1
|
Linton SR, Lees T, Iturra-Mena A, Kangas BD, Nowicki G, Lobien R, Vitaliano G, Bergman J, Carlezon WA, Pizzagalli DA. Behavioral and neurophysiological signatures of cognitive control in humans and rats. Int J Neuropsychopharmacol 2024; 27:pyae050. [PMID: 39447056 PMCID: PMC11549206 DOI: 10.1093/ijnp/pyae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Deficits in cognitive control are implicated in numerous neuropsychiatric disorders. However, relevant pharmacological treatments are limited, likely due to weak translational validity of applicable preclinical models used. Neural indices derived from electroencephalography may prove useful in comparing and translating the effects of cognition-enhancing drugs between species. In the current study, we aimed to extend our previous cross-species results by examining if methylphenidate (MPH) modulates behavioral and neural indices of cognitive control in independent cohorts of humans and rats. METHODS We measured continuous electroencephalography data from healthy adults (n = 25; 14 female) and Long Evans rats (n = 22; 8 female) and compared both stimulus- and response-locked event-related potentials and spectral power measures across species, and their MPH-related moderation following treatment with vehicle (placebo) or 1 of 2 doses of MPH. RESULTS Across both species, linear mixed effects modeling confirmed the expected Flanker interference effect on behavior (eg, accuracy) and response-related event-related potentials. Unexpectedly, in contrast to past work, we did not observe any task-related effects on the spectral power of rodents. Moreover, MPH generally did not modulate cognitive control of either species, although some species-specific patterns offer insight for future research. CONCLUSIONS Collectively, these findings in independent human and rodent subjects replicate some of our previously reported behavioral and neurophysiological patterns partly consistent with the notion that similar neural mechanisms may regulate cognitive control in both species. Nonetheless, these results showcase an approach to accelerate translation using a coordinated between-species platform to evaluate pro-cognitive treatments.
Collapse
Affiliation(s)
- Samantha R Linton
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| | - Ty Lees
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| | - Ann Iturra-Mena
- Department of Child and Adolescent Psychiatry, Columbia University, New York, NY, 10032, USA
- McLean Hospital, Belmont, MA 02478, USA
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| | | | | | - Gordana Vitaliano
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
2
|
Sakayori T, Ikeda Y, Arakawa R, Nogami T, Tateno A. A randomized placebo controlled trial demonstrates the effect of dl-methylephedrine on brain functions is weaker than that of pseudoephedrine. Sci Rep 2024; 14:20793. [PMID: 39242643 PMCID: PMC11379680 DOI: 10.1038/s41598-024-71851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024] Open
Abstract
Intellectual drug doping in athletics by using stimulants that affect central nervous system functions has been diversified. Stimulants are regulated by the World Anti-Doping Agency according to their levels of urinary concentration. Positron emission tomography could evaluate how stimulants affect central nervous system functions. We aimed to evaluate the effect of stimulants on brain function by examining the difference in brain dopamine transporter occupancy by PET after administration of dl-methylephedrine or pseudoephedrine at the clinical maximum daily dose. Four PET scans without and with drug administration (placebo, dl-methylephedrine 150 mg and pseudoephedrine 240 mg) were performed. The concentrations of dl-methylephedrine and pseudoephedrine in plasma and urine were measured. DAT occupancies in the striatum with placebo, dl-methylephedrine and pseudoephedrine were calculated by PET images. The urinary concentration of dl-methylephedrine (12.7 µg/mL) exceeded the prohibited concentration (10 µg/mL), but the DAT occupancy with dl-methylephedrine (6.1%) did not differ (p = 0.92) from that with placebo (6.2%). By contrast, although the urinary concentration of pseudoephedrine (144.8 µg/mL) was below the prohibited concentration (150 μg/mL), DAT occupancy with pseudoephedrine was 18.4%, which was higher than that with placebo (p = 0.009). At the maximum clinical dose, dl-methylephedrine was shown to have weaker effects on brain function than pseudoephedrine.
Collapse
Affiliation(s)
- Takeshi Sakayori
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Yumiko Ikeda
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Tsuyoshi Nogami
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
3
|
Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [ 123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 2023; 50:1974-1987. [PMID: 36847827 PMCID: PMC10199883 DOI: 10.1007/s00259-023-06171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE In routine practice, dopamine transporter (DAT) imaging is frequently used as a diagnostic tool to support the diagnosis of Parkinson's disease or dementia with Lewy bodies. In 2008, we published a review on which medications and drugs of abuse may influence striatal [123I]I-FP-CIT binding and consequently may influence the visual read of an [123I]I-FP-CIT SPECT scan. We made recommendations on which drugs should be withdrawn before performing DAT imaging in routine practice. Here, we provide an update of the original work based on published research since 2008. METHODS We performed a systematic review of literature without language restriction from January 2008 until November 2022 to evaluate the possible effects of medications and drugs of abuse, including the use of tobacco and alcohol, on striatal DAT binding in humans. RESULTS The systematic literature search identified 838 unique publications, of which 44 clinical studies were selected. Using this approach, we found additional evidence to support our original recommendations as well as some new findings on potential effect of other medications on striatal DAT binding. Consequently, we updated the list of medications and drugs of abuse that may influence the visual read of [123I]I-FP-CIT SPECT scans in routine clinical practice. CONCLUSION We expect that a timely withdrawal of these medications and drugs of abuse before DAT imaging may reduce the incidence of false-positive reporting. Nevertheless, the decision to withdraw any medication must be made by the specialist in charge of the patient's care and considering the pros and cons of doing so.
Collapse
Affiliation(s)
- Youssef Chahid
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Clinical Pharmacy, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Zulfiqar H Sheikh
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Max Mitropoulos
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Jan Booij
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Matuskey D, Gallezot JD, Nabulsi N, Henry S, Torres K, Dias M, Angarita GA, Huang Y, Shoaf SE, Carson RE, Mehrotra S. Neurotransmitter transporter occupancy following administration of centanafadine sustained-release tablets: A phase 1 study in healthy male adults. J Psychopharmacol 2023; 37:164-171. [PMID: 36515395 PMCID: PMC9912308 DOI: 10.1177/02698811221140008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Centanafadine is an inhibitor of reuptake transporters for norepinephrine (NET), dopamine (DAT) and serotonin (SERT). AIMS This phase 1, adaptive-design positron emission tomography study investigated the occupancy time course of NET, DAT, and SERT and the relationship to centanafadine plasma concentrations. METHODS Healthy adult males received centanafadine sustained-release 400 mg/day for 4 days (N = 6) or 800 mg in a single day (N = 4). Assessments included safety monitoring; time course of occupancy of NET, DAT, and SERT; and centanafadine plasma concentrations. RESULTS Transporter occupancy was numerically higher for NET versus DAT or SERT. For NET, estimated (mean ± standard error [SE]) maximal observable target occupancy (TOmax) and concentration at half maximal occupancy (IC50) were 64 ± 7% and 132 ± 65 ng/mL, respectively, for all regions and 82 ± 13% and 135 ± 97 ng/mL after excluding the thalamus, which showed high nonspecific binding. For DAT and SERT, TOmax could not be established and was assumed to be 100%; estimated IC50 (mean ± SE) values were 1580 ± 186 ng/mL and 1,760 ± 309 ng/mL, respectively. For centanafadine, the estimated in vivo affinity ratio was 11.9 ± 6.0 (mean ± SE) for NET/DAT, 13.3 ± 7.0 for NET/SERT, and 1.1 ± 0.2 for DAT/SERT. DAT and SERT occupancies at a plasma concentration of 1400 ng/mL were estimated to be 47 and 44%, respectively. CONCLUSIONS High occupancy at NET and moderate occupancy at DAT and SERT was observed at peak concentrations achieved following 400 mg total daily doses of centanafadine.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale
University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale
University School of Medicine, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shannan Henry
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kristen Torres
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale
University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Susan E Shoaf
- Otsuka Pharmaceutical Development &
Commercialization, Inc., Princeton, NJ, USA
- Susan E Shoaf, Otsuka Pharmaceutical
Development & Commercialization, Inc., 508 Carnegie Center, Princeton, NJ
08540, USA.
| | - Richard E Carson
- Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shailly Mehrotra
- Otsuka Pharmaceutical Development &
Commercialization, Inc., Princeton, NJ, USA
| |
Collapse
|
5
|
Ngo Q, Plante DT. An Update on the Misuse and Abuse Potential of Pharmacological Treatments for Central Disorders of Hypersomnolence. CURRENT SLEEP MEDICINE REPORTS 2022. [DOI: 10.1007/s40675-022-00227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Marner L, Korsholm K, Anderberg L, Lonsdale MN, Jensen MR, Brødsgaard E, Denholt CL, Gillings N, Law I, Friberg L. [ 18F]FE-PE2I PET is a feasible alternative to [ 123I]FP-CIT SPECT for dopamine transporter imaging in clinically uncertain parkinsonism. EJNMMI Res 2022; 12:56. [PMID: 36070114 PMCID: PMC9452620 DOI: 10.1186/s13550-022-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dopamine transporter (DAT) imaging of striatum is clinically used in Parkinson's disease (PD) and neurodegenerative parkinsonian syndromes (PS) especially in the early disease stages. The aim of the present study was to evaluate the diagnostic performance of the recently developed tracer for DAT imaging [18F]FE-PE2I PET/CT to the reference standard [123I]FP-CIT SPECT. METHODS Ninety-eight unselected patients referred for DAT imaging were included prospectively and consecutively and evaluated with [18F]FE-PE2I PET/CT and [123I]FP-CIT SPECT on two separate days. PET and SPECT scans were categorized independently by two blinded expert readers as either normal, vascular changes, or mixed. Semiquantitative values were obtained for each modality and compared regarding effect size using Glass' delta. RESULTS Fifty-six of the [123I]FP-CIT SPECT scans were considered abnormal (52 caused by PS, 4 by infarctions). Using [18F]FE-PE2I PET/CT, 95 of the 98 patients were categorized identically to SPECT as PS or non-PS with a sensitivity of 0.94 [0.84-0.99] and a specificity of 1.00 [0.92-1.00]. Inter-reader agreement for [18F]FE-PE2I PET with a kappa of 0.97 [0.89-1.00] was comparable to the agreement for [123I]FP-CIT SPECT of 0.96 [0.76-1.00]. Semiquantitative values for short 10-min reconstructions of [18F]FE-PE2I PET/CT were comparable to longer reconstructions. The effect size for putamen/caudate nucleus ratio was significantly increased using PET compared to SPECT. CONCLUSIONS The high correspondence of [18F]FE-PE2I PET compared to reference standard [123I]FP-CIT SPECT establishes [18F]FE-PE2I PET as a feasible PET tracer for clinical use with favourable scan logistics.
Collapse
Affiliation(s)
- Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kirsten Korsholm
- grid.411702.10000 0000 9350 8874Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark ,grid.475435.4Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lasse Anderberg
- grid.475435.4Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Markus N. Lonsdale
- grid.411702.10000 0000 9350 8874Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark
| | - Mads Radmer Jensen
- grid.411702.10000 0000 9350 8874Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark
| | - Eva Brødsgaard
- grid.411702.10000 0000 9350 8874Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark
| | - Charlotte L. Denholt
- grid.475435.4Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nic Gillings
- grid.475435.4Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.475435.4Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lars Friberg
- grid.411702.10000 0000 9350 8874Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark
| |
Collapse
|
7
|
Linton SR, Murphy M, Schroder HS, Breiger M, Iturra-Mena AM, Kangas BD, Bergman J, Carlezon WA, Risbrough VB, Barnes SA, Der-Avakian A, Pizzagalli DA. Effects of modafinil on electroencephalographic microstates in healthy adults. Psychopharmacology (Berl) 2022; 239:2573-2584. [PMID: 35471613 PMCID: PMC9296596 DOI: 10.1007/s00213-022-06149-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
RATIONALE Modafinil has been proposed as a potentially effective clinical treatment for neuropsychiatric disorders characterized by cognitive control deficits. However, the precise effects of modafinil, particularly on brain network functions, are not completely understood. OBJECTIVES To address this gap, we examined the effects of modafinil on resting-state brain activity in 30 healthy adults using microstate analysis. Electroencephalographic (EEG) microstates are discrete voltage topographies generated from resting-state network activity. METHODS Using a placebo-controlled, within-subjects design, we examined changes to microstate parameters following placebo (0 mg), low (100 mg), and high (200 mg) modafinil doses. We also examined the functional significance of these microstates via associations between microstate parameters and event-related potential indexes of conflict monitoring and automatic error processing (N2 and error-related negativity) and behavioral responses (accuracy and RT) from a subsequent flanker interference task. RESULTS Five microstates emerged following each treatment condition, including four canonical microstates (A-D). Modafinil increased microstate C proportion and occurrence regardless of dose, relative to placebo. Modafinil also decreased microstate A proportion and microstate B proportion and occurrence relative to placebo. These modafinil-related changes in microstate parameters were not associated with similar changes in flanker ERPs or behavior. Finally, modafinil made transitions between microstates A and B less likely and transitions from A and B to C more likely. CONCLUSIONS Previous fMRI work has correlated microstates A and B with auditory and visual networks and microstate C with a salience network. Thus, our results suggest modafinil may deactivate large-scale sensory networks in favor of a higher order functional network during resting-state in healthy adults.
Collapse
Affiliation(s)
- Samantha R Linton
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Michael Murphy
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Hans S Schroder
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Ann M Iturra-Mena
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
8
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
9
|
Zhang S, Guo X, Lu S, He J, Wu Q, Liu X, Han Z, Xie P. Perfluorohexanoic acid caused disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113283. [PMID: 35131581 DOI: 10.1016/j.ecoenv.2022.113283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Perfluorohexanoic acid (PFHxA) has been recognized as an alternative to the wide usage of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in the fluoropolymer industry for years. PFHxA has been frequently detected in the environment due to its wide application. However, the ecological safety of PFHxA, especially its toxicological effects on aquatic organisms, remains obscure. In the present study, PFHxA at different concentrations (0, 0.48, 2.4, and 12 mg/L) was added to the culture medium for zebrafish embryo/larval exposure at 96 h postfertilization (hpf). Zebrafish larvae showed a slow body growth trend and changes in thyroid hormone levels (THs) upon PFHxA exposure, indicating the interference effect of PFHxA on fish larval development. Moreover, the transcription levels of genes related to the hypothalamic-pituitary-thyroid (HPT) axis were also analyzed. The gene expression level of thyroid hormone receptor β (trβ) was upregulated in a dose-dependent manner. Exposure to 0.48 mg/L PFHxA increased the expression levels of the thyrotrophic-releasing hormone (trh) and thyroid hormone receptor α (trα). Significant increases in corticotrophin-releasing hormone (crh) and transthyretin (ttr) gene expression were also observed when the zebrafish larvae were treated with 12 mg/L PFHxA, except iodothyronine deiodinases (dio1), which decreased obviously at that point. There were significant declines in the transcription of both thyroid-stimulating hormone β (tshβ) and uridinediphosphate-glucuronosyltransferase (ugt1ab) upon exposure to 2.4 mg/L PFHxA. In addition, PFHxA induced a dose-related inhibitory effect on the transcription of sodium/iodide symporter (nis). Finally, the thyroid status will be destroyed after exposure to PFHxA, thus leading to growth impairment in zebrafish larvae.
Collapse
Affiliation(s)
- Shengnan Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenyang Han
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Nogami T, Arakawa R, Sakayori T, Ikeda Y, Okubo Y, Tateno A. Effect of DL-Methylephedrine on Dopamine Transporter Using Positron Emission Tomography With [ 18F]FE-PE2I. Front Psychiatry 2022; 13:799319. [PMID: 35711596 PMCID: PMC9193582 DOI: 10.3389/fpsyt.2022.799319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Since ephedrine has a dopamine transporter (DAT) inhibitory effect similar to amphetamine, dl-methylephedrine, a derivative of ephedrine, is considered to have the characteristics of a central nervous system stimulant due to the DAT inhibitory effect. For example, the World Anti-Doping Agency categorizes dl-methylephedrine as a stimulant in the prohibited list for competitions. Assuming to have the same effect as ephedrine, the urinary concentration of dl-methylephedrine is regulated below 10 μg/mL, as is ephedrine. However, the extent to which dl-methylephedrine affects brain function is not yet fully understood. OBJECTIVES The purpose of this study was to evaluate DAT occupancy by a single oral administration of a daily dose of dl-methylephedrine using positron emission tomography (PET) with [18F]FE-PE2I to characterize its stimulatory effect on the central nervous system. METHODS Nine healthy male volunteers were enrolled in the study. The experiments were designed as a placebo-controlled randomized double-blind crossover comparative study. After the first PET scan in a drug-free state, the second and third PET scans were performed with randomized dosing at 60 mg of dl-methylephedrine or placebo. The plasma and urine concentrations of dl-methylephedrine were measured just before and after the PET scans, respectively. RESULTS Mean urine and plasma concentrations of dl-methylephedrine were 13.9 μg/mL and 215.2 ng/mL, respectively. Mean DAT occupancy in the caudate was 4.4% for dl-methylephedrine and 1.2% for placebo. Mean DAT occupancy in the putamen was 3.6% for dl-methylephedrine and 0.5% for placebo. There was no significant difference of DAT occupancies between the groups. CONCLUSION In this study, the urinary concentration of dl-methylephedrine (13.9 μg/mL) was higher than the prohibited reference value (10.0 μg/mL), and there was no significant difference in DAT occupancy between dl-methylephedrine and placebo. These findings suggest that a clinical daily dose of dl-methylephedrine may exceed the doping regulation value according to urine concentration; however, it was considered that at least the central excitatory effect mediated by DAT inhibition was not observed at the daily dose of dl-methylephedrine.
Collapse
Affiliation(s)
- Tsuyoshi Nogami
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Yumiko Ikeda
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
11
|
Yin F, Zhang J, Lu Y, Zhang Y, Liu J, Deji C, Qiao X, Gao K, Xu M, Lai J, Wang Y. Modafinil rescues repeated morphine-induced synaptic and behavioural impairments via activation of D1R-ERK-CREB pathway in medial prefrontal cortex. Addict Biol 2022; 27:e13103. [PMID: 34647651 DOI: 10.1111/adb.13103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Long-term opioid abuse causes a variety of long-lasting cognitive impairments such as attention, impulsivity and working memory. These cognitive impairments undermine behavioural treatment for drug abuse and lead to poor treatment retention and outcomes. Modafinil is a wake-promoting drug that shows potential in improving attention and memory in humans and animals. However, modafinil's effect on opioid-induced cognitive impairments remains unclear, and the underlying mechanism is poorly understood. This study showed that repeated morphine administration significantly impairs attention, increases impulsivity and reduces motivation to natural rewards in mice. Systemic modafinil treatment at low dose efficiently ameliorates morphine-induced attention dysfunction and improves motivation and working memory in mice. High dose of modafinil has adverse effects on impulsive action and attention. Local infusion of D1R antagonist SCH-23390 reverses the morphine-induced synaptic abnormalities and activation of the D1R-ERK-CREB pathway in medial prefrontal cortex (mPFC). This study demonstrated a protective effect of modafinil in mPFC neurons and offered a therapeutic potential for cognitive deficits in opioid abuse.
Collapse
Affiliation(s)
- Fangyuan Yin
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinyu Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ye Lu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuola Deji
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunpeng Wang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Hama T, Koeda M, Ikeda Y, Tateno A, Kawara T, Suzuki H, Okubo Y. Modafinil Decreased Thalamic Activation in Auditory Emotional Processing: A Randomized Controlled Functional Magnetic Resonance Imaging Study. J NIPPON MED SCH 2021; 88:485-495. [PMID: 33692297 DOI: 10.1272/jnms.jnms.2021_88-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Modafinil improves wakefulness and attention, is approved in Japan for treatment of narcolepsy, and was reported to be effective for attention-deficit/hyperactivity disorder. However, it was reported to induce emotional instability, including mania, depression, and suicidal ideation. Such side effects may be related to changes in cognitive behavior caused by the effects of modafinil on emotional recognition. However, the effects of modafinil on the neural basis of emotional processing have not been fully verified. We used functional magnetic resonance imaging to investigate the effects of modafinil on the neural basis of auditory emotional processing. METHODS This study adopted a placebo-controlled within-subject crossover design. Data from 14 participants were analyzed. The effects of modafinil on cerebral activation and task performance during an emotional judgement task were analyzed. RESULTS Task accuracy decreased significantly and response time of emotional judgement was significantly delayed by modafinil, as compared with placebo. Right thalamic activation in auditory emotional processing was significantly less in the modafinil condition than in the placebo condition. In addition, reduction of right thalamic activation by modafinil was positively correlated with accuracy of emotional judgement. CONCLUSIONS Our findings suggest that modafinil acts on the right thalamus and changes behavior and brain function associated with auditory emotional processing. These results indicate that modafinil might change emotional recognition by reducing emotional activation related to social communication.
Collapse
Affiliation(s)
- Tomoko Hama
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School.,Faculty of Health Science Technology, Bunkyo Gakuin University.,Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School
| | - Yumiko Ikeda
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School
| | - Tokuhiro Kawara
- Faculty of Health Science Technology, Bunkyo Gakuin University
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
13
|
Van Puyvelde M, Van Cutsem J, Lacroix E, Pattyn N. A State-of-the-Art Review on the Use of Modafinil as A Performance-enhancing Drug in the Context of Military Operationality. Mil Med 2021; 187:52-64. [PMID: 34632515 DOI: 10.1093/milmed/usab398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Modafinil is an eugeroic drug that has been examined to maintain or recover wakefulness, alertness, and cognitive performance when sleep deprived. In a nonmilitary context, the use of modafinil as a nootropic or smart drug, i.e., to improve cognitive performance without being sleep deprived, increases. Although cognitive performance is receiving more explicit attention in a military context, research into the impact of modafinil as a smart drug in function of operationality is lacking. Therefore, the current review aimed at presenting a current state-of-the-art and research agenda on modafinil as a smart drug. Beside the question whether modafinil has an effect or not on cognitive performance, we examined four research questions based on the knowledge on modafinil in sleep-deprived subjects: (1) Is there a difference between the effect of modafinil as a smart drug when administered in repeated doses versus one single dose?; (2) Is the effect of modafinil as a smart drug dose-dependent?; (3) Are there individual-related and/or task-related impact factors?; and (4) What are the reported mental and/or somatic side effects of modafinil as a smart drug? METHOD We conducted a systematic search of the literature in the databases PubMed, Web of Science, and Scopus, using the search terms "Modafinil" and "Cognitive enhance*" in combination with specific terms related to the research questions. The inclusion criteria were studies on healthy human subjects with quantifiable cognitive outcome based on cognitive tasks. RESULTS We found no literature on the impact of a repeated intake of modafinil as a smart drug, although, in users, intake occurs on a regular basis. Moreover, although modafinil was initially said to comprise no risk for abuse, there are now indications that modafinil works on the same neurobiological mechanisms as other addictive stimulants. There is also no thorough research into a potential risk for overconfidence, whereas this risk was identified in sleep-deprived subjects. Furthermore, eventual enhancing effects were beneficial only in persons with an initial lower performance level and/or performing more difficult tasks and modafinil has an adverse effect when used under time pressure and may negatively impact physical performance. Finally, time-on-task may interact with the dose taken. DISCUSSION The use of modafinil as a smart drug should be examined in function of different military profiles considering their individual performance level and the task characteristics in terms of cognitive demands, physical demands, and sleep availability. It is not yet clear to what extent an improvement in one component (e.g., cognitive performance) may negatively affect another component (e.g., physical performance). Moreover, potential risks for abuse and overconfidence in both regular and occasional intake should be thoroughly investigated to depict the trade-off between user benefits and unwanted side effects. We identified that there is a current risk to the field, as this trade-off has been deemed acceptable for sleep-deprived subjects (considering the risk of sleep deprivation to performance) but this reasoning cannot and should not be readily transposed to non-sleep-deprived individuals. We thus conclude against the use of modafinil as a cognitive enhancer in military contexts that do not involve sleep deprivation.
Collapse
Affiliation(s)
- Martine Van Puyvelde
- VIPER Research Unit, Department of LIFE, Royal Military Academy, Brussels 1000, Belgium.,Brain, Body and Cognition, Department of Psychology, Vrije Universiteit Brussel, Brussels 1050, Belgium.,Clinical & Lifespan Psychology, Department of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jeroen Van Cutsem
- VIPER Research Unit, Department of LIFE, Royal Military Academy, Brussels 1000, Belgium.,MFYS-BLITS, Department of Human Physiology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Emilie Lacroix
- VIPER Research Unit, Department of LIFE, Royal Military Academy, Brussels 1000, Belgium
| | - Nathalie Pattyn
- VIPER Research Unit, Department of LIFE, Royal Military Academy, Brussels 1000, Belgium.,MFYS-BLITS, Department of Human Physiology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
14
|
Moriya H, Tiger M, Tateno A, Sakayori T, Masuoka T, Kim W, Arakawa R, Okubo Y. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. Psychiatry Clin Neurosci 2020; 74:424-430. [PMID: 32363761 DOI: 10.1111/pcn.13020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
AIM Dysfunction of dopaminergic neurons in the central nervous system is considered to be related to major depressive disorder (MDD). Especially, MDD in geriatric patients is characterized by anhedonia, which is assumed to be associated with reduced dopamine neurotransmission in the reward system. Dopamine transporter (DAT) is considered to reflect the function of the dopamine nerve system. However, previous DAT imaging studies using single photon emission computed tomography or positron emission tomography (PET) have shown inconsistent results. The radioligand [18 F]FE-PE2I for PET enables more precise evaluation of DAT availability. Hence, we aimed to evaluate the DAT availability in geriatric patients with MDD using [18 F]FE-PE2I. METHODS Eleven geriatric patients with severe MDD and 27 healthy controls underwent PET with [18 F]FE-PE2I, which has high affinity and selectivity for DAT. Binding potentials (BPND ) in the striatum (caudate and putamen), nucleus accumbens (NAc), and substantia nigra were calculated. BPND values were compared between MDD patients and healthy controls. RESULTS MDD patients showed significantly lower DAT BPND in the NAc (P = 0.009), and there was a trend of lower BPND in the putamen (P = 0.032) compared to controls. CONCLUSION We found low DAT in the NAc and putamen in geriatric patients with severe MDD, which could be related to dysregulation of the reward system.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mikael Tiger
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takahiro Masuoka
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - WooChan Kim
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
15
|
Prescription psychostimulants for the treatment of stimulant use disorder: a systematic review and meta-analysis. Psychopharmacology (Berl) 2020; 237:2233-2255. [PMID: 32601988 DOI: 10.1007/s00213-020-05563-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023]
Abstract
RATIONALE Agonist-based pharmacologic intervention is an accepted approach in treatment of opioid and tobacco use disorders. OBJECTIVES We conducted a systematic review and meta-analysis to evaluate usefulness of an agonist approach as treatment of (psycho)stimulant use disorder (PSUD). METHODS We reviewed PubMed/Medline, LILACS, and ClinicalTrials.gov databases searching for randomized, double-blind, placebo-controlled, parallel-design studies evaluating outcomes of individuals treated for cocaine- or amphetamine-type substance use disorder. We combined results of all trials that included the following prescription psychostimulants (PPs): modafinil, methylphenidate, or amphetamines (mixed amphetamine salts, lisdexamphetamine, and dextroamphetamine). The combined sample consisted of 2889 patients. Outcomes of interest included the following: drug abstinence (defined as 2-3 weeks of sustained abstinence and the average maximum days of consecutive abstinence), percentage of drug-negative urine tests across trial, and retention in treatment. We conducted random-effects meta-analyses and assessed quality of evidence using the GRADE system. RESULTS Thirty-eight trials were included. Treatment with PPs increases rates of sustained abstinence [risk ratio (RR) = 1.45, 95% confidence interval (CI) = (1.10, 1.92)] and duration of abstinence [mean difference (MD) = 3.34, 95% CI = (1.06, 5.62)] in patients with PSUD, particularly those with cocaine use disorder (very low-quality evidence). Prescription amphetamines were particularly efficacious in promoting sustained abstinence in patients with cocaine use disorder [RR = 2.44, 95% CI = (1.66, 3.58)], and higher doses of PPs were particularly efficacious for treatment of cocaine use disorder [RR = 1.95, 95% CI = (1.38, 2.77)] (moderate-quality evidence). Treatment with prescription amphetamines also yielded more cocaine-negative urines [MD = 8.37%, 95% CI = (3.75, 12.98)]. There was no effect of PPs on the retention in treatment. CONCLUSION Prescription psychostimulants, particularly prescription amphetamines given in robust doses, have a clinically significant beneficial effect to promote abstinence in the treatment of individuals with PSUD, specifically the population with cocaine use disorder.
Collapse
|
16
|
Heyer-Osorno R, Juárez J. Modafinil reduces choice impulsivity while increasing motor activity in preadolescent rats treated prenatally with alcohol. Pharmacol Biochem Behav 2020; 194:172936. [PMID: 32360693 DOI: 10.1016/j.pbb.2020.172936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Rats exposed prenatally to alcohol show a reduction in the spontaneous activity of dopaminergic neurons of the ventral tegmental area (VTA), as well as greater impulsive behavior and motor activity, behavioral alterations that have been related to dopaminergic dysfunction. Modafinil (MOD) is a dopamine (DA) reuptake blocker prescribed to treat sleep disorders; however, in recent years it has been used for the treatment of ADHD with positive results. Also, studies in humans and rodents show beneficial effects on learning and attention; however, studies evaluating MOD effects on impulsivity are few and show contradictory results. The purpose of this work was to evaluate the effect of a daily dose of MOD (60 mg/kg i.g.) on cognitive (or choice) impulsivity and motor activity in male preadolescent rats exposed prenatally to alcohol or sucrose (isocaloric control). MOD reduced the impulsive responses in a delay discounting task (DDT) at the same time that increased the motor activity, in both healthy and prenatal alcohol treated rats; however, MOD reduced the response latency in DDT only in prenatal alcohol treated rats. This differential effect of DA activation on impulsivity and motor activity show that the MOD dose that improves the impulse control, does not necessarily decrease motor activity, and suggests a possible differential neural mechanism underlying the expression of these behaviors. On the other hand, the changes in the response latency, only in prenatal alcohol treated groups, suggest that decision-making in animals with a dopaminergic dysfunction is more susceptible to be affected by MOD action.
Collapse
Affiliation(s)
- Rocio Heyer-Osorno
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
17
|
Bupropion increases activation in nucleus accumbens during anticipation of monetary reward. Psychopharmacology (Berl) 2019; 236:3655-3665. [PMID: 31342097 DOI: 10.1007/s00213-019-05337-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Bupropion is used for major depressive disorder, smoking cessation aid, and obesity. It blocks reuptake of dopamine and noradrenaline and antagonizes nicotinic acetylcholine receptor. Animal studies showed that bupropion enhanced rewarding effects. In addition, bupropion has the potential to treat patients with reward processing dysfunction. However, neural substrates underlying the bupropion effects on reward function in human subjects are not fully understood. OBJECTIVES We investigated single-dose administration of bupropion on neural response of reward anticipation in healthy subjects using a monetary incentive delay (MID) task by functional magnetic resonance imaging (fMRI), especially focusing on nucleus accumbens (NAc) activity to non-drug reward stimuli under bupropion treatment. METHODS We used a randomized placebo-controlled within-subject crossover design. Fifteen healthy adults participated in two series of an fMRI study, taking either placebo or bupropion. The participants performed the MID task during the fMRI scanning. The effects of bupropion on behavioral performance and blood oxygenation level-dependent (BOLD) signal in NAc during anticipation of monetary gain were analyzed. RESULTS We found that bupropion significantly increased BOLD responses in NAc during monetary reward anticipation. The increased BOLD responses in NAc were observed with both low and high reward incentive cues. There was no significant difference between placebo and bupropion in behavioral performance. CONCLUSIONS Our findings provide support for the notion that bupropion enhances non-drug rewarding effects, suggesting a possible mechanism underlying therapeutic effects for patients with motivational deficit.
Collapse
|
18
|
Moral decision making under modafinil: a randomized placebo-controlled double-blind crossover fMRI study. Psychopharmacology (Berl) 2019; 236:2747-2759. [PMID: 31037409 DOI: 10.1007/s00213-019-05250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE Modafinil is increasingly used by healthy humans as a neuroenhancer in order to improve cognitive functioning. Research on the effects of modafinil on cognition yielded most consistent findings for complex tasks relying on the prefrontal cortex (PFC). OBJECTIVES The present randomized placebo-controlled double-blind crossover study aimed to investigate the effect of a single dose of modafinil (200 mg) on everyday moral decision making and its neural correlates, which have been linked to the ventro- and dorsomedial PFC. METHODS Healthy male study participants were presented with short stories describing everyday moral or neutral dilemmas. Each moral dilemma required a decision between a personal desire and a moral standard, while the neutral dilemmas required decisions between two personal desires. The participants underwent this task twice, once under the influence of modafinil and once under placebo. Brain activity associated with the processing of the dilemmas was assessed by means of functional magnetic resonance imaging. RESULTS For the processing of moral vs. neutral dilemmas, activations were found in a network of brain regions linked to social cognitive processes including, among others, the bilateral medial PFC, the insula, and the precuneus. Modafinil was found to increase the number of moral decisions and had no effect on brain activity associated with dilemma processing. Exploratory analyses revealed reduced response-locked activity in the dorsomedial PFC for moral compared to neutral dilemmas under modafinil, but not under placebo. CONCLUSIONS The results are discussed in terms of altered predictions of others' emotional states under modafinil, possibly due to higher processing efficiency.
Collapse
|
19
|
Alacam H, Basay O, Tumkaya S, Mart M, Kar G. Modafinil Dependence: A Case with Attention-Deficit/Hyperactivity Disorder. Psychiatry Investig 2018; 15:424-427. [PMID: 29593204 PMCID: PMC5912487 DOI: 10.30773/pi.2016.10.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 10/25/2016] [Indexed: 12/02/2022] Open
Abstract
Modafinil is generally known as a drug with low addiction potential. There are few case reports in the literature demonstrating that Modafinil, stated being capable of diminishing symptoms of attention deficit/hyperactivity disorder (ADHD), causes addiction. In the present article a Modafinil addicted ADHD case, consuming usurious doses (5,000 mg/per day) of Modafinil is presented. The case presented to our psychiatry outpatient clinic due to: requirement of in taking high dose Modafinil in order to achieve the initial effects, difficulty in obtaining the drug, irritability, anxiousness, sleep irregularities, fatigue and unpleasant vivid dreams when he did not use the drug. It was realized that the patient, himself increased doses of Modafinil incrementally, in order to keep its effects on attention symptoms at the same level. It has to be kept in mind that ADHD patients can develop Modafinil addiction. It is necessary to carry out systemic studies on this subject.
Collapse
Affiliation(s)
- Huseyin Alacam
- Department of Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Omer Basay
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Selim Tumkaya
- Department of Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Mehmet Mart
- Department of Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gokce Kar
- Department of Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
20
|
Wada M, Mimura M, Noda Y, Takasu S, Plitman E, Honda M, Natsubori A, Ogyu K, Tarumi R, Graff-Guerrero A, Nakajima S. Neuroimaging correlates of narcolepsy with cataplexy: A systematic review. Neurosci Res 2018; 142:16-29. [PMID: 29580887 DOI: 10.1016/j.neures.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
Recent developments in neuroimaging techniques have advanced our understanding of biological mechanisms underpinning narcolepsy. We used MEDLINE to retrieve neuroimaging studies to compare patients with narcolepsy and healthy controls. Thirty-seven studies were identified and demonstrated several replicated abnormalities: (1) gray matter reductions in superior frontal, superior and inferior temporal, and middle occipital gyri, hypothalamus, amygdala, insula, hippocampus, cingulate cortex, thalamus, and nucleus accumbens, (2) decreased fractional anisotropy in white matter of fronto-orbital and cingulate area, (3) reduced brain metabolism or cerebral blood flow in middle and superior frontal, and cingulate cortex (4) increased activity in inferior frontal gyri, insula, amygdala, and nucleus accumbens, and (5) N-acetylaspartate/creatine-phosphocreatine level reduction in hypothalamus. In conclusion, all the replicated findings are still controversial due to the limitations such as heterogeneity or size of the samples and lack of multimodal imaging or follow-up. Thus, future neuroimaging studies should employ multimodal imaging methods in a large sample size of patients with narcolepsy and consider age, duration of disease, age at onset, severity, human leukocyte antigen type, cerebrospinal fluid hypocretin levels, and medication intake in order to elucidate possible neuroimaging characteristic of narcolepsy and identify therapeutic targets.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shotaro Takasu
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Eric Plitman
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, 250 College, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Makoto Honda
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Seiwa Hospital, 91 Bententyo, Sinjyuku-ku, Tokyo, 162-0851, Japan.
| | - Akiyo Natsubori
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, 250 College, Toronto, Ontario, M5T 1R8, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, Ontario, M6J 1H4, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, 250 College, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
21
|
Murillo-Rodríguez E, Barciela Veras A, Barbosa Rocha N, Budde H, Machado S. An Overview of the Clinical Uses, Pharmacology, and Safety of Modafinil. ACS Chem Neurosci 2018; 9:151-158. [PMID: 29115823 DOI: 10.1021/acschemneuro.7b00374] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modafinil (MOD) is a wakefulness-inducing compound prescribed for treatment of excessive daytime sleepiness as a consequence of sleep disturbances such as shift work sleep disorder, obstructive sleep apnea, restless leg syndrome, or narcolepsy. While providing effective results in patients with sleepiness, MOD also produces positive outcomes in the management of fatigue associated with different conditions including depression, cancer, or tiredness in military personnel. Although there is clear evidence of the stimulant effects of MOD, current data also show that administration of this drug apparently induces positive neurobiological effects, such as improvement in memory. However, serious concerns have been raised since some reports have suggested MOD dependence. Taken together, these findings highlight the need to characterize the changes induced by MOD which have been observed in several neurobiological functions. Moreover, further work should follow up on the likely long-term effects of this drug if used for treatment of drowsiness and tiredness. Here, we review and summarize recent findings of the medical uses of MOD in the management of sleepiness and fatigue associated with depression or cancer as well as exhaustion in military personnel. We also discuss the available literature related with the cognitive enhancing properties of this stimulant, as well as what is known and unknown about MOD addiction.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio
de Neurociencias Moleculares e Integrativas, Escuela de Medicina División
Ciencias de la Salud, Universidad Anáhuac Mayab, 97310 Mérida, Yucatán, México
- Grupo
de Investigación en Envejecimiento, División Ciencias
de la Salud, Universidad Anáhuac Mayab, 97310 Mérida, Yucatán, México
- Intercontinental Neuroscience Research Group, Yucatán, México
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Yucatán, México
- Grupo de Pesquisa Translacional em
Saúde Mental, Universidade Católica Dom Bosco, Campo
Grande, Mato Grosso del Sur 79117-900, Brazil
- Panic
and Respiration Laboratory, Institute of Psychiatry Federal, University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Yucatán, México
- Health School, Polytechnic Institute of Porto, 4200-465 Porto, Portugal
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Yucatán, México
- Faculty
of Human Sciences, Medical School Hamburg, 20457 Hamburg, Germany
- Physical
Activity, Physical Education, Health and Sport Research Centre (PAPESH),
Sports Science Department, School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
- Lithuanian Sports University, Kaunas 44221, Lithuania
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Yucatán, México
- Panic
and Respiration Laboratory, Institute of Psychiatry Federal, University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Physical
Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate
Program-Salgado de Oliveira University, Salgado de Oliveira University, Niterói 24030-060, Brazil
| |
Collapse
|
22
|
Subbaiah MAM. Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges. J Med Chem 2017; 61:2133-2165. [DOI: 10.1021/acs.jmedchem.6b01827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Murugaiah A. M. Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol-Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| |
Collapse
|
23
|
Ikeda Y, Funayama T, Tateno A, Fukayama H, Okubo Y, Suzuki H. Modafinil enhances alerting-related brain activity in attention networks. Psychopharmacology (Berl) 2017; 234:2077-2089. [PMID: 28374089 DOI: 10.1007/s00213-017-4614-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 02/03/2023]
Abstract
RATIONALE Modafinil is a wake-promoting agent and has been reported to be effective in improving attention in patients with attentional disturbance. However, neural substrates underlying the modafinil effects on attention are not fully understood. OBJECTIVES We employed a functional magnetic resonance imaging (fMRI) study with the attention network test (ANT) task in healthy adults and examined which networks of attention are mainly affected by modafinil and which neural substrates are responsible for the drug effects. METHODS We used a randomized placebo-controlled within-subjects cross-over design. Twenty-three healthy adults participated in two series of an fMRI study, taking either a placebo or modafinil. The participants performed the ANT task, which is designed to measure three distinct attentional networks, alerting, orienting, and executive control, during the fMRI scanning. The effects of modafinil on behavioral performance and regional brain activity were analyzed. RESULTS We found that modafinil enhanced alerting performance and showed greater alerting network activity in the left middle and inferior occipital gyri as compared with the placebo. The brain activations in the occipital regions were positively correlated with alerting performance. CONCLUSIONS Modafinil enhanced alerting performance and increased activation in the occipital lobe in the alerting network possibly relevant to noradrenergic activity during the ANT task. The present study may provide a rationale for the treatment of patients with distinct symptoms of impaired attention.
Collapse
Affiliation(s)
- Yumiko Ikeda
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takuya Funayama
- Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Haruhisa Fukayama
- Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
24
|
Zimmer L. Contribution of Clinical Neuroimaging to the Understanding of the Pharmacology of Methylphenidate. Trends Pharmacol Sci 2017; 38:608-620. [PMID: 28450072 DOI: 10.1016/j.tips.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Methylphenidate (MPH) is currently the most widely used molecule in the pharmacologic treatment of attention-deficit hyperactivity disorder (ADHD). Although experience of its application now extends over several decades, its psychotropic nature, prolonged use in children, and chemical relation to amphetamines still raise doubts in the minds of prescribers and the families of the patients. Brain imaging has shed considerable light on the neuropharmacology of MPH. The two main in vivo neuroimaging techniques are positron-emission tomography (PET) and magnetic resonance imaging (MRI), and these can be applied in both animal models and humans. The present review seeks to show how human molecular and functional imaging has contributed to determining not only the molecular targets of MPH, and the action kinetics of the various pharmaceutical forms available, but also the connectivity and brain networks activated by treatment. We also discuss the perspectives opened up by new hybrid PET-MRI techniques that enable multimodal tracking of the impact of methylphenidate on neurotransmission.
Collapse
Affiliation(s)
- Luc Zimmer
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Centre d'Étude et de Recherche Multimodale et Pluridisciplinaire en Imagerie (CERMEP) Imaging Platform, Hospices Civils de Lyon, Bron, France; Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France.
| |
Collapse
|
25
|
Bellebaum C, Kuchinke L, Roser P. Modafinil alters decision making based on feedback history - a randomized placebo-controlled double blind study in humans. J Psychopharmacol 2017; 31:243-249. [PMID: 27649777 DOI: 10.1177/0269881116668591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Modafinil is becoming increasingly popular as a cognitive enhancer. Research on the effects of modafinil on cognitive function have yielded mixed results, with negative findings for simple memory and attention tasks and enhancing effects for more complex tasks. In the present study we examined whether modafinil, due to its known effect on the dopamine level in the striatum, alters feedback-related choice behaviour. We applied a task that separately tests the choice of previously rewarded behaviours (approach) and avoidance of previously punished behaviours. 18 participants received a single dose of 200 mg modafinil. Their performance was compared to a group of 22 participants who received placebo in a double-blind design. Modafinil but not placebo induced a significant bias towards approach behaviour as compared to the frequency of avoidance behaviour. General attention, overall feedback-based acquisition of choice behaviour and reaction times in high vs low conflict choices were not significantly affected by modafinil. This finding suggests that modafinil has a specific effect on dopamine-mediated choice behaviour based on the history of feedback, while a contribution of noradrenaline is also conceivable. The described change in decision making cannot be considered as cognitive enhancement, but might rather have detrimental effects on decisions in everyday life.
Collapse
Affiliation(s)
- Christian Bellebaum
- 1 Institute for Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lars Kuchinke
- 2 Experimental Psychology & Methods, Ruhr University Bochum, Bochum, Germany.,3 Methodology and Evaluation, International Psychoanalytic University Berlin, Germany
| | - Patrik Roser
- 4 Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Wuo-Silva R, Fukushiro DF, Hollais AW, Santos-Baldaia R, Mári-Kawamoto E, Berro LF, Yokoyama TS, Lopes-Silva LB, Bizerra CS, Procópio-Souza R, Hashiguchi D, Figueiredo LA, Costa JL, Frussa-Filho R, Longo BM. Modafinil Induces Rapid-Onset Behavioral Sensitization and Cross-Sensitization with Cocaine in Mice: Implications for the Addictive Potential of Modafinil. Front Pharmacol 2016; 7:420. [PMID: 27872594 PMCID: PMC5097917 DOI: 10.3389/fphar.2016.00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
There is substantial controversy about the addictive potential of modafinil, a wake-promoting drug used to treat narcolepsy, proposed as pharmacotherapy for cocaine abuse, and used indiscriminately by healthy individuals due to its positive effects on arousal and cognition. The rapid-onset type of behavioral sensitization (i.e., a type of sensitization that develops within a few hours from the drug priming administration) has been emerged as a valuable tool to study binge-like patterns of drug abuse and the neuroplastic changes that occur quickly after drug administration that ultimately lead to drug abuse. Our aim was to investigate the possible development of rapid-onset behavioral sensitization to modafinil and bidirectional rapid-onset cross-sensitization with cocaine in male Swiss mice. A priming injection of a high dose of modafinil (64 mg/kg) induced rapid-onset behavioral sensitization to challenge injections of modafinil at the doses of 16, 32, and 64 mg/kg, administered 4 h later. Furthermore, rapid-onset cross-sensitization was developed between modafinil and cocaine (64 mg/kg modafinil and 20 mg/kg cocaine), in a bidirectional way. These results were not due to residual levels of modafinil as the behavioral effects of the priming injection of modafinil were no longer present and modafinil plasma concentration was reduced at 4 h post-administration. Taken together, the present findings provide preclinical evidence that modafinil can be reinforcing per se and can enhance the reinforcing effects of stimulants like cocaine within hours after administration.
Collapse
Affiliation(s)
- Raphael Wuo-Silva
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São PauloSão Paulo, Brazil; Department of Pharmacology, Universidade Federal de São PauloSão Paulo, Brazil
| | - Daniela F Fukushiro
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | - André W Hollais
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Elisa Mári-Kawamoto
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Laís F Berro
- Department of Psychobiology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Thaís S Yokoyama
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Carolina S Bizerra
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Debora Hashiguchi
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Lilian A Figueiredo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jose L Costa
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas Campinas, Brazil
| | | | - Beatriz M Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
27
|
Karila L, Leroy C, Dubol M, Trichard C, Mabondo A, Marill C, Dubois A, Bordas N, Martinot JL, Reynaud M, Artiges E. Dopamine Transporter Correlates and Occupancy by Modafinil in Cocaine-Dependent Patients: A Controlled Study With High-Resolution PET and [(11)C]-PE2I. Neuropsychopharmacology 2016; 41:2294-302. [PMID: 26892922 PMCID: PMC4946060 DOI: 10.1038/npp.2016.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 11/09/2022]
Abstract
Modafinil is a candidate compound for the treatment of cocaine addiction that binds to the dopamine transporter (DAT) in healthy humans, as observed by positron emission tomography (PET). This mechanism, analogous to that of cocaine, might mediate a putative therapeutic effect of modafinil on cocaine dependence, though the binding of modafinil to DAT has never been assessed in cocaine-dependent patients. We aimed at quantifying the DAT availability during a controlled treatment by modafinil, and its clinical and psychometric correlates in cocaine-dependent patients at the onset of abstinence initiation. Twenty-nine cocaine-dependent male patients were enrolled in a 3-month trial for cocaine abstinence. Modafinil was used in a randomized double-blind placebo-controlled design and was administered as follows: 400 mg/day for 26 days, then 300 mg/day for 30 days, and 200 mg/day for 31 days. Participants were examined twice during a 17-day hospitalization for their DAT availability using PET and [(11)C]-PE2I and for assessments of craving, depressive symptoms, working memory, and decision-making. Cocaine abstinence was further assessed during a 10-week outpatient follow-up period. Baseline [(11)C]-PE2I-binding potential covaried with risk taking and craving index in striatal and extrastriatal regions. A 65.6% decrease of binding potential was detected in patients receiving modafinil for 2 weeks, whereas placebo induced no significant change. During hospitalization, an equivalent improvement in clinical outcomes was observed in both treatment groups, and during the outpatient follow-up there were more therapeutic failures in the modafinil-treated group. Therefore, these results do not support the usefulness of modafinil to treat cocaine addiction.
Collapse
Affiliation(s)
- Laurent Karila
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France,AP-HP, Addiction Research and Treatment Center, Paul Brousse Hospital, Villejuif, France,AP-HP, Addiction Research and Treatment Centre, Paul Brousse Hospital, 12 Avenue Paul Vaillant Couturier, Villejuif, 94800, France, Tel: +33 1 45 59 65 13, E-mail:
| | - Claire Leroy
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France,CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France,Laboratoire Imagerie Moléculaire In Vivo (IMIV), CEA, Inserm, Paris Sud University, CNRS, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Manon Dubol
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France
| | - Christian Trichard
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France,Psychiatry Department, Orsay Hospital, Orsay, France
| | - Audrey Mabondo
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France
| | - Catherine Marill
- AP-HP, Addiction Research and Treatment Center, Paul Brousse Hospital, Villejuif, France
| | - Albertine Dubois
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR 8165 CNRS-Université Paris 7-Université Paris 11, Orsay, France
| | - Nadège Bordas
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France
| | - Jean-Luc Martinot
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France
| | - Michel Reynaud
- AP-HP, Addiction Research and Treatment Center, Paul Brousse Hospital, Villejuif, France
| | - Eric Artiges
- INSERM U.1000 Research Unit ‘Neuroimaging and Psychiatry', Paris Sud University, Paris Descartes University, Paris, Orsay, France,Psychiatry Department, Orsay Hospital, Orsay, France
| |
Collapse
|
28
|
Arakawa R, Tateno A, Kim W, Sakayori T, Ogawa K, Okubo Y. Time-course of serotonin transporter occupancy by single dose of three SSRIs in human brain: A positron emission tomography study with [(11)C]DASB. Psychiatry Res Neuroimaging 2016; 251:1-6. [PMID: 27082864 DOI: 10.1016/j.pscychresns.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 11/18/2022]
Abstract
Sixteen healthy volunteers were enrolled and divided into four groups according to the single administration of 10mg or 20mg escitalopram, 50mg sertraline, or 20mg paroxetine. Four positron emission tomography scans with [(11)C]DASB were performed on each subject, the first prior to taking the drug, followed by the others at 4, 24, and 48h after. Serotonin transporter occupancies of the drugs at each time point were calculated. All drugs showed maximum occupancy at 4h after dosing and then decreasing occupancies with time. Escitalopram and sertraline showed high occupancies of 69.1-77.9% at 4h, remaining at 52.8-57.8% after 48h. On the other hand, paroxetine showed relatively low occupancy of 44.6%, then decreasing to 10.3% at 48h. Escitalopram (both 10mg and 20mg) and sertraline (50mg) showed high and sustained occupancy. Paroxetine (20mg) showed relatively low and rapidly decreasing occupancy, possibly due to the low plasma concentration by single dosing schedule. Applying the reported concentration of multiple dosing, 20mg paroxetine will induce over 80% occupancy. The present study suggested that these drugs and doses would be sufficient for the treatment of depression.
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - WooChan Kim
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Kohei Ogawa
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
29
|
Dynamic Changes in Striatal mGluR1 But Not mGluR5 during Pathological Progression of Parkinson's Disease in Human Alpha-Synuclein A53T Transgenic Rats: A Multi-PET Imaging Study. J Neurosci 2016; 36:375-84. [PMID: 26758830 DOI: 10.1523/jneurosci.2289-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is a prevalent degenerative disorder affecting the CNS that is primarily characterized by resting tremor and movement deficits. Group I metabotropic glutamate receptor subtypes 1 and 5 (mGluR1 and mGluR5, respectively) are important targets for investigation in several CNS disorders. In the present study, we investigated the in vivo roles of mGluR1 and mGluR5 in chronic PD pathology by performing longitudinal positron emission tomography (PET) imaging in A53T transgenic (A53T-Tg) rats expressing an abnormal human α-synuclein (ASN) gene. A53T-Tg rats showed a dramatic decline in general motor activities with age, along with abnormal ASN aggregation and striatal neuron degeneration. In longitudinal PET imaging, striatal nondisplaceable binding potential (BPND) values for [(11)C]ITDM (N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[(11)C]methylbenzamide), a selective PET ligand for mGluR1, temporarily increased before PD symptom onset and dramatically decreased afterward with age. However, striatal BPND values for (E)-[(11)C]ABP688 [3-(6-methylpyridin-2-ylethynyl)-cyclohex-2-enone-(E)-O-[(11)C]methyloxime], a specific PET ligand for mGluR5, remained constant during experimental terms. The dynamic changes in striatal mGluR1 BPND values also showed a high correlation in pathological decreases in general motor activities. Furthermore, declines in mGluR1 BPND values were correlated with decreases in BPND values for [(18)F]FE-PE2I [(E)-N-(3-iodoprop-2E-enyl)-2β-carbo-[(18)F]fluoroethoxy-3β-(4-methylphenyl) nortropane], a specific PET ligand for the dopamine transporter, a biomarker for dopaminergic neurons. In conclusion, our results have demonstrated for the first time that dynamic changes occur in mGluR1, but not mGluR5, that accompany pathological progression in a PD animal model. SIGNIFICANCE STATEMENT Synaptic signaling by glutamate, the principal excitatory neurotransmitter in the brain, is modulated by group I metabotropic glutamate receptors, including the mGluR1 and mGluR5 subtypes. In the brain, mGluR1 and mGluR5 have distinct functional roles and regional distributions. Their roles in brain pathology, however, are not well characterized. Using longitudinal PET imaging in a chronic rat model of PD, we demonstrated that expression of mGluR1, but not mGluR5, dynamically changed in the striatum accompanying pathological PD progression. These findings imply that monitoring mGluR1 in vivo may provide beneficial information to further understand central nervous system disorders.
Collapse
|
30
|
Bernardi RE, Broccoli L, Spanagel R, Hansson AC. Sex differences in dopamine binding and modafinil conditioned place preference in mice. Drug Alcohol Depend 2015; 155:37-44. [PMID: 26342627 DOI: 10.1016/j.drugalcdep.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Studies in humans and rodents have demonstrated under certain conditions some reinforcing properties of modafinil, a drug being examined clinically for its potential to treat psychostimulant abuse. However, the majority of rodent studies examining the abuse potential of modafinil have used high doses that may not be clinically relevant. In fact, recent work has indicated that doses similar to those administered to humans are not reinforcing in mice. METHODS The current study examined sex differences in the ability of low-dose modafinil (0.75mg/kg, IP) to induce a conditioned place preference in mice, and assessed sex-dependent alterations in dopamine D1, D2 and DAT binding sites in reward-related regions in naïve and modafinil-treated mice. RESULTS Low-dose modafinil failed to induce a conditioned place preference in male mice, while female mice demonstrated a significant modafinil place preference. Several dopamine binding differences were also detected in naïve and modafinil-treated mice, including sex differences in D1 and D2 availability in reward-related regions, and are discussed in relation to sex-dependent differences in the reinforcing effects of modafinil and psychostimulants in general. CONCLUSIONS These findings implicate sex differences in the reinforcing properties of modafinil in mice, and indicate that clinical evaluation of the sex dependence of the reinforcing properties of modafinil in humans is warranted.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Laura Broccoli
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| |
Collapse
|
31
|
Krasulova K, Siller M, Holas O, Dvorak Z, Anzenbacher P. Enantiospecific effects of chiral drugs on cytochrome P450 inhibition in vitro. Xenobiotica 2015; 46:315-24. [PMID: 26338061 DOI: 10.3109/00498254.2015.1076086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1. The aim of this work was to examine the differences in the inhibitory potency of individual enantiomers and racemic mixtures of selected chiral drugs on human liver microsomal cytochromes P450. 2. The interaction of enantiomeric forms of six drugs (tamsulosin, tolterodine, citalopram, modafinil, zopiclone, ketoconazole) with nine cytochromes P450 (CYP3A4, CYP2E1, CYP2D6, CYP2C19, CYP2C9, CYP2C8, CYP2B6, CYP2A6, CYP1A2) was examined. HPLC methods were used to estimate the extent of the inhibition of specific activity in vitro. 3. Tamsulosin (TAM) and tolterodine (TOL) inhibited CYP3A4 activity with an enantiospecific pattern. The inhibition of CYP3A4 activity differed for R-TAM (Ki 2.88 ± 0.12 µM) and S-TAM (Ki 14.22 ± 0.53 µM) as well as for S-TOL (Ki 1.71 ± 0.03 µM) and R-TOL (Ki 4.78 ± 0.17 µM). Also, the inhibition of CYP2C19 by ketoconazole (KET) cis-enantiomers exhibited enantioselective behavior: the (+)-KET (IC50 23.64 ± 6.25 µM) was more potent than (-)-KET (IC50 66.12 ± 12.6 µM). The inhibition of CYP2C19 by modafinil (MOD) enantiomers (R-MOD IC50 = 51.79 ± 8.58 µM, S-MOD IC50 = 48.62 ± 9.74 µM) and the inhibition of CYP2D6 by citalopram (CIT) enantiomers (R-CIT IC50 = 68.17 ± 5.70 µM, S-CIT IC50 = 62.63 ± 7.89 µM) was not enantiospecific. 4. Although enantiospecific interactions were found (TAM, TOL, KET), they are probably not clinically relevant as the plasma levels are generally lower than the drug concentration needed for prominent inhibition (at least 50% of CYP activity).
Collapse
Affiliation(s)
- Kristyna Krasulova
- a Department of Pharmacology, Faculty of Medicine and Dentistry , Palacky University , Olomouc , Czech Republic
| | - Michal Siller
- a Department of Pharmacology, Faculty of Medicine and Dentistry , Palacky University , Olomouc , Czech Republic
| | - Ondrej Holas
- b Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove , Charles University in Prague , Hradec Kralove , Czech Republic , and
| | - Zdenek Dvorak
- c Department of Cell Biology and Genetics, Faculty of Science , Palacky University , Olomouc , Czech Republic
| | - Pavel Anzenbacher
- a Department of Pharmacology, Faculty of Medicine and Dentistry , Palacky University , Olomouc , Czech Republic
| |
Collapse
|
32
|
Cengiz Mete M, Şenormancı Ö, Saraçlı Ö, Atasoy N, Atik L. Compulsive modafinil use in a patient with a history of alcohol use disorder. Gen Hosp Psychiatry 2015; 37:e7-8. [PMID: 25655923 DOI: 10.1016/j.genhosppsych.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Affiliation(s)
- Melek Cengiz Mete
- Bülent Ecevit University School of Medicine, Psychiatry, Zonguldak, Turkey
| | - Ömer Şenormancı
- Bülent Ecevit University School of Medicine, Psychiatry, Zonguldak, Turkey.
| | - Özge Saraçlı
- Bülent Ecevit University School of Medicine, Psychiatry, Zonguldak, Turkey
| | - Nuray Atasoy
- Bülent Ecevit University School of Medicine, Psychiatry, Zonguldak, Turkey
| | - Levent Atik
- Bülent Ecevit University School of Medicine, Psychiatry, Zonguldak, Turkey
| |
Collapse
|
33
|
Verrico CD, Haile CN, Mahoney JJ, Thompson-Lake DGY, Newton TF, De La Garza R. Treatment with modafinil and escitalopram, alone and in combination, on cocaine-induced effects: a randomized, double blind, placebo-controlled human laboratory study. Drug Alcohol Depend 2014; 141:72-8. [PMID: 24928479 PMCID: PMC4120836 DOI: 10.1016/j.drugalcdep.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Concurrent administration of dopamine and serotonin reuptake inhibitors reduces cocaine self-administration in monkeys. Consonant with this, clinical trials assessing modafinil and selective serotonin reuptake inhibitors alone show some efficacy as potential pharmacotherapies for cocaine dependence. We hypothesized that combining modafinil with escitalopram would attenuate the euphoric effects of cocaine to a greater degree than modafinil alone. METHODS In a randomized, double blind, parallel groups design participants received either placebo (0mg/day; n=16), modafinil (200mg/day; n=16), escitalopram (20mg/day; n=17), or modafinil+escitalopram (200+20mg/day; n=15) for 5 days. On day 5, during separate sessions participants received an intravenous sample of cocaine (0 or 20mg; randomized) and five $1 bills. Participants rated the subjective effects of the infusions and subsequently made choices to either return $1 and receive another infusion or keep $1 and receive no infusion. RESULTS Compared to saline, cocaine (20mg) significantly (p≤0.008) increased most ratings, including "good effects", "stimulated", and "high". Relative to placebo, modafinil significantly (p≤0.007) attenuated subject-rated increases of "any drug effect", "high", "good effects", and "stimulated" produced by cocaine. Compared to saline, participants chose cocaine infusions significantly more; however, no treatment significantly reduced choices for cocaine infusions. Escitalopram did not enhance the efficacy of modafinil to reduce any measure. CONCLUSIONS Modafinil attenuated many positive subjective effects produced by cocaine; however, escitalopram combined with modafinil did not enhance the efficacy of modafinil to reduce cocaine effects.
Collapse
Affiliation(s)
- Christopher D. Verrico
- Menninger Department of Psychiatry and Behavioral Sciences,Department of Pharmacology,Corresponding Author: Christopher D. Verrico, Baylor College of Medicine, 1977 Butler Blvd., Suite E4.163, Houston, Texas 77030, , Phone: (713) 791-1414 x26849
| | - Colin N. Haile
- Menninger Department of Psychiatry and Behavioral Sciences
| | | | | | - Thomas F. Newton
- Menninger Department of Psychiatry and Behavioral Sciences,Department of Pharmacology
| | - Richard De La Garza
- Menninger Department of Psychiatry and Behavioral Sciences,Department of Pharmacology,Department of Neuroscience
| |
Collapse
|