1
|
Innamma N, Kaeoket K. Feeding Sows with Multi-Species Probiotics During Late Pregnancy and the Lactating Period Influences IgA Concentration in Colostrum and Subsequently Increases the Survival Rate of Piglets in Porcine Epidemic Diarrhea Outbreak Herd. Animals (Basel) 2025; 15:103. [PMID: 39795046 PMCID: PMC11718946 DOI: 10.3390/ani15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Porcine epidemic diarrhea (PED) virus is an important cause of diarrhea in sows and piglets [...].
Collapse
Affiliation(s)
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
2
|
Yao G, Zhao Z, Yang C, Zuo B, Sun Z, Wang J, Zhang H. Evaluating the probiotic effects of spraying lactiplantibacillus plantarum P-8 in neonatal piglets. BMC Microbiol 2024; 24:253. [PMID: 38982403 PMCID: PMC11232343 DOI: 10.1186/s12866-024-03332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.
Collapse
Affiliation(s)
- Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Kongpanna P, Doerr JA, Nilubol D, Jamikorn U. Effect of a Multi-Species Direct-Fed Microbial on Growth Performance, Nutrient Digestibility, Intestinal Morphology and Colonic Volatile Fatty Acids in Weanling Pigs. Animals (Basel) 2024; 14:1749. [PMID: 38929368 PMCID: PMC11200373 DOI: 10.3390/ani14121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The potentials of ABO replacer of ENZ and DFM on growth performance, AID, colonic VFAs, gut morphology, fecal score and diarrhea incidence were evaluated. We randomly assigned 120 piglets to four experimental diets that included: (1) control diet (CON), fed the basal ration; (2) ABO was added at 250 ppm of in-feed ABO; (3) ENZ was added at a rate of 3 kg/ton feed; (4) DFM was added with 50 × 106 cfu/g of Bacillus subtilis and 2 × 106 cfu/g of Lactobacillus spp. at a rate of 1.2 kg/ton feed. A complete randomized design used six pens per treatment with five pigs per pen. Pigs had ad libitum access to feed and water throughout the 6-week trial. Feed intake and BW were recorded on weeks 0, 2, 4 and 6, as well as fecal scores and diarrhea incidences (visually recorded and calculated). At weeks 2 and 4, a sub-sample of pigs (n = 6) was sacrificed for intestinal morphology, enzyme activity and VFAs. The results of the study demonstrated that DFM piglets showed increased final BW (3 kg) (p < 0.001) vs. CON. Likewise, ADG was positively affected by the incorporation of ABO, ENZ and DFM in the diets, with an average increase of 8 to 17% on ADG compared with CON (p < 0.001). The AID of gross energy, organic matter, CP and EAAs in piglets fed ENZ and DFM were significantly higher (p < 0.05) than those of CON and ABO at weeks 2 and 4. Inclusion of DFM increased intestinal morphology, enzymatic activities and propionic and butyric acid more than in pigs fed CON, ABO and ENZ (p < 0.05). The fecal score and diarrhea incidence generally decreased over time in pigs fed DFM (p < 0.05). These findings indicate that dietary supplementation with DFM has better effects at any period on growth performance, CP and AA digestibility and beneficially altered the intestinal health in weanling piglets.
Collapse
Affiliation(s)
- Panumas Kongpanna
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - John A. Doerr
- Agrarian Solutions, 585 Shawnee St., Nappanee, IN 46550, USA;
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Uttra Jamikorn
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
4
|
Lee HJ, Choi BG, Joo YH, Baeg CH, Kim JY, Kim DH, Lee SS, Kim SC. The Effects of Microbial Additive Supplementation on Growth Performance, Blood Metabolites, Fecal Microflora, and Carcass Characteristics of Growing-Finishing Pigs. Animals (Basel) 2024; 14:1268. [PMID: 38731272 PMCID: PMC11083169 DOI: 10.3390/ani14091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to assess the effects of microbial additives that produce antimicrobial and digestive enzymes on the growth performance, blood metabolites, fecal microflora, and carcass characteristics of growing-finishing pigs. A total of 180 growing-finishing pigs (Landrace × Yorkshire × Duroc; mixed sex; 14 weeks of age; 58.0 ± 1.00 kg) were then assigned to one of three groups with three repetitions (20 pigs) per treatment for 60 days of adaptation and 7 days of collection. Dietary treatments included 0, 0.5, and 1.0% microbial additives in the basal diet. For growth performance, no significant differences in the initial and final weights were observed among the dietary microbial additive treatments, except for the average daily feed intake, average daily gain, and feed efficiency. In terms of blood metabolites and fecal microflora, immunoglobulin G (IgG), blood urea nitrogen, blood glucose, and fecal lactic acid bacteria count increased linearly, and fecal E. coli counts decreased linearly with increasing levels of microbial additives but not growth hormones and Salmonella. Carcass quality grade was improved by the microbial additive. In addition, carcass characteristics were not influenced by dietary microbial additives. In conclusion, dietary supplementation with 1.0% microbial additive improved average daily gain, feed efficiency, IgG content, and fecal microflora in growing-finishing pigs.
Collapse
Affiliation(s)
- Hyuk-Jun Lee
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Bu-Gil Choi
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Young-Ho Joo
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Chang-Hyun Baeg
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Ji-Yoon Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Dong-Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Seong-Shin Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55356, Republic of Korea;
| | - Sam-Churl Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| |
Collapse
|
5
|
Hossain MM, Cho SB, Kim IH. Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:237-250. [PMID: 38628679 PMCID: PMC11016746 DOI: 10.5187/jast.2024.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Sung Bo Cho
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
6
|
Sampath V, Cho S, Jeong J, Mun S, Lee CH, Hermes RG, Taechavasonyoo A, Smeets N, Kirwan S, Han K, Kim IH. Dietary Bacillus spp. supplementation to both sow and progenies improved post-weaning growth rate, gut function, and reduce the pro-inflammatory cytokine production in weaners challenged with Escherichia coli K88. Anim Microbiome 2024; 6:3. [PMID: 38268054 PMCID: PMC10809626 DOI: 10.1186/s42523-024-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The use of probiotics (PRO) in late gestation sow and their impact on progenies' performance during the post-weaning stage has received more attention from the researchers recently. This study aimed to analyze the effect of probiotic mixture (Bacillus subtilis and Bacillus licheniformis) on both sow and offspring's performance. METHODS First experiment (Exp.1) was conducted from the 100th day of gestation through to post-weaning. A total of twenty sows and their litters were assigned to one of two dietary treatments, Control (CON) based diet and PRO- CON+ 0.05% probiotic mixture. Dietary treatments were arranged in a split-plot pattern with sow and weaner treatment (CON and PRO diet) as the main and sub plot. Exp.2. E. coli challenge study was carried out two weeks after weaning with 40 piglets. Dietary treatments remained same while all pigs were orally administered with a 1.5 ml suspension of 1010 CFU of K88 strain of E. coli per ml. RESULT PRO group sow showed significantly decreased backfat thickness difference and body weight difference after farrowing and at the end of weaning d21. The nutrient digestibility of PRO group sows was significantly higher at the end of weaning. Moreover, piglets born from PRO group sow showed higher weaning weight and tend to increase average daily gain at the end of d21. The addition of mixed probiotic in sow and weaner diet had suppressed the production of TNF-α and interleukin-6 in E. coli challenged pigs. The phyla Firmicutes and Bacteroidetes in E. coli -challenged pigs were highly abundant while, the relative abundance of clostridium_sensu_stricto_1 at genus level was significantly reduced by the inclusion of probiotic in both the sow and weaner diet. Also, taxonomic distribution analysis showed significantly lower prevalence of Clostridium and Brachyspira and higher prevalence of Lactobacilli in E. coli-challenged pigs that were born from PRO group sow and fed CON and PRO weaner diet. CONCLUSION This study reveals that the inclusion of 0.05% mixed probiotics (Bacillus spp.) to both sow and their progenies diet would be more beneficial to enhance the post-weaning growth rate, gut health, and immune status of E. coli challenged pigs.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam, 330-714, South Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam, 330-714, South Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Choon Han Lee
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | - Rafael Gustavo Hermes
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | | | - Natasja Smeets
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | - Susanne Kirwan
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam, 330-714, South Korea.
| |
Collapse
|
7
|
Galgano S, Kettle H, Free A, Houdijk JGM. Estimating the contribution of the porcine fecal core microbiota to metabolite production via mathematical modeling and in vitro fermentation. mSystems 2024; 9:e0036623. [PMID: 38059648 PMCID: PMC10805034 DOI: 10.1128/msystems.00366-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
The swine gut microbiota is a complex ecosystem found throughout the gastrointestinal tract, with multiple exchanges with the host and whose composition is linked to both external and internal factors, such as diet or breed. Diet, probiotic, or prebiotic interventions have been designed to boost beneficial host-microbiota interactions, such as the production of anti-inflammatory molecules, or the fermentation of otherwise undigested resources. In parallel, a smaller microbial population, shared among the same host species, independent of external or internal factors, has been described and defined as the "core microbiota." Therapies targeting the core microbiota could possibly lead to more precise and long-lasting effects. However, the metabolic role of the porcine core microbiota, especially in relation to the rest of the microbial community, is currently missing. We present here the first dynamic model of the porcine core microbiota, which we used to estimate the core-microbiota metabolite production and to forecast the effect of a synbiotic intervention targeting the core genera of the core microbiota. We developed a community model in which a total of 17 microbial groups were established based on culture-based information of representative species. First, the model parameters were estimated, and the resulting model simulations were compared favorably with in vitro experimentation. The model was then used to predict the microbial dynamics of the core and non-core members under different experimental conditions. Therefore, it was able to theorize the main-metabolite core microbiota contribution, hypothesizing that it could be mainly responsible for acetate and propionate, but not for butyrate production.IMPORTANCECurrently, little information is present in the literature to describe the generic metabolic role of the porcine core microbiota or to inform on the effect of interventions targeting the core genera. Moreover, both in vitro and in vivo experimentations aiming to explore the core microbiota dynamics are technically demanding, expensive, or restricted by ethical considerations. Modeling approaches can be used as an initial exploratory tool to develop hypotheses for targeted experimentation. Our mathematical model provides initial information on the microbial and metabolite dynamics of the core microbiota in relation to diet and therapeutic intervention.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College, Edinburgh, Scotland, United Kingdom
| | - Helen Kettle
- Biomathematics and Statistics Scotland, Edinburgh, Scotland, United Kingdom
| | - Andrew Free
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jos G. M. Houdijk
- Monogastric Science Research Centre, Scotland's Rural College, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
8
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Sampath V, Song JH, Jeong J, Mun S, Han K, Kim IH. Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage. Front Microbiol 2022; 13:1044256. [PMID: 36532479 PMCID: PMC9748437 DOI: 10.3389/fmicb.2022.1044256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 03/07/2024] Open
Abstract
The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p < 0.05) body weight and daily gain at week 3 than the CON group piglets. 16S metagenome sequencing showed average demultiplexed reads and denoised reads counts of 157,399 and 74,945, respectively. The total ASV taxonomy number classified with a confidence threshold > 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jun Ho Song
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jinuk Jeong
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
| | - Seyoung Mun
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Kyudong Han
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
10
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Zhang Q, Li J, Wang G, Wang L, Zhang Z, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Hua L, Jiang X, Zhao X, Wu D, Che L. The replacement of bacitracin methylene disalicylate with Bacillus subtilis PB6 in the diet of male Cherry Valley Ducks reduces the feed conversion ratio by improving intestinal health and modulating gut microbiota. Poult Sci 2022; 101:102155. [PMID: 36155883 PMCID: PMC9519614 DOI: 10.1016/j.psj.2022.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we compared the impacts of Bacillus subtilis PB6 (BS) and bacitracin methylene disalicylate (BMD) on the growth performance, intestinal morphology, expression of tight connection protein, and cecal microbiota community of male ducks through a 42-d trial. Three-hundred and sixty male Cherry Valley meat-type ducklings (1-day-old) were distributed into 3 groups of 6 replicates: CON group (control, basal diet), BMD group (basal diet + 45 mg/kg BMD, active ingredient dose in the feed), and BS group (basal diet + 2 × 107 CFU/kg BS in the feed). Results showed that supplementing the diet with BS reduced the average daily feed intake (ADFI) during d 15 to 42 and d 1 to 42 compared with the CON group (P = 0.032). It also reduced feed conversion ratio (FCR) during d 15 to 42 and d 1 to 42 (P < 0.05) relative to the other groups. The ileal villus height (VH) and villus height /crypt depth ratio (V/C) were increased (P < 0.05) in both the BS and BMD groups, and the jejunal VH and V/C ratio were increased in the BS group (P < 0.05). Relative to the CON, BS supplementation was associated with numerical augmentation of goblet cells in the jejunal mucosa and upregulation of jejunal zonula occludens (ZO-1) and ileal mucin2 (P < 0.05) mRNA levels. Analysis showed a negative correlation between FCR (d 0-42) and VH, V/C, and the number of goblet cells in the jejunum (P < 0.05). Additionally, BMD or BS supplementation altered the alpha diversity of colonic microbiota (P < 0.05). Correlation analysis revealed that Butyricimonas, Enterobacteriaceae, Clostridiaceae, and Tannerellaceae were positively associated with the acetic acid and butyrate concentrations (P < 0.05). Taken together, the supplementation of BS in the diet of male ducks was conducive to reducing FCR by meliorating intestinal morphology, upregulating ZO-1 and mucin2 mRNA levels, regulating the abundance of microbiota, and metabolites, and having a greater effect than BMD supplementation.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guixiang Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | | | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Jung J, Bugenyi AW, Lee MR, Choi YJ, Song KD, Lee HK, Son YO, Lee DS, Lee SC, Son YJ, Heo J. High-quality metagenome-assembled genomes from proximal colonic microbiomes of synbiotic-treated korean native black pigs reveal changes in functional capacity. Sci Rep 2022; 12:14595. [PMID: 36109557 PMCID: PMC9478101 DOI: 10.1038/s41598-022-18503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Synbiotics are feed supplements with the potential to promote health and productivity in pigs partly, through modulation of the intestinal microbiome. Our study used shotgun sequencing and 16S rRNA gene sequencing techniques to characterize the effect of a synbiotic containing three Lactobacillus species and a fructo-oligosaccharide on the proximal colonic microbiome of 4- to 7-month-old Korean native black gilts. With shotgun sequencing we constructed unique metagenome-assembled genomes of gut microbiota in Native Black Pig for the first time, which we then used for downstream analysis. Results showed that synbiotic treatment did not alter microbial diversity and evenness within the proximal colons, but altered composition of some members of the Lactobacillaceae, Enterococcaceae and Streptococcaceae families. Functional analysis of the shotgun sequence data revealed 8 clusters of orthologous groups (COGs) that were differentially represented in the proximal colonic microbiomes of synbiotic-treated Jeju black pigs relative to controls. In conclusion, our results show that administering this synbiotic causes changes in the functional capacity of the proximal colonic microbiome of the Korean native black pig. This study improves our understanding of the potential impact of synbiotics on the colonic microbiome of Korean native black pigs.
Collapse
Affiliation(s)
- Jaehoon Jung
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- eGnome, 26 Beobwon-ro, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Andrew W Bugenyi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- National Agricultural Research Organization, Mbarara, Uganda
| | - Ma-Ro Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeon-Jae Choi
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, 54896, Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, 54896, Korea
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Dong-Sun Lee
- Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | | | | | - Jaeyoung Heo
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Summers KL, Lee STM. Stability and volatility shape the gut bacteriome and Kazachstania slooffiae dynamics in preweaning, nursery and adult pigs. Sci Rep 2022; 12:15080. [PMID: 36064754 PMCID: PMC9445069 DOI: 10.1038/s41598-022-19093-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Swine Health Information Center, Ames, IA, 50010, USA
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Center, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
14
|
Live Yeast Supplementation in Gestating and Lactating Primiparous Sows Improves Immune Response in Dams and Their Progeny. Animals (Basel) 2022; 12:ani12101315. [PMID: 35625161 PMCID: PMC9137933 DOI: 10.3390/ani12101315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023] Open
Abstract
The present study determined the effects of live yeast (LY) supplementation during middle–late gestation and the lactation period in primiparous sows on reproductive parameters, lactation performance, and immunity, and also explores the carryover effects in their offspring. On day (d) 60 of gestation, 16 crossbred primiparous sows were randomly assigned to two dietary treatments (with or without supplementation of 425 mg/kg of live yeast; LYT and CT, respectively) homogeneous for body weight (BW) and backfat thickness. Experimental diets were applied from day 60 of gestation to the end of lactation. At weaning, 60 piglets with an average BW of each treatment were selected based on their source litter and assigned to two groups corresponding to the original treatments received by their mothers. Each group had five replicates of six piglets each and was fed a basal diet for 42 days. The results showed that LY supplementation significantly increased the serum IgA and IgG concentrations of sows at farrowing and weaning stages, and of piglets on day 14 and 28 post weaning. No significant differences were found in reproductive and lactation performance, while minor effects were observed on antioxidant capacity. In conclusion, live yeast addition during middle–late gestation and the whole lactation period resulted in enhanced immunity of primiparous sows and their offspring, therefore, improving maternal and progeny health.
Collapse
|
15
|
Saladrigas-García M, Solà-Oriol D, López-Vergé S, D'Angelo M, Carmen Collado M, Nielsen B, Faldyna M, Francisco Pérez J, Martín-Orúe SM. Potential effect of two Bacillus probiotic strains on performance and fecal microbiota of breeding sows and their piglets. J Anim Sci 2022; 100:6580401. [PMID: 35512239 PMCID: PMC9175292 DOI: 10.1093/jas/skac163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
The effect of long-term administration of two Bacillus strains was tested on 98 breeding sows and their litters allotted into three treatments: a control group (CON); supplemented with 5 × 108 cfu/kg B. subtilis − 541 (BSU); or with 5 × 108 cfu/kg B. amyloliquefaciens − 516 (BAM). Reproductive and performance variables were recorded over three cycles with 56 dams remaining through the third lactation. Blood and fecal samples were taken longitudinally from 12 sows per treatment on days 8 and 21 of the third lactation and milk samples were taken on day 21. Feces from one piglet per litter was sampled on days 21 and 33 and jejunal gene expression was assessed in two piglets on day 21. Changes in fecal microbiota were assessed by 16S rRNA gene sequencing (Illumina MiSeq) and gene expression by Open-Array technology. Metabolomic responses were analyzed in milk by NMR and Ig-G and Ig-A specific antibodies were determined by ELISA. No significant differences were observed on feed intake, body weight, or fat mobilization of the sows. However, a significant increase in the total number of piglets born was observed in supplemented sows. Although the increase was seen from the first cycle with BAM, improvements were not seen with BSU until the third cycle. BAM also increased the number of born-alive and weaned piglets. NMR analysis showed an impact of BAM on milk composition. No differences were found in milk or blood immunoglobulins. A different structure of the fecal microbiota was found in supplemented sows, with changes across phylum, family, and genus. These changes were greater at day 8, suggesting a relevant role of probiotics establishing a new intestinal balance after labor. Shifts in the microbiota were also seen in the piglets, with a clearer impact post-weaning than in suckling. In this regard, correlations between microbial groups of sows and piglets showed a higher link with weaned (d33) than with suckling pigs (d21), reinforcing the idea of an early maternal carry-over. No changes due to treatment in jejunal gene expression were detected; however, piglet size had a clear impact on different genes. In summary, the addition of both probiotics, and particularly Bacillus amyloliquefaciens, demonstrated potential benefits on the prolificacy of sows. Daily feeding of Bacillus amyloliquefaciens resulted in an increase in the number of weaned piglets. The high correlations between the compositions of the microbiota of sows and their piglets are evidence of maternal imprinting, with effects lasting beyond weaning.
Collapse
Affiliation(s)
- Mireia Saladrigas-García
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sergi López-Vergé
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Matilde D'Angelo
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia 49860, Spain
| | | | - Martin Faldyna
- Veterinary Research Institute, Brno 62132, Czech Republic
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Susana M Martín-Orúe
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
16
|
Hu J, Park JH, Kim IH. Effect of dietary supplementation with Lactobacillus plantarum on growth performance, fecal score, fecal microbial counts, gas emission and nutrient digestibility in growing pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
The Probiotic Properties of Lactic Acid Bacteria and Their Applications in Animal Husbandry. Curr Microbiol 2021; 79:22. [PMID: 34905106 DOI: 10.1007/s00284-021-02722-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The intestinal tract of animals is a complex ecosystem in which nutrients, microbiota and host cells interact extensively. Probiotics can be considered as part of the natural microbiota of the gut and are involved in improving homeostasis. Lactic acid bacteria (LAB) is a general term for a class of non-spore forming, gram-positive bacteria whose main product of fermented sugar is lactic acid. LAB are considered to be a type of probiotic due to their health-promoting effects on the host, and are very effective in the treatment of human and animal diseases. LAB have been widely used as a class of microbial agents in the field of livestock and poultry breeding. They are also considered to be the best substitutes for antibiotics to improve animal health. Here, we review the biological functions, probiotic characteristics and applications of LAB in livestock and poultry breeding. This review is designed to provide a theoretical base for the in-depth exploration and promotion of LAB use in animal diets.
Collapse
|
18
|
Cullen JT, Lawlor PG, Cormican P, Gardiner GE. Microbial Quality of Liquid Feed for Pigs and Its Impact on the Porcine Gut Microbiome. Animals (Basel) 2021; 11:ani11102983. [PMID: 34680002 PMCID: PMC8532943 DOI: 10.3390/ani11102983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Liquid feed is produced by mixing dry feed ingredients with water, and sometimes liquid co-products from the food and beverage industry, at a defined ratio. Liquid feeding of pigs is popular, particularly in parts of northern and western Europe, and can be associated with lower feed costs, improved dry matter intake, growth rate and gut health, compared to dry feeding. However, spontaneous/uncontrolled fermentation upon mixing of feed with water or co-products can decrease the microbial and nutritional quality of the feed, resulting in poorer pig health and growth. For this reason, strategies aimed at optimising liquid feed microbial quality are frequently employed. These include: deliberate fermentation with/without the use of lactic acid bacteria starter cultures that produce lactic acid and lower the feed pH, thereby preventing growth of pathogens. Fermenting only the cereal component of the diet is preferred to whole diet fermentation to minimise loss of free amino acids from the diet during fermentation. This review examines the microbiome of liquid feed and explores how optimisation strategies impact both feed microbial quality and the gut microbiota and growth of liquid-fed pigs. It also covers cleaning and disinfection of liquid feeding systems and how this might impact liquid feed microbial quality. Abstract There is evidence that spontaneous fermentation frequently occurs in liquid pig feed that is intended to be delivered as fresh liquid feed, often with a resultant deterioration in the microbial and nutritional quality of the feed, which can negatively affect pig health and growth. Strategies including controlled fermentation with microbial inoculants, pre-fermentation or soaking of the cereal fraction of the diet, enzyme supplementation and dietary acidification have been employed to inhibit pathogens and prevent deterioration of feed nutritional quality, with promising results obtained in many cases. This review evaluates the impact of these strategies on the microbial quality of liquid feed and discusses how they can be further improved. It also investigates if/how these strategies impact the pig gut microbiota and growth performance of liquid-fed pigs. Finally, we review liquid feed system sanitisation practices, which are highly variable from farm to farm and discuss the impact of these practices and whether they are beneficial or detrimental to liquid feed microbial quality. Overall, we provide a comprehensive review of the current state of knowledge on liquid feed for pigs, focusing on factors affecting microbial quality and strategies for its optimisation, as well as its impact on the pig gut microbiome.
Collapse
Affiliation(s)
- James T. Cullen
- Department of Science, Waterford Institute of Technology, Co. Waterford, X91 K0EK Waterford, Ireland;
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Cork, Ireland;
| | - Paul Cormican
- Teagasc, Animal Bioscience Research Centre, Grange, Dunsany, Co. Meath, C15 PW93 Dublin, Ireland;
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Co. Waterford, X91 K0EK Waterford, Ireland;
- Correspondence:
| |
Collapse
|
19
|
Different Responses of Microbiota across Intestinal Tract to Enterococcus faecium HDRsEf1 and Their Correlation with Inflammation in Weaned Piglets. Microorganisms 2021; 9:microorganisms9081767. [PMID: 34442847 PMCID: PMC8402050 DOI: 10.3390/microorganisms9081767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Enterococcus faecium HDRsEf1 (HDRsEf1) was identified to reduce the incidence of diarrhea in weaned piglets, but the mechanism has not been elucidated yet. Based on the fact that gut microbiota plays a crucial role in regulating inflammatory responses, the effects of HDRsEf1 on microbiota across the intestinal tract in weaned piglets were investigated. Microbiota from the luminal contents and the mucosa of the ileum, cecum, and colon of HDRsEf1-treated piglets were explored by 16S rRNA sequencing and qPCR. It was demonstrated that microbiota in different gut niches responded specifically to HDRsEf1, with major alterations occurring in the ileum and cecum. The total bacterial load of microbiota in ileal luminal contents and the relative abundance of Escherichia-Shigella in the ileal mucosa was significantly down-regulated by HDRsEf1 administration, while the relative abundance of butyrate-producing bacteria (including Clostridiaceae-1, Rumencoccidae, and Erysipelotrichaceae) in cecal luminal contents was significantly up-regulated. Moreover, the utilization of HDRsEf1 improved intestinal morphological development and reduced the inflammatory response, which were negatively correlated with the relative abundance of Escherichia-Shigella in the ileal mucosa and butyrate-producing bacteria in cecal luminal contents, respectively. Collectively, this study suggests that the administration of HDRsEf1 alters gut microbiota, thereby alleviating inflammation and improving intestinal morphological development in weaned piglets.
Collapse
|
20
|
He Y, Maltecca C, Tiezzi F. Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals (Basel) 2021; 11:ani11061833. [PMID: 34205322 PMCID: PMC8235026 DOI: 10.3390/ani11061833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Heat stress is a significant environmental challenge faced by food animal production worldwide because of its adverse effects on animal performance and productivity. Trillions of microorganisms living in the gut are essential for host health by participating in various digestive, immune, and metabolic activities. At the same time, they are known to be sensitive to changes in the surrounding environment. The present review summarizes current research progress of how the gut microbial community responds to elevated ambient heat in monogastric animal species and discusses the use of the gut microbiota composition as a potential indicator for heat stress. Abstract Heat stress is a current challenge for livestock production, and its impact could dramatically increase if global temperatures continue to climb. Exposure of agricultural animals to high ambient temperatures and humidity would lead to substantial economic losses because it compromises animal performance, productivity, health, and welfare. The gut microbiota plays essential roles in nutrient absorption, energy balance, and immune defenses through profound symbiotic interactions with the host. The homeostasis of those diverse gut microorganisms is critical for the host’s overall health and welfare status and also is sensitive to environmental stressors, like heat stress, reflected in altered composition and functionality. This article aims to summarize the research progress on the interactions between heat stress and gut microbiome and discuss the potential use of the gut microbiota composition as a biomarker of heat stress in monogastric animal species. A comprehensive understanding of the gut microbiota’s role in responding to or regulating physiological activities induced by heat stress would contribute to developing mitigation strategies.
Collapse
|
21
|
Eveno M, Salouhi A, Belguesmia Y, Bazinet L, Gancel F, Fliss I, Drider D. Biodiversity and Phylogenetic Relationships of Novel Bacteriocinogenic Strains Isolated from Animal's Droppings at the Zoological Garden of Lille, France. Probiotics Antimicrob Proteins 2021; 13:218-228. [PMID: 32388703 DOI: 10.1007/s12602-020-09657-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aimed at exploring droppings of animals living in captivity in the zoological garden (Zoo) of Lille (France), as novel sources of bacteriocinogenic strains. A collection of 295 bacterial isolates was constituted from droppings of capybara, alpaca, muntjac, zebra, tapir, rhinoceros, binturong, armadillo, saki monkey and cockatoo. Of 295 isolates, 51 exhibited antagonism against a panel of pathogenic target bacteria like Escherichia coli MC4100, Clostridium perfringens DSM 756 and Salmonella enterica subsp. enterica Newport ATCC6962. Remarkably, within this collection, only 2 Gram-negative bacilli exhibited activity against E. coli MC4100 strain used as target organism. Then, the 16S rDNA sequencing revealed these thereafter cited species, Pediococcus pentosaceus, Weissella cibaria, E. coli, Lactobacillus reuteri, Enterococcus hirae and Enterococcus faecalis. Characterization of this antagonism has revealed 11 strains able producing extracellular protease-sensitive inhibitory compounds. These strains included E. coli ICVB442 and ICVB443, Ent. faecalis ICVB472, ICVB474, ICVB477 ICVB479, ICVB481, ICVB497 and ICVB501 and Ped. pentosaceus ICVB491 and ICVB492. The genomes of the 5 most promising bacteriocinogenic strains were sequenced and analysed with Bagel4 software. Afterwards, this bioinformatics analysis permitted to locate genes encoding bacteriocins like colicin Y (E. coli), enterocin 1071A, enterocin 107 B (Ent. faecalis) and penocin A (Ped. pentosaceus), associating the above-mentioned antibacterial activity of proteinaceous nature to possible production of bacteriocins. All these results enabled us to select different bacteriocinogenic strains for a further characterization in terms of beneficial traits.
Collapse
Affiliation(s)
- Mégane Eveno
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, F-59000, Lille, France.,Pavillon Paul-Comtois, Université Laval, 2425 Rue de l'Agriculture, Local 1413, Québec, Canada
| | - Amine Salouhi
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, F-59000, Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, F-59000, Lille, France
| | - Laurent Bazinet
- Pavillon Paul-Comtois, Université Laval, 2425 Rue de l'Agriculture, Local 1413, Québec, Canada
| | - Frédérique Gancel
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, F-59000, Lille, France
| | - Ismail Fliss
- Pavillon Paul-Comtois, Université Laval, 2425 Rue de l'Agriculture, Local 1413, Québec, Canada
| | - Djamel Drider
- Pavillon Paul-Comtois, Université Laval, 2425 Rue de l'Agriculture, Local 1413, Québec, Canada. .,Université de Lille, Cité Scientifique/Avenue Paul Langevin, Polytech-Lille, Bureau C315, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
22
|
Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br J Nutr 2021; 127:403-420. [PMID: 33818325 DOI: 10.1017/s0007114521001203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this study was to evaluate the effect of feeding Bacillus altitudinis spores to sows and/or offspring on growth and health indicators. On day (D) 100 of gestation, twenty-four sows were selected and grouped as: control (CON), fed with a standard diet; and probiotic (PRO), fed the standard diet supplemented with B. altitudinis WIT588 spores from D100 of gestation until weaning. Offspring (n 144) from each of the two sow treatments were assigned to either a CON (no probiotic) or PRO (B. altitudinis-supplemented) treatment for 28 d post-weaning (pw), resulting in four treatment groups: (1) CON/CON, non-probiotic-supplemented sow/non-probiotic-supplemented piglet; (2) CON/PRO, non-probiotic-supplemented sow/probiotic-supplemented piglet; (3) PRO/CON, probiotic-supplemented sow/non-probiotic-supplemented piglet and (4) PRO/PRO, probiotic-supplemented sow/probiotic-supplemented piglet. B. altitudinis WIT588 was detected in the faeces of probiotic-supplemented sows and their piglets, and in the faeces and intestine of probiotic-supplemented piglets. Colostrum from PRO sows had higher total solids (P = 0·02), protein (P = 0·04) and true protein (P = 0·05), and lower lactose (P < 0·01) than colostrum from CON sows. Maternal treatment improved offspring feed conversion ratio at D0-14 pw (P < 0·001) and increased offspring body weight at D105 and D127 pw (P = 0·01), carcass weight (P = 0·05) and kill-out percentage (P < 0·01). It also increased small intestinal absorptive capacity and impacted the haematological profile of sows and progeny. There was little impact of pw treatment on any of the parameters measured. Overall, the lifetime growth benefits in the offspring of B. altitudinis-supplemented sows offer considerable economic advantages for pig producers in search of alternatives to in-feed antibiotics/zinc oxide.
Collapse
|
23
|
Carcelén F, López M, Martín FS, Ara M, Bezada S, Ruiz-García L, Sandoval-Monzón R, López S, Guevara J. Effect of probiotics administration at different levels on the productive parameters of guinea pigs for fattening ( Cavia porcellus). Open Vet J 2021; 11:222-227. [PMID: 34307079 PMCID: PMC8288744 DOI: 10.5455/ovj.2021.v11.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background For more than 50 years, antibiotics have been used to maintain animal welfare and improve efficiency. Recently, antibiotics were found in the muscle, liver, and kidney of guinea pig carcasses put up for sale and human consumption, which is a public health issue. Probiotics are supplements of live microorganisms that, when administered in adequate doses, could replace growth-promoting antibiotics. Aim This study analyzed the effect of the administration of an oral probiotic mixture on the guinea pigs productive performance (Cavia porcellus). Methods Fifty male guinea pigs, weaned at 14 days of age, were distributed in a completely randomized design of five treatments with ten repetitions for each group. The treatments were CONTROL group without probiotic; PROB 1 given 1 ml of probiotic; PROB 2 with 2 ml of probiotic; PROB 3 with 3 ml of probiotic; and antibiotic growth promoter (AGP) was given 300 ppm zinc bacitracin. The microorganisms used in the probiotic were Enterococcus hirae, Lactobacillus reuteri, Lactobacillus frumenti, Lactobacillus johnsoni, Streptococcus thoraltensis, and Bacillus pumilus. Productive parameters were evaluated from weaning to 70 days of age. Results No statistically significant difference was found between the treatments on forage dry matter intake (DMI), concentrateconcentrate DMI, or total concentrate DMI (p > 0.05). Similarly, no statistical difference was found between the treatments in terms of final weight or weight gain (p > 0.05). Regarding the feed conversion ratio (FCR), there was a significant difference between treatments (p = 0.045); the CONTROL group had the highest FCR, followed by the AGP group, with the best FCR observed in the PROB 3 group (p < 0.05). In addition, significant statistical differences were found between CONTROL and PROB 2 (p < 0.05). Likewise, a significant linear effect of increasing doses of the probiotic was found (p = 0.01), which indicated that the feed conversion was better with a higher dose. Conclusion The treatments evaluated in this study significantly impacted the FCR in guinea pigs for fattening. Increasing doses of probiotics had a linear effect on FCR.
Collapse
Affiliation(s)
- Fernando Carcelén
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Melissa López
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Felipe San Martín
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Miguel Ara
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sandra Bezada
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Luis Ruiz-García
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Rocío Sandoval-Monzón
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sofía López
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge Guevara
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
24
|
Domingos R, Silva B, Bravo de Laguna F, Araujo W, Gonçalves M, Rebordões F, Evangelista R, de Alkmim T, Miranda H, Cardoso H, Cardoso L, Habit S, da Motta S. Saccharomyces Cerevisiae var. Boulardii CNCM I-1079 during late gestation and lactation improves voluntary feed intake, milk production and litter performance of mixed-parity sows in a tropical humid climate. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Tian Z, Wang X, Duan Y, Zhao Y, Zhang W, Azad MAK, Wang Z, Blachier F, Kong X. Dietary Supplementation With Bacillus subtilis Promotes Growth and Gut Health of Weaned Piglets. Front Vet Sci 2021; 7:600772. [PMID: 33521080 PMCID: PMC7844206 DOI: 10.3389/fvets.2020.600772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation with different types of Bacillus subtilis (B. subtilis) on the growth and gut health of weaned piglets. A total of 160 piglets were randomly assigned into four groups: control group (a basal diet), BS-A group (a basal diet supplemented with B. subtilis A at 1 × 106 CFU/g feed), BS-B group (a basal diet supplemented with B. subtilis B at 1 × 106 CFU/g feed), and BS-C group (a basal diet supplemented with B. subtilis C at 1 × 106 CFU/g feed). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, blood plasma and intestinal tissues and digesta samples were collected to determine plasma cytokine concentrations, intestinal morphology, gut microbiota community and metabolic activity, and the expression of genes related to gut physiology and metabolism. The results showed that dietary B. subtilis supplementation improved (P < 0.05) the body weight and average daily gain (in BS-B and BS-C groups) of weaned piglets and decreased (P < 0.05) the diarrhea rates (in BS-A, BS-B, and BS-C groups). In the intestinal morphology analysis, B. subtilis supplementation improved (P < 0.05) the size of villus height and villus height to crypt depth ratio in the ileum of weaned piglets. Firmicutes, Bacteroidetes, and Tenericutes were the most dominant microflora in piglets' colon whatever the trial group and time of analysis. Dietary BS-C supplementation increased (P < 0.05) the relative abundances of Anaerovibrio and Bulleidia and decreased (P < 0.05) the relative abundances of Clostridium and Coprococcus compared with the control group. In addition, dietary B. subtilis supplementation increased (P < 0.05) the indicators of intestinal health, including plasma levels of interleukin (IL)-2 and IL-10, as well as the colonic levels of short-chain fatty acids. Furthermore, dietary B. subtilis supplementation also up-regulated (P < 0.05) the expression of genes involved in metabolic pathways related to intestinal microbiota maturation. In conclusion, these findings suggest that a diet containing BS-B or BS-C can efficiently promote growth performance, decrease diarrhea incidence, and ameliorate several indicators of intestinal health through the modulation of gut microbiota composition and metabolic activity in weaned piglets.
Collapse
Affiliation(s)
- Zhilong Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaodan Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Zhao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | | | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhanbin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Francois Blachier
- University Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
26
|
Luise D, Spinelli E, Correa F, Nicodemo A, Bosi P, Trevisi P. The effect of a single, early-life administration of a probiotic on piglet growth performance and faecal microbiota until weaning. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1952909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | - Elisa Spinelli
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | | | - Paolo Bosi
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Slozhenkina M, Gorlov I, Miroshnik A, Nikolaev D. Influence of the innovative prebiotic complex on physiological state of pigs and quality indicators of pork. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213204004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article presents an analysis of the use of antibiotic therapy in pig breeding and offered an alternative to them in the form of prebiotic supplements. Studies were conducted on the effect of probiotic drugs on the body of large white pigs in the farm-breeding plant Named after Lenin of Surovikinsky District of Volgograd Region and lasted until 180 days of age. For the experiment, 2 groups of Large White piglets of 2 months of age were formed. Each experimental group consisted of 15 pigs. Animals of the control group received standart farm animal diet (SD), analogs of the first experimental group SD + mixture of dietary supplements “LactuVet-1” and “Chlorelact” at a dosage of 0.2 mg / kg of live weight each. Deep studies were conducted on the effect of probiotic supplements to live weight gain, natural resistance, immunoglobulin reactivity, and slaughter indicators of piglets. Superiority of pigs from the experimental group in almost all the studied indicators over the peers of the control group was established.
Collapse
|
28
|
He Y, Kim K, Kovanda L, Jinno C, Song M, Chase J, Li X, Tan B, Liu Y. Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox. J Anim Sci 2020; 98:5900678. [PMID: 32877510 DOI: 10.1093/jas/skaa290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The study was conducted to investigate the efficacy of a probiotic Bacillus subtilis strain on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli and to compare the efficacy of B. subtilis with that of carbadox. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox (antibiotic growth promotor [AGP]) or 2.56 × 109 CFU/kg of B. subtilis probiotics (PRO). The experiment lasted for 28 d with 7 d before and 21 d after the first E. coli inoculation. Fecal and blood samples were collected on days 0, 3, 7, 14, and 21 post inoculation (PI) to analyze β-hemolytic coliforms and complete blood cell count, respectively. Diarrhea score was recorded daily for each pig to calculate the frequency of diarrhea. All pigs were euthanized at day 21 PI to collect jejunal and ileal mucosa for gene expression analysis. Pigs in AGP had greater (P < 0.05) BW on days 7, 14, and 21 PI than pigs in PC and PRO groups. Supplementation of PRO enhanced pigs' BW on day 21 PI compared with the PC. Escherichia coli F18 challenge reduced (P < 0.05) average daily gain (ADG) and feed efficiency from day 0 to 21 PI, while supplementation of carbadox or PRO enhanced ADG and feed efficiency in E. coli F18-challenged pigs from day 0 to 21 PI. Pigs in AGP and PRO groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on day 7 PI than pigs in the PC. Pigs in PRO had greater (P < 0.05) gene expression of CLDN1 in jejunal mucosa than pigs in the PC. Supplementation of carbadox or PRO reduced (P < 0.05) the gene expression of IL6 and PTGS2 in ileal mucosa of E. coli-infected pigs compared with pigs in the PC. Pigs in the PRO group had lower (P < 0.05) white blood cell number and neutrophil count, and serum haptoglobin concentration on day 7 PI, and less (P < 0.05) monocyte count on day 14 PI, compared with PC. In conclusion, supplementation of probiotic B. subtilis could enhance disease resistance and promote the growth performance of weaned pigs under disease challenge conditions. The potential mechanisms include but not limited to enhanced gut barrier integrity and local and systemic immune responses of weaned pigs.
Collapse
Affiliation(s)
- Yijie He
- Department of Animal Science, University of California, Davis, CA
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jennifer Chase
- School of Veterinary Medicine, University of California, Davis, CA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
29
|
Vadopalas L, Ruzauskas M, Lele V, Starkute V, Zavistanaviciute P, Zokaityte E, Bartkevics V, Pugajeva I, Reinolds I, Badaras S, Klupsaite D, Mozuriene E, Dauksiene A, Gruzauskas R, Bartkiene E. Combination of Antimicrobial Starters for Feed Fermentation: Influence on Piglet Feces Microbiota and Health and Growth Performance, Including Mycotoxin Biotransformation in vivo. Front Vet Sci 2020; 7:528990. [PMID: 33178725 PMCID: PMC7596189 DOI: 10.3389/fvets.2020.528990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to apply a combination of the microbial starters Lactobacillus uvarum LUHS245, Lactobacillus casei LUHS210, Pediococcus acidilactici LUHS29, and Pediococcus pentosaceus LUHS183 for feed fermentation and to evaluate the influence of fermentation on feed acidity and microbiological characteristics, as well as on the piglet feces microbiota, health, and growth performance. Additionally, mycotoxin biotransformation was analyzed, including masked mycotoxins, in feed and piglet feces samples. The 36-day experiment was conducted using 25-day-old Large White/Norwegian Landrace (LW/NL) piglets with an initial body weight of 6.9–7.0 kg, which were randomly distributed into two groups (in each 100 piglets): control group, fed with basal diet (based on barley, wheat, potato protein, soybean protein concentrate, and whey powder), and treated group, fed with fermented feed at 500 g kg−1 of total feed. Compared to a commercially available lactic acid bacteria (LAB) combination, the novel LAB mixture effectively reduced feed pH (on average pH 3.65), produced a 2-fold higher content of L(+) lactic acid, increased viable LAB count [on average 8.8 log10 colony-forming units (CFU) g−1], and led to stable feed fermentation during the entire test period (36 days). Fecal microbiota analysis showed an increased number of probiotic bacteria in the treated group, particularly Lactobacillus, when compared with the control group at the end of experiment. This finding indicates that fermented feed can modify microbial profile change in the gut of pigs. In treated piglets' blood (at day 61), the serum high-density lipoprotein (HDL) cholesterol and triglycerides (TG) were significantly higher, but the levels of T4, glucose, K, alkaline phosphatase (AP), and urea were significantly decreased (p ≤ 0.05) compared with the control group. Mycotoxin analysis showed that alternariol monomethyl ether (AME) and altenuene were found in 61-day-old control piglets' feces and in fermented feed samples. However, AME was not found in treated piglets' feces. Feed fermentation with the novel LAB combination is a promising means to modulate piglets' microbiota, which is essential to improve nutrient absorption, growth performance, and health parameters. The new LAB composition suggests a novel dietary strategy to positively manipulate fermented feed chemicals and bio-safety and the piglet gut microbial ecology to reduce antimicrobials use in pig production and increase local feed stock uses and economical effectiveness of the process.
Collapse
Affiliation(s)
- Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Physiology and Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Ingars Reinolds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Sarunas Badaras
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Erika Mozuriene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Physiology and Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
30
|
Geng T, Su S, Sun K, Zhao L, Zhao Y, Bao N, Pan L, Sun H. Effects of feeding a Lactobacillus plantarum JL01 diet on caecal bacteria and metabolites of weaned piglets. Lett Appl Microbiol 2020; 72:24-35. [PMID: 32989746 DOI: 10.1111/lam.13399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Currently, knowledge is limited concerning the impact of a Lactobacillus plantarum JL01 diet for weaned piglets on caecal bacteria and metabolite profiles. In our experiments, 24 weaned piglets were randomly divided into two groups; each piglet in the treatment groups (Cec-Lac) was fed a basic diet and administered 10 ml of L. plantarum JL01 (1·0 × 109 CFU per ml) every day. The control group (Cec-Con) was fed a basic diet. After feeding for 28 days, we analysed the parameters of the caecal digesta of weaned piglets. We used 16S rDNA gene sequencing and mass spectrometry (MS)-based metabolomics techniques to investigate the effect of a L. plantarum JL01 diet on intestinal microbial composition and its metabolite profiles in the caecum contents of weaned piglets. The results showed that the richness estimators (ACE and Chao indices) in the caecal bacteria increased in the Cec-Lac group. Prevotella_2 and Desulfovibrio decreased significantly, while Pantoea and Rectale_group increased in the caecum of weaned piglets in the Cec-Lac group. Furthermore, Pearson's correlation analysis revealed that the genus Rectale_group was positively correlated with indole-3-acetic acid (P < 0·05), and the genus Pantoea had the same correlation with 1-palmitoyl lysophosphatidic acid. The metabolomics analysis revealed that the L. plantarum JL01 diet supplementation had significant effects on tryptophan metabolism and fat digestion and absorption. The results indicated that the L. plantarum JL01 dietary supplementation not only altered the microbial composition but also mediated tryptophan metabolism and fat digestion and absorption in the caecum, factors that may further affect the health of the host.
Collapse
Affiliation(s)
- T Geng
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - S Su
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - K Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - L Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - N Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - L Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - H Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
31
|
Park S, Lee JW, Jerez Bogota K, Francis D, González-Vega JC, Htoo JK, Woyengo TA. Growth performance and gut health of Escherichia coli-challenged weaned pigs fed diets supplemented with a Bacillus subtilis direct-fed microbial. Transl Anim Sci 2020; 4:txaa172. [PMID: 33134875 PMCID: PMC7584393 DOI: 10.1093/tas/txaa172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0-21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3-21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P < 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P < 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P < 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, South Dakota State University, Brookings, SD.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jung Wook Lee
- Department of Animal Science, South Dakota State University, Brookings, SD.,Department of Animal and Food Sciences, University of Kentucky, Lexington
| | - Kevin Jerez Bogota
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - David Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD
| | | | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD.,Department of Animal Science, Aarhus University, Blichers Allé, Tjele, Denmark
| |
Collapse
|
32
|
Santana RV, Santos DCD, Santana ACA, Oliveira Filho JGD, Almeida ABD, Lima TMD, Silva FG, Egea MB. Quality parameters and sensorial profile of clarified “Cerrado” cashew juice supplemented with Sacharomyces boulardii and different sweeteners. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Patil Y, Gooneratne R, Ju XH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes 2020; 11:310-334. [PMID: 31760878 PMCID: PMC7524349 DOI: 10.1080/19490976.2019.1690363] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials - some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.
Collapse
Affiliation(s)
- Yadnyavalkya Patil
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Xiang-Hong Ju
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
34
|
Wang H, Kim IH. Influence of the efficacy of a probiotic complex containing Bacillus subtilis and Pichia farinosa on the growth performance and fecal microbiota of finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A total of 120 finish pigs [(Landrace × Yorkshire) × Duroc; 52.61 ± 2.37 kg] were randomly allotted into three treatments for a 70 d trial to evaluate the growth performance and fecal microbiota counts in finishing pigs. Treatment groups were (i) basal diet (CON), (ii) CON + 0.1% probiotic complex (TRT1), and (iii) CON + 0.2% probiotic complex (TRT2). Each treatment consisted of eight replicate pens with five pigs per pen. The average daily gain and fecal Lactobacillus counts of TRT2 were increased (P < 0.05) compared with CON treatment. The result showed that 0.2% complex probiotic was more effective than 0.1%.
Collapse
Affiliation(s)
- Huan Wang
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, South Korea
| |
Collapse
|
35
|
Min Y, Choi Y, Choe J, Kim Y, Jeong Y, Kim D, Kim J, Jung H, Song M. Effects of dietary mixture of protease and probiotics on growth performance, blood constituents, and carcass characteristics of growing-finishing pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:272-277. [PMID: 31602305 PMCID: PMC6778859 DOI: 10.5187/jast.2019.61.5.272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 11/23/2022]
Abstract
This study was conducted to evaluate the effects of dietary mixture of protease
and probiotics on growth performance, blood constituents, and carcass
characteristics of growing-finishing pigs. A total of 48 growing pigs were
randomly allotted into 2 dietary (6 pigs/pen; 4 replicates/treatment). The
treatments were a diet based on corn and soybean meal (CON) and CON supplemented
with 0.01% of dietary mixture of protease and probiotics (MULTI). No
differences were found on growth performance (average daily gain, ADG; overall,
874.06 vs. 881.14 g/d; p > 0.05), blood constituents
(white blood cell, WBC; phase I, 17.51 vs. 19.96 × 103
/μL; phase II, 19.65 vs. 21.95 × 103 /μL;
p > 0.05), and carcass characteristics during
overall experimental period between CON and MULTI. In conclusion, the addition
of dietary mix-ture of protease and probiotics in growing-finishing pig diet did
not have any beneficial effects.
Collapse
Affiliation(s)
- Yejin Min
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Yohan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Jeehwan Choe
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea
| | - Younghwa Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Yongdae Jeong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Doowan Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Joeun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Hyunjung Jung
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
36
|
Wang H, Kim KP, Kim IH. Influence of Bacillus subtilis GCB-13-001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:1919-1925. [PMID: 31538695 DOI: 10.1111/jpn.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/28/2019] [Accepted: 08/03/2019] [Indexed: 01/08/2023]
Abstract
The present study investigated the influence of Bacillus subtilis GCB-13-001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs. A total of 120 weaning pigs [(Landrace × Yorkshire) × Duroc; 7.73 ± 0.75 kg (28 days of age)] were randomly allotted into three treatments according to their initial body weight (BW) and gender in a 6-week experiment. There were 8 replication pens in each treatment, with five pigs/pen. Dietary treatment groups were as follows: (a) basal diet (CON), (b) CON + 0.1% Bacillus subtilis GCB-13-001 1 × 108 CFU/kg (T1) and (c) CON + 0.1% Bacillus subtilis GCB-13-001 1 × 109 CFU/kg (T2). Days 1 to 7, the BW and ADG with T2 treatment were higher (p < .05) than CON treatment, as well as F:G showed trends in linear reduction (p < .1). Days 8 to 21, the BW and ADG were improved (p < .05) in pigs offered T1 and T2 diets compared with CON diet. Days 22 to 42, BW and ADG were higher (p < .05) in pigs fed T2 diet than CON and T1 diets, and the pigs fed T1 diet had higher BW than CON treatment. Overall, the ADG with the T2 treatment was higher (p < .05) than that with the T1 and CON treatments, and pigs offered T1 treatment had higher (p < .05) ADG than CON treatment. Moreover, F:G ratio were significantly decreased (p < .05) by T2 treatment compared with CON treatment. The faecal Lactobacillus counts were improved, and E. coli counts were reduced (p < .05) in pigs fed T2 diet compared with CON at the end of the experiment. In conclusion, supplementation of 0.1% Bacillus subtilis GCB-13-001 1 × 109 CFU/kg has shown a beneficial effect in improving BW, increase ADG, decrease F:G ratio.
Collapse
Affiliation(s)
- Huan Wang
- Department of Animal Resource & Science, Dankook University, Cheonan, Korea
| | - Kun Phil Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Korea
| |
Collapse
|
37
|
Tian S, Wang J, Yu H, Wang J, Zhu W. Changes in Ileal Microbial Composition and Microbial Metabolism by an Early-Life Galacto-Oligosaccharides Intervention in a Neonatal Porcine Model. Nutrients 2019; 11:E1753. [PMID: 31366090 PMCID: PMC6723927 DOI: 10.3390/nu11081753] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Galacto-oligosaccharides (GOS), functional oligosaccharides with natural characteristics, are important active substances in milk that play an important role in the development of intestinal microbiota and the immune system of newborns. The intestinal maturation of piglets resembles that of human newborns and infants. Therefore, we used the newborn piglet model to study the effects of early-life GOS intervention. Six litters of neonatal piglets (10 piglets per litter) with the same average birth weight were divided into control (CON) and GOS (GOS) groups in each litter. Piglets in the GOS group were given 10 mL of GOS solution daily during the first week after birth, while piglets in the CON group were given the same dose of physiological saline orally. One pig per group from each litter was euthanized on day 8 and day 21. Results revealed that ileal microbiota composition was significantly enriched in Lactobacillus and unclassified Lactobacillaceae, and reduced in Clostridium sensu stricto on day 8 and day 21 after GOS intervention. Additionally, Escherichia significantly decreased on day 21 following the early-life GOS intervention. Moreover, the content of microbial metabolites, endocrine peptides, and the mRNA expression of anti-inflammatory cytokines and antimicrobial peptides increased in the GOS group. These findings provide guidelines for early prebiotic supplementation for lactating newborns.
Collapse
Affiliation(s)
- Shiyi Tian
- National center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jue Wang
- National center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hu Yu
- National center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- National center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Weiyun Zhu
- National center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Canibe N, O’Dea M, Abraham S. Potential relevance of pig gut content transplantation for production and research. J Anim Sci Biotechnol 2019; 10:55. [PMID: 31304012 PMCID: PMC6604143 DOI: 10.1186/s40104-019-0363-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the gastrointestinal microbiota has a significant impact on the overall health and production of the pig. This has led to intensified research on the composition of the gastrointestinal microbiota, factors affecting it, and the impact of the microbiota on health, growth performance, and more recently, behavior of the host. Swine production research has been heavily focused on assessing the effects of feed additives and dietary modifications to alter or take advantage of select characteristics of gastrointestinal microbes to improve health and feed conversion efficiency. Research on faecal microbiota transplantation (FMT) as a possible tool to improve outcomes in pigs through manipulation of the gastrointestinal microbiome is very recent and limited data is available. Results on FMT in humans demonstrating the transfer of phenotypic traits from donors to recipients and the high efficacy of FMT to treat Clostridium difficile infections in humans, together with data from pigs relating GI-tract microbiota composition with growth performance has likely played an important role in the interest towards this strategy in pig production. However, several factors can influence the impact of FMT on the recipient, and these need to be identified and optimized before this tool can be applied to pig production. There are obvious inherent biosecurity and regulatory issues in this strategy, since the donor's microbiome can never be completely screened for all possible non-desirable microorganisms. However, considering the success observed in humans, it seems worth investigating this strategy for certain applications in pig production. Further, FMT research may lead to the identification of specific bacterial group(s) essential for a particular outcome, resulting in the development of banks of clones which can be used as targeted therapeutics, rather than the broader approach applied in FMT. This review examines the factors associated with the use of FMT, and its potential application to swine production, and includes research on using the pig as model for human medical purposes.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal Science, Aarhus University, AU-FOULUM, PO BOX 50, 8830 Tjele, Denmark
| | - Mark O’Dea
- Antimicrobial Resistance and Infectious Disease laboratory, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease laboratory, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| |
Collapse
|
39
|
Kim K, He Y, Xiong X, Ehrlich A, Li X, Raybould H, Atwill ER, Maga EA, Jørgensen J, Liu Y. Dietary supplementation of Bacillus subtilis influenced intestinal health of weaned pigs experimentally infected with a pathogenic E. coli. J Anim Sci Biotechnol 2019. [DOI: 10.1186/s40104-019-0364-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
40
|
Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Jin Song S, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, Suchodolski JS, Knight R. Engineering the microbiome for animal health and conservation. Exp Biol Med (Maywood) 2019; 244:494-504. [PMID: 30776908 PMCID: PMC6547002 DOI: 10.1177/1535370219830075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Considering the clear effects of microbiota on important aspects of animal biology and development (including in humans), this topic is timely and broadly appealing, as it compels us to consider the possibilities of altering the microbiome (without antibiotics) to positively affect animal health. In this review, we highlight three general approaches to manipulating the microbiome that have demonstrated success and promise for use in animal health. We also point out knowledge gaps where further inquiry would most benefit the field. Our paper not only provides a short and digestible overview of the current state of application, but also calls for further exploration of the microbial diversity at hand to expand our toolkit, while also leveraging the diversity and flexibility of animal systems to better understand mechanisms of efficacy.
Collapse
Affiliation(s)
- Se Jin Song
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Douglas C Woodhams
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA
- Smithsonian Tropical Research Institute, Panama city 0843-03092, Panama
| | - Cameron Martino
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
| | - Celeste Allaband
- Biomedical Sciences Graduate Program, University of California, San Diego, CA 92093, USA
| | - Andre Mu
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| | - Sandrine Javorschi-Miller-Montgomery
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX 77843, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA 92093, USA
| |
Collapse
|
42
|
Guevarra RB, Lee JH, Lee SH, Seok MJ, Kim DW, Kang BN, Johnson TJ, Isaacson RE, Kim HB. Piglet gut microbial shifts early in life: causes and effects. J Anim Sci Biotechnol 2019; 10:1. [PMID: 30651985 PMCID: PMC6330741 DOI: 10.1186/s40104-018-0308-3] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/18/2018] [Indexed: 01/23/2023] Open
Abstract
The gut microbiome has long been known to play fundamentally important roles in the animal health and the well-being of its host. As such, the establishment and maintenance of a beneficial gut microbiota early in life is crucial in pigs, since early gut colonizers are pivotal in the establishment of permanent microbial community structures affecting the health and growth performance of pigs later in life. Emphasizing this importance of early gut colonizers, it is critical to understand the factors impacting the establishment of the piglet gut microbiome at weaning. Factors include, among others, diet, in-feed antibiotics, probiotics and prebiotic administration. The impact of these factors on establishment of the gut microbiome of piglets at weaning includes effects on piglet gut microbial diversity, structure, and succession. In this review, we thoroughly reviewed the most recent findings on the piglet gut microbiome shifts as influenced by weaning, and how these microbiome changes brought about by various factors that have been shown to affect the development of microbiota in piglets. This review will provide a general overview of recent studies that can help to facilitate the design of new strategies to modulate the gut microbiome in order to enhance gastrointestinal health, growth performance and well-being of piglets.
Collapse
Affiliation(s)
- Robin B Guevarra
- 1Department of Animal Resources Science, Dankook University, Cheonan, 31116 South Korea
| | - Jun Hyung Lee
- 1Department of Animal Resources Science, Dankook University, Cheonan, 31116 South Korea
| | - Sun Hee Lee
- 1Department of Animal Resources Science, Dankook University, Cheonan, 31116 South Korea
| | - Min-Jae Seok
- 1Department of Animal Resources Science, Dankook University, Cheonan, 31116 South Korea
| | - Doo Wan Kim
- 2National Institute of Animal Science, Rural Development Administration, Cheonan, 55365 South Korea
| | - Bit Na Kang
- 3Abbvie Bioresearch Center, Abbvie, Worcester, MA 01605 USA
| | - Timothy J Johnson
- 4Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108 USA
| | - Richard E Isaacson
- 4Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108 USA
| | - Hyeun Bum Kim
- 1Department of Animal Resources Science, Dankook University, Cheonan, 31116 South Korea
| |
Collapse
|
43
|
Kim JS, Choe H, Kim KM, Lee YR, Rhee MS, Park DS. Lactobacillus porci sp. nov., isolated from small intestine of a swine. Int J Syst Evol Microbiol 2018; 68:3118-3124. [DOI: 10.1099/ijsem.0.002949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ji-Sun Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hanna Choe
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Kyung Mo Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- 2Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Yu-Ri Lee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Moon-Soo Rhee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Doo-Sang Park
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
44
|
Kubasova T, Davidova-Gerzova L, Babak V, Cejkova D, Montagne L, Le-Floc'h N, Rychlik I. Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS One 2018; 13:e0201901. [PMID: 30086169 PMCID: PMC6080793 DOI: 10.1371/journal.pone.0201901] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Since microbiota may influence the physiology of its host including body weight increase, growth rate or feed intake, in this study we determined the microbiota composition in high or low residual feed intake (HRFI and LRFI) pig lines, of different age and/or subjected to sanitary stress by sequencing the V3/V4 variable region of 16S rRNA genes. Allisonella, Megasphaera, Mitsuokella, Acidaminococcus (all belonging to Firmicutes/class Negativicutes), Lactobacillus, Faecalibacterium, Catenibacterium, Butyrivibrio, Erysipelotrichaceae, Holdemania, Olsenella and Collinsella were more abundant in HRFI pigs. On the other hand, 26 genera including Bacteroides, Clostridium sensu stricto, Oscillibacter, Paludibacter, Elusimicrobium, Bilophila, Pyramidobacter and TM7 genera, and Clostridium XI and Clostridium XIVa clusters were more abundant in LRFI than HRFI pigs. Adaptation of microbiota to new diet after weaning was slower in LRFI than in HRFI pigs. Sanitary stress was of relatively minor influence on pig microbiota composition in both tested lines although abundance of Helicobacter increased in LRFI pigs subjected to stress. Selection for residual feed intake thus resulted in a selection of fecal microbiota of different composition. However, we cannot conclude whether residual feed intake was directly affected by different microbiota composition or whether the residual feed intake and microbiota composition are two independent consequences of yet unknown genetic traits differentially selected in the pigs of the two lines.
Collapse
Affiliation(s)
- Tereza Kubasova
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | | | - Vladimir Babak
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | - Darina Cejkova
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | | | | | - Ivan Rychlik
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
45
|
Baliza DDMDS, Silva JFMD, Pimenta RS. Avaliação da aplicabilidade de uma cepa probiótica de Saccharomyces cerevisiae em barras de cereais. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo deste estudo foi avaliar a utilização de uma levedura probiótica na produção de barra de cereais, contribuindo para a produção de um alimento funcional inovador. Uma mistura de chocolate inoculada com 8 log10 células/mL viáveis da levedura foi inserida sobre a superfície da barra de cereais. Foram verificados os parâmetros físicos, químicos e sensoriais, e quantificado o número de células durante o período de armazenamento, até a morte celular da levedura. Os resultados demonstraram que a presença da levedura não afetou negativamente as propriedades físicas e químicas da barra de cereais. Nos parâmetros avaliados sensorialmente, não foi observada preferência em relação às barras sem levedura probiótica. A levedura se manteve viva (104 células/g) por 45 dias.
Collapse
|
46
|
Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV, Lee SA, Kwon WB, Mathai JK, Navarro DM, Jaworski NW, Stein HH. Non-antibiotic feed additives in diets for pigs: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:113-125. [PMID: 30140751 PMCID: PMC6103469 DOI: 10.1016/j.aninu.2018.01.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023]
Abstract
A number of feed additives are marketed to assist in boosting the pigs' immune system, regulate gut microbiota, and reduce negative impacts of weaning and other environmental challenges. The most commonly used feed additives include acidifiers, zinc and copper, prebiotics, direct-fed microbials, yeast products, nucleotides, and plant extracts. Inclusion of pharmacological levels of zinc and copper, certain acidifiers, and several plant extracts have been reported to result in improved pig performance or improved immune function of pigs. It is also possible that use of prebiotics, direct-fed microbials, yeast, and nucleotides may have positive impacts on pig performance, but results have been less consistent and there is a need for more research in this area.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95817, USA
| | | | | | - Gloria A. Casas
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Production, College of Animal and Veterinary Sciences, University of Colombia, Bogota 111321, Colombia
| | - L. Vanessa Lagos
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Su A. Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Woong B. Kwon
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - John K. Mathai
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Hans H. Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Abstract
Intensive farming may involve the use of diets, environments or management practices that impose physiological and psychological stressors on the animals. In particular, early weaning is nowadays a common practice to increase the productive yield of pig farms. Still, it is considered one of the most critical periods in swine production, where piglet performance can be seriously affected and where they are predisposed to the overgrowth of opportunistic pathogens. Pig producers nowadays face the challenge to overcome this situation in a context of increasing restrictions on the use of antibiotics in animal production. Great efforts are being made to find strategies to help piglets overcome the challenges of early weaning. Among them, a nutritional strategy that has received increasing attention in the last few years is the use of probiotics. It has been extensively documented that probiotics can reduce digestive disorders and improve productive parameters. Still, research in probiotics so far has also been characterized as being inconsistent and with low reproducibility from farm to farm. Scientific literature related to probiotic effects against gastrointestinal pathogens will be critically examined in this review. Moreover, the actual practical approach when using probiotics in these animals, and potential strategies to increase consistency in probiotic effects, will be discussed. Thus, considering the boost in probiotic research observed in recent years, this paper aims to provide a much-needed, in-depth review of the scientific data published to-date. Furthermore, it aims to be useful to swine nutritionists, researchers and the additive industry to critically consider their approach when developing or using probiotic strategies in weaning piglets.
Collapse
|
48
|
Kiros TG, Derakhshani H, Pinloche E, D'Inca R, Marshall J, Auclair E, Khafipour E, Van Kessel A. Effect of live yeast Saccharomyces cerevisiae (Actisaf Sc 47) supplementation on the performance and hindgut microbiota composition of weanling pigs. Sci Rep 2018; 8:5315. [PMID: 29593306 PMCID: PMC5871783 DOI: 10.1038/s41598-018-23373-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
As an alternative to antibiotic growth promoters, live yeast supplementation has proven useful in reducing weaning stress and improving performance parameters of piglets. Here, we compared the performance and hindgut microbiota of weanling piglets subjected to different pre- and post-weaning yeast supplementation regimens using a live strain of Saccharomyces cerevisiae (Actisaf Sc 47). Average feed intake and average daily weight gain of piglets within Yeast-Control and Yeast-Yeast groups were higher than those in the Control-Control group. Yeast supplementation resulted in development of microbial communities that were phylogenetically more homogenous and less dispersed compared to the microbiota of control piglets. Key bacterial taxa overrepresented in the microbiota of yeast supplemented piglets included phylum Actinobacteria, specifically family Coriobacteriaceae, as well as Firmicutes families Ruminococcaceae, Clostridiaceae, Peptostreptococcaceae, and Peptococcaceae. Correlation network analysis revealed that yeast supplementation was associated with enrichment of positive correlations among proportions of different bacterial genera within the hindgut ecosystem. In particular, within the cecal microbiota of supplemented piglets, higher numbers of positive correlations were observed among potentially beneficial genera of the phyla Actinobacteria and Firmicutes, suggesting a mechanism by which yeast supplementation may contribute to regulation of intestinal homeostasis and improved performance of piglets.
Collapse
Affiliation(s)
- T G Kiros
- Department of Animal and Poultry Science, University of Saskatchewan, 51 campus drive, Saskatoon, SK, S7N 5A8, Canada.,Phileo-Lesaffre Animal Care, Lesaffre group France, Paris, France
| | - H Derakhshani
- Department of Animal Science, University of Manitoba, Animal Science Bldg 12 Dafoe Road, Winnipeg, R3T 2N2, Manitoba, Canada
| | - E Pinloche
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Llanbadarn Campus, SY23 3AL, Aberystywth, UK
| | - R D'Inca
- Phileo-Lesaffre Animal Care, 137 rue Gabriel Péri, 59700, Marcq-en-Baroeul, France
| | - Jason Marshall
- Department of Animal and Poultry Science, University of Saskatchewan, 51 campus drive, Saskatoon, SK, S7N 5A8, Canada
| | - E Auclair
- Phileo-Lesaffre Animal Care, 137 rue Gabriel Péri, 59700, Marcq-en-Baroeul, France
| | - E Khafipour
- Department of Animal Science, University of Manitoba, Animal Science Bldg 12 Dafoe Road, Winnipeg, R3T 2N2, Manitoba, Canada. .,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - A Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, 51 campus drive, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
49
|
Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 2018; 124:1334-1346. [PMID: 29316021 DOI: 10.1111/jam.13690] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
The use of probiotics as feed supplements in animal production has increased considerably over the last decade, particularly since the ban on antibiotic growth promoters in the livestock sector. Several Bacillus sp. are attractive for use as probiotic supplements in animal feed due to their ability to produce spores. Their heat stability and ability to survive the low pH of the gastric barrier represent an advantage over other probiotic micro-organisms. This review discusses important characteristics required for selection of Bacillus probiotic strains and summarizes the beneficial effect of Bacillus-based feed additives on animal production. Although the mechanism of action of Bacillus probiotics has not been fully elucidated, they are effective in improving the growth, survival and health status of terrestrial and aquatic livestock. Bacillus strains also have utility in bioremediation and can reduce nitrogenous waste, thereby improving environmental conditions and water quality. Finally, recent innovative approaches for using Bacillus spores in various applications are discussed.
Collapse
Affiliation(s)
- S Mingmongkolchai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Science, Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Mahidol University, Bangkok, Thailand
| | - W Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Science, Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Urubschurov V, Büsing K, Souffrant WB, Schauer N, Zeyner A. Porcine intestinal yeast species, Kazachstania slooffiae, a new potential protein source with favourable amino acid composition for animals. J Anim Physiol Anim Nutr (Berl) 2017; 102:e892-e901. [PMID: 29235693 DOI: 10.1111/jpn.12853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/21/2017] [Indexed: 01/24/2023]
Abstract
There is little information about Kazachstania slooffiae which dominates among other yeasts in the pigs' intestine. Therefore, the aims of this study were to characterise the yeast cell contents and to investigate which nitrogen sources, organic acids and alcohols may be utilised or produced by this species. The results showed that, K. slooffiae could use urea, ammonium sulphate, peptides and single amino acids and produce thereby ethanol and formic acid. However, this yeast did not metabolise amino acids, lactic, butyric, propionic and acetic acids as sole carbon source. Using a global metabolite profiling approach employing gas chromatography and high-resolution liquid chromatography mass spectrometry, was found that the amount of peptides and dehydroascorbic acid considerably increased in the fermentation residues after yeast cultivation. It is noteworthy that the cells of K. slooffiae had higher contents of nitrogen and total amino acids (especially lysine) than the cells of nutritional yeast (Saccharomyces cerevisiae). This study indicates that due to potential production of peptides and formic acid in the intestinal tract, K. slooffiae might have an impact on the gut health. Moreover, from a nutritional standpoint, the cells of this yeast can be a good source of protein with useful amino acid composition for animal.
Collapse
Affiliation(s)
- V Urubschurov
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - K Büsing
- Faculty of Agricultural and Environmental Sciences, Chair of Nutrition Physiology and Animal Nutrition, University of Rostock, Rostock, Germany
| | - W-B Souffrant
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Faculty of Agricultural and Environmental Sciences, Chair of Nutrition Physiology and Animal Nutrition, University of Rostock, Rostock, Germany
| | - N Schauer
- Metabolomic Discoveries GmbH, Potsdam, Germany
| | - A Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|