1
|
Min BR, Wang W, Pitta DW, Indugu N, Patra AK, Wang HH, Abrahamsen F, Hilaire M, Puchala R. Characterization of the ruminal microbiota in sheep and goats fed different levels of tannin-rich Sericea lespedeza hay. J Anim Sci 2024; 102:skae198. [PMID: 39018107 PMCID: PMC11484804 DOI: 10.1093/jas/skae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/15/2024] [Indexed: 07/18/2024] Open
Abstract
Understanding ruminal microbiota and diet-host breed interactions under forage feeding conditions is essential for optimizing rumen fermentation and improving feed efficiency in small ruminants. This study aimed to investigate the effects of different ratios of condensed tannin-rich Sericea lespedeza (SL; Lespedeza cuneata) in the diets on changes and interactions of ruminal microbiota and host species (i.e., sheep and goats). Katahdin sheep (n = 12) and Alpine goats (n = 12) at approximately 10 to 12 mo of age were blocked by body weight (BW = 30.3 and 25.5 kg, respectively) and randomly assigned to one of the 3 treatments. Diets contained 75% coarsely ground forage and 25% concentrate. The forages were 1) 100% alfalfa hay (AL), 2) 100% SL, and 3) 50% AL + 50% SL (ASL). In the present study, the diversity and composition of ruminal microbiota differed between sheep and goats fed similar diets. Based on the taxonomic analysis, there was a distinct clustering pattern (P < 0.05) for sheep by diets, but such a pattern was not observed for goats (P > 0.1). The most predominant phyla were Firmicutes, Bacteroidetes, Ascomycota, and methanogen species of Methanobrevibactor sp. in the rumen of sheep and goats, regardless of diets. The Bacteroidetes and Ascomycota were enriched in sheep fed AL and ASL. In contrast, these microbial phyla were enhanced in goats fed tannin-rich SL diets, with the diet-by-host species interaction (P < 0.02) for the Bacteroidetes phylum. Sheep rumen fluid samples showed a higher degree of variability in microbial community composition compared to goat rumen fluid samples. The relative proportion of the Aspergillus fungi population was reduced to 90.7% in the SL group compared with the AL group, regardless of host species. The antimicrobial activity of tannins and greater sensitivities of selected microbiota species to these tannin compounds during SL feeding in sheep and goats perhaps caused this difference. The results from this study suggest that differences in the microbiota were associated with differences in diets and host species. Therefore, this study provides a better understanding of ruminal microbiota and diet-host species interactions under various tannin-rich diets, which could advance consolidative information on rumen microbiome community diversity changes and may improve sheep and goat production.
Collapse
Affiliation(s)
- Byeng R Min
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Wei Wang
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Dipti W Pitta
- Department of Clinical Studies, School of Veterinary Medicine, Pennsylvania State University, University Park, PA 16802, USA
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, Pennsylvania State University, University Park, PA 16802, USA
| | - Amlan K Patra
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| | - Hong He Wang
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Frank Abrahamsen
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Mariline Hilaire
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Ryszard Puchala
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
- Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland
| |
Collapse
|
2
|
Cheng X, Du X, Liang Y, Degen AA, Wu X, Ji K, Gao Q, Xin G, Cong H, Yang G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front Microbiol 2023; 14:1264840. [PMID: 37840727 PMCID: PMC10569316 DOI: 10.3389/fmicb.2023.1264840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
Collapse
Affiliation(s)
- Xindong Cheng
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Du
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Liang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiukun Wu
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Yellow River Estuary Tan Sheep Institute of Industrial Technology, Dongying, China
| |
Collapse
|
3
|
Song J, Ma Y, Zhang H, Wang L, Zhang Y, Zhang G. Fermented Total Mixed Ration Alters Rumen Fermentation Parameters and Microbiota in Dairy Cows. Animals (Basel) 2023; 13:ani13061062. [PMID: 36978603 PMCID: PMC10044477 DOI: 10.3390/ani13061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
This study aimed to determine changes and interactions of ruminal microbiota and chemical parameters in dairy cows fed FTMR. Twelve multiparous Holstein dairy cows (Body weight = 616 ± 13.4 kg; day in milk = 106 ± 7.55 d; and parity = 2.31 ± 0.49; mean ± standard deviation) were divided randomly into two treatments depending on the day in milk, milk production, and parity. The two treatments were: (1) total mixed ration (TMR) and (2) FTMR. Illumina MiSeq sequencing was used to explore the changes in the ruminal microbiota. The results revealed that the bacterial and fungal diversity of the FTMR group were significantly higher than the TMR group. The predominant microbiota phyla in the bacteria and fungi showed significant differences between TMR and FTMR, as follows: Verrucomicrobia (p = 0.03) and Tenericutes (p = 0.01), Ascomycota (p = 0.04) and Basidiomycota (p = 0.04). The dominant bacterial genera in the bacteria, fungi, protozoan, and archaea that showed significant differences between TMR and FTMR were Unclassified_Bacteroidales (p = 0.02), Unclassified_RFP12 (p = 0.03), Candida (p = 0.0005), Bullera (p = 0.002), Cryptococcus (p = 0.007), and Ostracodinium (p = 0.01). LefSe analysis was performed to reveal the biomarker genera of the rumen microbiota community (bacteria, fungi, protozoan, and archaea) in the TMR and FTMR were the genera Shuttleworthia, Ruminococcus, Cryptococcus, Mycosphaerella, Bullera, Candida, and Ostracodinium. NH3-N concentration (p < 0.0001), total VFA concentration (p = 0.003), and molar proportion in total VFA of acetate (p = 0.01) were higher for the cows fed FTMR compared with the cows fed the TMR. Several bacterial genera showed significant correlations with rumen fermentation parameters. The genus Unclassified_Bacteroidales and Bullera were positively correlated with total volatile fatty acids (VFA) and acetate, whereas Candida and Ostracodinium showed negative correlations. Meanwhile, propionate was positively correlated with Candida and negatively correlated with Bullera. The PICRUSt functional profile prediction indicated that the xenobiotics biodegradation and metabolism, the lipid, amino acid, terpenoids, and polyketides metabolisms of the FTMR group were significantly higher than that of the TMR group. The results imply that FTMR can increase lipid and amino acid metabolism, and modulate the rumen microbiome and improve ruminal fermentation.
Collapse
Affiliation(s)
- Jiamei Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuansheng Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hengwei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.Z.); (G.Z.)
| | - Guangning Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.Z.); (G.Z.)
| |
Collapse
|
4
|
Yu S, Li L, Zhao H, Tu Y, Liu M, Jiang L, Zhao Y. Characterization of the Dynamic Changes of Ruminal Microbiota Colonizing Citrus Pomace Waste during Rumen Incubation for Volatile Fatty Acid Production. Microbiol Spectr 2023; 11:e0351722. [PMID: 36862010 PMCID: PMC10101060 DOI: 10.1128/spectrum.03517-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Rumen microorganisms are promising for efficient bioconversion of lignocellulosic wastes to biofuels and industrially relevant products. Investigating the dynamic changes of the rumen microbial community colonizing citrus pomace (CtP) will advance our understanding of the utilization of citrus processing waste by rumen fluid. Citrus pomace in nylon bags was incubated in the rumen of three ruminally cannulated Holstein cows for 1, 2, 4, 8, 12, 24, and 48 h. Results showed that total volatile fatty acids concentrations and proportions of valerate and isovalerate were increased over time during the first 12 h. Three major cellulose enzymes attached to CtP rose initially and then decreased during the 48-h incubation. Primary colonization happened during the initial hours of CtP incubation, and microbes compete to attach CtP for degrading easily digestible components and/or utilizing the waste. The 16S rRNA gene sequencing data revealed the diversity and structure of microbiota adhered to CtP were distinctly different at each time point. The increased abundance of Fibrobacterota, Rikenellaceae_RC9_gut_group, and Butyrivibrio may explain the elevated volatile fatty acids concentrations. This study highlighted key metabolically active microbial taxa colonizing citrus pomace in a 48-h in situ rumen incubation, which could have implications for promoting the biotechnological process of CtP. IMPORTANCE As a natural fermentation system, the rumen ecosystem of ruminants can efficiently degrade plant cellulose, indicating that the rumen microbiome offers an opportunity for anaerobic digestion to utilize biomass wastes containing cellulose. Knowledge of the response of the in situ microbial community to citrus pomace during anaerobic fermentation will help improve the current understanding of citrus biomass waste utilization. Our results demonstrated that a highly diverse rumen bacterial community colonized citrus pomace rapidly and continuously changed during a 48-h incubation period. These findings may provide a deep understanding of constructing, manipulating, and enriching rumen microorganisms to improve the anaerobic fermentation efficiency of citrus pomace.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Beinong Enterprise Management Co., Ltd., Beijing, China
| |
Collapse
|
5
|
Effects of Dietary Nonfibrous Carbohydrate/Neutral Detergent Fiber Ratio on Methanogenic Archaea and Cellulose-Degrading Bacteria in the Rumen of Karakul Sheep: a 16S rRNA Gene Sequencing Study. Appl Environ Microbiol 2023; 89:e0129122. [PMID: 36541769 PMCID: PMC9888294 DOI: 10.1128/aem.01291-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study was conducted to investigate the effects of dietary nonfibrous carbohydrate (NFC)/neutral detergent fiber (NDF) ratio on methanogenic archaea and cellulose-degrading bacteria in Karakul sheep by 16S rRNA gene sequencing. Twelve Karakul sheep were randomly divided into four groups, each group with three replicates, and they were fed with four dietary NFC/NDF ratios at 0.54, 0.96, 1.37, and 1.90 as groups 1, 2, 3, and 4, respectively. The experiment lasted for four periods: I (1 to 18 days), II (19 to 36 days), III (37 to 54 days), and IV (55 to 72 days); during each period, rumen contents were collected before morning feeding to investigate on methanogenic archaea and cellulose-degrading bacteria. The results showed that with an increase in dietary NFC/NDF ratio, the number of rumen archaea operational taxonomic units and the diversity of archaea decrease. The most dominant methanogens did not change with dietary NFC/NDF ratio and prolongation of experimental periods. Methanobrevibacter was the most dominant genus. At the species level, the relative abundance of Methanobrevibacter ruminantium first increased and then decreased when the NFC/NDF ratio increased. When the dietary NFC/NDF ratio was 0.96, the structure of archaea was largely changed, and the relative abundance of Fibrobacter sp. strain UWCM, Ruminococcus flavefaciens, and Ruminococcus albus were the highest. When the dietary NFC/NDF ratio was 1.37, the relative abundance of Butyrivibrio fibrisolvens was higher than for other groups. Based on all the data, we concluded that a dietary NFC/NDF ratio of ca. 0.96 to 1.37 was a suitable ratio to support optimal sheep production. IMPORTANCE CH4 produced by ruminants aggravates the greenhouse effect and cause wastage of feed energy, and CH4 emissions are related to methanogens. According to the current literature, there is a symbiotic relationship between methanogens and cellulolytic bacteria, so reducing methane will inevitably affect the degradation of fiber materials. This experiment used 16S rRNA gene high-throughput sequencing technology to explore the balance relationship between methanogens and cellulolytic bacteria for the first time through a long-term feeding period. The findings provide fundamental data, supporting for the diet structures with potential to reduce CH4 emission.
Collapse
|
6
|
Miller GA, Auffret MD, Roehe R, Nisbet H, Martínez-Álvaro M. Different microbial genera drive methane emissions in beef cattle fed with two extreme diets. Front Microbiol 2023; 14:1102400. [PMID: 37125186 PMCID: PMC10133469 DOI: 10.3389/fmicb.2023.1102400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
The ratio of forage to concentrate in cattle feeding has a major influence on the composition of the microbiota in the rumen and on the mass of methane produced. Using methane measurements and microbiota data from 26 cattle we aimed to investigate the relationships between microbial relative abundances and methane emissions, and identify potential biomarkers, in animals fed two extreme diets - a poor quality fresh cut grass diet (GRASS) or a high concentrate total mixed ration (TMR). Direct comparisons of the effects of such extreme diets on the composition of rumen microbiota have rarely been studied. Data were analyzed considering their multivariate and compositional nature. Diet had a relevant effect on methane yield of +10.6 g of methane/kg of dry matter intake for GRASS with respect to TMR, and on the centered log-ratio transformed abundance of 22 microbial genera. When predicting methane yield based on the abundance of 28 and 25 selected microbial genera in GRASS and TMR, respectively, we achieved cross-validation prediction accuracies of 66.5 ± 9% and 85 ± 8%. Only the abundance of Fibrobacter had a consistent negative association with methane yield in both diets, whereas most microbial genera were associated with methane yield in only one of the two diets. This study highlights the stark contrast in the microbiota controlling methane yield between animals fed a high concentrate diet, such as that found on intensive finishing units, and a low-quality grass forage that is often found in extensive grazing systems. This contrast must be taken into consideration when developing strategies to reduce methane emissions by manipulation of the rumen microbial composition.
Collapse
Affiliation(s)
- Gemma A. Miller
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
- Gemma A. Miller,
| | | | - Rainer Roehe
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | - Holly Nisbet
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | - Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Marina Martínez-Álvaro,
| |
Collapse
|
7
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci 2022; 9:958340. [PMID: 36619952 PMCID: PMC9817038 DOI: 10.3389/fvets.2022.958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland,*Correspondence: Paul E. Smith
| | - Alan K. Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
8
|
Hua D, Hendriks WH, Zhao Y, Xue F, Wang Y, Jiang L, Xiong B, Pellikaan WF. Glucogenic and lipogenic diets affect in vitro ruminal microbiota and metabolites differently. Front Microbiol 2022; 13:1039217. [PMID: 36590412 PMCID: PMC9800790 DOI: 10.3389/fmicb.2022.1039217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
This study was conducted to evaluate the effects of two glucogenic diets (C: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on the ruminal bacterial and archaeal structures, the metabolomic products, and gas production after 48 h in vitro fermentation with rumen fluid of dairy cows. Compared to the C and S diets, the L dietary treatment leaded to a lower dry matter digestibility (DMD), lower propionate production and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the C and L diet. The metabolomics analysis revealed that the lipid digestion especially the fatty acid metabolism was improved, but the amino acid digestion was weakened in the L treatment than in other treatments. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. The rumen fluid fermented with L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in samples for diets C and S. The results indicated that the two glucogenic diets leaded to a higher relative abundance of bacteria which functions in succinate pathway resulting in a higher propionate production. The steam-flaked corn diet had a higher gas production and lower level of metabolites in fatty acids and amino acids. Most highly abundant bacteria were observed to be not sensitive to dietary alterations of starch and fiber, except for several amylolytic bacteria and cellulolytic bacteria. These finding offered new insights on the digesting preference of ruminal bacteria, which can assist to improve the rumen functioning.
Collapse
Affiliation(s)
- Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Wouter H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguang Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cattle Nutrition, Beijing Agricultural College, Beijing, China,*Correspondence: Linshu Jiang,
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Benhai Xiong,
| | - Wilbert F. Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
10
|
Min BR, Lee S, Jung H, Miller DN, Chen R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals (Basel) 2022; 12:948. [PMID: 35454195 PMCID: PMC9030782 DOI: 10.3390/ani12080948] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Enteric methane (CH4) emissions produced by microbial fermentation in the rumen resulting in the emission of greenhouse gases (GHG) into the atmosphere. The GHG emissions reduction from the livestock industry can be attained by increasing production efficiency and improving feed efficiency, by lowering the emission intensity of production, or by combining the two. In this work, information was compiled from peer-reviewed studies to analyze CH4 emissions calculated per unit of milk production, energy-corrected milk (ECM), average daily gain (ADG), dry matter intake (DMI), and gross energy intake (GEI), and related emissions to rumen fermentation profiles (volatile fatty acids [VFA], hydrogen [H2]) and microflora activities in the rumen of beef and dairy cattle. For dairy cattle, there was a positive correlation (p < 0.001) between CH4 emissions and DMI (R2 = 0.44), milk production (R2 = 0.37; p < 0.001), ECM (R2 = 0.46), GEI (R2 = 0.50), and acetate/propionate (A/P) ratio (R2 = 0.45). For beef cattle, CH4 emissions were positively correlated (p < 0.05−0.001) with DMI (R2 = 0.37) and GEI (R2 = 0.74). Additionally, the ADG (R2 = 0.19; p < 0.01) and A/P ratio (R2 = 0.15; p < 0.05) were significantly associated with CH4 emission in beef steers. This information may lead to cost-effective methods to reduce enteric CH4 production from cattle. We conclude that enteric CH4 emissions per unit of ECM, GEI, and ADG, as well as rumen fermentation profiles, show great potential for estimating enteric CH4 emissions.
Collapse
Affiliation(s)
- Byeng-Ryel Min
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Seul Lee
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea; (S.L.); (H.J.)
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea; (S.L.); (H.J.)
| | - Daniel N. Miller
- Agroecosystem Management Research Unit, USDA/ARS, 354 Filly Hall, Lincoln, NE 68583, USA;
| | - Rui Chen
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| |
Collapse
|
11
|
Arp AP, Quintero G, Sagel A, Batista RG, Phillips PL, Hickner PV. The microbiome of wild and mass-reared new world screwworm, Cochliomyia hominivorax. Sci Rep 2022; 12:1042. [PMID: 35058490 PMCID: PMC8776964 DOI: 10.1038/s41598-022-04828-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
Insect population control through continual releases of large numbers of sterile insects, called sterile insect technique (SIT), is only possible if one can mass-rear large quantities of healthy insects. Adaptation of insect stocks to rearing conditions and artificial feeding systems can have a multitude of negative effects such as inbreeding depression, reduced compatibility with wild strains, unintentional selection for traits that lower fitness after release, and an altered microbiome. Changes to insect microbiomes can have many effects on insects ranging from a reduction in sex pheromones or reduced fitness. Thus understanding these systems is important for mass rearing and the performance of the sterile insect control programs. In this study we explored the microbiome of the New World screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) an economically important parasite of warm-blooded animals. Samples from myiases in cows and wild adults were compared to and mass-reared flies used by the SIT program. Significant differences were observed between these treatments, with wild captured flies having a significantly more diverse microbial composition. Bacteria known to stimulate oviposition were found in both wild and mass-reared flies. Two bacteria of veterinary importance were abundant in wild flies, suggesting screwworm is a potential vector of these diseases. Overall, this study provides the screwworm eradication program a platform to continue exploring the effects associated bacteria have on screwworm fitness.
Collapse
|
12
|
Reisinger A, Clark H, Cowie AL, Emmet-Booth J, Gonzalez Fischer C, Herrero M, Howden M, Leahy S. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200452. [PMID: 34565223 PMCID: PMC8480228 DOI: 10.1098/rsta.2020.0452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 05/05/2023]
Abstract
Agriculture is the largest single source of global anthropogenic methane (CH4) emissions, with ruminants the dominant contributor. Livestock CH4 emissions are projected to grow another 30% by 2050 under current policies, yet few countries have set targets or are implementing policies to reduce emissions in absolute terms. The reason for this limited ambition may be linked not only to the underpinning role of livestock for nutrition and livelihoods in many countries but also diverging perspectives on the importance of mitigating these emissions, given the short atmospheric lifetime of CH4. Here, we show that in mitigation pathways that limit warming to 1.5°C, which include cost-effective reductions from all emission sources, the contribution of future livestock CH4 emissions to global warming in 2050 is about one-third of that from future net carbon dioxide emissions. Future livestock CH4 emissions, therefore, significantly constrain the remaining carbon budget and the ability to meet stringent temperature limits. We review options to address livestock CH4 emissions through more efficient production, technological advances and demand-side changes, and their interactions with land-based carbon sequestration. We conclude that bringing livestock into mainstream mitigation policies, while recognizing their unique social, cultural and economic roles, would make an important contribution towards reaching the temperature goal of the Paris Agreement and is vital for a limit of 1.5°C. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
| | - Harry Clark
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Annette L. Cowie
- New South Wales Department of Primary Industries/University of New England, Armidale, Australia
| | - Jeremy Emmet-Booth
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Carlos Gonzalez Fischer
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Mario Herrero
- Department of Global Development, College of Agriculture and Life Sciences, and Cornell Atkinson Centre for Sustainability, Cornell University, Ithaca, USA
| | - Mark Howden
- Australian National University, Canberra, Australia
| | - Sinead Leahy
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| |
Collapse
|
13
|
Asselstine V, Lam S, Miglior F, Brito LF, Sweett H, Guan L, Waters SM, Plastow G, Cánovas A. The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies. J Anim Sci 2021; 99:6377879. [PMID: 34586400 PMCID: PMC8480417 DOI: 10.1093/jas/skab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of “-omics” technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various “-omics” technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for “-omics” technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture’s overall environmental footprint.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hannah Sweett
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leluo Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
14
|
Rabee AE, Forster R, Sabra EA. Lignocelluloytic activities and composition of bacterial community in the camel rumen. AIMS Microbiol 2021; 7:354-367. [PMID: 34708177 PMCID: PMC8500796 DOI: 10.3934/microbiol.2021022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The camel is well-adapted to utilize the poor-quality forages in the harsh desert conditions as the camel rumen sustains fibrolytic microorganisms, mainly bacteria that are capable of breaking down the lignocellulosic biomass efficiently. Exploring the composition of the bacterial community in the rumen of the camel and quantifying their cellulolytic and xylanolytic activities could lead to understanding and improving fiber fermentation and discovering novel sources of cellulases and xylanases. In this study, Illumina MiSeq sequencing of the V4 region on 16S rRNA was applied to identify the bacterial and archaeal communities in the rumen of three camels fed wheat straw and broom corn. Furthermore, rumen samples were inoculated into bacterial media enriched with xylan and different cellulose sources, including filter paper (FP), wheat straw (WS), and alfalfa hay (AH) to assess the ability of rumen bacteria to produce endo-cellulase and endo-xylanase at different fermentation intervals. The results revealed that the phylum Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community. Also, most of the bacterial community has fibrolytic potential and the dominant bacterial genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Fibrobacteres, and Treponema. The highest xylanase production (884.8 mU/mL) was observed at 7 days. The highest cellulase production (1049.5 mU/mL) was observed when rumen samples were incubated with Alfalfa hay for 7 days.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Robert Forster
- Lethbridge Research and Development Centre, Agriculture and Agrifood Canada, Lethbridge, AB, Canada
| | - Ebrahim A Sabra
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
15
|
Islam M, Kim SH, Ramos SC, Mamuad LL, Son AR, Yu Z, Lee SS, Cho YI, Lee SS. Holstein and Jersey Steers Differ in Rumen Microbiota and Enteric Methane Emissions Even Fed the Same Total Mixed Ration. Front Microbiol 2021; 12:601061. [PMID: 33868186 PMCID: PMC8044996 DOI: 10.3389/fmicb.2021.601061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have focused on the rumen microbiome and enteric methane (CH4) emissions in dairy cows, yet little is known about steers, especially steers of dairy breeds. In the present study, we comparatively examined the rumen microbiota, fermentation characteristics, and CH4 emissions from six non-cannulated Holstein (710.33 ± 43.02 kg) and six Jersey (559.67 ± 32.72 kg) steers. The steers were fed the same total mixed ration (TMR) for 30 days. After 25 days of adaptation to the diet, CH4 emissions were measured using GreenFeed for three consecutive days, and rumen fluid samples were collected on last day using stomach tubing before feeding (0 h) and 6 h after feeding. CH4 production (g/d/animal), CH4 yield (g/kg DMI), and CH4 intensity (g/kg BW0.75) were higher in the Jersey steers than in the Holstein steers. The lowest pH value was recorded at 6 h after feeding. The Jersey steers had lower rumen pH and a higher concentration of ammonia-nitrogen (NH3-N). The Jersey steers had a numerically higher molar proportion of acetate than the Holstein steers, but the opposite was true for that of propionate. Metataxonomic analysis of the rumen microbiota showed that the two breeds had similar species richness, Shannon, and inverse Simpson diversity indexes. Principal coordinates analysis showed that the overall rumen microbiota was different between the two breeds. Both breeds were dominated by Prevotella ruminicola, and its highest relative abundance was observed 6 h after feeding. The genera Ethanoligenens, Succinivibrio, and the species Ethanoligenens harbinense, Succinivibrio dextrinosolvens, Prevotella micans, Prevotella copri, Prevotella oris, Prevotella baroniae, and Treponema succinifaciens were more abundant in Holstein steers while the genera Capnocytophaga, Lachnoclostridium, Barnesiella, Oscillibacter, Galbibacter, and the species Capnocytophaga cynodegmi, Galbibacter mesophilus, Barnesiella intestinihominis, Prevotella shahii, and Oscillibacter ruminantium in the Jersey steers. The Jersey steers were dominated by Methanobrevibacter millerae while the Holstein steers by Methanobrevibacter olleyae. The overall results suggest that sampling hour has little influence on the rumen microbiota; however, breeds of steers can affect the assemblage of the rumen microbiota and different mitigation strategies may be needed to effectively manipulate the rumen microbiota and mitigate enteric CH4 emissions from these steers.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea.,Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Sung-Sil Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
16
|
Rabee AE, Forster R, Elekwachi C, Sabra E, Lamara M. Comparative analysis of the metabolically active microbial communities in the rumen of dromedary camels under different feeding systems using total rRNA sequencing. PeerJ 2020; 8:e10184. [PMID: 33194403 PMCID: PMC7603790 DOI: 10.7717/peerj.10184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Breakdown of plant biomass in rumen depends on interactions between bacteria, archaea, fungi, and protozoa; however, the majority of studies of the microbiome of ruminants, including the few studies of the rumen of camels, only studied one of these microbial groups. In this study, we applied total rRNA sequencing to identify active microbial communities in 22 solid and liquid rumen samples from 11 camels. These camels were reared at three stations that use different feeding systems: clover, hay and wheat straw (G1), fresh clover (G2), and wheat straw (G3). Bacteria dominated the libraries of sequence reads generated from all rumen samples, followed by protozoa, archaea, and fungi respectively. Firmicutes, Thermoplasmatales, Diplodinium, and Neocallimastix dominated bacterial, archaeal, protozoal and fungal communities, respectively in all samples. Libraries generated from camels reared at facility G2, where they were fed fresh clover, showed the highest alpha diversity. Principal co-ordinate analysis and linear discriminate analysis showed clusters associated with facility/feed and the relative abundance of microbes varied between liquid and solid fractions. This provides preliminary evidence that bacteria dominate the microbial communities of the camel rumen and these communities differ significantly between populations of domesticated camels.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Cairo, Egypt
| | - Robert Forster
- Lethbridge Research and Development Centre, Agriculture and Agrifood Canada, Lethbridge, AB, Canada
| | - Chijioke Elekwachi
- Lethbridge Research and Development Centre, Agriculture and Agrifood Canada, Lethbridge, AB, Canada
| | - Ebrahim Sabra
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mebarek Lamara
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| |
Collapse
|
17
|
Min BR, Solaiman S, Waldrip HM, Parker D, Todd RW, Brauer D. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:231-246. [PMID: 33005757 PMCID: PMC7503797 DOI: 10.1016/j.aninu.2020.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023]
Abstract
Methane gas from livestock production activities is a significant source of greenhouse gas (GHG) emissions which have been shown to influence climate change. New technologies offer a potential to manipulate the rumen biome through genetic selection reducing CH4 production. Methane production may also be mitigated to varying degrees by various dietary intervention strategies. Strategies to reduce GHG emissions need to be developed which increase ruminant production efficiency whereas reducing production of CH4 from cattle, sheep, and goats. Methane emissions may be efficiently mitigated by manipulation of natural ruminal microbiota with various dietary interventions and animal production efficiency improved. Although some CH4 abatement strategies have shown efficacy in vivo, more research is required to make any of these approaches pertinent to modern animal production systems. The objective of this review is to explain how anti-methanogenic compounds (e.g., plant tannins) affect ruminal microbiota, reduce CH4 emission, and the effects on host responses. Thus, this review provides information relevant to understanding the impact of tannins on methanogenesis, which may provide a cost-effective means to reduce enteric CH4 production and the influence of ruminant animals on global GHG emissions.
Collapse
Affiliation(s)
- Byeng R. Min
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | | | - Heidi M. Waldrip
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | - David Parker
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | - Richard W. Todd
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | - David Brauer
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| |
Collapse
|
18
|
Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines (Basel) 2020; 8:vaccines8030460. [PMID: 32825375 PMCID: PMC7565300 DOI: 10.3390/vaccines8030460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022] Open
Abstract
Ruminants produce considerable amounts of methane during their digestive process, which makes the livestock industry as one of the largest sources of anthropogenic greenhouse gases. To tackle this situation, several solutions have been proposed, including vaccination of ruminants against microorganisms responsible for methane synthesis in the rumen. In this review, we summarize the research done on this topic and describe the state of the art of this strategy. The different steps implied in this approach are described: experimental design, animal model (species, age), antigen (whole cells, cell parts, recombinant proteins, peptides), adjuvant (Freund's, Montanide, saponin, among others), vaccination schedule (booster intervals and numbers) and measurements of treatment success (immunoglobulin titers and/or effects on methanogens and methane production). Highlighting both the advances made and knowledge gaps in the use of vaccines to inhibit ruminant methanogen activity, this research review opens the door to future studies. This will enable improvements in the methodology and systemic approaches so as to ensure the success of this proposal for the sustainable mitigation of methane emission.
Collapse
|
19
|
Wang Q, Gao X, Yang Y, Zou C, Yang Y, Lin B. A comparative study on rumen ecology of water buffalo and cattle calves under similar feeding regime. Vet Med Sci 2020; 6:746-754. [PMID: 32657053 PMCID: PMC7738740 DOI: 10.1002/vms3.302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In all, 12 male water buffalo (Bubalusbubalis) calves and Holstein (Bostaurus) calves of similar age (10 ± 5 days) were selected to explore the mechanism underlying the differences in growth performance and feed conversion ratio between the two species. The experiment contains 33 days of sucking period and 40 days of post‐weaning period. Both calves were fed the same amounts of milk in sucking period, and starter and oat grass were supplied ad libitum both before and after the weaning period. Feed intake, growth performance, ruminal fermentation parameters and the ruminal microbial community were measured the during experiment period. Results showed no differences in growth performance and feed intake between the two species in sucking period; however, the feed/gain ratio (F/G) of the water buffalo was higher than that of Holstein calve (p > 0.05). After weaning, the intake of starter by the Holstein calf was higher while intake of grass by the water buffalo was higher resulting in higher growth performance of and a lower F/G ratio for Holstein (p < 0.05). The rumen of Holstein calf showed higher levels of propionate, lower levels of acetate and branched‐chain fatty acids than that of water buffalo during both periods (p < 0.05). The rumen of water buffalo showed a higher number of observed bacterial species and Shannon diversity as compared with that of Holstein calf. The members belonging to the bacterial phylum Bacteroides and genus Prevotella in the rumen of Holstein calf were higher (p < 0.05), while Firmicutes and fibrolytic bacteria Ruminobacter and Ruminococcus were lower (p < 0.05) than that of water buffalo. In conclusion, the water buffalo calves demonstrated clearly of having significant population of bacterial community and better fibre digestion than those of cattle calves.
Collapse
Affiliation(s)
- Qiyan Wang
- College of Animal Science, Guangxi University, Nanning, China
| | - Xiaomei Gao
- College of Animal Science, Guangxi University, Nanning, China
| | - Yunyan Yang
- College of Animal Science, Guangxi University, Nanning, China
| | - Caixia Zou
- College of Animal Science, Guangxi University, Nanning, China
| | - Yingbai Yang
- College of Animal Science, Guangxi University, Nanning, China
| | - Bo Lin
- College of Animal Science, Guangxi University, Nanning, China
| |
Collapse
|
20
|
O'Hara E, Neves ALA, Song Y, Guan LL. The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger? Annu Rev Anim Biosci 2020; 8:199-220. [PMID: 32069435 DOI: 10.1146/annurev-animal-021419-083952] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ruminant production systems face significant challenges currently, driven by heightened awareness of their negative environmental impact and the rapidly rising global population. Recent findings have underscored how the composition and function of the rumen microbiome are associated with economically valuable traits, including feed efficiency and methane emission. Although omics-based technological advances in the last decade have revolutionized our understanding of host-associated microbial communities, there remains incongruence over the correct approach for analysis of large omic data sets. A global approach that examines host/microbiome interactions in both the rumen and the lower digestive tract is required to harness the full potential of the gastrointestinal microbiome for sustainable ruminant production. This review highlights how the ruminant animal production community may identify and exploit the causal relationships between the gut microbiome and host traits of interest for a practical application of omic data to animal health and production.
Collapse
Affiliation(s)
- Eóin O'Hara
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| | - André L A Neves
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| | - Yang Song
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , , .,College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, China 028000;
| | - Le Luo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| |
Collapse
|
21
|
Jonova S, Ilgaza A, Zolovs M, Balins A. Impact of inulin and yeast containing synbiotic on calves' productivity and greenhouse gas production. Vet World 2020; 13:1017-1024. [PMID: 32801549 PMCID: PMC7396340 DOI: 10.14202/vetworld.2020.1017-1024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Aim: The research aimed to determine the impact of synbiotic: 6 g of prebiotic inulin and 5 g of probiotic Saccharomyces cerevisiae strain 1026 on calves’ productivity and greenhouse gas (GHG) production. Materials and Methods: The research was conducted with 10 Holstein Friesian and Red Holstein (Bos taurus L.) crossbreed calves of mean age 33±6 days and initial body weight 73.4±12.75 kg. We added the synbiotic into the diet of five dairy crossbreed calves (SynG) and five calves in control group (CoG) received non-supplemented diet. The duration of the experiment was 56 days. The weight of calves and amount of methane (CH4) and carbon dioxide (CO2) in the rumen were determined on day 1, 28, and 56. On day 56, three calves from each group were slaughtered. Meat samples were assessed for some indicators of meat quality. The main methanogens were detected in the rumen fluid and feces. Results: The weight gain during the whole experiment period of 56 days was higher in the SynG (62.6±13.75 kg) compared to CoG (36.8±7.98 kg) calves (p<0.01). There were no significant differences in the levels of protein (%), fat (unsaturated and saturated – %), and cholesterol (mg/100 g) in meat samples from both groups. At the end of the experiment, the amount of CH4 in calves’ rumen in CoG was higher (Me=792.06 mg/m3, interquartile range [IQR] 755.06-873.59) compared to SynG (Me=675.41 mg/m3, IQR 653.46-700.50) group (p<0.01). The values for CO2 were also increased in CoG (Me=4251.28 mg/m3, IQR 4045.58-4426.25) compared to SynG (Me=3266.06 mg/m3, IQR 1358.98-4584.91) group (p=0.001). There were no significant differences in the calves’ weight and certain methanogen species in rumen liquid and feces on the 56th day of the experiment. Significantly higher results in the parameter total prokaryotes (V3) (bacteria+archaea) in rumen fluid were in SynG, whereas significantly higher results in the parameter total methanogens Met630/803 in rumen fluid were in CoG, p<0.05. Conclusion: The main results showed that the synbiotic can increase the daily weight gain in calves and decrease the amount of GHG in rumen but does not impact different methanogen species in rumen liquid and feces and meat protein, fat, and cholesterol levels.
Collapse
Affiliation(s)
- S Jonova
- Faculty of Veterinary Medicine, Preclinical Institute, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A Ilgaza
- Faculty of Veterinary Medicine, Preclinical Institute, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - M Zolovs
- Department of Biosystematics, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
| | - A Balins
- Research Laboratory of Biotechnology, Division of Molecular Biology and Microbiology, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| |
Collapse
|
22
|
Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 2020; 14:s2-s16. [PMID: 32024560 DOI: 10.1017/s1751731119003100] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Meat and milk from ruminants provide an important source of protein and other nutrients for human consumption. Although ruminants have a unique advantage of being able to consume forages and graze lands not suitable for arable cropping, 2% to 12% of the gross energy consumed is converted to enteric CH4 during ruminal digestion, which contributes approximately 6% of global anthropogenic greenhouse gas emissions. Thus, ruminant producers need to find cost-effective ways to reduce emissions while meeting consumer demand for food. This paper provides a critical review of the substantial amount of ruminant CH4-related research published in past decades, highlighting hydrogen flow in the rumen, the microbiome associated with methanogenesis, current and future prospects for CH4 mitigation and insights into future challenges for science, governments, farmers and associated industries. Methane emission intensity, measured as emissions per unit of meat and milk, has continuously declined over the past decades due to improvements in production efficiency and animal performance, and this trend is expected to continue. However, continued decline in emission intensity will likely be insufficient to offset the rising emissions from increasing demand for animal protein. Thus, decreases in both emission intensity (g CH4/animal product) and absolute emissions (g CH4/day) are needed if the ruminant industries continue to grow. Providing producers with cost-effective options for decreasing CH4 emissions is therefore imperative, yet few cost-effective approaches are currently available. Future abatement may be achieved through animal genetics, vaccine development, early life programming, diet formulation, use of alternative hydrogen sinks, chemical inhibitors and fermentation modifiers. Individually, these strategies are expected to have moderate effects (<20% decrease), with the exception of the experimental inhibitor 3-nitrooxypropanol for which decreases in CH4 have consistently been greater (20% to 40% decrease). Therefore, it will be necessary to combine strategies to attain the sizable reduction in CH4 needed, but further research is required to determine whether combining anti-methanogenic strategies will have consistent additive effects. It is also not clear whether a decrease in CH4 production leads to consistent improved animal performance, information that will be necessary for adoption by producers. Major constraints for decreasing global enteric CH4 emissions from ruminants are continued expansion of the industry, the cost of mitigation, the difficulty of applying mitigation strategies to grazing ruminants, the inconsistent effects on animal performance and the paucity of information on animal health, reproduction, product quality, cost-benefit, safety and consumer acceptance.
Collapse
|
23
|
Gilbert RA, Townsend EM, Crew KS, Hitch TCA, Friedersdorff JCA, Creevey CJ, Pope PB, Ouwerkerk D, Jameson E. Rumen Virus Populations: Technological Advances Enhancing Current Understanding. Front Microbiol 2020; 11:450. [PMID: 32273870 PMCID: PMC7113391 DOI: 10.3389/fmicb.2020.00450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.
Collapse
Affiliation(s)
- Rosalind A. Gilbert
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor M. Townsend
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kathleen S. Crew
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Jessica C. A. Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J. Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diane Ouwerkerk
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor Jameson
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
24
|
Andrade BGN, Bressani FA, Cuadrat RRC, Tizioto PC, de Oliveira PSN, Mourão GB, Coutinho LL, Reecy JM, Koltes JE, Walsh P, Berndt A, Palhares JCP, Regitano LCA. The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in feces and rumen. J Anim Sci Biotechnol 2020; 11:6. [PMID: 32123563 PMCID: PMC7038601 DOI: 10.1186/s40104-019-0422-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background The success of different species of ruminants in the colonization of a diverse range of environments is due to their ability to digest and absorb nutrients from cellulose, a complex polysaccharide found in leaves and grass. Ruminants rely on a complex and diverse microbial community, or microbiota, in a unique compartment known as the rumen to break down this polysaccharide. Changes in microbial populations of the rumen can affect the host’s development, health, and productivity. However, accessing the rumen is stressful for the animal. Therefore, the development and use of alternative sampling methods are needed if this technique is to be routinely used in cattle breeding. To this end, we tested if the fecal microbiome could be used as a proxy for the rumen microbiome due to its accessibility. We investigated the taxonomic composition, diversity and inter-relations of two different GIT compartments, rumen and feces, of 26 Nelore (Bos indicus) bulls, using Next Generation Sequencing (NGS) metabarcoding of bacteria, archaea and ciliate protozoa. Results We identified 4265 Amplicon Sequence Variants (ASVs) from bacteria, 571 from archaea, and 107 from protozoa, of which 143 (96 bacteria and 47 archaea) were found common between both microbiomes. The most prominent bacterial phyla identified were Bacteroidetes (41.48%) and Firmicutes (56.86%) in the ruminal and fecal microbiomes, respectively, with Prevotella and Ruminococcaceae UCG-005 the most relatively abundant genera identified in each microbiome. The most abundant archaeal phylum identified was Euryarchaeota, of which Methanobrevibacter gottschalkii, a methanogen, was the prevalent archaeal species identified in both microbiomes. Protozoa were found exclusively identified in the rumen with Bozasella/Triplumaria being the most frequent genus identified. Co-occurrence among ruminal and fecal ASVs reinforces the relationship of microorganisms within a biological niche. Furthermore, the co-occurrence of shared archaeal ASVs between microbiomes indicates a dependency of the predominant fecal methanogen population on the rumen population. Conclusions Co-occurring microorganisms were identified within the rumen and fecal microbiomes, which revealed a strong association and inter-dependency between bacterial, archaeal and protozoan populations of the same microbiome. The archaeal ASVs identified as co-occurring between GIT compartments corresponded to the methanogenic genera Methanobrevibacter and Methanosphaera and represented 26.34% of the overall archaeal sequencesdiversity in the rumen and 42.73% in feces. Considering that these archaeal ASVs corresponded to a significant part of the overall diversity of both microbiomes, which is much higher if one includes the interactions of these co-occurring with other rumen archaea ASVs, we suggest that fecal methanogens could be used as a proxy of ruminal methanogens.
Collapse
Affiliation(s)
| | | | - Rafael R C Cuadrat
- 2Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | | | | | - Gerson B Mourão
- 4Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz L Coutinho
- 4Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - James M Reecy
- 5Department of Animal Science, Iowa State University, Ames, IA USA
| | - James E Koltes
- 5Department of Animal Science, Iowa State University, Ames, IA USA
| | | | | | | | | |
Collapse
|
25
|
Ramayo‐Caldas Y, Zingaretti L, Popova M, Estellé J, Bernard A, Pons N, Bellot P, Mach N, Rau A, Roume H, Perez‐Enciso M, Faverdin P, Edouard N, Ehrlich D, Morgavi DP, Renand G. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J Anim Breed Genet 2020; 137:49-59. [PMID: 31418488 PMCID: PMC6972549 DOI: 10.1111/jbg.12427] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/29/2022]
Abstract
Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4 ) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4 y = CH4 /DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4 y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4 y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial least-squares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4 y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4 y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.
Collapse
Affiliation(s)
- Yuliaxis Ramayo‐Caldas
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
- Animal Breeding and Genetics ProgramIRTA Torre MarimonCaldes de MontbuiSpain
| | | | - Milka Popova
- VetAgro Sup, UMR 1213 HerbivoresINRA, Université Clermont AuvergneSaint‐Genès‐ChampanelleFrance
| | - Jordi Estellé
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Aurelien Bernard
- VetAgro Sup, UMR 1213 HerbivoresINRA, Université Clermont AuvergneSaint‐Genès‐ChampanelleFrance
| | | | - Pau Bellot
- Department of Animal Genetics, CRAGUABBellaterraSpain
| | - Núria Mach
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Andrea Rau
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Hugo Roume
- INRA METAGENOPOLIS UnitJouy‐en‐JosasFrance
| | | | | | | | | | - Diego P. Morgavi
- VetAgro Sup, UMR 1213 HerbivoresINRA, Université Clermont AuvergneSaint‐Genès‐ChampanelleFrance
| | - Gilles Renand
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| |
Collapse
|
26
|
Wang XT, Xu XJ, Chen C, Xing DF, Zhang RC, Zhou X, Yuan Y, Wang AJ, Ren NQ, Lee DJ. The microbial zonation of SRB and soNRB enhanced the performance of SR-DSR process under the micro-aerobic condition. ENVIRONMENT INTERNATIONAL 2019; 132:105096. [PMID: 31465952 DOI: 10.1016/j.envint.2019.105096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The micro-aerobic condition has proven to effectively enhance the COD removal and elemental sulfur (S0) transformation rate in the sulfate reduction-denitrifying sulfide removal (SR-DSR) process. However, the mechanisms of how micro-aerobic condition enhances S0 transformation remain largely unknown. Therefore in this work an integrated investigation was performed to document the mechanisms and the effect of different startup modes (micro-aerobic startup (termed as mSR-DSR) and anaerobic startup (termed as aSR-DSR)) on bioreactor performance and microbial community dynamics. The results showed that micro-aerobic startup achieved a shorter period to reach a stable performance for SR-DSR, which could be one of the factors affecting the choice of the bioreactor startup mode considering engineering application. For all the tested conditions, removal of nitrate, sulfate and lactate were 100%, >80% and 100%, respectively. The maximum transformation rate of elemental sulfur in mSR-DSR was 57%, which was higher than that in aSR-DSR. The mechanism explorations revealed that micro-aerobic condition not only particularly enriched the sulfide-oxidizing, nitrate-reducing bacteria (soNRB) but also promoted the microbial zonation of sulfate-reducing bacteria (SRB) and soNRB, thereby achieving more S0 transformation in the effluent. Under micro-aerobic condition, SRB were mainly distributed in the bottom and middle part of the reactor, while soNRB were assembled in the top. The relative abundance of soNRB in both aSR-DSR and mSR-DSR notably increased to 41.5% and 23.7% at the top when 5 mL air min-1 Lreactor-1 was applied. Furthermore, the degradation of organic carbon was also accelerated under micro-aerobic condition, possibly due to the enrichment of organic compounds degrading bacteria Bacteroidetes_vadin HA17.
Collapse
Affiliation(s)
- Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China.
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Ruo-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuan Yuan
- Department of Biotechnology, Beijing Polytechnic, Beijing 100029, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
27
|
Mitigating greenhouse gas emissions from New Zealand pasture-based livestock farm systems. ACTA ACUST UNITED AC 2019. [DOI: 10.33584/jnzg.2019.81.417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of the agricultural greenhouse gases, methane and nitrous oxide is likely to play an important role in New Zealand’s transition to a low-emissions economy. A limited range of options currently exists to reduce emissions from pasture-based livestock farming systems. However, several promising options are under development which have the potential to considerably reduce on-farm emissions, such as inhibitors and vaccines. On-farm forestry can be used to offset emissions through carbon sequestration in trees, but more scientifically robust and consistent evidence is needed if soil carbon sequestration is to be used to offset New Zealand’s greenhouse gas emissions.
Collapse
|
28
|
Impact of Fe and Ni Addition on the VFAs' Generation and Process Stability of Anaerobic Fermentation Containing Cd. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214066. [PMID: 31652708 PMCID: PMC6862441 DOI: 10.3390/ijerph16214066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/27/2022]
Abstract
The effects of Cd, Cd + Fe, and Cd + Ni on the thermophilic anaerobic fermentation of corn stover and cow manure were studied in pilot experiments by investigating the biogas properties, process stability, substrate biodegradation, and microbial properties. The results showed that the addition of Fe and Ni into the Cd-containing fermentation system induced higher cumulative biogas yields and NH4+–N concentrations compared with the only Cd-added group. Ni together with Cd improved and brought forward the peak daily biogas yields, and increased the CH4 contents to 80.76%. Taking the whole fermentation process into consideration, the promoting impact of the Cd + Ni group was mainly attributed to better process stability, a higher average NH4+–N concentration, and increased utilization of acetate. Adding Fe into the Cd-containing fermentation system increased the absolute abundance of Methanobrevibacter on the 13th day, and Methanobrevibacter and Methanobacterium were found to be positively correlated with the daily biogas yield. This research was expected to provide a basis for the reuse of biological wastes contaminated by heavy metals and a reference for further studies on the influence of compound heavy metals on anaerobic fermentation.
Collapse
|
29
|
Rabee AE, Forster RJ, Elekwachi CO, Kewan KZ, Sabra E, Mahrous HA, Khamiss OA, Shawket SM. Composition of bacterial and archaeal communities in the rumen of dromedary camel using cDNA-amplicon sequencing. Int Microbiol 2019; 23:137-148. [PMID: 31432356 DOI: 10.1007/s10123-019-00093-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/30/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022]
Abstract
The camel is known to survive in harsh environmental conditions, due to its higher digestive efficiency of high-fiber diets compared with other ruminants. However, limited data are available on the microbial community in the rumen of a camel. In this study, the Illumina sequencing of V4 region of 16S rRNA genes based on RNA isolation was employed to get insight into the bacterial and archaeal communities associated with liquid and solid rumen fractions in eight camels under different feeding systems. Camels in group C1 were fed Egyptian clover hay plus concentrates mixture and camels of group C2 were fed fresh Egyptian clover. The results showed that liquid fraction has higher operational taxonomic units (OTUs) than solid fraction, and camel group C1 showed a higher microbial diversity than C2. The UniFrac analysis indicated that the microbial communities in camel groups are distinct. Moreover, phylum Firmicutes and Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community with a significant difference in the relative abundance between camel groups. Dominant bacterial genera were Prevotella, Fibrobacteres, Ruminococcus, and Butyrivibrio. There were many negative and positive correlations between and within bacterial and archaeal genera. The composition of microbial community in the rumen of a camel is similar to other ruminants with differences in the abundance.
Collapse
Affiliation(s)
- Alaa E Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt.
| | | | | | - Khaled Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Ebrahim Sabra
- Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Hoda A Mahrous
- Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Omaima A Khamiss
- Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Safinaze M Shawket
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
30
|
Ponni Keerthana K, Radhesh Krishnan S, Ragunath Sengali S, Srinivasan R, Prabhakaran N, Balaji G, Gracy M, Latha K. Microbiome digital signature of MCR genes - an in silico approach to study the diversity of methanogenic population in laboratory-developed and pilot-scale anaerobic digesters. Access Microbiol 2019; 1:e000044. [PMID: 32974529 PMCID: PMC7470284 DOI: 10.1099/acmi.0.000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/26/2019] [Indexed: 11/18/2022] Open
Abstract
The production of biogas by anaerobic digestion (AD) of organic/biological wastes has a firm place in sustainable energy production. A simple and cost-effective anaerobic jar at a laboratory scale is a prerequisite to study the microbial community involved in biomass conversion and releasing of methane gas. In this study, a simulation was carried out using a laboratory-modified anaerobic-jar-converted digester (AD1) with that of a commercial/pilot-scale anaerobic digester (AD2). Taxonomic profiling of biogas-producing communities by means of high-throughput methyl coenzyme-M reductase α-subunit (mcrA) gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Euryarchaeota, Chordata, Firmicutes and Proteobacteria appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Key micro-organisms identified from AD were Methanocorpusculum labreanum and Methanobacterium formicicum. Specific biogas production was found to be significantly correlating to Methanosarcinaceae. It can be implied from this study that the metagenomic sequencing data was able to dissect the microbial community structure in the digesters. The data gathered indicates that the anaerobic-jar system could throw light on the population dynamics of the methanogens at laboratory scale and its effectiveness at large-scale production of bio-methane. The genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies will be highly valuable in determining the efficacy of an anaerobic digester.
Collapse
Affiliation(s)
- K Ponni Keerthana
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - S Radhesh Krishnan
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - S Ragunath Sengali
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - R Srinivasan
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - N Prabhakaran
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - G Balaji
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - M Gracy
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| | - K Latha
- R & D Division Extension, T. Stanes and Company Limited, Coimbatore-641018, TN, India
| |
Collapse
|
31
|
Process Analysis of Anaerobic Fermentation Exposure to Metal Mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142458. [PMID: 31295944 PMCID: PMC6678117 DOI: 10.3390/ijerph16142458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/23/2023]
Abstract
Anaerobic fermentation is a cost-effective biowaste disposal approach. During fermentation, microorganisms require a trace amount of metals for optimal growth and performance. This study investigated the effects of metal mixtures on biogas properties, process stability, substrate degradation, enzyme activity, and microbial communities during anaerobic fermentation. The addition of iron (Fe), nickel (Ni), and zinc (Zn) into a copper (Cu)-stressed fermentation system resulted in higher cumulative biogas yields, ammonia nitrogen (NH4+-N) concentrations and coenzyme F420 activities. Ni and Zn addition enhanced process stability and acetate utilization. The addition of these metals also improved and brought forward the peak daily biogas yields as well as increased CH4 content to 88.94 and 86.58%, respectively. Adding Zn into the Cu-stressed system improved the abundance of Defluviitoga, Fibrobacter and Methanothermobacter, the degradation of cellulose, and the transformation of CO2 to CH4. The bacterial and archaeal communities were responsible for the degradation of lignocelluloses and CH4 production during the fermentation process. This study supports the reutilization of heavy metal-contaminated biowaste and provides references for further research on heavy metals impacted anaerobic fermentation.
Collapse
|
32
|
Zhang H, Tong J, Wang Z, Xiong B, Jiang L. Illumina MiSeq sequencing reveals the effects of grape seed procyanidin on rumen archaeal communities in vitro. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:61-68. [PMID: 31480204 PMCID: PMC6946980 DOI: 10.5713/ajas.19.0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022]
Abstract
Objective The present study explored the effects of grape seed procyanidin extract (GSPE) on rumen fermentation, methane production and archaeal communities in vitro. Methods A completely randomized experiment was conducted with in vitro incubation in a control group (CON, no GSPE addition; n = 9) and the treatment group (GSPE, 1 mg/bottle GSPE, 2 g/kg dry matter; n = 9). The methane and volatile fatty acid concentrations were determined using gas chromatography. To explore methane inhibition after fermentation and the response of the ruminal microbiota to GSPE, archaeal 16S rRNA genes were sequenced by MiSeq high-throughput sequencing. Results The results showed that supplementation with GSPE could significantly inhibit gas production and methane production. In addition, GSPE treatment significantly increased the proportion of propionate, while the acetate/propionate ratio was significantly decreased. At the genus level, the relative abundance of Methanomassiliicoccus was significantly increased, while the relative abundance of Methanobrevibacter decreased significantly in the GSPE group. Conclusion In conclusion, GSPE is a plant extract that can reduce methane production by affecting the structures of archaeal communities, which was achieved by a substitution of Methanobrevibacter with Methanomassiliicoccus.
Collapse
Affiliation(s)
- Hua Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Jinjin Tong
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Zun Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
33
|
Islam M, Lee SS. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:122-137. [PMID: 31333869 PMCID: PMC6582924 DOI: 10.5187/jast.2019.61.3.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022]
Abstract
Methane, one of the important greenhouse gas, has a higher global warming
potential than that of carbon dioxide. Agriculture, especially livestock, is
considered as the biggest sector in producing anthropogenic methane. Among
livestock, ruminants are the highest emitters of enteric methane.
Methanogenesis, a continuous process in the rumen, carried out by archaea either
with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to
methane or with methylotrophic pathway, which the substrate for methanogenesis
is methyl groups. For accurate estimation of methane from ruminants, three
methods have been successfully used in various experiments under different
environmental conditions such as respiration chamber, sulfur hexafluoride tracer
technique, and the automated head-chamber or GreenFeed system. Methane
production and emission from ruminants are increasing day by day with an
increase of ruminants which help to meet up the nutrient demands of the
increasing human population throughout the world. Several mitigation strategies
have been taken separately for methane abatement from ruminant productions such
as animal intervention, diet selection, dietary feed additives, probiotics,
defaunation, supplementation of fats, oils, organic acids, plant secondary
metabolites, etc. However, sustainable mitigation strategies are not established
yet. A cumulative approach of accurate enteric methane measurement and existing
mitigation strategies with more focusing on the biological reduction of methane
emission by direct-fed microbials could be the sustainable methane mitigation
approaches.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
34
|
Wang K, Nan X, Chu K, Tong J, Yang L, Zheng S, Zhao G, Jiang L, Xiong B. Shifts of Hydrogen Metabolism From Methanogenesis to Propionate Production in Response to Replacement of Forage Fiber With Non-forage Fiber Sources in Diets in vitro. Front Microbiol 2018; 9:2764. [PMID: 30524394 PMCID: PMC6262304 DOI: 10.3389/fmicb.2018.02764] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
The rumen microbial complex adaptive mechanism invalidates various methane (CH4) mitigation strategies. Shifting the hydrogen flow toward alternative electron acceptors, such as propionate, was considered to be a meaningful mitigation strategy. A completely randomized design was applied in in vitro incubation to investigate the effects of replacing forage fiber with non-forage fiber sources (NFFS) in diets on methanogenesis, hydrogen metabolism, propionate production and the methanogenic and bacterial community. There are two treatments in the current study, CON (a basic total mixed ration) and TRT (a modified total mixed ration). The dietary treatments were achieved by partly replacing forage fiber with NFFS (wheat bran and soybean hull) to decrease forage neutral detergent fiber (fNDF) content from 24.0 to 15.8%, with the composition and inclusion rate of other dietary ingredients remaining the same in total mixed rations. The concentrations of CH4, hydrogen (H2) and volatile fatty acids were determined using a gas chromatograph. The archaeal and bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the relative abundance of methanogenic and bacterial communities. The results revealed that the concentration of propionate was significantly increased, while the concentration of acetate and the acetate to propionate ratio were not affected by treatments. Compared with CON, the production of H2 increased by 8.45% and the production of CH4 decreased by 14.06%. The relative abundance of Methanomassiliicoccus was significantly increased, but the relative abundance of Methanobrevibacter tended to decrease in TRT group. At the bacterial phylum level, the TRT group significantly decreased the relative abundance of Firmicutes and tended to increase the relative abundance of Bacteroidetes. The replacement of forage fiber with NFFS in diets can affect methanogenesis by shifting the hydrogen flow toward propionate, and part is directed to H2 in vitro. The shift was achieved by a substitution of Firmicutes by Bacteroidetes, another substitution of Methanobrevibacter by Methanomassiliicoccus. Theoretical predictions of displacements of H2 metabolism from methanogenesis to propionate production was supported by the dietary intervention in vitro.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kangkang Chu
- Beijing Dairy Cattle Center, Beijing Capital Agribusiness Group, Beijing, China
| | - Jinjin Tong
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Chellapandi P, Bharathi M, Sangavai C, Prathiviraj R. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review. Vet Anim Sci 2018; 6:86-94. [PMID: 32734058 PMCID: PMC7386643 DOI: 10.1016/j.vas.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Methanobacterium formicicum (Methanobacteriaceae family) is an endosymbiotic methanogenic Archaean found in the digestive tracts of ruminants and elsewhere. It has been significantly implicated in global CH4 emission during enteric fermentation processes. In this review, we discuss current genomic and metabolic aspects of this microorganism for the purpose of the discovery of novel veterinary therapeutics. This microorganism encompasses a typical H2 scavenging system, which facilitates a metabolic symbiosis across the H2 producing cellulolytic bacteria and fumarate reducing bacteria. To date, five genome-scale metabolic models (iAF692, iMG746, iMB745, iVS941 and iMM518) have been developed. These metabolic reconstructions revealed the cellular and metabolic behaviors of methanogenic archaea. The characteristics of its symbiotic behavior and metabolic crosstalk with competitive rumen anaerobes support understanding of the physiological function and metabolic fate of shared metabolites in the rumen ecosystem. Thus, systems biological characterization of this microorganism may provide a new insight to realize its metabolic significance for the development of a healthy microbiota in ruminants. An in-depth knowledge of this microorganism may allow us to ensure a long term sustainability of ruminant-based agriculture.
Collapse
Affiliation(s)
- P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - R Prathiviraj
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
36
|
Matthews C, Crispie F, Lewis E, Reid M, O’Toole PW, Cotter PD. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2018; 10:115-132. [PMID: 30207838 PMCID: PMC6546327 DOI: 10.1080/19490976.2018.1505176] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 02/03/2023] Open
Abstract
Methane is generated in the foregut of all ruminant animals by the microorganisms present. Dietary manipulation is regarded as the most effective and most convenient way to reduce methane emissions (and in turn energy loss in the animal) and increase nitrogen utilization efficiency. This review examines the impact of diet on bovine rumen function and outlines what is known about the rumen microbiome. Our understanding of this area has increased significantly in recent years due to the application of omics technologies to determine microbial composition and functionality patterns in the rumen. This information can be combined with data on nutrition, rumen physiology, nitrogen excretion and/or methane emission to provide comprehensive insights into the relationship between rumen microbial activity, nitrogen utilisation efficiency and methane emission, with an ultimate view to the development of new and improved intervention strategies.
Collapse
Affiliation(s)
- Chloe Matthews
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Eva Lewis
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Michael Reid
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Co. Cork, Ireland
- Teagasc, Animal & Grassland Research and Innovation Centre, Co. Cork, Ireland, Ireland
- Nutribio, Co. Cork
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Eger M, Graz M, Riede S, Breves G. Application of Mootral TM Reduces Methane Production by Altering the Archaea Community in the Rumen Simulation Technique. Front Microbiol 2018; 9:2094. [PMID: 30233557 PMCID: PMC6132076 DOI: 10.3389/fmicb.2018.02094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 11/28/2022] Open
Abstract
The reduction of methane emissions by ruminants is a highly desirable goal to mitigate greenhouse gas emissions. Various feed additives have already been tested for their ability to decrease methane production; however, practical use is often limited due to negative effects on rumen fermentation or high costs. Organosulphur compounds from garlic (Allium sativum) and flavonoids have been identified as promising plant-derived compounds which are able to reduce methane production. Here, we evaluated the effects of a combination of garlic powder and bitter orange (Citrus aurantium) extracts, Mootral, on ruminal methane production, ruminal fermentation and the community of methanogenic Archaea by using the rumen simulation technique as ex vivo model. The experiment consisted of an equilibration period of 7 days, an experimental period of 8 days and a withdrawal period of 4 days. During the experimental period three fermenters each were either treated as controls (CON), received a low dose of Mootral (LD), a high dose of Mootral (HD), or monensin (MON) as positive control. Application of Mootral strongly reduced the proportion of methane in the fermentation gas and the production rate of methane. Moreover, the experimental mixture induced a dose-dependent increase in the production rate of short chain fatty acids and in the molar proportion of butyrate. Some effects persisted during the withdrawal period. Both, single strand conformation polymorphism and Illumina MiSeq 16S rRNA amplicon sequencing indicated an archaeal community distinct from CON and MON samples in the LD and HD samples. Among archaeal families the percentage of Methanobacteriaceae was reduced during application of both doses of Mootral. Moreover, several significant differences were observed on OTU level among treatment groups and after withdrawal of the additives for LD and HD group. At day 14, 4 OTUs were positively correlated with methane production. In conclusion this mixture of garlic and citrus compounds appears to effectively reduce methane production by alteration of the archaeal community without exhibiting negative side effects on rumen fermentation.
Collapse
Affiliation(s)
- Melanie Eger
- Institute for Physiology, University of Veterinary Medicine Hanover, Hanover, Germany
| | | | - Susanne Riede
- Institute for Physiology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Gerhard Breves
- Institute for Physiology, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
38
|
Comparative Genomic Analysis of Members of the Genera Methanosphaera and Methanobrevibacter Reveals Distinct Clades with Specific Potential Metabolic Functions. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:7609847. [PMID: 30210264 PMCID: PMC6120340 DOI: 10.1155/2018/7609847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Methanobrevibacter and Methanosphaera species represent some of the most prevalent methanogenic archaea in the gastrointestinal tract of animals and humans and play an important role in this environment. The aim of this study was to identify genomic features that are shared or specific for members of each genus with a special emphasis of the analysis on the assimilation of nitrogen and acetate and the utilization of methanol and ethanol for methanogenesis. Here, draft genome sequences of Methanobrevibacter thaueri strain DSM 11995T, Methanobrevibacter woesei strain DSM 11979T, and Methanosphaera cuniculi strain 4103T are reported and compared to those of 16 other Methanobrevibacter and Methanosphaera genomes, including genomes of the 13 currently available types of strains of the two genera. The comparative genome analyses indicate that among other genes, the absence of molybdopterin cofactor biosynthesis is conserved in Methanosphaera species but reveals also that the three species share a core set of more than 300 genes that distinguishes the genus Methanosphaera from the genus Methanobrevibacter. Multilocus sequence analysis shows that the genus Methanobrevibacter can be subdivided into clades, potentially new genera, which may display characteristic specific metabolic features. These features include not only the potential ability of nitrogen fixation and acetate assimilation in a clade comprised of Methanobrevibacter species from the termite gut and Methanobrevibacter arboriphilus strains but also the potential capability to utilize ethanol and methanol in a clade comprising Methanobrevibacter wolinii strain DSM 11976T, Mbb. sp. AbM4, and Mbb. boviskoreani strain DSM 25824T.
Collapse
|
39
|
Schären M, Frahm J, Kersten S, Meyer U, Hummel J, Breves G, Dänicke S. Interrelations between the rumen microbiota and production, behavioral, rumen fermentation, metabolic, and immunological attributes of dairy cows. J Dairy Sci 2018; 101:4615-4637. [DOI: 10.3168/jds.2017-13736] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
|
40
|
Mi L, Yang B, Hu X, Luo Y, Liu J, Yu Z, Wang J. Comparative Analysis of the Microbiota Between Sheep Rumen and Rabbit Cecum Provides New Insight Into Their Differential Methane Production. Front Microbiol 2018; 9:575. [PMID: 29662480 PMCID: PMC5890152 DOI: 10.3389/fmicb.2018.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/13/2018] [Indexed: 01/21/2023] Open
Abstract
The rumen and the hindgut represent two different fermentation organs in herbivorous mammals, with the former producing much more methane than the latter. The objective of this study was to elucidate the microbial underpinning of such differential methane outputs between these two digestive organs. Methane production was measured from 5 adult sheep and 15 adult rabbits, both of which were placed in open-circuit respiratory chambers and fed the same diet (alfalfa hay). The sheep produced more methane than the rabbits per unit of metabolic body weight, digestible neutral detergent fiber, and acid detergent fiber. pH in the sheep rumen was more than 1 unit higher than that in the rabbit cecum. The acetate to propionate ratio in the rabbit cecum was more than threefold greater than that in the sheep rumen. Comparative analysis of 16S rRNA gene amplicon libraries revealed distinct microbiota between the rumen of sheep and the cecum of rabbits. Hydrogen-producing fibrolytic bacteria, especially Butyrivibrio, Succiniclastium, Mogibacterium, Prevotella, and Christensenellaceae, were more predominant in the sheep rumen, whereas non-hydrogen producing fibrolytic bacteria, such as Bacteroides, were more predominant in the rabbit cecum. The rabbit cecum had a greater predominance of acetogens, such as those in the genus Blautia, order Clostridiales, and family Ruminococcaceae. The differences in the occurrence of hydrogen-metabolizing bacteria probably explain much of the differential methane outputs from the rumen and the cecum. Future research using metatranscriptomics and metabolomics shall help confirm this premise and understand the factors that shape the differential microbiota between the two digestive organs. Furthermore, our present study strongly suggests the presence of new fibrolytic bacteria in the rabbit cecum, which may explain the stronger fibrolytic activities therein.
Collapse
Affiliation(s)
- Lan Mi
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Bin Yang
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xialu Hu
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Luo
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Jiakun Wang
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Henderson G, Cook GM, Ronimus RS. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methane emissions from ruminants are of worldwide concern due to their potential to adversely affect climate patterns. Methane emissions can be mitigated in several ways, including dietary manipulation, the use of alternative hydrogen sinks, and by the direct inhibition of methanogens. In the present review, we summarise and emphasise studies where defined chemically synthesised compounds have been used to mitigate ruminant methane emissions by direct targeting of methanogens and discuss the future potential of such inhibitors. We also discuss experiments, where methanogen-specific enzymes and pure cultures of methanobacterial species have been used to aid development of inhibitors. Application of certain compounds can result in dramatic reductions of methane emissions from ruminant livestock, demonstrating ‘proof of principle’ of chemical inhibitors of methanogenesis. More recently, genome sequencing of rumen methanogens has enabled an in-depth analysis of the enzymatic pathways required for methane formation. Chemogenomic methods, similar to those used in the fight against cancer and infectious diseases, can now be used to specifically target a pathway or enzyme in rumen methanogens. However, few rumen methanogen enzymes have been structurally or biochemically characterised. Any compound, whether natural or man-made, that is used as a mitigation strategy will need to be non-toxic to the host animal (and humans), cost-effective, environmentally friendly, and not accumulate in host tissues or milk products. Chemically synthesised inhibitors offer potentially significant advantages, including high levels of sustained inhibition, the ability to be easily and rapidly produced for global markets, and have the potential to be incorporated into slow-release vehicles for grazing animals.
Collapse
|
42
|
Chen H, Chang S. Impact of temperatures on microbial community structures of sewage sludge biological hydrolysis. BIORESOURCE TECHNOLOGY 2017; 245:502-510. [PMID: 28898850 DOI: 10.1016/j.biortech.2017.08.143] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 05/16/2023]
Abstract
This study investigated the biological hydrolysis performance at 35°C (BH35), 42°C (BH42), and 55°C (BH55) and the effect of temperatures on microbial communities of the hydrolyzed sludge. The results showed that the suspended solid reduction, volatile fatty acids (VFA) production, and biogas production increased with the BH temperatures. VFAs produced in the sludge BH included acetic acid, propionic acid, isobutyric acid, butyric acid, and isovaleric acid with the fractions of acetic acid increased with BH temperatures. The Illumina MiSeq sequencing analysis showed that the microbial taxonomic structures of the BH systems varied with BH temperatures. It was found that Acidaminobacter at 35°C, Proteiniphilum and Lutispor at 42°C, and Gelria at 55°C were the main protein fermenting bacteria genera, while the carbohydrate fermenting bacteria might belong to the genera of Macellibacteroides and Paludibacter at 35°C, Fronticella at 42°C, and Tepidimicrobium at 55°C.
Collapse
Affiliation(s)
- Huibin Chen
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada
| | - Sheng Chang
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
43
|
Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions. Appl Environ Microbiol 2017; 83:AEM.00396-17. [PMID: 28526787 DOI: 10.1128/aem.00396-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H2 and CO2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions.IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions.
Collapse
|
44
|
Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure. Front Microbiol 2017; 8:226. [PMID: 28261182 PMCID: PMC5313486 DOI: 10.3389/fmicb.2017.00226] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4) is produced as an end product from feed fermentation in the rumen. Yield of CH4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters (P < 0.01) that were related to CH4 production. One cluster was associated with low CH4 production (referred to as cluster L) whereas the other cluster was associated with high CH4 production (cluster H) and the medium emitters occurred in both clusters. The differences between clusters were primarily linked to differential abundances of certain OTUs belonging to Prevotella. Moreover, several OTUs belonging to the family Succinivibrionaceae were dominant in samples belonging to cluster L. Fermentation pattern of volatile fatty acids showed that proportion of propionate was higher in cluster L, while proportion of butyrate was higher in cluster H. No difference was found in milk production or organic matter digestibility between cows. Cows in cluster L had lower CH4/kg energy corrected milk (ECM) compared to cows in cluster H, 8.3 compared to 9.7 g CH4/kg ECM, showing that low CH4 cows utilized the feed more efficient for milk production which might indicate a more efficient microbial population or host genetic differences that is reflected in bacterial and archaeal (or methanogens) populations.
Collapse
Affiliation(s)
- Rebecca Danielsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Li Sun
- Department of Microbiology, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Horacio Gonda
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNCPBA Tandil, Argentina
| | - Bettina Müller
- Department of Microbiology, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Jan Bertilsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences Uppsala, Sweden
| |
Collapse
|
45
|
Li Y, Leahy SC, Jeyanathan J, Henderson G, Cox F, Altermann E, Kelly WJ, Lambie SC, Janssen PH, Rakonjac J, Attwood GT. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand Genomic Sci 2016; 11:59. [PMID: 27602181 PMCID: PMC5011839 DOI: 10.1186/s40793-016-0183-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
Methane emissions from agriculture represent around 9 % of global anthropogenic greenhouse emissions. The single largest source of this methane is animal enteric fermentation, predominantly from ruminant livestock where it is produced mainly in their fermentative forestomach (or reticulo-rumen) by a group of archaea known as methanogens. In order to reduce methane emissions from ruminants, it is necessary to understand the role of methanogenic archaea in the rumen, and to identify their distinguishing characteristics that can be used to develop methane mitigation technologies. To gain insights into the role of methylotrophic methanogens in the rumen environment, the genome of a methanogenic archaeon has been sequenced. This isolate, strain ISO4-H5, was isolated from the ovine rumen and belongs to the order Methanomassiliicoccales. Genomic analysis suggests ISO4-H5 is an obligate hydrogen-dependent methylotrophic methanogen, able to use methanol and methylamines as substrates for methanogenesis. Like other organisms within this order, ISO4-H5 does not possess genes required for the first six steps of hydrogenotrophic methanogenesis. Comparison between the genomes of different members of the order Methanomassiliicoccales revealed strong conservation in energy metabolism, particularly in genes of the methylotrophic methanogenesis pathway, as well as in the biosynthesis and use of pyrrolysine. Unlike members of Methanomassiliicoccales from human sources, ISO4-H5 does not contain the genes required for production of coenzyme M, and so likely requires external coenzyme M to survive.
Collapse
Affiliation(s)
- Yang Li
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Sinead C. Leahy
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Gemma Henderson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Faith Cox
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Eric Altermann
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - William J. Kelly
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Suzanne C. Lambie
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Graeme T. Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
46
|
Kelly WJ, Pacheco DM, Li D, Attwood GT, Altermann E, Leahy SC. The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9. Stand Genomic Sci 2016; 11:49. [PMID: 27536339 PMCID: PMC4987999 DOI: 10.1186/s40793-016-0171-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/04/2016] [Indexed: 12/04/2022] Open
Abstract
Methanobrevibacter millerae SM9 was isolated from the rumen of a sheep maintained on a fresh forage diet, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. It is the first rumen isolate from the Methanobrevibacter gottschalkii clade to have its genome sequence completed. The 2.54 Mb SM9 chromosome has an average G + C content of 31.8 %, encodes 2269 protein-coding genes, and harbors a single prophage. The overall gene content is comparable to that of Methanobrevibacter ruminantium M1 and the type strain of M. millerae (ZA-10T) suggesting that the basic metabolism of these two hydrogenotrophic rumen methanogen species is similar. However, M. millerae has a larger complement of genes involved in methanogenesis including genes for methyl coenzyme M reductase II (mrtAGDB) which are not found in M1. Unusual features of the M. millerae genomes include the presence of a tannase gene which shows high sequence similarity with the tannase from Lactobacillus plantarum, and large non-ribosomal peptide synthase genes. The M. millerae sequences indicate that methane mitigation strategies based on the M. ruminantium M1 genome sequence are also likely to be applicable to members of the M. gottschalkii clade.
Collapse
Affiliation(s)
- William J Kelly
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Diana M Pacheco
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Graeme T Attwood
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| |
Collapse
|
47
|
Complete Genome Sequence of Methanogenic Archaeon ISO4-G1, a Member of the Methanomassiliicoccales, Isolated from a Sheep Rumen. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00221-16. [PMID: 27056226 PMCID: PMC4824259 DOI: 10.1128/genomea.00221-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Methanogenic archaeon ISO4-G1 is a methylotrophic methanogen belonging to the orderMethanomassiliicoccalesthat was isolated from a sheep rumen. Its genome has been sequenced to provide information on the genetic diversity of rumen methanogens in order to develop technologies for ruminant methane mitigation.
Collapse
|
48
|
Draft Genome Sequence of the Rumen Methanogen Methanobrevibacter olleyae YLM1. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00232-16. [PMID: 27056228 PMCID: PMC4824261 DOI: 10.1128/genomea.00232-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanobrevibacter olleyae YLM1 is a hydrogenotrophic methanogen, isolated from the rumen of a lamb. Its genome has been sequenced to provide information on the genomic diversity of rumen methanogens and support the development of approaches to reduce methane formation by ruminants.
Collapse
|
49
|
Kelly WJ, Henderson G, Pacheco DM, Li D, Reilly K, Naylor GE, Janssen PH, Attwood GT, Altermann E, Leahy SC. The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen. Stand Genomic Sci 2016; 11:26. [PMID: 26981167 PMCID: PMC4791908 DOI: 10.1186/s40793-016-0147-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
Acetogens are a specialized group of anaerobic bacteria able to produce acetate from CO2 and H2 via the Wood-Ljungdahl pathway. In some gut environments acetogens can compete with methanogens for H2, and as a result rumen acetogens are of interest in the development of microbial approaches for methane mitigation. The acetogen Eubacterium limosum SA11 was isolated from the rumen of a New Zealand sheep and its genome has been sequenced to examine its potential application in methane mitigation strategies, particularly in situations where hydrogenotrophic methanogens are inhibited resulting in increased H2 levels in the rumen. The 4.15 Mb chromosome of SA11 has an average G + C content of 47 %, and encodes 3805 protein-coding genes. There is a single prophage inserted in the chromosome, and several other gene clusters appear to have been acquired by horizontal transfer. These include genes for cell wall glycopolymers, a type VII secretion system, cell surface proteins and chemotaxis. SA11 is able to use a variety of organic substrates in addition to H2/CO2, with acetate and butyrate as the principal fermentation end-products, and genes involved in these metabolic pathways have been identified. An unusual feature is the presence of 39 genes encoding trimethylamine methyltransferase family proteins, more than any other bacterial genome. Overall, SA11 is a metabolically versatile organism, but its ability to grow on such a wide range of substrates suggests it may not be a suitable candidate to take the place of hydrogen-utilizing methanogens in the rumen.
Collapse
Affiliation(s)
- William J. Kelly
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Gemma Henderson
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Diana M. Pacheco
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Kerri Reilly
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Graham E. Naylor
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Peter H. Janssen
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Graeme T. Attwood
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Sinead C. Leahy
- Rumen Microbiology, Animal Science, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| |
Collapse
|
50
|
Wang Y, Janssen PH, Lynch TA, Brunt BV, Pacheco D. A mechanistic model of hydrogen–methanogen dynamics in the rumen. J Theor Biol 2016; 393:75-81. [DOI: 10.1016/j.jtbi.2015.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/24/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022]
|