1
|
Wang B, He T, Qiu G, Li C, Xue S, Zheng Y, Wang T, Xia Y, Yao L, Yan J, Chen Y. Altered synaptic homeostasis: a key factor in the pathophysiology of depression. Cell Biosci 2025; 15:29. [PMID: 40001206 PMCID: PMC11863845 DOI: 10.1186/s13578-025-01369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Depression, a widespread psychiatric disorder, is characterized by a diverse array of symptoms such as melancholic mood and anhedonia, imposing a significant burden on both society and individuals. Despite extensive research into the neurobiological foundations of depression, a complete understanding of its complex mechanisms is yet to be attained, and targeted therapeutic interventions remain under development. Synaptic homeostasis, a compensatory feedback mechanism, involves neurons adjusting synaptic strength by regulating pre- or postsynaptic processes. Recent advancements in depression research reveal a crucial association between the disorder and disruptions in synaptic homeostasis within neural regions and circuits pivotal for emotional and cognitive functions. This paper explores the mechanisms governing synaptic homeostasis in depression, focusing on the role of ion channels, the regulation of presynaptic neurotransmitter release, synaptic scaling processes, and essential signaling molecules. By mapping new pathways in the study of synaptic homeostasis as it pertains to depression, this research aims to provide valuable insights for identifying novel therapeutic targets for more effective antidepressant treatments.
Collapse
Affiliation(s)
- Bokai Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Teng He
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guofan Qiu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chong Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Song Xue
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Guo Z, Xiao S, Sun S, Su T, Tang X, Chen G, Chen P, Chen R, Chen C, Gong J, Yang Z, Huang L, Jia Y, Wang Y. Neural Activity Alterations and Their Association With Neurotransmitter and Genetic Profiles in Schizophrenia: Evidence From Clinical Patients and Unaffected Relatives. CNS Neurosci Ther 2025; 31:e70218. [PMID: 39924342 PMCID: PMC11807726 DOI: 10.1111/cns.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND The pattern of abnormal resting-state brain function has been documented in schizophrenia (SCZ). However, as of yet, it remains unclear whether this pattern is of genetic predisposition or related to the illness itself. METHODS A systematical meta-analysis was performed to identify resting-state functional differences in probands and their high-risk first-degree relatives of schizophrenia (FDRs-SCZ) using Seed-based d Mapping software. Subsequently, spatial associations between postmortem gene expression and neurotransmitters distribution data and neural activity alterations were conducted to uncover neural mechanisms underlaying FDRs-SCZ and SCZ from a multidimensional perspective. RESULTS A total of 13 studies comprising 503 FDRs-SCZ and 605 healthy controls (HCs) and 129 studies comprising 6506 patients with SCZ and 6982 HCs were included. Compared to HCs, FDRs-SCZ displayed increased spontaneous functional activity in the bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC); patients with SCZ showed decreased spontaneous functional activity in the bilateral ACC/mPFC, bilateral postcentral gyrus, and right middle temporal gyrus as well as increased spontaneous functional activity in the bilateral striatum. The altered functional activity in FDRs-SCZ and SCZ shared similar spatial associations with genes enriched in potassium ion transmembrane transport, channel activity, and complex. The FDRs-SCZ and SCZ-related brain functional patterns were additionally associated with dopaminergic, serotonergic, and cholinergic neurotransmitter distribution. CONCLUSIONS SCZ-related resting-state functional, neuroimaging transcriptomes, and neurotransmitters abnormalities may exist in high-risk unaffected FDRs-SCZ, rather than just in overt SCZ. The study extended the evidence that altered brain function, along with their spatial correlations to genetics and neurotransmitter systems, may associate with genetic vulnerability for SCZ.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Shu Xiao
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
- Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouChina
| | - Shilin Sun
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Ting Su
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
- Department of RadiologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xinyue Tang
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Guanmao Chen
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Pan Chen
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Ruoyi Chen
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Chao Chen
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Jiaying Gong
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
- Department of RadiologySix Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zibin Yang
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
- Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouChina
| | - Li Huang
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| | - Yanbin Jia
- Department of PsychiatryFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ying Wang
- Medical Imaging CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
- Institute of Molecular and Functional ImagingJinan UniversityGuangzhouChina
| |
Collapse
|
3
|
He K, Zhang J, Huang Y, Mo X, Yu R, Min J, Zhu T, Ma Y, He X, Lv F, Zeng J, Li C, McNamara RK, Lei D, Liu M. Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder. Neuroradiology 2025:10.1007/s00234-025-03544-x. [PMID: 39825893 DOI: 10.1007/s00234-025-03544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD. METHODS A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging. Cortical thickness, surface area, and subcortical volumes were measured using FreeSurfer software. Common and classic machine learning models were utilized to identify distinct morphometric alterations between BD and MDD. RESULTS Significant morphological differences were observed in both common and distinct brain regions between BD, MDD, and HC. Specifically, abnormalities in the amygdala, thalamus, medial orbitofrontal cortex and fusiform were observed in both BD and MDD compared with HC. Relative to HC, unique differences in BD were identified in the lateral occipital and inferior/middle temporal regions, whereas MDD exhibited differences in nucleus accumbens and middle temporal regions. BD exhibited larger surface area in right middle temporal gyrus and greater right nucleus accumbens volume compared to MDD. The integration of two-stage models, including deep neural network (DNN) and support vector machine (SVM), achieved an accuracy rate of 91.2% in discriminating individuals with BD from MDD. CONCLUSION These findings demonstrate that structural MRI combined with machine learning techniques can accurately discriminate individuals with BD from MDD, and provide a foundation supporting the potential of this approach to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Kewei He
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Jingbo Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xue Mo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Min
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Tong Zhu
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yunfeng Ma
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangqian He
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Chao Li
- Department of Clinical Neurosciences, Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhang J, Zhu Y, Zhang M, Yan J, Zheng Y, Yao L, Li Z, Shao Z, Chen Y. Potassium channels in depression: emerging roles and potential targets. Cell Biosci 2024; 14:136. [PMID: 39529121 PMCID: PMC11555980 DOI: 10.1186/s13578-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Potassium ion channels play a fundamental role in regulating cell membrane repolarization, modulating the frequency and shape of action potentials, and maintaining the resting membrane potential. A growing number of studies have indicated that dysfunction in potassium channels associates with the pathogenesis and treatment of depression. However, the involvement of potassium channels in the onset and treatment of depression has not been thoroughly summarized. In this review, we performed a comprehensive analysis of the association between multiple potassium channels and their roles in depression, and compiles the SNP loci of potassium channels associated with depression, as well as antidepressant drugs that target these channels. We discussed the pivotal role of potassium channels in the treatment of depression, provide valuable insights into new therapeutic targets for antidepressant treatment and critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jiahao Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yao Zhu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ziwei Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zihan Shao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Iglesias-Martínez-Almeida M, Campos-Ríos A, Freiría-Martínez L, Rivera-Baltanás T, Rodrígues-Amorím D, Diz-Chaves Y, Comis-Tuche M, Fernández-Palleiro P, Rodríguez-Jamardo C, Ramos-García S, Rodríguez-Tébar A, Del Carmen Vallejo-Curto M, Campos-Pérez JA, López-García M, de Las Heras E, García-Caballero A, Olivares JM, Lamas JA, Spuch C. Characterization and modulation of voltage-gated potassium channels in human lymphocytes in schizophrenia. Schizophr Res 2024; 270:260-272. [PMID: 38944972 DOI: 10.1016/j.schres.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND It is known that the immune system is dysregulated in schizophrenia, having a state similar to chronic neuroinflammation. The origin of this process is unknown, but it is known that T and B lymphocytes, which are components of the adaptive immune system, play an important role in the pathogenic mechanisms of schizophrenia. METHODS We analysed the membrane of PBMCs from patients diagnosed with schizophrenia through proteomic analysis (n = 5 schizophrenia and n = 5 control). We found the presence of the Kv1.3 voltage-gated potassium channel and its auxiliary subunit β1 (KCNAB1) and β2 (KCNAB2). From a sample of 90 participants, we carried out a study on lymphocytes with whole-cell patch-clamp experiments (n = 7 schizophrenia and n = 5 control), western blot (n = 40 schizophrenia and n = 40 control) and confocal microscopy to evaluate the presence and function of different channels. Kv in both cells. RESULTS We demonstrated the overexpression of Kv1.1, Kv1.2, Kv1.3, Kv1.6, Kv4.2, Kv4.3 and Kv7.2 channels in PBMCs from patients with schizophrenia. This study represents a groundbreaking exploration, as it involves an electrophysiological analysis performed on T and B lymphocytes from patients diagnosed of schizophrenia compared to healthy participants. We observed that B lymphocytes exhibited an increase in output current along with greater peak current amplitude and voltage conductance curves among patients with schizophrenia compared with healthy controls. CONCLUSIONS This study showed the importance of the B lymphocyte in schizophrenia. We know that the immune system is altered in schizophrenia, but the physiological mechanisms of this system are not very well known. We suggest that the B lymphocyte may be relevant in the pathophysiology of schizophrenia and that it should be investigated in more depth, opening a new field of knowledge and possibilities for new treatments combining antipsychotics and immunomodulators. The limitation is that all participants received antipsychotic medication, which may have influenced the differences observed between patients and controls. This implies that more studies need to be done where the groups can be separated according to the antipsychotic drug.
Collapse
Affiliation(s)
- Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; University of Vigo, Vigo, Spain
| | - Ana Campos-Ríos
- Laboratory of neuroscience, University of Vigo, Department of Functional Biology and Health Sciences, Vigo, Spain; Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, Vigo, Spain
| | - Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; University of Vigo, Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; University of Vigo, Vigo, Spain; CIBERSAM, Madrid, Spain
| | - Daniela Rodrígues-Amorím
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | | | - María Comis-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; University of Vigo, Vigo, Spain
| | - Silvia Ramos-García
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | | | | - Jose Antonio Campos-Pérez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Marta López-García
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Elena de Las Heras
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Alejandro García-Caballero
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jose M Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; CIBERSAM, Madrid, Spain
| | - Jose A Lamas
- Laboratory of neuroscience, University of Vigo, Department of Functional Biology and Health Sciences, Vigo, Spain; Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; CIBERSAM, Madrid, Spain.
| |
Collapse
|
6
|
Wang A, Zhou Y, Chen H, Jin J, Mao Y, Tao S, Qiu T. Inhibition of SK Channels in VTA Affects Dopaminergic Neurons to Improve the Depression-Like Behaviors of Post-Stroke Depression Rats. Neuropsychiatr Dis Treat 2023; 19:2127-2139. [PMID: 37840624 PMCID: PMC10572402 DOI: 10.2147/ndt.s426091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to investigate the effect of small-conductance calcium-activated potassium channels (SK channels) on the dopaminergic (DA) neuron pathways in the ventral tegmental area (VTA) during the pathogenesis of post-stroke depression (PSD) and explore the improvement of PSD by inhibiting the SK channels. Patients and Methods Four groups of Sprague-Dawley rats were randomly divided: Control, PSD, SK channel inhibitor (apamin) and SK channel activator (CyPPA) groups. In both control and CyPPA groups, sham surgery was performed. In the other two groups, middle cerebral arteries were occluded. The behavioral indicators related to depression in different groups were compared. Immunofluorescence was used to measure the activity of DA neurons in the VTA, while qRT-PCR was used to assess the expression of SK channel genes. Results The results showed that apamin treatment improved behavioral indicators related to depression compared to the PSD group. Furthermore, the qRT-PCR analysis revealed differential expression of the KCNN1 and KCNN3 subgenes of the SK channels in each group. Immunofluorescence analysis revealed an increase in the expression of DA neurons in the VTA of the PSD group, which was subsequently reduced upon apamin intervention. Conclusion This study suggests that SK channel activation following stroke contributes to depression-related behaviors in PSD rats through increased expression of DA neurons in the VTA. And depression-related behavior is improved in PSD rats by inhibiting the SK channels. The results of this study provide a new understanding of PSD pathogenesis and the possibility of developing new strategies to prevent PSD by targeting SK channels.
Collapse
Affiliation(s)
- Anqi Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Yujia Zhou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Huangying Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Jiawei Jin
- First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Yingqi Mao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Shuiliang Tao
- Basic Medicine College, Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| | - Tao Qiu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Bloch Priel S, Yitzhaky A, Gurwitz D, Hertzberg L. Cannabinoid receptor gene CNR1 is downregulated in subcortical brain samples and upregulated in blood samples of individuals with schizophrenia: A participant data systematic meta-analysis. Eur J Neurosci 2023; 58:3540-3554. [PMID: 37611908 DOI: 10.1111/ejn.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Cannabis use leads to symptom exacerbation in schizophrenia patients, and endocannabinoid ligands have been studied as tentative schizophrenia therapeutics. Here, we aimed to characterise the connection between schizophrenia and the cannabinoid receptor 1 gene (CNR1) and explore possible mechanisms affecting its expression in schizophrenia. We performed a participant data systematic meta-analysis of CNR1 gene expression and additional endocannabinoid system genes in both brain (subcortical areas) and blood samples. We integrated eight brain sample datasets (overall 316 samples; 149 schizophrenia and 167 controls) and two blood sample datasets (overall 90 samples; 53 schizophrenia and 37 controls) while following the PRISMA meta-analysis guidelines. CNR1 was downregulated in subcortical regions and upregulated in blood samples of patients with schizophrenia. CNR2 and genes encoding endocannabinoids synthesis and degradation did not show differential expression in the brain or blood, except fatty acid amide hydrolase (FAAH), which showed a downregulation trend in blood. In addition, the brain expression levels of CNR1 and three GABA receptor genes, GABRA1, GABRA6 and GABRG2, were positively correlated (R = .57, .36, .54; p = 2.7 × 10-14 , 6.9 × 10-6 and 1.1 × 10-12 , respectively). Brain CNR1 downregulation and the positive correlation with three GABA receptor genes suggest an association with GABA neurotransmission and possible effects on negative schizophrenia symptoms. Further studies are required for clarifying the opposite CNR1 dysregulation in the brain and blood of schizophrenia patients and the potential of endocannabinoid ligands as schizophrenia therapeutics.
Collapse
Affiliation(s)
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, affiliated with the Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Garrido JJ. Contribution of Axon Initial Segment Structure and Channels to Brain Pathology. Cells 2023; 12:cells12081210. [PMID: 37190119 DOI: 10.3390/cells12081210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Brain channelopathies are a group of neurological disorders that result from genetic mutations affecting ion channels in the brain. Ion channels are specialized proteins that play a crucial role in the electrical activity of nerve cells by controlling the flow of ions such as sodium, potassium, and calcium. When these channels are not functioning properly, they can cause a wide range of neurological symptoms such as seizures, movement disorders, and cognitive impairment. In this context, the axon initial segment (AIS) is the site of action potential initiation in most neurons. This region is characterized by a high density of voltage-gated sodium channels (VGSCs), which are responsible for the rapid depolarization that occurs when the neuron is stimulated. The AIS is also enriched in other ion channels, such as potassium channels, that play a role in shaping the action potential waveform and determining the firing frequency of the neuron. In addition to ion channels, the AIS contains a complex cytoskeletal structure that helps to anchor the channels in place and regulate their function. Therefore, alterations in this complex structure of ion channels, scaffold proteins, and specialized cytoskeleton may also cause brain channelopathies not necessarily associated with ion channel mutations. This review will focus on how the AISs structure, plasticity, and composition alterations may generate changes in action potentials and neuronal dysfunction leading to brain diseases. AIS function alterations may be the consequence of voltage-gated ion channel mutations, but also may be due to ligand-activated channels and receptors and AIS structural and membrane proteins that support the function of voltage-gated ion channels.
Collapse
Affiliation(s)
- Juan José Garrido
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28002 Madrid, Spain
| |
Collapse
|
9
|
Dattilo V, Ulivi S, Minelli A, La Bianca M, Giacopuzzi E, Bortolomasi M, Bignotti S, Gennarelli M, Gasparini P, Concas MP. Genome-wide association studies on Northern Italy isolated populations provide further support concerning genetic susceptibility for major depressive disorder. World J Biol Psychiatry 2023; 24:135-148. [PMID: 35615967 DOI: 10.1080/15622975.2022.2082523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) is a psychiatric disorder with pathogenesis influenced by both genetic and environmental factors. To date, the molecular-level understanding of its aetiology remains unclear. Thus, we aimed to identify genetic variants and susceptibility genes for MDD with a genome-wide association study (GWAS) approach. METHODS We performed a meta-analysis of GWASs and a gene-based analysis on two Northern Italy isolated populations (cases/controls n = 166/472 and 33/320), followed by replication and polygenic risk score (PRS) analyses in Italian independent samples (cases n = 464, controls n = 339). RESULTS We identified two novel MDD-associated genes, KCNQ5 (lead SNP rs867262, p = 3.82 × 10-9) and CTNNA2 (rs6729523, p = 1.25 × 10-8). The gene-based analysis revealed another six genes (p < 2.703 × 10-6): GRM7, CTNT4, SNRK, SRGAP3, TRAPPC9, and FHIT. No replication of the genome-wide significant SNPs was found in the independent cohort, even if 14 SNPs around CTNNA2 showed association with MDD and related phenotypes at the nominal level of p (<0.05). Furthermore, the PRS model developed in the discovery cohort discriminated cases and controls in the replication cohort. CONCLUSIONS Our work suggests new possible genes associated with MDD, and the PRS analysis confirms the polygenic nature of this disorder. Future studies are required to better understand the role of these findings in MDD.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandra Minelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Martina La Bianca
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, Oxford University, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Stefano Bignotti
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
10
|
He X, Zhang R, Li Z, Yao Z, Xie X, Bai R, Li L, Zhang X, Zhang S, Shen Y, Li S, Hui Z, Liu R, Chen J. Sini powder with paroxetine ameliorates major depressive disorder by modulating circadian rhythm: A randomized, double-blind, placebo-controlled trial. J Pineal Res 2022; 73:e12832. [PMID: 36073608 DOI: 10.1111/jpi.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Circadian rhythm disorder is a significant risk factor for mental diseases, and the recovery of circadian rhythm function has gradually become a signal of effective antidepressant therapy. Sini powder (SNP) is a classical, traditional Chinese formula for depression treatment. However, few clinical reports have been recorded. This randomized, double-blinded, controlled trial (ChiCTR1900022700) aimed to explore the efficacy of SNP on depression via regulating circadian rhythm. In total, 36 patients with major depressive disorder (MDD) were enrolled for 4-weeks medication and 6-weeks follow-up. HAMD-24 score and circadian rhythm index, including dim light melatonin onset (DLMO) and phase angle difference (PAD), were included in the assessment. DLMO and PAD were statistically significant in the SNP group after 4 weeks of treatment (p < .05) and with greater improvement in DLMO (p = .03). In addition, DLMO and the HAMD-24 score showed a positive correlation (p < .05); the HAMD-24 score degree decreased significantly over time (p < .001). Similarly, interaction effects were shown significantly between group and time (p = .049). The duration of SNP supplementation was relatively short, and the sample size was relatively small. SNP granules combined with paroxetine tablets have definite efficacy in improving the circadian rhythms of MDD patients, reflecting the therapeutic advantages of traditional Chinese medicine as antidepressants.
Collapse
Affiliation(s)
- Xu He
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Ruihuan Zhang
- Department of Encephalopathy, Yulin Hospital of Traditional Chinese Medicine, Yulin, China
| | - Zhe Li
- Department of First Clinical Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zhen Yao
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Xiaoxia Xie
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Ruoxue Bai
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Lan Li
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Xu Zhang
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Sha Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yan Shen
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Shaowei Li
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Zhenliang Hui
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jun Chen
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| |
Collapse
|
11
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Nashed MG, Waye S, Hasan SMN, Nguyen D, Wiseman M, Zhang J, Lau H, Dinesh OC, Raymond R, Greig IR, Bambico FR, Nobrega JN. Antidepressant activity of pharmacological and genetic deactivation of the small-conductance calcium-activated potassium channel subtype-3. Psychopharmacology (Berl) 2022; 239:253-266. [PMID: 34982171 DOI: 10.1007/s00213-021-06045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE The voltage-insensitive, small-conductance calcium-activated potassium (SK) channel is a key regulator of neuronal depolarization and is implicated in the pathophysiology of depressive disorders. OBJECTIVE We ascertained whether the SK channel is impaired in the chronic unpredictable stress (CUS) model and whether it can serve as a molecular target of antidepressant action. METHODS We assessed the depressive-like behavioral phenotype of CUS-exposed rats and performed post-mortem SK channel binding and activity-dependent zif268 mRNA analyses on their brains. To begin an assessment of SK channel subtypes involved, we examined the effects of genetic and pharmacological inhibition of the SK3 channel using conditional knockout mice and selective SK3 channel negative allosteric modulators (NAMs). RESULTS We found that [125I]apamin binding to SK channels is increased in the prefrontal cortex and decreased in the hippocampus, an effect that was associated with reciprocal levels of zif268 mRNA transcripts indicating abnormal regional cell activity in this model. We found that genetic and pharmacological manipulations significantly decreased immobility in the forced swim test without altering general locomotor activity, a hallmark of antidepressant-like activity. CONCLUSIONS Taken together, these findings link depression-related neural and behavioral pathophysiology with abnormal SK channel functioning and suggest that this can be reversed by the selective inhibition of SK3 channels.
Collapse
Affiliation(s)
- Mina G Nashed
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Shannon Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Diana Nguyen
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Micaela Wiseman
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Jing Zhang
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Harry Lau
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Iain R Greig
- Institute of Medical Sciences, University of Aberdeen, King's College, Aberdeen, AB25 2ZD, Scotland
| | - Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada. .,Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada.
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
13
|
Kavuran Buran İ, Onalan Etem E, Tektemur A. Inhibition of TRPC1, TRPM4 and CHRNA6 Ion Channels Ameliorates Depression-Like Behavior in Rats. Behav Brain Res 2022; 423:113765. [DOI: 10.1016/j.bbr.2022.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
|
14
|
Neurogenetics of dynamic connectivity patterns associated with obsessive-compulsive symptoms in healthy children. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:411-420. [DOI: 10.1016/j.bpsgos.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 01/31/2023] Open
|
15
|
Stevens MT, Saunders BM. Targets and regulation of microRNA-652-3p in homoeostasis and disease. J Mol Med (Berl) 2021; 99:755-769. [PMID: 33712860 DOI: 10.1007/s00109-021-02060-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
microRNA are small non-coding RNA molecules which inhibit gene expression by binding mRNA, preventing its translation. As important regulators of gene expression, there is increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. Studies investigating the role of one of the miRNA-miR-652-3p-detail diverse roles for this miRNA in normal cell homoeostasis and disease states, including cancers, cardiovascular disease, mental health, and central nervous system diseases. Here, we review recent literature surrounding miR-652-3p, discussing its known target genes and their relevance to disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on angiogenesis and immune cell regulation. Investigation of miR-652-3p and other dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic target due to its activity across multiple cellular systems.
Collapse
Affiliation(s)
- Maxwell T Stevens
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Padula AE, Rinker JA, Lopez MF, Mulligan MK, Williams RW, Becker HC, Mulholland PJ. Bioinformatics identification and pharmacological validation of Kcnn3/K Ca2 channels as a mediator of negative affective behaviors and excessive alcohol drinking in mice. Transl Psychiatry 2020; 10:414. [PMID: 33247097 PMCID: PMC7699620 DOI: 10.1038/s41398-020-01099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mood disorders are often comorbid with alcohol use disorder (AUD) and play a considerable role in the development and maintenance of alcohol dependence and relapse. Because of this high comorbidity, it is necessary to determine shared and unique genetic factors driving heavy drinking and negative affective behaviors. In order to identify novel pharmacogenetic targets, a bioinformatics analysis was used to quantify the expression of amygdala K+ channel genes that covary with anxiety-related phenotypes in the well-phenotyped and fully sequenced family of BXD strains. We used a model of stress-induced escalation of drinking in alcohol-dependent mice to measure negative affective behaviors during abstinence. A pharmacological approach was used to validate the key bioinformatics findings in alcohol-dependent, stressed mice. Amygdalar expression of Kcnn3 correlated significantly with 40 anxiety-associated phenotypes. Further examination of Kcnn3 expression revealed a strong eigentrait for anxiety-like behaviors and negative correlations with binge-like and voluntary alcohol drinking. Mice treated with chronic intermittent alcohol exposure and repeated swim stress consumed more alcohol in their home cages and showed hypophagia on the novelty-suppressed feeding test during abstinence. Pharmacologically targeting Kcnn gene products with the KCa2 (SK) channel-positive modulator 1-EBIO decreased drinking and reduced feeding latency in alcohol-dependent, stressed mice. Collectively, these validation studies provide central nervous system links into the covariance of stress, negative affective behaviors, and AUD in the BXD strains. Further, the bioinformatics discovery tool is effective in identifying promising targets (i.e., KCa2 channels) for treating alcohol dependence exacerbated by comorbid mood disorders.
Collapse
Affiliation(s)
- Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
Okada M, Kozaki I, Honda H. Antidepressive effect of an inward rectifier K+ channel blocker peptide, tertiapin-RQ. PLoS One 2020; 15:e0233815. [PMID: 33186384 PMCID: PMC7665585 DOI: 10.1371/journal.pone.0233815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Renal outer medullary K+ channel, ROMK (Kir1.1, kcnj1) is expressed in the kidney and brain, but its role in the central nervous system remains unknown. Recent studies suggested an involvement of the ROMK channel in mental diseases. Tertiapin (TPN) is a European honey bee venom peptide and is reported to selectively block the ROMK channel. Here, we have chemically synthesized a series of mutated TPN peptides, including TPN-I8R and -M13Q (TPN-RQ), reported previously, and examined their blocking activity on the ROMK channel. Among 71 peptides tested, TPN-RQ was found to block the ROMK channel most effectively. Whole-cell patch-clamp recordings showed the essential roles of two disulfide bonds and the circular structure for the blockade activity. To examine the central role, we injected TPN-RQ intracerebroventricularly and examined the effects on depression- and anxiety-like behaviors in mice. TPN-RQ showed an antidepressive effect in tail-suspension and forced swim tests. The injection of TPN-RQ also enhanced the anxiety-like behavior in the elevated plus-maze and light/dark box tests and impaired spontaneous motor activities in balance beam and wheel running tests. Administration of TPM-RQ suppressed the anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in antidepressant-related nuclei, e.g. the dorsal raphe nucleus and locus coeruleus. TPN-RQ may exert its antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| | - Ikkou Kozaki
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
19
|
Mi Z, Yang J, He Q, Zhang X, Xiao Y, Shu Y. Alterations of Electrophysiological Properties and Ion Channel Expression in Prefrontal Cortex of a Mouse Model of Schizophrenia. Front Cell Neurosci 2019; 13:554. [PMID: 31920555 PMCID: PMC6927988 DOI: 10.3389/fncel.2019.00554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Maternal immune activation (MIA) and juvenile social isolation (SI) are two most prevalent and widely accepted environmental insults that could increase the propensity of psychiatric illnesses. Using a two-hit mouse model, we examined the impact of the combination of these two factors on animal behaviors, neuronal excitability and expressions of voltage-gated sodium (Nav) and small conductance calcium-activated potassium (SK) channels in the prefrontal cortex (PFC). We found that MIA-SI induced a number of schizophrenia-related behavioral deficits. Patch clamp recordings revealed alterations in electrophysiological properties of PFC layer-5 pyramidal cells, including hyperpolarized resting membrane potential (RMP), increased input resistance and enhanced medium after-hyperpolarization (mAHP). MIA-SI also increased the ratio of the maximal slope of somatodendritic potential to the peak slope of action potential upstroke, indicating a change in perisomatic Nav availability. Consistently, MIA-SI significantly increased the expression level of Nav1.2 and SK3 channels that contribute to the somatodendritic potential and the mAHP, respectively. Together, these changes may alter neuronal signaling in the PFC and behavioral states, representing a molecular imprint of environmental insults associated with neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Zhen Mi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Quansheng He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiaowen Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
20
|
Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT. Computational Modeling of Genetic Contributions to Excitability and Neural Coding in Layer V Pyramidal Cells: Applications to Schizophrenia Pathology. Front Comput Neurosci 2019; 13:66. [PMID: 31616272 PMCID: PMC6775251 DOI: 10.3389/fncom.2019.00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Pyramidal cells in layer V of the neocortex are one of the most widely studied neuron types in the mammalian brain. Due to their role as integrators of feedforward and cortical feedback inputs, they are well-positioned to contribute to the symptoms and pathology in mental disorders-such as schizophrenia-that are characterized by a mismatch between the internal perception and external inputs. In this modeling study, we analyze the input/output properties of layer V pyramidal cells and their sensitivity to modeled genetic variants in schizophrenia-associated genes. We show that the excitability of layer V pyramidal cells and the way they integrate inputs in space and time are altered by many types of variants in ion-channel and Ca2+ transporter-encoding genes that have been identified as risk genes by recent genome-wide association studies. We also show that the variability in the output patterns of spiking and Ca2+ transients in layer V pyramidal cells is altered by these model variants. Importantly, we show that many of the predicted effects are robust to noise and qualitatively similar across different computational models of layer V pyramidal cells. Our modeling framework reveals several aspects of single-neuron excitability that can be linked to known schizophrenia-related phenotypes and existing hypotheses on disease mechanisms. In particular, our models predict that single-cell steady-state firing rate is positively correlated with the coding capacity of the neuron and negatively correlated with the amplitude of a prepulse-mediated adaptation and sensitivity to coincidence of stimuli in the apical dendrite and the perisomatic region of a layer V pyramidal cell. These results help to uncover the voltage-gated ion-channel and Ca2+ transporter-associated genetic underpinnings of schizophrenia phenotypes and biomarkers.
Collapse
Affiliation(s)
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States.,Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Bambico FR, Li Z, Creed M, De Gregorio D, Diwan M, Li J, McNeill S, Gobbi G, Raymond R, Nobrega JN. A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response. Cereb Cortex 2019; 30:1559-1572. [DOI: 10.1093/cercor/bhz187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
AbstractThe muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor–SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Zhuoliang Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Meaghan Creed
- Département des Neurosciences Fondamentales & Service de Neurologie, University of Geneva, Geneva, CH-1211, Switzerland
| | - Danilo De Gregorio
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mustansir Diwan
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Jessica Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Sean McNeill
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
22
|
Cathomas F, Azzinnari D, Bergamini G, Sigrist H, Buerge M, Hoop V, Wicki B, Goetze L, Soares S, Kukelova D, Seifritz E, Goebbels S, Nave KA, Ghandour MS, Seoighe C, Hildebrandt T, Leparc G, Klein H, Stupka E, Hengerer B, Pryce CR. Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12475. [DOI: 10.1111/gbb.12475] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Affiliation(s)
- F. Cathomas
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - D. Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - G. Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - H. Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - M. Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - V. Hoop
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Institute of Human Movement Sciences and Sport; ETH Zurich; Zurich Switzerland
| | - B. Wicki
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - L. Goetze
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - S. Soares
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - D. Kukelova
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - E. Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - S. Goebbels
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Goettingen Germany
| | - K.-A. Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Goettingen Germany
| | - M. S. Ghandour
- Center of Neurochemistry, University of Strasbourg, UMR 7357; Strasbourg France
- Department of Anatomy and Neurobiology; Virginia Commonwealth University; Richmond Virginia
| | - C. Seoighe
- School of Mathematics, Statistics & Applied Mathematics; National University of Ireland; Galway Ireland
| | - T. Hildebrandt
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - G. Leparc
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - H. Klein
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - E. Stupka
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - B. Hengerer
- CNS Diseases Research Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - C. R. Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| |
Collapse
|
23
|
Buran İ, Etem EÖ, Tektemur A, Elyas H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci Lett 2017; 656:51-57. [PMID: 28716528 DOI: 10.1016/j.neulet.2017.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Depression is a common mental disorder characterized by the mood of deep sadness. Recent studies have demonstrated that microRNAs and ion channels have significant roles in the etiopathogenesis of depression. Therefore, we investigated the effects of the TREK1 ion channel inhibitor anandamide and the TRPC3/6 inhibitor norgestimate on microRNA expression and antidepressant effect in the mouse chronic mild stress (CMS) model of depression. Male BALB/c mice were divided into groups as control, CMS, CMS+sertraline, CMS+anandamide, CMS+sertraline+anandamide, CMS+norgestimate and CMS+sertraline+norgestimate. Forced swim test (FST) and Sucrose Preference Test (SPT) were utilized to assess depression levels. Anandamide and norgestimate were administered subcutaneously (5mg/kg/day), and sertraline was applied intraperitoneally (10mg/kg/day) for two days during FST. miRNA and ion channel gene expression levels in the prefrontal cortex were assessed with qRT-PCR. qRT-PCR results demonstrated that there was a significant increase in miR-9-5p, miR-128-1-5p, and miR-382-5p, and a significant decrease in miR-16-5p, miR-129-5p, and miR-219a-5p in the CMS group compared with the control group. Generally, anandamide and norgestimate significantly increased all miRNA expression. It was also determined that anandamide and norgestimate had an antidepressant action in FST when used alone and especially when used in conjunction with sertraline. Based on the study results, it could be argued that an increase in miR-9-5p and miR-128-1-5p, consistent with the literature, could play significant roles in the etiopathogenesis of depression. The antidepressant action of anandamide and norgesimate in FST showed for the first time that these inhibitors could be used as in conjuction with sertraline in depression treatment.
Collapse
Affiliation(s)
- İlay Buran
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Ebru Önalan Etem
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Ahmet Tektemur
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Halit Elyas
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| |
Collapse
|
24
|
Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro 2016; 3:eN-NWR-0221-16. [PMID: 27844061 PMCID: PMC5103163 DOI: 10.1523/eneuro.0221-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.
Collapse
|
25
|
Kochunov P, Ganjgahi H, Winkler A, Kelly S, Shukla DK, Du X, Jahanshad N, Rowland L, Sampath H, Patel B, O'Donnell P, Xie Z, Paciga SA, Schubert CR, Chen J, Zhang G, Thompson PM, Nichols TE, Hong LE. Heterochronicity of white matter development and aging explains regional patient control differences in schizophrenia. Hum Brain Mapp 2016; 37:4673-4688. [PMID: 27477775 DOI: 10.1002/hbm.23336] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Altered brain connectivity is implicated in the development and clinical burden of schizophrenia. Relative to matched controls, schizophrenia patients show (1) a global and regional reduction in the integrity of the brain's white matter (WM), assessed using diffusion tensor imaging (DTI) fractional anisotropy (FA), and (2) accelerated age-related decline in FA values. In the largest mega-analysis to date, we tested if differences in the trajectories of WM tract development influenced patient-control differences in FA. We also assessed if specific tracts showed exacerbated decline with aging. METHODS Three cohorts of schizophrenia patients (total n = 177) and controls (total n = 249; age = 18-61 years) were ascertained with three 3T Siemens MRI scanners. Whole-brain and regional FA values were extracted using ENIGMA-DTI protocols. Statistics were evaluated using mega- and meta-analyses to detect effects of diagnosis and age-by-diagnosis interactions. RESULTS In mega-analysis of whole-brain averaged FA, schizophrenia patients had lower FA (P = 10-11 ) and faster age-related decline in FA (P = 0.02) compared with controls. Tract-specific heterochronicity measures, that is, abnormal rates of adolescent maturation and aging explained approximately 50% of the regional variance effects of diagnosis and age-by-diagnosis interaction in patients. Interactive, three-dimensional visualization of the results is available at www.enigma-viewer.org. CONCLUSION WM tracts that mature later in life appeared more sensitive to the pathophysiology of schizophrenia and were more susceptible to faster age-related decline in FA values. Hum Brain Mapp 37:4673-4688, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Habib Ganjgahi
- Department of Statistics, University of Warwick, Warwick, United Kingdom
| | | | - Sinead Kelly
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Dinesh K Shukla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Laura Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Binish Patel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Patricio O'Donnell
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc, 610 Main Street, Cambridge, Massachusetts, 02139
| | - Zhiyong Xie
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc, 610 Main Street, Cambridge, Massachusetts, 02139
| | - Sara A Paciga
- Enterprise Scientific Technology Operations, Worldwide Research and Development, Pfizer Inc, Eastern Point Rd, Groton, Connecticut, 06340
| | - Christian R Schubert
- Enterprise Scientific Technology Operations, Worldwide Research and Development, Pfizer Inc, Eastern Point Rd, Groton, Connecticut, 06340.,Biogen, Cambridge, Massachusetts, 02142
| | - Jian Chen
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Maryland, 21250
| | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Maryland, 21250
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, California
| | - Thomas E Nichols
- Department of Statistics, University of Warwick, Warwick, United Kingdom
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry 2015; 20:573-84. [PMID: 25623948 PMCID: PMC4414679 DOI: 10.1038/mp.2014.176] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
Bipolar disorder (BD) is a heritable neuropsychiatric disorder with largely unknown pathogenesis. Given their prominent role in brain function and disease, we hypothesized that microRNAs (miRNAs) might be of importance for BD. Here we show that levels of miR-34a, which is predicted to target multiple genes implicated as genetic risk factors for BD, are increased in postmortem cerebellar tissue from BD patients, as well as in BD patient-derived neuronal cultures generated by reprogramming of human fibroblasts into induced neurons or into induced pluripotent stem cells (iPSCs) subsequently differentiated into neurons. Of the predicted miR-34a targets, we validated the BD risk genes ankyrin-3 (ANK3) and voltage-dependent L-type calcium channel subunit beta-3 (CACNB3) as direct miR-34a targets. Using human iPSC-derived neuronal progenitor cells, we further show that enhancement of miR-34a expression impairs neuronal differentiation, expression of synaptic proteins and neuronal morphology, whereas reducing endogenous miR-34a expression enhances dendritic elaboration. Taken together, we propose that miR-34a serves as a critical link between multiple etiological factors for BD and its pathogenesis through the regulation of a molecular network essential for neuronal development and synaptogenesis.
Collapse
|
28
|
Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G, Del Campo M, Gener B, Gabau E, Botella MP, Gutiérrez-Arumí A, Antiñolo G, Pérez-Jurado LA, Cuscó I. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism 2015; 6:21. [PMID: 25969726 PMCID: PMC4427998 DOI: 10.1186/s13229-015-0017-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. METHODS We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. RESULTS We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. CONCLUSIONS Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
Collapse
Affiliation(s)
- Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | | | - Aïda Homs
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Javier Santoyo
- Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain
| | - Maria Rigau
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain
| | - Gemma Aznar-Laín
- Pediatric Neurology, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003 Spain
| | - Miguel Del Campo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Servicio de Genética, Hospital Vall d'Hebron, Passeig Vall d'Hebron, 119-129, Barcelona, 08015 Spain
| | - Blanca Gener
- Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, Barakaldo, Bizkaia 48093 Spain
| | - Elisabeth Gabau
- Pediatrics Service, Corporació Sanitària Parc Taulí, Parc Taulí 1, Sabadell, 08208 Spain
| | - María Pilar Botella
- Pediatric Neurology, Hospital de Txagorritxu, C/José de Atxotegui s/n, Victoria-Gasteiz, 01009 Spain
| | - Armand Gutiérrez-Arumí
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Guillermo Antiñolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain ; Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda Manuel Siurot s/n, Sevilla, 41013 Spain
| | - Luis Alberto Pérez-Jurado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Ivon Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| |
Collapse
|
29
|
Congiu C, Minelli A, Bonvicini C, Bortolomasi M, Sartori R, Maj C, Scassellati C, Maina G, Trabucchi L, Segala M, Gennarelli M. The role of the potassium channel gene KCNK2 in major depressive disorder. Psychiatry Res 2015; 225:489-92. [PMID: 25535009 DOI: 10.1016/j.psychres.2014.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/19/2014] [Accepted: 11/29/2014] [Indexed: 01/05/2023]
Abstract
Six single nucleotide polymorphisms (SNPs) of the KCNK2 gene were investigated for their association with major depressive disorder (MDD) and treatment efficacy in 590 MDD patients and 441 controls. The A homozygotes of rs10779646 were significantly more frequent in patients than controls whereas G allele of rs7549184 was associated with the presence of psychotic symptoms and the severity of disease. Evaluating the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) dataset, we confirmed our findings.
Collapse
Affiliation(s)
- Chiara Congiu
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cristian Bonvicini
- Genetic Unit, I.R.C.C.S. "San Giovanni di Dio" - Fatebenefratelli, Brescia, Italy
| | | | - Riccardo Sartori
- Department of Philosophy, Education, Psychology, University of Verona, Verona, Italy
| | - Carlo Maj
- Genetic Unit, I.R.C.C.S. "San Giovanni di Dio" - Fatebenefratelli, Brescia, Italy
| | - Catia Scassellati
- Genetic Unit, I.R.C.C.S. "San Giovanni di Dio" - Fatebenefratelli, Brescia, Italy
| | - Giuseppe Maina
- S.C.D.U. Psychiatric Service, AOU San Luigi Gonzaga, University of Turin, Orbassano (TO), Italy
| | | | - Matilde Segala
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetic Unit, I.R.C.C.S. "San Giovanni di Dio" - Fatebenefratelli, Brescia, Italy
| |
Collapse
|
30
|
Jeon S, Kim Y, Chung IW, Kim YS. Clozapine induces chloride channel-4 expression through PKA activation and modulates CDK5 expression in SH-SY5Y and U87 cells. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:168-73. [PMID: 25246152 DOI: 10.1016/j.pnpbp.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/22/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Second-generation antipsychotic drugs, such as clozapine, were reported to enhance neurite outgrowth by nerve growth factor in PC12 cells. The authors previously showed that chloride channel 4 (CLC-4) is responsible for nerve growth factor-induced neurite outgrowth in neuronal cells. In this study, we examined whether clozapine induces CLC-4 in neuroblastoma and glioma cells. METHODS The effect of clozapine on CLC-4 expression was examined in neuroblastoma (SH-SY5Y) and glioma (U87) cells. To investigate the signaling pathway responsible for clozapine-induced CLC-4 expression, the phosphorylation of cAMP response element-binding protein (CREB), which binds CRE in the promoter of the human CLC-4 gene, was examined. To identify the target of clozapine induced CLC-4, CLC-4 siRNA was introduced to neuroblastoma and glioma cells for functional knockdown. RESULTS We observed that clozapine increased CLC-4 expression in both SH-SY5Y and U87 cells. Clozapine induced CREB phosphorylation, but in the presence of inhibitor of protein kinase A (an upstream kinase of CREB) clozapine-induced CLC-4 expression was suppressed. Finally, we found that CLC-4 knockdown suppressed clozapine-induced cyclin-dependent kinase 5 (CDK5) expression in SH-SY5Y and U-87 cells suggesting CDK5 as potential molecular target of clozapine induced CLC-4 expression. CONCLUSIONS The results of the present study suggest that clozapine's therapeutic effect may include the induction of CLC-4 which is dependent on CREB activation via PKA. We also found that functional knockdown of CLC-4 resulted in reduction of CDK5 expression, which may also be implicated in clozapine's therapeutic effect.
Collapse
Affiliation(s)
- Songhee Jeon
- Dongguk University Research Institute of Biotechnology, 27-3, Phildong 3, Joong-gu, Seoul, 100-715
| | - Yeni Kim
- Department of Child Psychiatry, National Center for Child and Adolescent Psychiatry, Seoul National Hospital, Seoul, 143-711
| | - In-Won Chung
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773; Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773; Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773.
| |
Collapse
|
31
|
Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, Chen HY, Gershon ES, Liu C. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia. Bipolar Disord 2014; 16:790-9. [PMID: 25243493 PMCID: PMC4302408 DOI: 10.1111/bdi.12255] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/11/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Aberrant DNA methylation and gene expression have been reported in postmortem brain tissues of psychotic patients, but until now there has been no systematic evaluation of synergistic changes in methylation and expression on a genome-wide scale in brain tissue. METHODS In this study, genome-wide methylation and expression analyses were performed on cerebellum samples from 39 patients with schizophrenia, 36 patients with bipolar disorder, and 43 unaffected controls, to screen for a correlation between gene expression and CpG methylation. RESULTS Out of 71,753 CpG gene pairs (CGPs) tested across the genome, 204 were found to significantly correlate with gene expression after correction for multiple testing [p < 0.05, false discovery rate (FDR) q < 0.05]. The correlated CGPs were tested for disease-associated expression and methylation by comparing psychotic patients with bipolar disorder and schizophrenia to healthy controls. Four of the identified CGPs were found to significantly correlate with the differential expression and methylation of genes encoding phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1), butyrophilin, subfamily 3, member A3 (BTN3A3), nescient helix-loop-helix 1 (NHLH1), and solute carrier family 16, member 7 (SLC16A7) in psychotic patients (p < 0.05, FDR q < 0.2). Additional expression and methylation datasets were used to validate the relationship between DNA methylation, gene expression, and neuropsychiatric diseases. CONCLUSIONS These results suggest that the identified differentially expressed genes with an aberrant methylation pattern may represent novel candidate factors in the etiology and pathology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chao Chen
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Chunling Zhang
- Center for Research Informatics, The University of Chicago, Chicago, IL
| | - Lijun Cheng
- Department of Neurology, Northwestern University, Chicago, IL
| | - James L Reilly
- Department of Psychiatry, Northwestern University, Chicago, IL
| | - Jeffrey R Bishop
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL,Institute of Human Genetics, University of Illinois at Chicago, Chicago, IL
| | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern, Dallas, TX
| | - Hua-yun Chen
- Institute of Human Genetics, University of Illinois at Chicago, Chicago, IL
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Chunyu Liu
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China,Institute of Human Genetics, University of Illinois at Chicago, Chicago, IL,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Kochunov P, Chiappelli J, Wright SN, Rowland LM, Patel B, Wijtenburg SA, Nugent K, McMahon RP, Carpenter WT, Muellerklein F, Sampath H, Hong LE. Multimodal white matter imaging to investigate reduced fractional anisotropy and its age-related decline in schizophrenia. Psychiatry Res 2014; 223:148-56. [PMID: 24909602 PMCID: PMC4100065 DOI: 10.1016/j.pscychresns.2014.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/18/2014] [Accepted: 05/08/2014] [Indexed: 01/14/2023]
Abstract
We hypothesized that reduced fractional anisotropy (FA) of water diffusion and its elevated aging-related decline in schizophrenia patients may be caused by elevated hyperintensive white matter (HWM) lesions, by reduced permeability-diffusivity index (PDI), or both. We tested this hypothesis in 40/30 control/patient participants. FA values for the corpus callosum were calculated from high angular resolution diffusion tensor imaging (DTI). Whole-brain volume of HWM lesions was quantified by 3D-T2w-fluid-attenuated inversion recovery (FLAIR) imaging. PDI for corpus callosum was ascertained using multi b-value diffusion imaging (15 b-shells with 30 directions per shell). Patients had significantly lower corpus callosum FA values, and there was a significant age-by-diagnosis interaction. Patients also had significantly reduced PDI but no difference in HWM volume. PDI and HWM volume were significant predictors of FA and captured the diagnosis-related variance. Separately, PDI robustly explained FA variance in schizophrenia patients, but not in controls. Conversely, HWM volume made equally significant contributions to variability in FA in both groups. The diagnosis-by-age effect of FA was explained by a PDI-by-diagnosis interaction. Post hoc testing showed a similar trend for PDI of gray mater. Our study demonstrated that reduced FA and its accelerated decline with age in schizophrenia were explained by pathophysiology indexed by PDI, rather than HWM volume.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Susan N. Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Benish Patel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Katie Nugent
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Robert P. McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - William T. Carpenter
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Florian Muellerklein
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| |
Collapse
|
33
|
A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol Psychiatry 2014; 19:890-4. [PMID: 23979604 PMCID: PMC4151967 DOI: 10.1038/mp.2013.107] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Timothy Syndrome (TS) is caused by very rare exonic mutations of the CACNA1C gene that produce delayed inactivation of Cav1.2 voltage-gated calcium channels during cellular action potentials, with greatly increased influx of calcium into the activated cells. The major clinical feature of this syndrome is a long QT interval that results in cardiac arrhythmias. However, TS also includes cognitive impairment, autism and major developmental delays in many of the patients. We observed the appearance of bipolar disorder (BD) in a patient with a previously reported case of TS, who is one of the very few patients to survive childhood. This is most interesting because the common single-nucleotide polymorphism (SNP) most highly associated with BD is rs1006737, which we show here is a cis-expression quantitative trait locus for CACNA1C in human cerebellum, and the risk allele (A) is associated with decreased expression. To combine the CACNA1C perturbations in the presence of BD in this patient and in patients with the common CACNA1C SNP risk allele, we would propose that either increase or decrease in calcium influx in excitable cells can be associated with BD. In treatment of BD with calcium channel blocking drugs, we would predict better response in patients without the risk allele, because they have increased CACNA1C expression.
Collapse
|
34
|
Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci U S A 2014; 111:E2066-75. [PMID: 24778245 DOI: 10.1073/pnas.1313093111] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The brain's default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging-genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases.
Collapse
|
35
|
Leukocyte Gene Expression in Patients with Medication Refractory Depression before and after Treatment with ECT or Isoflurane Anesthesia: A Pilot Study. DEPRESSION RESEARCH AND TREATMENT 2014; 2014:582380. [PMID: 24826212 PMCID: PMC4009159 DOI: 10.1155/2014/582380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022]
Abstract
Objective. To evaluate leukocyte gene expression for 9 selected genes (mRNAs) as biological markers in patients with medication refractory depression before and after treatment with ECT or isoflurane anesthesia (ISO). Methods. In a substudy of a nonrandomized open-label trial comparing effects of ECT to ISO therapy, blood samples were obtained before and after treatment from 22 patients with refractory depression, and leukocyte mRNA was assessed by quantitative PCR. Patients' mRNAs were also compared to 17 healthy controls. Results. Relative to controls, patients before treatment showed significantly higher IL10 and DBI and lower ADRA2A and ASIC3 mRNA (P < 0.025). Both ECT and ISO induced significant decreases after treatment in 4 genes: IL10, NR3C1, DRD4, and Sult1A1. After treatment, patients' DBI, ASIC3, and ADRA2A mRNA remained dysregulated. Conclusion. Significant differences from controls and/or significant changes after ECT or ISO treatment were observed for 7 of the 9 mRNAs studied. Decreased expression of 4 genes after effective treatment with either ECT or ISO suggests possible overlap of underlying mechanisms. Three genes showing dysregulation before and after treatment may be trait-like biomarkers of medication refractory depression. Gene expression for these patients has the potential to facilitate diagnosis, clarify pathophysiology, and identify potential biomarkers for treatment effects.
Collapse
|
36
|
Iacob E, Light KC, Tadler SC, Weeks HR, White AT, Hughen RW, VanHaitsma TA, Bushnell L, Light AR. Dysregulation of leukocyte gene expression in women with medication-refractory depression versus healthy non-depressed controls. BMC Psychiatry 2013; 13:273. [PMID: 24143878 PMCID: PMC4015603 DOI: 10.1186/1471-244x-13-273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/07/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Depressive Disorders (DD) are a great financial and social burden. Females display 70% higher rate of depression than males and more than 30% of these patients do not respond to conventional medications. Thus medication-refractory female patients are a large, under-served, group where new biological targets for intervention are greatly needed. METHODS We used real-time quantitative polymerase chain reaction (qPCR) to evaluate mRNA gene expression from peripheral blood leukocytes for 27 genes, including immune, HPA-axis, ion channels, and growth and transcription factors. Our sample included 23 females with medication refractory DD: 13 with major depressive disorder (MDD), 10 with bipolar disorder (BPD). Our comparison group was 19 healthy, non-depressed female controls. We examined differences in mRNA expression in DD vs. controls, in MDD vs. BPD, and in patients with greater vs. lesser depression severity. RESULTS DD patients showed increased expression for IL-10, IL-6, OXTR, P2RX7, P2RY1, and TRPV1. BPD patients showed increased APP, CREB1, NFKB1, NR3C1, and SPARC and decreased TNF expression. Depression severity was related to increased IL-10, P2RY1, P2RX1, and TRPV4 expression. CONCLUSIONS These results support prior findings of dysregulation in immune genes, and provide preliminary evidence of dysregulation in purinergic and other ion channels in females with medication-refractory depression, and in transcription and growth factors in those with BPD. If replicated in future research examining protein levels as well as mRNA, these pathways could potentially be used to explore biological mechanisms of depression and to develop new drug targets.
Collapse
Affiliation(s)
- Eli Iacob
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA.
| | - Kathleen C Light
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Scott C Tadler
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Howard R Weeks
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Andrea T White
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA,Department of Exercise and Sport Science, University of Utah, USA, Salt Lake City, UT, USA
| | - Ronald W Hughen
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Timothy A VanHaitsma
- Department of Exercise and Sport Science, University of Utah, USA, Salt Lake City, UT, USA
| | - Lowry Bushnell
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Alan R Light
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA,Neuroscience Program, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
37
|
Judy JT, Zandi PP. A review of potassium channels in bipolar disorder. Front Genet 2013; 4:105. [PMID: 23781230 PMCID: PMC3678088 DOI: 10.3389/fgene.2013.00105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Although bipolar disorder (BP) is one of the most heritable psychiatric conditions, susceptibility genes for the disorder have yet to be conclusively identified. It is likely that variants in multiple genes across multiple pathways contribute to the genotype–phenotype relationship in the affected population. Recent evidence from genome-wide association studies implicates an entire class of genes related to the structure and regulation of ion channels, suggesting that the etiology of BP may arise from channelopathies. In this review, we examine the evidence for this hypothesis, with a focus on the potential role of voltage-gated potassium channels. We consider evidence from genetic and expression studies, and discuss the potential underlying biology. We consider animal models and treatment implications of the involvement of potassium ion channelopathy in BP. Finally, we explore intriguing parallels between BP and epilepsy, the signature channelopathy of the central nervous system.
Collapse
Affiliation(s)
- Jennifer T Judy
- Department of Psychiatry, Johns Hopkins School of Medicine Baltimore, MD, USA
| | | |
Collapse
|
38
|
Shih WL, Kao CF, Chuang LC, Kuo PH. Incorporating Information of microRNAs into Pathway Analysis in a Genome-Wide Association Study of Bipolar Disorder. Front Genet 2012; 3:293. [PMID: 23264780 PMCID: PMC3524550 DOI: 10.3389/fgene.2012.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators that are involved in the etiology of complex psychiatric traits. The present study aimed to incorporate miRNAs information into pathway analysis using a genome-wide association dataset to identify relevant biological pathways for bipolar disorder (BPD). We selected psychiatric- and neurological-associated miRNAs (N = 157) from PhenomiR database. The miRNA target genes (miTG) predictions were obtained from microRNA.org. Canonical pathways (N = 4,051) were downloaded from the Molecule Signature Database. We employed a novel weighting scheme for miTGs in pathway analysis using methods of gene set enrichment analysis and sum-statistic. Under four statistical scenarios, 38 significantly enriched pathways (P-value < 0.01 after multiple testing correction) were identified for the risk of developing BPD, including pathways of ion channels associated (e.g., gated channel activity, ion transmembrane transporter activity, and ion channel activity) and nervous related biological processes (e.g., nervous system development, cytoskeleton, and neuroactive ligand receptor interaction). Among them, 19 were identified only when the weighting scheme was applied. Many miRNA-targeted genes were functionally related to ion channels, collagen, and axonal growth and guidance that have been suggested to be associated with BPD previously. Some of these genes are linked to the regulation of miRNA machinery in the literature. Our findings provide support for the potential involvement of miRNAs in the psychopathology of BPD. Further investigations to elucidate the functions and mechanisms of identified candidate pathways are needed.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University Taipei, Taiwan ; Infectious Diseases Research and Education Center, Department of Health - Executive Yuan and National Taiwan University Taipei, Taiwan
| | | | | | | |
Collapse
|
39
|
Tao R, Li C, Newburn EN, Ye T, Lipska BK, Herman MM, Weinberger DR, Kleinman JE, Hyde TM. Transcript-specific associations of SLC12A5 (KCC2) in human prefrontal cortex with development, schizophrenia, and affective disorders. J Neurosci 2012; 32:5216-22. [PMID: 22496567 PMCID: PMC3752043 DOI: 10.1523/jneurosci.4626-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/14/2023] Open
Abstract
The neuron-specific K(+)-Cl(-) cotransporter SLC12A5, also known as KCC2, helps mediate the electrophysiological effects of GABA. The pattern of KCC2 expression during early brain development suggests that its upregulation drives the postsynaptic switch of GABA from excitation to inhibition. We previously found decreased expression of full-length KCC2 in the postmortem hippocampus of patients with schizophrenia, but not in the dorsolateral prefrontal cortex (DLPFC). Using PCR and rapid amplification of cDNA ends, we discovered several previously unrecognized alternative KCC2 transcripts in both human adult and fetal brain in addition to the previously identified full-length (NM_020708.3) and truncated (AK098371) transcripts. We measured the expression levels of four relatively abundant truncated splice variants, including three novel transcripts (ΔEXON6, EXON2B, and EXON6B) and one previously described transcript (AK098371), in a large human cohort of nonpsychiatric controls across the lifespan, and in patients with schizophrenia and affective disorders. In SH-SY5Y cell lines, these transcripts were translated into proteins and expressed at their predicted sizes. Expression of the EXON6B transcript is increased in the DLPFC of patients with schizophrenia (p = 0.03) but decreased in patients with major depression (p = 0.04). The expression of AK098371 is associated with a GAD1 single nucleotide polymorphism (rs3749034) that previously has been associated with GAD67 expression and risk for schizophrenia. Our data confirm the developmental regulation of KCC2 expression, and provide evidence that KCC2 transcripts are differentially expressed in schizophrenia and affective disorders. Alternate transcripts from KCC2 may participate in the abnormal GABA signaling in the DLPFC associated with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Chao Li
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Erin N. Newburn
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Tianzhang Ye
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205
| | - Barbara K. Lipska
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Mary M. Herman
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205
| | - Joel E. Kleinman
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
| | - Thomas M. Hyde
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1385, and
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205
| |
Collapse
|