuron activity on the down-regulation of ventral tegmental area miR-219-5p-induced nociceptive responses. RESULTS MiR-219-5p expression in the ventral tegmental area was reduced in rats with thermal hyperalgesia. Viral overexpression of ventral tegmental area miR-219-5p attenuated complete Freund's adjuvant-induced nociception from 7 days after complete Freund's adjuvant injection (paw withdrawal latencies: 6.09 ± 0.83 s vs. 3.96 ± 0.76 s; n = 6/group). Down-regulation of ventral tegmental area miR-219-5p in naïve rats was sufficient to induce thermal hyperalgesia from 7 days after lentivirus injection (paw withdrawal latencies: 7.09 ± 1.54 s vs. 11.75 ± 2.15 s; n = 8/group), which was accompanied by increased glial fibrillary acidic protein (fold change: 2.81 ± 0.38; n = 3/group) and reversed by intraventral tegmental area injection of the astroglial inhibitor fluorocitrate. The nociceptive responses induced by astroglial miR-219-5p down-regulation were inhibited by interfering with astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling. Finally, pharmacologic inhibition of ventral tegmental area dopamine neurons alleviated this hyperalgesia. CONCLUSIONS Down-regulation of astroglial miR-219-5p in ventral tegmental area induced nociceptive responses are mediated by astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling and elevated dopamine neuron activity.
Collapse
|
17
|
Rafalo-Ulinska A, Piotrowska J, Kryczyk A, Opoka W, Sowa-Kucma M, Misztak P, Rajkowska G, Stockmeier CA, Datka W, Nowak G, Szewczyk B. Zinc transporters protein level in postmortem brain of depressed subjects and suicide victims. J Psychiatr Res 2016; 83:220-229. [PMID: 27661418 PMCID: PMC5107146 DOI: 10.1016/j.jpsychires.2016.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a serious psychiatric illness, associated with an increasing rate of suicide. The pathogenesis of depression may be associated with the disruption of zinc (Zn) homeostasis. In the brain, several proteins that regulate Zn homeostasis are present, including Zn transporters (ZnTs) which remove Zn from the cytosol. The present study was designed to investigate whether depression and suicide are associated with alterations in the expression of the ZnTs protein. METHODS Protein levels of ZnT1, ZnT3, ZnT4, ZnT5 and ZnT6 were measured in postmortem brain tissue from two different cohorts. Cohort A contained 10 subjects diagnosed with MDD (7 were suicide victims) and 10 psychiatrically-normal control subjects and cohort B contained 11 non-diagnosed suicide victims and 8 sudden-death control subjects. Moreover, in cohort A we measured protein level of NMDA (GluN2A subunit), AMPA (GluA1 subunit) and 5-HT1A receptors and PSD-95. Proteins were measured in the prefrontal cortex (PFC) using Western blotting. In addition, Zn concentration was measured using a voltammetric method. RESULTS There was a significant increase in protein levels of ZnT1, ZnT4, ZnT5 in the PFC in MDD, relative to control subjects, while ZnT3 protein level was decreased in MDD. There was no significant difference in the Zn concentration in the PFC between control and MDD subjects. Similarly, in the PFC of suicide victims (non-diagnosed), an increase in protein levels of ZnT1, ZnT4, ZnT5 and ZnT6 was observed. Conversely, protein levels of ZnT3 were decreased in both suicide victims and subjects with MDD, in comparison with control subjects. There was also a significant decrease in the protein level of GluA1, GluN2A, PSD-95 and 5-HT1A in MDD. CONCLUSIONS Our studies suggest that alterations in Zn transport proteins are associated with the pathophysiology of MDD and suicide.
Collapse
Affiliation(s)
- Anna Rafalo-Ulinska
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland,Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Kryczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Sowa-Kucma
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Misztak
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland,Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA,Department of Psychiatry, Case Western Reserve University, 10524 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wojciech Datka
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21a, 31-501 Kraków, Poland
| | - Gabriel Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland,Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| |
Collapse
|
18
|
Deshar R, Cho EB, Yoon SK, Yoon JB. CC2D1A and CC2D1B regulate degradation and signaling of EGFR and TLR4. Biochem Biophys Res Commun 2016; 480:280-287. [DOI: 10.1016/j.bbrc.2016.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022]
|
19
|
Sener EF, Cıkılı Uytun M, Korkmaz Bayramov K, Zararsiz G, Oztop DB, Canatan H, Ozkul Y. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis 2016; 31:613-9. [PMID: 26782176 DOI: 10.1007/s11011-016-9795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Classical autism belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). Autism is defined as a neurodevelopmental disorder, characterized by repetitive stereotypic behaviors or restricted interests, social withdrawal, and communication deficits. Numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism but the etiology of this disorder is unknown in many cases. CC2D1A gene has been linked to mental retardation (MR) in a family with a large deletion before. Intellectual disability (ID) is a common feature of autistic cases. Therefore we aimed to investigate the expressions of CC2D1A and HTR1A genes with the diagnosis of autism in Turkey. Forty-four autistic patients (35 boys, 9 girls) and 27 controls were enrolled and obtained whole blood samples to isolate RNA samples from each participant. CC2D1A and HTR1A gene expressions were assessed by quantitative Real-Time PCR (qRT-PCR) in Genome and Stem Cell Center, Erciyes University. Both expressions of CC2D1A and HTR1A genes studied on ASD cases and controls were significantly different (p < 0.001). The expression of HTR1A was undetectable in the ASD samples. Comparison of ID and CC2D1A gene expression was also found statistically significant (p = 0.028). CC2D1A gene expression may be used as a candidate gene for ASD cases with ID. Further studies are needed to investigate the potential roles of these CC2D1A and HTR1A genes in their related pathways in ASD.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical School, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Merve Cıkılı Uytun
- Department of Child Psychiatry, Education and Research Hospital, Kayseri, Turkey
| | - Keziban Korkmaz Bayramov
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Didem Behice Oztop
- Department of Child Psychiatry, Surp Pirgic Armenian Hospital, Istanbul, Turkey
| | - Halit Canatan
- Department of Medical Biology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Erciyes University Medical School, 38039, Kayseri, Turkey
| |
Collapse
|
20
|
5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence. Behav Brain Res 2016; 310:20-5. [PMID: 27150226 DOI: 10.1016/j.bbr.2016.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested.
Collapse
|
21
|
Kaneko F, Kawahara Y, Kishikawa Y, Hanada Y, Yamada M, Kakuma T, Kawahara H, Nishi A. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors. Int J Neuropsychopharmacol 2016; 19:pyw026. [PMID: 27029212 PMCID: PMC5006198 DOI: 10.1093/ijnp/pyw026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. METHODS The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. RESULTS Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. CONCLUSIONS Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress.
Collapse
Affiliation(s)
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan (Ms Kaneko and Drs Kawahara, Kishikawa, Hanada, and Nishi); Department of Psychiatry, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan (Dr Yamada); Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan (Dr Kakuma); Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi-ku, Yokohama, Kanagawa, Japan (Dr Kawahara).
| | | | | | | | | | | | | |
Collapse
|
22
|
Rajkowska G, Mahajan G, Maciag D, Sathyanesan M, Iyo AH, Moulana M, Kyle PB, Woolverton WL, Miguel-Hidalgo JJ, Stockmeier CA, Newton SS. Oligodendrocyte morphometry and expression of myelin - Related mRNA in ventral prefrontal white matter in major depressive disorder. J Psychiatr Res 2015; 65:53-62. [PMID: 25930075 PMCID: PMC4836860 DOI: 10.1016/j.jpsychires.2015.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/10/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Abstract
White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.
Collapse
Affiliation(s)
| | | | | | - Monica Sathyanesan
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Abiye H. Iyo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216
| | | | - Patrick B. Kyle
- Department of Pathology, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216
| | - William L. Woolverton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216
| | | | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216,Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, U.S.A., 44106
| | - Samuel S. Newton
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, U.S.A., 57069
| |
Collapse
|
23
|
Albert PR, Fiori LM. Transcriptional dys-regulation in anxiety and major depression: 5-HT1A gene promoter architecture as a therapeutic opportunity. Curr Pharm Des 2015; 20:3738-50. [PMID: 24180393 DOI: 10.2174/13816128113196660740] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
Abstract
The etiology of major depression remains unclear, but reduced activity of the serotonin (5-HT) system remains implicated and treatments that increase 5-HT neurotransmission can ameliorate depressive symptoms. 5-HT1A receptors are critical regulators of the 5- HT system. They are expressed as both presynaptic autoreceptors that negatively regulate 5-HT neurons, and as post-synaptic heteroreceptors on non-serotonergic neurons in the hippocampus, cortex, and limbic system that are critical to mediate the antidepressant actions of 5-HT. Thus, 5-HT1A auto- and heteroreceptors have opposite actions on serotonergic neurotransmission. Because most 5-HT1A ligands target both auto- and heteroreceptors their efficacy has been limited, resulting in weak or unclear responses. We propose that by understanding the transcriptional regulation of the 5-HT1A receptor it may be possible to regulate its expression differentially in raphe and projection regions. Here we review the transcriptional architecture of the 5-HT1A gene (HTR1A) with a focus on specific DNA elements and transcription factors that have been shown to regulate 5-HT1A receptor expression in the brain. Association studies with the functional HTR1A promoter polymorphism rs6295 suggest a new model for the role of the 5-HT1A receptor in susceptibility to depression involving early deficits in cognitive, fear and stress reactivity as stressors that may ultimately lead to depression. We present evidence that by targeting specific transcription factors it may be possible to oppositely regulate 5-HT1A auto- and heteroreceptor expression, synergistically increasing serotonergic neurotransmission for the treatment of depression.
Collapse
Affiliation(s)
| | - Laura M Fiori
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H-8M5.
| |
Collapse
|
24
|
Abstract
The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.
Collapse
|
25
|
Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8:199. [PMID: 24936175 PMCID: PMC4047678 DOI: 10.3389/fnbeh.2014.00199] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 01/03/2023] Open
Abstract
Decreased serotonergic activity has been implicated in anxiety and major depression, and antidepressants directly or indirectly increase the long-term activity of the serotonin system. A key component of serotonin circuitry is the 5-HT1A autoreceptor, which functions as the major somatodendritic autoreceptor to negatively regulate the "gain" of the serotonin system. In addition, 5-HT1A heteroreceptors are abundantly expressed post-synaptically in the prefrontal cortex (PFC), amygdala, and hippocampus to mediate serotonin actions on fear, anxiety, stress, and cognition. Importantly, in the PFC 5-HT1A heteroreceptors are expressed on at least two antagonist neuronal populations: excitatory pyramidal neurons and inhibitory interneurons. Rodent models implicate the 5-HT1A receptor in anxiety- and depression-like phenotypes with distinct roles for pre- and post-synaptic 5-HT1A receptors. In this review, we present a model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors. The model postulates that behavioral phenotype shifts as serotonin activity increases from none (depressed/aggressive not anxious) to low (anxious/depressed) to high (anxious, not depressed). We identify a set of conserved transcription factors including Deaf1, Freud-1/CC2D1A, Freud-2/CC2D1B and glucocorticoid receptors that may confer deleterious regional changes in 5-HT1A receptors in depression, and how future treatments could target these mechanisms. Further studies to specifically test the roles and regulation of pyramidal vs. interneuronal populations of 5-HT receptors are needed better understand the role of serotonin in anxiety and depression and to devise more effective targeted therapeutic approaches.
Collapse
Affiliation(s)
- Paul R Albert
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Faranak Vahid-Ansari
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| | - Christine Luckhart
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa ON, Canada
| |
Collapse
|
26
|
Burnett EJ, Grant KA, Davenport AT, Hemby SE, Friedman DP. The effects of chronic ethanol self-administration on hippocampal 5-HT1A receptors in monkeys. Drug Alcohol Depend 2014; 136:135-42. [PMID: 24467872 PMCID: PMC3962821 DOI: 10.1016/j.drugalcdep.2014.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/02/2013] [Accepted: 01/04/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Chronic alcohol consumption reduces brain serotonin and alters the synaptic mechanisms involved in memory formation. Hippocampal 5-HT1A receptors modulate these mechanisms, but the neuroadaptive response of 5HT1A receptors to chronic alcohol self-administration is not well understood. METHODS Hippocampal tissue from monkeys that voluntarily self-administered ethanol for 12 months (n=9) and accompanying controls (n=8) were prepared for in vitro receptor autoradiography and laser capture microdissection. The 5-HT1A receptor antagonist, [(3)H]MPPF, and the agonist, [(3)H]8-OH-DPAT, were used to measure total and G-protein coupled 5-HT1A receptors respectively. The expression of the genes encoding the 5-HT1A receptor and its trafficking protein Yif1B was measured in microdissected dentate gyrus (DG) granule cells and CA1 pyramidal neurons. RESULTS An increase in G-protein coupled, but not total, receptors was observed in the posterior pyramidal cell layer of CA1 in ethanol drinkers compared to controls. Chronic ethanol self-administration was also associated with an up-regulation of total and G-protein coupled 5-HT1A receptors in the posterior DG polymorphic layer. Changes in receptor binding were not associated with concomitant changes in 5-HT1A receptor mRNA expression. Chronic ethanol self-administration was associated with a significant increase in Yif1B gene expression in posterior CA1 pyramidal neurons. CONCLUSIONS Chronic, ethanol self-administration up-regulates hippocampal 5-HT1A receptor density in a region-specific manner that does not appear to be due to alterations at the level of transcription but instead may be due to increased receptor trafficking. Further exploration of the mechanisms mediating chronic ethanol-induced 5-HT1A receptor up-regulation and how hippocampal neurotransmission is altered is warranted.
Collapse
Affiliation(s)
- Elizabeth J. Burnett
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kathleen A. Grant
- Department of Behavioral Neuroscience Oregon Health & Science University, Portland, OR, USA
| | - April T. Davenport
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Scott E. Hemby
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - David P. Friedman
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Corresponding author: David P Friedman, Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, , (336) 713-7186 tel, (336) 713-7168 fax
| |
Collapse
|
27
|
A new vesicular scaffolding complex mediates the G-protein-coupled 5-HT1A receptor targeting to neuronal dendrites. J Neurosci 2013; 32:14227-41. [PMID: 23055492 DOI: 10.1523/jneurosci.6329-11.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although essential for their neuronal function, the molecular mechanisms underlying the dendritic targeting of serotonin G-protein-coupled receptors are poorly understood. Here, we characterized a Yif1B-dependent vesicular scaffolding complex mediating the intracellular traffic of the rat 5-HT(1A) receptor (5-HT(1A)R) toward dendrites. By combining directed mutagenesis, GST-pull down, and surface plasmon resonance, we identified a tribasic motif in the C-tail of the 5-HT(1A)R on which Yif1B binds directly with high affinity (K(D) ≈ 37 nM). Moreover, we identified Yip1A, Rab6, and Kif5B as new partners of the 5-HT(1A)R/Yif1B complex, and showed that their expression in neurons is also crucial for the dendritic targeting of the 5-HT(1A)R. Live videomicroscopy revealed that 5-HT(1A)R, Yif1B, Yip1A, and Rab6 traffic in vesicles exiting the soma toward the dendritic tree, and also exhibit bidirectional motions, sustaining their role in 5-HT(1A)R dendritic targeting. Hence, we propose a new trafficking pathway model in which Yif1B is the scaffold protein recruiting the 5-HT(1A)R in a complex including Yip1A and Rab6, with Kif5B and dynein as two opposite molecular motors coordinating the traffic of vesicles along dendritic microtubules. This targeting pathway opens new insights for G-protein-coupled receptors trafficking in neurons.
Collapse
|
28
|
Martinelli N, Hartlieb B, Usami Y, Sabin C, Dordor A, Miguet N, Avilov SV, Ribeiro EA, Göttlinger H, Weissenhorn W. CC2D1A is a regulator of ESCRT-III CHMP4B. J Mol Biol 2012; 419:75-88. [PMID: 22406677 DOI: 10.1016/j.jmb.2012.02.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 12/01/2022]
Abstract
Endosomal sorting complexes required for transport (ESCRTs) regulate diverse processes ranging from receptor sorting at endosomes to distinct steps in cell division and budding of some enveloped viruses. Common to all processes is the membrane recruitment of ESCRT-III that leads to membrane fission. Here, we show that CC2D1A is a novel regulator of ESCRT-III CHMP4B function. We demonstrate that CHMP4B interacts directly with CC2D1A and CC2D1B with nanomolar affinity by forming a 1:1 complex. Deletion mapping revealed a minimal CC2D1A-CHMP4B binding construct, which includes a short linear sequence within the third DM14 domain of CC2D1A. The CC2D1A binding site on CHMP4B was mapped to the N-terminal helical hairpin. Based on a crystal structure of the CHMP4B helical hairpin, two surface patches were identified that interfere with CC2D1A interaction as determined by surface plasmon resonance. Introducing these mutations into a C-terminal truncation of CHMP4B that exerts a potent dominant negative effect on human immunodeficiency virus type 1 budding revealed that one of the mutants lost this effect completely. This suggests that the identified CC2D1A binding surface might be required for CHMP4B polymerization, which is consistent with the finding that CC2D1A binding to CHMP4B prevents CHMP4B polymerization in vitro. Thus, CC2D1A might act as a negative regulator of CHMP4B function.
Collapse
Affiliation(s)
- Nicolas Martinelli
- Unit of Virus Host Cell Interactions UMI 3265, Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bogdan R, Fitzgibbon H, Woolverton WL, Bethea CL, Iyo AH, Stockmeier CA, Kyle PB, Austin MC. 5-HTTLPR genotype and gender, but not chronic fluoxetine administration, are associated with cortical TREK1 protein expression in rhesus macaques. Neurosci Lett 2011; 503:83-6. [PMID: 21871532 DOI: 10.1016/j.neulet.2011.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/12/2011] [Accepted: 08/02/2011] [Indexed: 11/17/2022]
Abstract
TREK1 is a widely expressed background potassium channel. Similar to mice treated with selective serotonin reuptake inhibitors (SSRIs), TREK1 knockout mice are resistant to depression-like behavior and have elevated serotonin levels leading to speculation that TREK1 inhibition may contribute to the therapeutic effects of SSRIs. This study examined how chronic fluoxetine administration and a common functional polymorphism in the serotonin-transporter-linked promoter region (5-HTTLPR) influence cortical TREK1 expression in 24 rhesus monkeys. The short rh5-HTTLPR allele as well as female gender were associated with reduced cortical TREK1 protein expression but chronic SSRI administration had no effect. These results suggest that serotonin may influence TREK1, but that chronic SSRI treatment does not result in long lasting changes in cortical TREK1 protein expression. TREK1 gender differences may be related to gender differences in serotonin and require further research.
Collapse
Affiliation(s)
- R Bogdan
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Albert PR, Le François B, Millar AM. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol Brain 2011; 4:21. [PMID: 21619616 PMCID: PMC3130656 DOI: 10.1186/1756-6606-4-21] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 12/15/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is among the most abundant and widely distributed 5-HT receptors in the brain, but is also expressed on serotonin neurons as an autoreceptor where it plays a critical role in regulating the activity of the entire serotonin system. Over-expression of the 5-HT1A autoreceptor has been implicated in reducing serotonergic neurotransmission, and is associated with major depression and suicide. Extensive characterization of the transcriptional regulation of the 5-HT1A gene (HTR1A) using cell culture systems has revealed a GC-rich "housekeeping" promoter that non-selectively drives its expression; this is flanked by a series of upstream repressor elements for REST, Freud-1/CC2D1A and Freud-2/CC2D1B factors that not only restrict its expression to neurons, but may also regulate the level of expression of 5-HT1A receptors in various subsets of neurons, including serotonergic neurons. A separate set of allele-specific factors, including Deaf1, Hes1 and Hes5 repress at the HTR1A C(-1019)G (rs6295) polymorphism in serotonergic neurons in culture, as well as in vivo. Pet1, an obligatory enhancer for serotonergic differentiation, has been identified as a potent activator of 5-HT1A autoreceptor expression. Taken together, these results highlight an integrated regulation of 5-HT1A autoreceptors that differs in several aspects from regulation of post-synaptic 5-HT1A receptors, and could be selectively targeted to enhance serotonergic neurotransmission.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| | | | | |
Collapse
|
31
|
Albert PR, François BL. Modifying 5-HT1A Receptor Gene Expression as a New Target for Antidepressant Therapy. Front Neurosci 2010; 4:35. [PMID: 20661455 PMCID: PMC2907233 DOI: 10.3389/fnins.2010.00035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/10/2010] [Indexed: 12/30/2022] Open
Abstract
Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT) neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone) that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(−1019)G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.
Collapse
Affiliation(s)
- Paul R Albert
- Department of Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|