1
|
Zhang M, Zhang Y, Chen Y, Cen Z, Li J, Li S, Li H, Wan L, Xiao X, Long Q. Mechanistic insights and therapeutic approaches in tic disorders: The distinctive role of ethnomedicine and modern medical interventions. Neurosci Biobehav Rev 2025; 172:106130. [PMID: 40169089 DOI: 10.1016/j.neubiorev.2025.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Tic disorders (TDs) are a class of neurodevelopmental disorders that have received considerable scientific attention. The genesis of TDs is increasingly understood as a complex interplay of neurobiological, genetic, and immunological factors. Animal model studies have elucidated the pathophysiology of TDs, paving the way for innovative therapeutic approaches. This review provides a comprehensive analysis of the etiologic basis, experimental framework, and treatment strategies for TDs, highlighting the contributions of ethnomedicine and modern medicine. Our synthesis aims to deepen the understanding of the disease and spur the development of superior treatments. In addition, we present new insights and hypotheses for the future management of TDs, emphasizing the need for continued research into their etiology and progression, as well as the pursuit of more effective therapies. We advocate personalized, holistic care strategies that focus on symptom relief and improving patients' quality of life. Overall, this review provides a critical compendium for TD researchers and practitioners to help navigate the complexities of these disorders.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan 454600, China
| | - Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
| | - Haipeng Li
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lisheng Wan
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan 454600, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan 454600, China.
| |
Collapse
|
2
|
Li P, Liu B, He SW, Liu L, Li ZH. Transgenerational neurotoxic effects of triphenyltin on marine medaka: Impaired dopaminergic system function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125456. [PMID: 39631653 DOI: 10.1016/j.envpol.2024.125456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Triphenyltin (TPT), a widely used environmental contaminant in antifouling paints, is known for its neurotoxic effects. To investigate the multigenerational impacts of long-term exposure (6 weeks) to environmental concentrations of TPT (100 ng/L) on either parent, we performed mixed mating between control and exposed groups (males or females). Although there was no direct contact with TPT in the subsequent generations, both the first and second generations displayed behavioral abnormalities, including reduced activity and impaired cognitive function, with pronounced gender differences and anxiety-like behaviors. Females were more susceptible than males, displaying a significantly increased time spent in the mirror-proximal zone in both F1 and F2 generations. Additionally, F0 females exhibited a marked reduction in the time spent in the bright area, further supporting the role of sex differences in behavioral responses. Notably, the maternal contribution of marine medaka (Oryzias melastigma) played a more significant role in the inheritance of TPT-induced cognitive deficits. A reduction in DA levels and AChE activity was observed across generations, regardless of gender, underscoring the critical role of DA-AChE balance in maintaining cognitive function. Additionally, gender differences and the hereditary effects of TPT exposure on anxiety-like behaviors were strongly associated with the transcriptional regulation of pparγ and gst. Impaired transcription of key genes in the dopaminergic system resulted in reduced DA levels, with the intergenerational transmission of mao being closely linked to behavioral impairments. In summary, TPT-induced neurotoxicity presents both hereditary effects and gender-specific differences, emphasizing the maternal influence in the inheritance of cognitive abilities and shedding light on the genetic impact of parental exposure.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Cadeddu R, Braccagni G, Branca C, van Luik ER, Pittenger C, Thomsen MS, Bortolato M. Activation of M 4 muscarinic receptors in the striatum reduces tic-like behaviours in two distinct murine models of Tourette syndrome. Br J Pharmacol 2024; 181:3064-3081. [PMID: 38689378 DOI: 10.1111/bph.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND PURPOSE Current pharmacotherapies for Tourette syndrome (TS) are often unsatisfactory and poorly tolerated, underscoring the need for novel treatments. Insufficient striatal acetylcholine has been suggested to contribute to tic ontogeny. Thus, we tested whether activating M1 and/or M4 receptors-the two most abundant muscarinic receptors in the striatum-reduced tic-related behaviours in mouse models of TS. EXPERIMENTAL APPROACH Studies were conducted using CIN-d and D1CT-7 mice, two TS models characterized by early-life depletion of striatal cholinergic interneurons and cortical neuropotentiation, respectively. First, we tested the effects of systemic and intrastriatal xanomeline, a selective M1/M4 receptor agonist, on tic-like and other TS-related responses. Then, we examined whether xanomeline effects were reduced by either M1 or M4 antagonists or mimicked by the M1/M3 agonist cevimeline or the M4 positive allosteric modulator (PAM) VU0467154. Finally, we measured striatal levels of M1 and M4 receptors and assessed the impact of VU0461754 on the striatal expression of the neural marker activity c-Fos. KEY RESULTS Systemic and intrastriatal xanomeline reduced TS-related behaviours in CIN-d and D1CT-7 mice. Most effects were blocked by M4, but not M1, receptor antagonists. VU0467154, but not cevimeline, elicited xanomeline-like ameliorative effects in both models. M4, but not M1, receptors were down-regulated in the striatum of CIN-d mice. Additionally, VU0467154 reduced striatal c-Fos levels in these animals. CONCLUSION AND IMPLICATIONS Activation of striatal M4, but not M1, receptors reduced tic-like manifestations in mouse models, pointing to xanomeline and M4 PAMs as novel putative therapeutic strategies for TS.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Easton R van Luik
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychology, School of Arts and Sciences, Yale University, New Haven, Connecticut, USA
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut, USA
- Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Bortolato M, Braccagni G, Pederson CA, Floris G, Fite PJ. "Weeding out" violence? Translational perspectives on the neuropsychobiological links between cannabis and aggression. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101948. [PMID: 38828012 PMCID: PMC11141739 DOI: 10.1016/j.avb.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey A. Pederson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
5
|
Alunni A, Pierre C, Torres-Paz J, Clairet N, Langlumé A, Pavie M, Escoffier-Pirouelle T, Leblanc M, Blin M, Rétaux S. An Astyanax mexicanus mao knockout line uncovers the developmental roles of monoamine homeostasis in fish brain. Dev Growth Differ 2023; 65:517-533. [PMID: 37843474 DOI: 10.1111/dgd.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Monoaminergic systems are conserved in vertebrates, yet they present variations in neuroanatomy, genetic components and functions across species. MonoAmine Oxidase, or MAO, is the enzyme responsible for monoamine degradation. While mammals possess two genes, MAO-A and MAO-B, fish possess one single mao gene. To study the function of MAO and monoamine homeostasis on fish brain development and physiology, here we have generated a mao knockout line in Astyanax mexicanus (surface fish), by CRISPR/Cas9 technology. Homozygote mao knockout larvae died at 13 days post-fertilization. Through a time-course analysis, we report that hypothalamic serotonergic neurons undergo fine and dynamic regulation of serotonin level upon loss of mao function, in contrast to those in the raphe, which showed continuously increased serotonin levels - as expected. Dopaminergic neurons were not affected by mao loss-of-function. At behavioral level, knockout fry showed a transient decrease in locomotion that followed the variations in the hypothalamus serotonin neuronal levels. Finally, we discovered a drastic effect of mao knockout on brain progenitors proliferation in the telencephalon and hypothalamus, including a reduction in the number of proliferative cells and an increase of the cell cycle length. Altogether, our results show that MAO has multiple and varied effects on Astyanax mexicanus brain development. Mostly, they bring novel support to the idea that serotonergic neurons in the hypothalamus and raphe of the fish brain are different in nature and identity, and they unravel a link between monoaminergic homeostasis and brain growth.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Natacha Clairet
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Auriane Langlumé
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Marie Pavie
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | | | - Michael Leblanc
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Maryline Blin
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
6
|
Cadeddu R, Van Zandt M, Santovito LS, Odeh K, Anderson CJ, Flanagan D, Nordkild P, Pinna G, Pittenger C, Bortolato M. Prefrontal allopregnanolone mediates the adverse effects of acute stress in a mouse model of tic pathophysiology. Neuropsychopharmacology 2023; 48:1288-1299. [PMID: 37198434 PMCID: PMC10354086 DOI: 10.1038/s41386-023-01603-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Ample evidence suggests that acute stress can worsen symptom severity in Tourette syndrome (TS); however, the neurobiological underpinnings of this phenomenon remain poorly understood. We previously showed that acute stress exacerbates tic-like and other TS-associated responses via the neurosteroid allopregnanolone (AP) in an animal model of repetitive behavioral pathology. To verify the relevance of this mechanism to tic pathophysiology, here we tested the effects of AP in a mouse model recapitulating the partial depletion of dorsolateral cholinergic interneurons (CINs) seen in post-mortem studies of TS. Mice underwent targeted depletion of striatal CINs during adolescence and were tested in young adulthood. Compared with controls, partially CIN-depleted male mice exhibited several TS-relevant abnormalities, including deficient prepulse inhibition (PPI) and increased grooming stereotypies after a 30-min session of spatial confinement - a mild acute stressor that increases AP levels in the prefrontal cortex (PFC). These effects were not seen in females. Systemic and intra-PFC AP administration dose-dependently worsened grooming stereotypies and PPI deficits in partially CIN-depleted males. Conversely, both AP synthesis inhibition and pharmacological antagonism reduced the effects of stress. These results further suggest that AP in the PFC mediates the adverse effects of stress on the severity of tics and other TS-related manifestations. Future studies will be necessary to confirm these mechanisms in patients and define the circuitry responsible for the effects of AP on tics.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Meghan Van Zandt
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Luca Spiro Santovito
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Karen Odeh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Collin J Anderson
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, NSW, Australia
| | - Deirdre Flanagan
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | | | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Psychology, School of Arts and Sciences, Yale University, New Haven, CT, USA.
- Child Study Center, School of Medicine, Yale University, New Haven, CT, USA.
- Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, CT, USA.
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Gureev AP, Sadovnikova IS, Popov VN. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:940-956. [PMID: 36180986 DOI: 10.1134/s0006297922090073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer's, Parkinson's, and Huntington's diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.
Collapse
Affiliation(s)
- Artem P Gureev
- Voronezh State University, Voronezh, 394018, Russia.
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | | | - Vasily N Popov
- Voronezh State University, Voronezh, 394018, Russia
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| |
Collapse
|
8
|
Frau R, Pardu A, Godar S, Bini V, Bortolato M. Combined Antagonism of 5-HT2 and NMDA Receptors Reduces the Aggression of Monoamine Oxidase a Knockout Mice. Pharmaceuticals (Basel) 2022; 15:ph15020213. [PMID: 35215325 PMCID: PMC8875523 DOI: 10.3390/ph15020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The enzyme monoamine oxidase A (MAOA) catalyzes the degradation of several neurotransmitters, including serotonin. A large body of evidence has shown that genetic MAOA deficiency predisposes humans and mice to aggression and antisocial behavior. We previously documented that the aggression of male MAOA-deficient mice is contributed by serotonin 5-HT2 and glutamate N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC). Indeed, blocking either receptor reduces the aggression of MAOA knockout (KO) mice; however, 5-HT2 receptor antagonists, such as ketanserin (KET), reduce locomotor activity, while NMDA receptor blockers are typically associated with psychotomimetic properties. To verify whether NMDA receptor blockers induce psychotomimetic effects in MAOA KO mice, here we tested the effects of these compounds on prepulse inhibition (PPI) of the acoustic startle reflex. We found that male MAOA KO mice are hypersensitive to the PPI-disrupting properties of NMDA receptor antagonists, including the non-competitive antagonist dizocilpine (DIZ; 0.1, 0.3 mg/kg, IP) and the NR2B subunit-specific blocker Ro-256981 (5, 10 mg/kg, IP). Since KET has been previously shown to counter the PPI deficits caused by NMDA receptor antagonists, we tested the behavioral effects of the combination of KET (2 mg/kg, IP) and these drugs. Our results show that the combination of KET and DIZ potently reduces aggression in MAOA KO mice without any PPI deficits and sedative effects. While the PPI-ameliorative properties of KET were also observed after infusion in the medial PFC (0.05 μg/side), KET did not counter the PPI-disruptive effects of Ro-256981 in MAOA KO mice. Taken together, these results point to the combination of non-subunit-selective NMDA and 5-HT2 receptor antagonists as a potential therapeutic approach for aggression and antisocial behavior with a better safety and tolerability profile than each monotherapy.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (A.P.); (V.B.)
- Guy Everett Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: (R.F.); (M.B.)
| | - Alessandra Pardu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (A.P.); (V.B.)
| | - Sean Godar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Valentina Bini
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (A.P.); (V.B.)
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (R.F.); (M.B.)
| |
Collapse
|
9
|
Zhou Y, Han X, Bao Y, Zhu Z, Huang J, Yang C, He C, Zuo Z. Chronic exposure to environmentally realistic levels of diuron impacts the behaviour of adult marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105917. [PMID: 34333370 DOI: 10.1016/j.aquatox.2021.105917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Diuron, a commonly used herbicide and antifouling biocide, has been frequently detected in seawater. The effects of diuron on fish behaviour are currently poorly understood. Herein, the marine medaka (Oryzias melastigma) was continuously exposed to environmentally realistic levels of diuron from the fertilised egg stage to the adult stage. Behavioural evaluation of adult marine medaka indicated that exposure to diuron increased anxiety in the light-dark test and increased predator avoidance. In addition, diuron exposure significantly reduced aggression, social interaction, shoaling, and learning and memory ability. However, only negligible variations in foraging behaviour and in behaviour in the novel tank test were observed. Marine medaka chronically exposed to diuron also showed decreased levels of dopamine in the brain, and changes were observed in the transcription of genes related to dopamine synthesis, degradation and receptors. Exposure to 5000 ng/L diuron caused significant downregulation of the expression of the genes of tyrosine hydroxylase and monoamine oxidase and significantly upregulated the expression of the genes of the D5 dopaminergic receptor. The relative expression of the D4 dopaminergic receptor was significantly upregulated in the 50, 500 and 5000 ng/L diuron-treated groups. These findings highlight the significant neurotoxic effects of diuron and the extent to which this may involve the dopaminergic system of the brain. More broadly, this study reveals the ecological risk associated with environmentally realistic levels of diuron in marine animals.
Collapse
Affiliation(s)
- Yixi Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xue Han
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuanyuan Bao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zihan Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiali Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
10
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
11
|
Frau R, Miczán V, Traccis F, Aroni S, Pongor CI, Saba P, Serra V, Sagheddu C, Fanni S, Congiu M, Devoto P, Cheer JF, Katona I, Melis M. Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nat Neurosci 2019; 22:1975-1985. [PMID: 31611707 PMCID: PMC6884689 DOI: 10.1038/s41593-019-0512-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Abstract
Increased legal availability of cannabis has led to a common misconception that it is a safe natural remedy for, amongst others, pregnancy-related ailments like morning sickness. Emerging clinical evidence, however, indicates that prenatal cannabis exposure (PCE) predisposes offspring to various neuropsychiatric disorders linked to aberrant dopaminergic function. Yet, our knowledge of how cannabis exposure affects the maturation of this neuromodulatory system remains limited. Here, we show that male, but not female, offspring of Δ9-tetrahydrocannabinol (THC)-exposed dams, a rat PCE model, exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area, including altered excitatory-to-inhibitory balance and switched polarity of long-term synaptic plasticity. The resulting hyperdopaminergic state leads to increased behavioral sensitivity to acute THC during pre-adolescence. The FDA-approved neurosteroid pregnenolone rescues synaptic defects and normalizes dopaminergic activity and behavior in PCE offspring, suggesting a therapeutic approach for offspring exposed to cannabis during pregnancy.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Vivien Miczán
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Francesco Traccis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Sonia Aroni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Csaba I Pongor
- Nikon Center of Excellence for Neuronal Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Silvia Fanni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - István Katona
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy.
| |
Collapse
|
12
|
Godar SC, Mosher LJ, Scheggi S, Devoto P, Moench KM, Strathman HJ, Jones CM, Frau R, Melis M, Gambarana C, Wilkinson B, DeMontis MG, Fowler SC, Coba MP, Wellman CL, Shih JC, Bortolato M. Gene-environment interactions in antisocial behavior are mediated by early-life 5-HT 2A receptor activation. Neuropharmacology 2019; 159:107513. [PMID: 30716416 DOI: 10.1016/j.neuropharm.2019.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
The ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy. Maoa hypomorphic transgenic mice were exposed to an early-life stress regimen consisting of maternal separation and daily intraperitoneal saline injections and were then compared with their wild-type and non-stressed controls for ASB-related neurobehavioral phenotypes. Maoa hypomorphic mice subjected to stress from postnatal day (PND) 1 through 7 - but not during the second postnatal week - developed overt aggression, social deficits and abnormal stress responses from the fourth week onwards. On PND 8, these mice exhibited low resting heart rate - a well-established premorbid sign of ASB - and a significant and selective up-regulation of serotonin 5-HT2A receptors in the prefrontal cortex. Notably, both aggression and neonatal bradycardia were rescued by the 5-HT2 receptor antagonist ketanserin (1-3 mg kg-1, IP), as well as the selective 5-HT2A receptor blocker MDL-100,907 (volinanserin, 0.1-0.3 mg kg-1, IP) throughout the first postnatal week. These findings provide the first evidence of a molecular basis of G×E interactions in ASB and point to early-life 5-HT2A receptor activation as a key mechanism for the ontogeny of this condition. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Sean C Godar
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Simona Scheggi
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Paola Devoto
- Dept. of Biomedical Sciences, Section of Neuroscience, UNICA, Monserrato, Italy
| | - Kelly M Moench
- Dept. of Psychological and Brain Sciences, Program in Neural Science and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Hunter J Strathman
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Cori M Jones
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Roberto Frau
- Dept. of Biomedical Sciences, Section of Neuroscience, UNICA, Monserrato, Italy
| | - Miriam Melis
- Dept. of Biomedical Sciences, Section of Neuroscience, UNICA, Monserrato, Italy
| | - Carla Gambarana
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute and Dept. of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Stephen C Fowler
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute and Dept. of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Cara L Wellman
- Dept. of Psychological and Brain Sciences, Program in Neural Science and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Jean C Shih
- Depts. of Pharmacology and Pharmaceutical Sciences and Integrated Anatomic Sciences, University of Southern California, Los Angeles, CA, USA
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
13
|
Zubkov EA, Zorkina YA, Orshanskaya EV, Khlebnikova NN, Krupina NA, Chekhonin VP. Post-Weaning Social Isolation Disturbs Gene Expression in Rat Brain Structures. Bull Exp Biol Med 2019; 166:364-368. [PMID: 30627904 DOI: 10.1007/s10517-019-04351-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/14/2022]
Abstract
Post-weaning social isolation of male Wistar rats for 10 weeks led to an increase of their aggressiveness, sensorimotor reactivity, and cognitive deficiency, manifesting in training disorders evaluated by the acoustic startle response (amplitude of the response decreasing). Expression of gene encoding serine protease prolyl endopeptidase (EC 3.4.21.26) in the frontal cortex was higher than in control rats kept in groups, while the level of mRNA of the gene encoding dipeptidyl peptidase IV (EC 3.4.14.5) did not differ from the control in any of the brain structures. The levels of serotonin transporter gene mRNA in the striatum and hypothalamus were higher than in the control. No appreciable changes in the expression of genes encoding tryptophan hydroxylase-2 and monoaminoxidase A and B in the frontal cortex, striatum, amygdala, hypothalamus, and hippocampus were detected. The data indicated the involvement of genes associated with the serotoninergic system in the mechanisms of mental disorders induced by post-weaning social isolation and suggest the gene encoding prolyl endopeptidase as a candidate gene involved in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- E A Zubkov
- Department of Basic and Applied Neurobiology, V. P. Serbsky National medical Research Center of Psychiatry and Narcology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Ya A Zorkina
- Department of Basic and Applied Neurobiology, V. P. Serbsky National medical Research Center of Psychiatry and Narcology, Ministry of Health of Russian Federation, Moscow, Russia
| | - E V Orshanskaya
- Laboratory of General Pathology of the Cardiorespiratory System, Moscow, Russia
| | - N N Khlebnikova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N A Krupina
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - V P Chekhonin
- Department of Basic and Applied Neurobiology, V. P. Serbsky National medical Research Center of Psychiatry and Narcology, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
14
|
Single-Photon Emission Computed Tomography and Positron Emission Tomography Studies of Antisocial Personality Disorder and Aggression: a Targeted Review. Curr Psychiatry Rep 2019; 21:24. [PMID: 30852703 PMCID: PMC6440931 DOI: 10.1007/s11920-019-1011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This paper aims to provide a comprehensive discussion of single-photon emission computed tomography (SPECT) and positron emission tomography (PET) studies of antisocial personality disorder (ASPD) and aggression. RECENT FINDINGS Among ASPD males with high impulsivity, the density of brainstem serotonin (5-HT) transporters shows a relationship with impulsivity, aggression, and ratings of childhood trauma. 5-HT1B receptor (R) binding in the striatum, anterior cingulate cortex, and orbitofrontal cortex (OFC) correlated with anger, aggression, and psychopathic traits in another study of violent offenders, most of whom were diagnosed with ASPD. Finally, the density of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that degrades 5-HT, norepinephrine, and dopamine (DA), was reported as lower in the OFC and ventral striatum of ASPD. Among non-clinical populations, 5-HT4R binding, as an index of low cerebral 5-HT levels, has been associated with high trait aggression, but only in males. Furthermore, evidence suggests that individuals with high-activity MAO-A genetic variants compared with low-activity MAO-A allelic variants release more DA in the ventral caudate and putamen when exposed to violent imagery. There are very few PET or SPECT studies that exclusively sample individuals with ASPD. However, among ASPD samples, there is evidence of regional serotonergic abnormalities in the brain and alteration of neural MAO-A levels. Future studies should consider employing additional molecular probes that could target alternative neurotransmitter systems to investigate ASPD. Furthermore, examining different typologies of aggression in clinical and non-clinical populations using SPECT/PET is another important area to pursue and could shed light on the neurochemical origins of these traits in ASPD.
Collapse
|
15
|
Zubkov EA, Zorkina YA, Orshanskaya EV, Khlebnikova NN, Krupina NA, Chekhonin VP. Changes in Gene Expression Profiles in Adult Rat Brain Structures after Neonatal Action of Dipeptidyl Peptidase-IV Inhibitors. Neuropsychobiology 2018; 76:89-99. [PMID: 29860255 DOI: 10.1159/000488367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). METHODS In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. RESULTS Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. DISCUSSION These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin.
Collapse
Affiliation(s)
- Eugene A Zubkov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Yana A Zorkina
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Elena V Orshanskaya
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | | | - Natalia A Krupina
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
16
|
Quadros VA, Costa FV, Canzian J, Nogueira CW, Rosemberg DB. Modulatory role of conspecific alarm substance on aggression and brain monoamine oxidase activity in two zebrafish populations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:322-330. [PMID: 29588212 DOI: 10.1016/j.pnpbp.2018.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristina W Nogueira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
17
|
Burke MW, Fillion M, Mejia J, Ervin FR, Palmour RM. Perinatal MAO Inhibition Produces Long-Lasting Impairment of Serotonin Function in Offspring. Brain Sci 2018; 8:brainsci8060106. [PMID: 29891804 PMCID: PMC6025445 DOI: 10.3390/brainsci8060106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022] Open
Abstract
In addition to transmitter functions, many neuroamines have trophic or ontogenetic regulatory effects important to both normal and disordered brain development. In previous work (Mejia et al., 2002), we showed that pharmacologically inhibiting monoamine oxidase (MAO) activity during murine gestation increases the prevalence of behaviors thought to reflect impulsivity and aggression. The goal of the present study was to determine the extent to which this treatment influences dopamine and serotonin innervation of murine cortical and subcortical areas, as measured by regional density of dopamine (DAT) and serotonin transporters (SERT). We measured DAT and SERT densities at 3 developmental times (PND 14, 35 and 90) following inhibition of MAO A, or MAO B or both throughout murine gestation and early post-natal development. DAT binding was unaltered within the nigrostriatal pathway, but concurrent inhibition of MAO-A and MAO-B significantly and specifically reduced SERT binding by 10–25% in both the frontal cortex and raphe nuclei. Low levels of SERT binding persisted (PND 35, 90) after the termination (PND 21) of exposure to MAO inhibitors and was most marked in brain structures germane to the previously described behavioral changes. The relatively modest level of enzyme inhibition (25–40%) required to produce these effects mandates care in the use of any compound which might inhibit MAO activity during gestation.
Collapse
Affiliation(s)
- Mark W Burke
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA.
| | - Myriam Fillion
- Departments of Biology, McGill University, Montréal, QC H3A 1A1, Canada.
| | - Jose Mejia
- Department of Psychiatry, Dalhousie University, Halifax, NS B3J 3T4, Canada.
| | - Frank R Ervin
- Department of Psychiatry, McGill University, Montréal, QC H3A 1A1, Canada.
| | - Roberta M Palmour
- Departments of Biology, McGill University, Montréal, QC H3A 1A1, Canada.
- Department of Psychiatry, McGill University, Montréal, QC H3A 1A1, Canada.
- Human Genetics, McGill University, Montréal, QC H3A 1A1, Canada.
| |
Collapse
|
18
|
Bortolato M, Floris G, Shih JC. From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency. J Neural Transm (Vienna) 2018; 125:1589-1599. [PMID: 29748850 DOI: 10.1007/s00702-018-1888-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022]
Abstract
The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct. Building on this discovery, subsequent studies were focused on the characterization of the role of MAOA in the neurobiology of antisocial conduct. MAO A knockout mice were found to display high levels of intermale aggression; however, further analyses of these mutants unveiled additional behavioral abnormalities mimicking the core symptoms of autism-spectrum disorder. These findings were strikingly confirmed in newly reported cases of Brunner syndrome. The role of MAOB in behavioral regulation remains less well-understood, even though Maob-deficient mice have been found to exhibit greater behavioral disinhibition and risk-taking responses, supporting previous clinical studies showing associations between low MAO B activity and impulsivity. Furthermore, lack of MAOB was found to exacerbate the severity of psychopathological deficits induced by concurrent MAOA deficiency. Here, we summarize how the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals, which encompass a broad spectrum of neurodevelopmental problems. This emerging knowledge poses novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, 30 S 2000 E, Salt Lake City, UT, 84112, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.,Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Godar SC, Fite PJ, McFarlin KM, Bortolato M. The role of monoamine oxidase A in aggression: Current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:90-100. [PMID: 26776902 PMCID: PMC4865459 DOI: 10.1016/j.pnpbp.2016.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
Drawing upon the recent resurgence of biological criminology, several studies have highlighted a critical role for genetic factors in the ontogeny of antisocial and violent conduct. In particular, converging lines of evidence have documented that these maladaptive manifestations of aggression are influenced by monoamine oxidase A (MAOA), the enzyme that catalyzes the degradation of brain serotonin, norepinephrine and dopamine. The interest on the link between MAOA and aggression was originally sparked by Han Brunner's discovery of a syndrome characterized by marked antisocial behaviors in male carriers of a nonsense mutation of this gene. Subsequent studies showed that MAOA allelic variants associated with low enzyme activity moderate the impact of early-life maltreatment on aggression propensity. In spite of overwhelming evidence pointing to the relationship between MAOA and aggression, the neurobiological substrates of this link remain surprisingly elusive; very little is also known about the interventions that may reduce the severity of pathological aggression in genetically predisposed subjects. Animal models offer a unique experimental tool to investigate these issues; in particular, several lines of transgenic mice harboring total or partial loss-of-function Maoa mutations have been shown to recapitulate numerous psychological and neurofunctional endophenotypes observed in humans. This review summarizes the current knowledge on the link between MAOA and aggression; in particular, we will emphasize how an integrated translational strategy coordinating clinical and preclinical research may prove critical to elucidate important aspects of the pathophysiology of aggression, and identify potential targets for its diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA
| | - Paula J Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA; Clinical Child Psychology Program, University of Kansas, Lawrence, (KS), USA
| | - Kenneth M McFarlin
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA.
| |
Collapse
|
20
|
LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proc Natl Acad Sci U S A 2016; 113:3651-6. [PMID: 26976584 DOI: 10.1073/pnas.1511974113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.
Collapse
|
21
|
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:3-43. [PMID: 26345359 DOI: 10.1002/ajmg.b.32364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.
Collapse
Affiliation(s)
- Kim Veroude
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Mireille J Bakker
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Lower Monoamine Oxidase-A Total Distribution Volume in Impulsive and Violent Male Offenders with Antisocial Personality Disorder and High Psychopathic Traits: An [(11)C] Harmine Positron Emission Tomography Study. Neuropsychopharmacology 2015; 40:2596-603. [PMID: 26081301 PMCID: PMC4569949 DOI: 10.1038/npp.2015.106] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 11/09/2022]
Abstract
Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [(11)C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=-0.50 to -0.52, all P-values<0.05). This study is the first to demonstrate lower brain MAO-A levels in ASPD. Our results support an important extension of preclinical models of impulsive aggression into a human disorder marked by pathological aggression and impulsivity.
Collapse
|
23
|
Godar SC, Mosher LJ, Strathman HJ, Gochi AM, Jones CM, Fowler SC, Bortolato M. The D1CT-7 mouse model of Tourette syndrome displays sensorimotor gating deficits in response to spatial confinement. Br J Pharmacol 2015; 173:2111-21. [PMID: 26171666 DOI: 10.1111/bph.13243] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The D1CT-7 mouse is one of the best known animal models of Tourette syndrome (TS), featuring spontaneous tic-like behaviours sensitive to standard TS therapies; these characteristics ensure a high face and predictive validity of this model, yet its construct validity remains elusive. To address this issue, we studied the responses of D1CT-7 mice to two critical components of TS pathophysiology: the exacerbation of tic-like behaviours in response to stress and the presence of sensorimotor gating deficits, which are thought to reflect the perceptual alterations causing the tics. EXPERIMENTAL APPROACH D1CT-7 and wild-type (WT) littermates were subjected to a 20 min session of spatial confinement (SC) within an inescapable, 10 cm wide cylindrical enclosure. Changes in plasma corticosterone levels, tic-like behaviours and other spontaneous responses were measured. SC-exposed mice were also tested for the prepulse inhibition (PPI) of the startle response (a sensorimotor gating index) and other TS-related behaviours, including open-field locomotion, novel object exploration and social interaction and compared with non-confined counterparts. KEY RESULTS SC produced a marked increase in corticosterone concentrations in both D1CT-7 and WT mice. In D1CT-7, but not WT mice, SC exacerbated tic-like and digging behaviours, and triggered PPI deficits and aggressive responses. Conversely, SC did not modify locomotor activity or novel object exploration in D1CT-7 mice. Both tic-like behaviours and PPI impairments in SC-exposed D1CT-7 mice were inhibited by standard TS therapies and D1 dopamine receptor antagonism. CONCLUSIONS AND IMPLICATIONS These findings collectively support the translational and construct validity of D1CT-7 mice with respect to TS. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Hunter J Strathman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Andrea M Gochi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Cori M Jones
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Stephen C Fowler
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA.,Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
24
|
Godar SC, Bortolato M, Richards SE, Li FG, Chen K, Wellman CL, Shih JC. Monoamine Oxidase A is Required for Rapid Dendritic Remodeling in Response to Stress. Int J Neuropsychopharmacol 2015; 18:pyv035. [PMID: 25857821 PMCID: PMC4576521 DOI: 10.1093/ijnp/pyv035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acute stress triggers transient alterations in the synaptic release and metabolism of brain monoamine neurotransmitters. These rapid changes are essential to activate neuroplastic processes aimed at the appraisal of the stressor and enactment of commensurate defensive behaviors. Threat evaluation has been recently associated with the dendritic morphology of pyramidal cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA); thus, we examined the rapid effects of restraint stress on anxiety-like behavior and dendritic morphology in the BLA and OFC of mice. Furthermore, we tested whether these processes may be affected by deficiency of monoamine oxidase A (MAO-A), the primary enzyme catalyzing monoamine metabolism. METHODS Following a short-term (1-4h) restraint schedule, MAO-A knockout (KO) and wild-type (WT) mice were sacrificed, and histological analyses of dendrites in pyramidal neurons of the BLA and OFC of the animals were performed. Anxiety-like behaviors were examined in a separate cohort of animals subjected to the same experimental conditions. RESULTS In WT mice, short-term restraint stress significantly enhanced anxiety-like responses, as well as a time-dependent proliferation of apical (but not basilar) dendrites of the OFC neurons; conversely, a retraction in BLA dendrites was observed. None of these behavioral and morphological changes were observed in MAO-A KO mice. CONCLUSIONS These findings suggest that acute stress induces anxiety-like responses by affecting rapid dendritic remodeling in the pyramidal cells of OFC and BLA; furthermore, our data show that MAO-A and monoamine metabolism are required for these phenomena.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA (Drs Godar, Chen, and Shih and Mr Li); Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA (Dr Shih); Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS (Drs Godar and Bortolato); Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, (Drs Godar and Bortolato); Department of Psychological & Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN (Ms Richards and Dr Wellman)
| |
Collapse
|
25
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
26
|
Strata F, Giritharan G, Sebastiano FD, Piane LD, Kao CN, Donjacour A, Rinaudo P. Behavior and brain gene expression changes in mice exposed to preimplantation and prenatal stress. Reprod Sci 2014; 22:23-30. [PMID: 25398605 DOI: 10.1177/1933719114557900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preimplantation culture of mouse embryos has been suggested to result in reduced anxiety-like behavior in adulthood. Here, we investigated the effects of in vitro fertilization (IVF), embryo culture, and different diets on anxiety-like behavior using the elevated plus maze (EPM). We hypothesized that exposure to suboptimal conditions during the preimplantation stage would interact with the suboptimal diet to alter behavior. The expression of genes related to anxiety was then assessed by quantitative real-time polymerase chain reaction in various brain regions. When fed a normal diet during gestation and a moderately high-fat Western diet (WD) postnatally, naturally conceived (NC) and IVF mice showed similar anxiety-like behavior on the EPM. However, when fed a low-protein diet prenatally and a high-fat diet postnatally (LP/HF), NC mice showed a modest increase in anxiety-like behavior, whereas IVF mice showed the opposite: a strongly reduced anxiety-like behavior on the EPM. The robust reduction in anxiety-like behavior in IVF males fed the LP/HF diets was, intriguingly, associated with reduced expression of MAO-A, CRFR2, and GABA markers in the hypothalamus and cortex. These findings are discussed in relation to the developmental origin of health and disease hypothesis and the 2-hit model, which suggests that 2 events, occurring at different times in development, can act synergistically with long-term consequences observed during adulthood.
Collapse
Affiliation(s)
- Fabrizio Strata
- Dept. of Reproductive Science, University of California San Francisco, San Francisco, CA, USA Dept. Neuroscience, Med. School, Parma University, Parma, Italy
| | - Gnanaratnam Giritharan
- Dept. of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Chia-Ning Kao
- Dept. of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Donjacour
- Dept. of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| | - Paolo Rinaudo
- Dept. of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. J Psychiatr Res 2014; 58:69-75. [PMID: 25082653 PMCID: PMC4369574 DOI: 10.1016/j.jpsychires.2014.07.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/03/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
Abstract
The main enzyme for serotonin degradation, monoamine oxidase (MAO) A, has recently emerged as a key biological factor in the predisposition to impulsive aggression. Male carriers of low-activity variants of the main functional polymorphism of the MAOA gene (MAOA-uVNTR) have been shown to exhibit a greater proclivity to engage in violent acts. Thus, we hypothesized that low-activity MAOA-uVNTR alleles may be associated with a higher risk for criminal violence among male offenders. To test this possibility, we analyzed the MAOA-uVNTR variants of violent (n = 49) and non-violent (n = 40) male Caucasian and African-American convicts in a correctional facility. All participants were also tested with the Childhood Trauma Questionnaire (CTQ), Barratt Impulsivity Scale (BIS-11) and Buss-Perry Aggression Questionnaire (BPAQ) to assess their levels of childhood trauma exposure, impulsivity and aggression, respectively. Our results revealed a robust (P < 0.0001) association between low-activity MAOA-uVNTR alleles and violent crime. This association was replicated in the group of Caucasian violent offenders (P < 0.01), but reached only a marginal trend (P = 0.08) in their African American counterparts. While violent crime charges were not associated with CTQ, BIS-11 and BPAQ scores, carriers of low-activity alleles exhibited a mild, yet significant (P < 0.05) increase in BIS-11 total and attentional-impulsiveness scores. In summary, these findings support the role of MAOA gene as a prominent genetic determinant for criminal violence. Further studies are required to confirm these results in larger samples of inmates and evaluate potential interactions between MAOA alleles and environmental vulnerability factors.
Collapse
|
28
|
Godar SC, Mosher LJ, Di Giovanni G, Bortolato M. Animal models of tic disorders: a translational perspective. J Neurosci Methods 2014; 238:54-69. [PMID: 25244952 DOI: 10.1016/j.jneumeth.2014.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta; School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
29
|
Godar SC, Bortolato M, Castelli MP, Casti A, Casu A, Chen K, Ennas MG, Tambaro S, Shih JC. The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. J Psychiatr Res 2014; 56:1-9. [PMID: 24882701 PMCID: PMC4114985 DOI: 10.1016/j.jpsychires.2014.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/20/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
The termination of serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is regulated by its uptake by the 5-HT transporter (5-HTT), as well as its degradation by monoamine oxidase (MAO)-A. MAO-A deficiency results in a wide set of behavioral alterations, including perseverative behaviors and social deficits. These anomalies are likely related to 5-HTergic homeostatic imbalances; however, the role of 5-HTT in these abnormalities remains unclear. To ascertain the role of 5-HTT in the behavioral anomalies associated to MAO-A deficiency, we tested the behavioral effects of its blocker fluoxetine on perseverative, social and aggressive behaviors in transgenic animals with hypomorphic or null-allele MAO-A mutations. Acute treatment with the 5-HTT blocker fluoxetine (10 mg/kg, i.p.) reduced aggressive behavior in MAO-A knockout (KO) mice and social deficits in hypomorphic MAO-A(Neo) mice. Furthermore, this treatment also reduced perseverative responses (including marble burying and water mist-induced grooming) in both MAO-A mutant genotypes. Both MAO-A mutant lines displayed significant reductions in 5-HTT expression across the prefrontal cortex, amygdala and striatum, as quantified by immunohistochemical detection; however, the down-regulation of 5-HTT in MAO-A(Neo) mice was more pervasive and widespread than in their KO counterparts, possibly indicating a greater ability of the hypomorphic line to enact compensatory mechanisms with respect to 5-HT homeostasis. Collectively, these findings suggest that the behavioral deficits associated with low MAO-A activity may reflect developmental alterations of 5-HTT within 5-HTergic neurons. Furthermore, the translational implications of our results highlight 5-HT reuptake inhibition as an interesting approach for the control of aggressive outbursts in MAO-A deficient individuals.
Collapse
Affiliation(s)
- Sean C Godar
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA.
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, CA, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, University of Cagliari, CA, Italy
| | - Angelo Casu
- Department of Biomedical Sciences, University of Cagliari, CA, Italy
| | - Kevin Chen
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - M Grazia Ennas
- Department of Biomedical Sciences, University of Cagliari, CA, Italy
| | - Simone Tambaro
- Dept. of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Jean C Shih
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Yu Q, Teixeira CM, Mahadevia D, Huang YY, Balsam D, Mann JJ, Gingrich JA, Ansorge MS. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 2014; 19:688-98. [PMID: 24589889 PMCID: PMC4311886 DOI: 10.1038/mp.2014.10] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypoactivity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (>P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction.
Collapse
Affiliation(s)
- Qinghui Yu
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Department of Biological Sciences, Columbia University, New York
| | - Cátia M. Teixeira
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| | - Darshini Mahadevia
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| | - Yung-Yu Huang
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York
| | - Daniel Balsam
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York
| | - Jay A Gingrich
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York,To whom correspondence should be addressed: Sackler Professor of Clinical Developmental Psychobiology in the Dept. of Psychiatry, Director, Sackler Institute for Developmental Psychobiology, Division of Developmental Neuroscience, Columbia University and the NYSPI, 1051 Riverside Drive, room 4911A New York, NY 10032, , 212-543-6083
| | - Mark S. Ansorge
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| |
Collapse
|
31
|
Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology 2014; 81:15-30. [PMID: 24486710 DOI: 10.1016/j.neuropharm.2014.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
Abstract
Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders.
Collapse
Affiliation(s)
- Maude Beaudoin-Gobert
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France
| | - Véronique Sgambato-Faure
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France.
| |
Collapse
|
32
|
Dorfman HM, Meyer-Lindenberg A, Buckholtz JW. Neurobiological mechanisms for impulsive-aggression: the role of MAOA. Curr Top Behav Neurosci 2014; 17:297-313. [PMID: 24470068 DOI: 10.1007/7854_2013_272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aggression may be present across a large part of the spectrum of psychopathology, and underlies costly criminal antisocial behaviors. Human aggression is a complex and underspecified construct, confounding scientific discovery. Nevertheless, some biologically tractable subtypes are apparent, and one in particular-impulsive (reactive) aggression-appears to account for many facets of aggression-related dysfunction in psychiatric illness. Impulsive-aggression is significantly heritable, suggesting genetic transmission. However, the specific neurobiological mechanisms that mediate genetic risk for impulsive-aggression remain unclear. Here, we review extant data on the genetics and neurobiology of individual differences in impulsive-aggression, with particular attention to the role of genetic variation in Monoamine Oxidase A (MAOA) and its impact on serotonergic signaling within corticolimbic circuitry.
Collapse
Affiliation(s)
- Hayley M Dorfman
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
33
|
Bortolato M, Godar SC, Tambaro S, Li FG, Devoto P, Coba MP, Chen K, Shih JC. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice. Neuropharmacology 2013; 75:223-32. [PMID: 23871843 PMCID: PMC3849223 DOI: 10.1016/j.neuropharm.2013.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
Monoamine oxidase (MAO) A, the major enzyme catalyzing the oxidative degradation of serotonin (5-hydroxytryptamine, 5-HT), plays a key role in emotional regulation. In humans and mice, MAO-A deficiency results in high 5-HT levels, antisocial, aggressive, and perseverative behaviors. We previously showed that the elevation in brain 5-HT levels in MAO-A knockout (KO) mice is particularly marked during the first two weeks of postnatal life. Building on this finding, we hypothesized that the reduction of 5-HT levels during these early stages may lead to enduring attenuations of the aggression and other behavioral aberrances observed in MAO-A KO mice. To test this possibility, MAO-A KO mice were treated with daily injections of a 5-HT synthesis blocker, the tryptophan hydroxylase inhibitor p-chloro-phenylalanine (pCPA, 300 mg/kg/day, IP), from postnatal day 1 through 7. As expected, this regimen significantly reduced 5-HT forebrain levels in MAO-A KO pups. These neurochemical changes persisted throughout adulthood, and resulted in significant reductions in marble-burying behavior, as well as increases in spontaneous alternations within a T-maze. Conversely, pCPA-treated MAO-A KO mice did not exhibit significant changes in anxiety-like behaviors in a novel open-field and elevated plus-maze; furthermore, this regimen did not modify their social deficits, aggressive behaviors and impairments in tactile sensitivity. Treatment with pCPA from postnatal day 8 through 14 elicited similar, yet milder, behavioral effects on marble-burying behavior. These results suggest that early developmental enhancements in 5-HT levels have long-term effects on the modulation of behavioral flexibility associated with MAO-A deficiency.
Collapse
Affiliation(s)
- Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, MH 5040, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA.
| | - Sean C Godar
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Felix G Li
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Paola Devoto
- "Guy Everett" Laboratory, Dept. of Neuroscience "B.B. Brodie", University of Cagliari, 09124 Monserrato, CA, Italy
| | - Marcelo P Coba
- Dept. of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kevin Chen
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Jean C Shih
- Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; Dept. of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
34
|
Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sajiki J, Shimizu E. Perinatal exposure to bisphenol A enhances contextual fear memory and affects the serotoninergic system in juvenile female mice. Horm Behav 2013; 63:709-16. [PMID: 23567477 DOI: 10.1016/j.yhbeh.2013.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Perinatal exposure to bisphenol A (BPA), an endocrine-disrupting chemical, affects the central nervous system, including effects on emotional responses and neurotransmitter release. In this study, we investigated the effects of BPA (250 ng/kg/day, from gestational day 10 to postnatal day 20) on fear memory and serotonin (5-HT) metabolites in the brain using contextual fear conditioning (FC) and high-performance liquid chromatography (HPLC), respectively, in adult and juvenile mice of both sexes. Furthermore, we studied the effects of BPA on the gene expression of 5-HT metabolite-related enzymes and 5-HT receptors using quantitative real-time RT PCR in the brains of juvenile females. BPA enhanced fear memory and increased serotonin metabolite (5-HIAA) levels and 5-HIAA/5-HT in the hippocampus, the striatum, the midbrain, the pons, and the medulla oblongata of juvenile female mice. In contrast, alterations in those areas were much smaller in adult females and in both juvenile and adult males. Furthermore, BPA induced increases in the expression levels of Tph2, Slc6a4, and Maoa mRNA in the hippocampus of juvenile females, indicating that BPA induces hyper 5-HT turnover in the hippocampus. Our results suggest that perinatal exposure to a low dose of BPA enhances fear memory and the 5-HTergic system in juvenile mice.
Collapse
Affiliation(s)
- Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOA deficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problems.
Collapse
|
36
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
37
|
Abstract
Converging evidence shows that monoamine oxidase A (MAO A), the key enzyme catalyzing serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine (NE) degradation, is a primary factor in the pathophysiology of antisocial and aggressive behavior. Accordingly, male MAO A-deficient humans and mice exhibit an extreme predisposition to aggressive outbursts in response to stress. As NMDARs regulate the emotional reactivity to social and environmental stimuli, we hypothesized their involvement in the modulation of aggression mediated by MAO A. In comparison with WT male mice, MAO A KO counterparts exhibited increases in 5-HT and NE levels across all brain regions, but no difference in glutamate concentrations and NMDAR binding. Notably, the prefrontal cortex (PFC) of MAO A KO mice exhibited higher expression of NR2A and NR2B, as well as lower levels of glycosylated NR1 subunits. In line with these changes, the current amplitude and decay time of NMDARs in PFC was significantly reduced. Furthermore, the currents of these receptors were hypersensitive to the action of the antagonists of the NMDAR complex (dizocilpine), as well as NR2A (PEAQX) and NR2B (Ro 25-6981) subunits. Notably, systemic administration of these agents selectively countered the enhanced aggression in MAO A KO mice, at doses that did not inherently affect motor activity. Our findings suggest that the role of MAO A in pathological aggression may be mediated by changes in NMDAR subunit composition in the PFC, and point to a critical function of this receptor in the molecular bases of antisocial personality.
Collapse
|
38
|
Murine model of repeated exposures to conspecific trained aggressors simulates features of post-traumatic stress disorder. Behav Brain Res 2012; 235:55-66. [PMID: 22824590 DOI: 10.1016/j.bbr.2012.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/07/2012] [Accepted: 07/12/2012] [Indexed: 12/12/2022]
Abstract
We evaluated repeated exposures of mice to a trained aggressor mouse as a model (adapted from "social stress" models of traumatic stress) for aspects of post-traumatic stress disorder (PTSD). Using a "cage-within-cage resident-intruder" protocol, subject C57BL/6J mice were exposed to aggressors for 6 h daily for 5 or 10 days. At one to three random times during each 6-h session, subjects were exposed directly to aggressor for 1 min or 10 bites, whichever came first. Behavioral, physiological, and histological changes associated with aggressor-exposure were assessed for up to 6 weeks. During aggressor exposure, subjects displayed less territorial behavior, gained weight, and increased body temperature. One day after the last aggressor exposure, inflammatory cardiac histopathologies were prevalent; after 10 days, only mild myocardial degeneration with fibrosis or fibroplasias was evident, while controls showed almost no cardiac abnormalities at any time. After 4 weeks, the medial prefrontal cortex of control mice showed increased dendritic spine density, but aggressor-exposed mice showed no increase. Behaviors affected by aggressor exposure were evaluated in a partition test wherein the subject mouse is separated from the aggressor by a fenestrated partition that permits sensory cues to pass but prevents direct physical interaction. For up to 4-6 weeks after the last aggressor exposure, subjects showed prolonged grooming, freezing, retarded locomotion and no tail rattling. PTSD and its co-morbidities are often consequent to repeated aggravated "social" assaults (e.g., combat) and manifest socially over time, suggesting the relevance of this repeated aggressor-exposure model to clinical aspects of PTSD.
Collapse
|
39
|
Social deficits and perseverative behaviors, but not overt aggression, in MAO-A hypomorphic mice. Neuropsychopharmacology 2011; 36:2674-88. [PMID: 21832987 PMCID: PMC3230491 DOI: 10.1038/npp.2011.157] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monoamine oxidase (MAO)-A is a key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine (NE). In humans and mice, total MAO-A deficiency results in high 5-HT and NE levels, as well as elevated reactive aggression. Here we report the generation of MAO-A(Neo) mice, a novel line of hypomorphic MAO-A mutants featuring the insertion of a floxed neomycin-resistance cassette in intron-12 of the Maoa gene. This construct resulted in a chimeric, non-functional variant of the Maoa-Neo transcript, with a truncated C-terminus, likely due to aberrant splicing; these deficits notwithstanding, small amounts of functional Maoa transcript were found in the brain of MAO-A(Neo) mice. In the prefrontal cortex and amygdala, MAO-A(Neo) mice showed low, yet detectable, MAO-A catalytic activity, as well as 5-HT levels equivalent to WT littermates; conversely, the hippocampus and midbrain of MAO-A(Neo) mice featured a neurochemical profile akin to MAO-A-knockout (KO) mice, with undetectable MAO-A activity and high 5-HT concentrations. MAO-A(Neo) mice showed significant increases in dendritic length in the pyramidal neurons of orbitofrontal cortex, but not basolateral amygdala, in comparison with WT littermates; by contrast, the orbitofrontal cortex of MAO-A KO mice showed significant reductions in basilar dendritic length, as well as a profound increase in apical dendritic length. MAO-A(Neo) mice showed a unique set of behavioral abnormalities, encompassing reduced open-field locomotion, perseverative responses, such as marble burying and water mist-induced grooming, and a lack of anxiety-like behaviors in the elevated plus-maze and light-dark box paradigms. Notably, whereas MAO-A(Neo) and KO mice showed significant reductions in social interaction, only the latter genotype showed increases in resident-intruder aggression. Taken together, our findings indicate that MAO A hypomorphism results in behavioral and morphological alterations distinct from those featured by MAO-A KO mice.
Collapse
|
40
|
Bortolato M, Shih JC. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:13-42. [PMID: 21971001 DOI: 10.1016/b978-0-12-386467-3.00002-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Monoamine oxidase (MAO) isoenzymes A and B are mitochondrial-bound proteins, catalyzing the oxidative deamination of monoamine neurotransmitters as well as xenobiotic amines. Although they derive from a common ancestral progenitor gene, are located at X-chromosome and display 70% structural identity, their substrate preference, regional distribution, and physiological role are divergent. In fact, while MAO-A has high affinity for serotonin and norepinephrine, MAO-B primarily serves the catabolism of 2-phenylethylamine (PEA) and contributes to the degradation of other trace amines and dopamine. Convergent lines of preclinical and clinical evidence indicate that variations in MAO enzymatic activity--due to either genetic or environmental factors--can exert a profound influence on behavioral regulation and play a role in the pathophysiology of a large spectrum of mental and neurodegenerative disorders, ranging from antisocial personality disorder to Parkinson's disease. Over the past few years, numerous advances have been made in our understanding of the phenotypical variations associated with genetic polymorphisms and mutations of the genes encoding for both isoenzymes. In particular, novel findings on the phenotypes of MAO-deficient mice are highlighting novel potential implications of both isoenzymes in a broad spectrum of mental disorders, ranging from autism and anxiety to impulse-control disorders and ADHD. These studies will lay the foundation for future research on the neurobiological and neurochemical bases of these pathological conditions, as well as the role of gene × environment interactions in the vulnerability to several mental disorders.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|