1
|
Yang D, Liu K, Cai C, Xi J, Yan C, Peng Z, Wang Y, Jing L, Zhang Y, Xie F, Li X. Target-Engineered Liposomes Decorated with Nanozymes Alleviate Liver Fibrosis by Remodeling the Liver Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39530795 DOI: 10.1021/acsami.4c14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Liver fibrosis is a pathological repair response that occurs after sustained liver damage, and prompt intervention is necessary to prevent liver fibrosis from developing into a potentially life-threatening condition. In long-term liver injury, damaged hepatocytes produce excessive amounts of reactive oxygen species (ROS), which activate hepatic stellate cells (HSCs). This activation leads to excessive accumulation of extracellular matrix proteins in liver tissue. Additionally, liver macrophages contribute to the inflammatory microenvironment in the hepatic fibrotic process, exacerbating liver fibrosis through ROS production and the secretion of pro-inflammatory factors. To address the dysregulation of the hepatic microenvironment associated with liver fibrosis, we developed cerium oxide nanozymes using hyaluronic acid (HA) as a template and decorated them on the surface of liposomes loaded with oleanolic acid (OA). We named this prepared and obtained target-engineered liposome HCOL. The inherent superoxide dismutase (SOD) and catalase (CAT) activities of HCOL enabled it to effectively scavenge ROS in HSCs and alleviate the hypoxic conditions characteristic of fibrotic livers. Furthermore, HCOL reduced the concentrations of ROS in macrophages, promoting a shift in macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. This transition increased the production of the anti-inflammatory cytokine interleukin 10 (IL-10), which contributed to the mitigation of the inflammatory microenvironment. Consequently, this therapeutic approach proves effective in decelerating the advancement of liver fibrosis.
Collapse
Affiliation(s)
- Dejun Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Chunyan Cai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Jingjing Xi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Chunmei Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Zhaolei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Yulin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Lin Jing
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine. Chengdu 611137, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
2
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
3
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Vargas-Vargas MA, González-Montoya M, Torres-Isidro O, García-Berumen CI, Ortiz-Avila O, Calderón-Cortés E, Cortés-Rojo C. Assessing the impact of concurrent high-fructose and high-saturated fat diets on pediatric metabolic syndrome: A review. World J Clin Pediatr 2024; 13:91478. [PMID: 38947987 PMCID: PMC11212767 DOI: 10.5409/wjcp.v13.i2.91478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
High-saturated fat (HF) or high-fructose (HFr) consumption in children predispose them to metabolic syndrome (MetS). In rodent models of MetS, diets containing individually HF or HFr lead to a variable degree of MetS. Nevertheless, simultaneous intake of HF plus HFr have synergistic effects, worsening MetS outcomes. In children, the effects of HF or HFr intake usually have been addressed individually. Therefore, we have reviewed the outcomes of HF or HFr diets in children, and we compare them with the effects reported in rodents. In humans, HFr intake causes increased lipogenesis, hypertriglyceridemia, obesity and insulin resistance. On the other hand, HF diets promote low grade-inflammation, obesity, insulin resistance. Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents, there is little information about the combined effects of HF plus HFr intake in children. The aim of this review is to warn about this issue, as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population. We consider that this is an alarming issue that needs to be assessed, as the simultaneous intake of HF plus HFr is common on fast food menus.
Collapse
Affiliation(s)
- Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Marcela González-Montoya
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Olin Torres-Isidro
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Claudia Isabel García-Berumen
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Omar Ortiz-Avila
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| |
Collapse
|
5
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
6
|
Luo Q, Wei Y, Lv X, Chen W, Yang D, Tuo Q. The Effect and Mechanism of Oleanolic Acid in the Treatment of Metabolic Syndrome and Related Cardiovascular Diseases. Molecules 2024; 29:758. [PMID: 38398510 PMCID: PMC10892503 DOI: 10.3390/molecules29040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic syndromes (MetS) and related cardiovascular diseases (CVDs) pose a serious threat to human health. MetS are metabolic disorders characterized by obesity, dyslipidemia, and hypertension, which increase the risk of CVDs' initiation and development. Although there are many availabile drugs for treating MetS and related CVDs, some side effects also occur. Considering the low-level side effects, many natural products have been tried to treat MetS and CVDs. A five-cyclic triterpenoid natural product, oleanolic acid (OA), has been reported to have many pharmacologic actions such as anti-hypertension, anti-hyperlipidemia, and liver protection. OA has specific advantages in the treatment of MetS and CVDs. OA achieves therapeutic effects through a variety of pathways, attracting great interest and playing a vital role in the treatment of MetS and CVDs. Consequently, in this article, we aim to review the pharmacological actions and potential mechanisms of OA in treating MetS and related CVDs.
Collapse
Affiliation(s)
- Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Yu Wei
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, The School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Dongmei Yang
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| |
Collapse
|
7
|
Zhang H, Zhou L, Wang H, Gu W, Li Z, Sun J, Wei X, Zheng Y. Tenascin-C-EGFR activation induces functional human satellite cell proliferation and promotes wound-healing of skeletal muscles via oleanic acid. Dev Biol 2023; 504:86-97. [PMID: 37758009 DOI: 10.1016/j.ydbio.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Human satellite cells (HuSCs) have been deemed to be the potential cure to treat muscular atrophy diseases such as Duchenne muscular dystrophy. However, the clinical trials of HuSCs were restricted to the inadequacy of donors because of that freshly isolated HuSCs quickly lost the Pax7 expression and myogenesis capacity in vivo after a few days of culture. Here we found that oleanic acid, a kind of triterpenoid endowed with diverse biological functions with treatment potential, could efficiently promote HuSCs proliferation. The HuSCs cultured in the medium supplement with oleanic acid could maintain a high expression level of Pax7 and retain the ability to differentiate into myotubes as well as facilitate muscle regeneration in injured muscles of recipient mice. We further revealed that Tenascin-C acts as the core mechanism to activate the EGFR signaling pathway followed by HuSCs proliferation. Taken together, our data provide an efficient method to expand functional HuSCs and a novel mechanism that controls HuSCs proliferation, which sheds light on the HuSCs-based therapy to treat muscle diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Huihao Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Zhiqiang Li
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| | - Yuxin Zheng
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Neonatal Orally Administered Zingerone Attenuates Alcohol-Induced Fatty Liver Disease in Experimental Rat Models. Metabolites 2023; 13:metabo13020167. [PMID: 36837786 PMCID: PMC9966972 DOI: 10.3390/metabo13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Alcohol intake at different developmental stages can lead to the development of alcohol-induced fatty liver disease (AFLD). Zingerone (ZO) possess hepato-protective properties; thus, when administered neonatally, it could render protection against AFLD. This study aimed to evaluate the potential long-term protective effect of ZO against the development of AFLD. One hundred and twenty-three 10-day-old Sprague-Dawley rat pups (60 males; 63 females) were randomly assigned to four groups and orally administered the following treatment regimens daily during the pre-weaning period from postnatal day (PND) 12-21: group 1-nutritive milk (NM), group 2-NM +1 g/kg ethanol (Eth), group 3-NM + 40 mg/kg ZO, group 4-NM + Eth +ZO. From PND 46-100, each group from the neonatal stage was divided into two; subgroup I had tap water and subgroup II had ethanol solution as drinking fluid, respectively, for eight weeks. Mean daily ethanol intake, which ranged from 10 to 14.5 g/kg body mass/day, resulted in significant CYP2E1 elevation (p < 0.05). Both late single hit and double hit with alcohol increased liver fat content, caused hepatic macrosteatosis, dysregulated mRNA expression of SREBP1c and PPAR-α in male and female rats (p < 0.05). However, neonatal orally administered ZO protected against liver lipid accretion and SREBP1c upregulation in male rats only and attenuated the alcohol-induced hepatic PPAR-α downregulation and macrosteatosis in both sexes. This data suggests that neonatal orally administered zingerone can be a potential prophylactic agent against the development of AFLD.
Collapse
|
9
|
Rodent models of metabolic disorders: considerations for use in studies of neonatal programming. Br J Nutr 2022; 128:802-827. [PMID: 34551828 DOI: 10.1017/s0007114521003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidemiologically, metabolic disorders have garnered much attention, perhaps due to the predominance of obesity. The early postnatal life represents a critical period for programming multifactorial metabolic disorders of adult life. Though altricial rodents are prime subjects for investigating neonatal programming, there is still no sufficiently generalised literature on their usage and methodology. This review focuses on establishing five approach-based models of neonatal rodents adopted for studying metabolic phenotypes. Here, some modelled interventions that currently exist to avoid or prevent metabolic disorders are also highlighted. We also bring forth recommendations, guidelines and considerations to aid research on neonatal programming. It is hoped that this provides a background to researchers focused on the aetiology, mechanisms, prevention and treatment of metabolic disorders.
Collapse
|
10
|
Ibrahim KG, Adeshina KA, Bello MB, Malami I, Abubakar B, Abubakar MB, Imam MU. Prophylactic Use of Natural Products against Developmentally Programmed Metabolic Syndrome. PLANTA MEDICA 2022; 88:650-663. [PMID: 34000739 DOI: 10.1055/a-1482-2343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parental dietary choices and/or nutritional interventions in the offspring are critical to early life development, especially during the periods of active developmental plasticity in the offspring. Exposure to a high-fructose, high-fat diet during the fetal or neonatal period predisposes the affected individuals to the development of one or more features of metabolic syndrome, such as dyslipidemia, insulin resistance, diabetes, and associated cardiovascular diseases, later in their life. Owing to the increasing global prevalence of metabolic syndrome and multiple side effects that accompany conventional medicines, much attention is directed towards medicinal plants and phytochemicals as alternative interventions. Several studies have investigated the potential of natural agents to prevent programmed metabolic syndrome. This present review, therefore, highlights an inextricable relationship between the administration of medicinal plants or phytochemicals during the intrauterine or neonatal period, and the prevention of metabolic dysfunction in adulthood, while exploring the mechanisms by which they exert such an effect. The review also identifies plant products as a novel approach to the prevention and management of metabolic syndrome.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
11
|
Chrysin Attenuates Fructose-Induced Nonalcoholic Fatty Liver in Rats via Antioxidant and Anti-Inflammatory Effects: The Role of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9479456. [PMID: 35720181 PMCID: PMC9200559 DOI: 10.1155/2022/9479456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Aim Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, and if untreated, it may propagate into end-stage liver disease. The classical arm of the renin-angiotensin system (RAS) has a fundamental role in triggering oxidative stress and inflammation, which play potential roles in the pathogenesis of NAFLD. However, the nonclassical alternative axis of RAS, angiotensin- (Ang-) converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor, opposes the actions of the classical arm, mitigates the metabolic dysfunction, and improves hepatic lipid metabolism rendering it a promising protective target against NAFLD. The current study is aimed at investigating the impact of chrysin, a well-known antioxidant flavonoid, on this defensive RAS axis in NAFLD. Methods Rats were randomly distributed and treated daily for eight weeks as follows: the normal control, chrysin control (50 mg/kg, p.o), NAFLD group (received 20% fructose in drinking water), and treated groups (25 and 50 mg/kg chrysin given orally and concomitantly with fructose). Diminazene aceturate (DIZE) (15 mg/kg, s.c.) was used as a reference ACE2 activator. Key Findings. High fructose induced significant weight gain, hepatocyte degeneration with fat accumulation, and inflammatory cell infiltration (as examined by H&E staining). This was accompanied by a substantial increase in liver enzymes, glucose, circulating and hepatic triglycerides, lipid peroxides, inflammatory cytokines, and Ang II (the main component of classical RAS). At the same time, protein levels of ACE2, Ang (1-7), and Mas receptors were markedly reduced. Chrysin (25 and 50 mg/kg) significantly ameliorated these abnormalities, with a prominent effect of the dose of 50 mg/kg over DIZE and the lower dose in improving ACE2, Ang (1-7), and Mas. Significance. Chrysin is a promising efficient protective remedy against NAFLD; mechanisms include the activation of ACE2/Ang (1-7)/Mas axis.
Collapse
|
12
|
Claro-Cala CM, Jiménez-Altayó F, Zagmutt S, Rodriguez-Rodriguez R. Molecular Mechanisms Underlying the Effects of Olive Oil Triterpenic Acids in Obesity and Related Diseases. Nutrients 2022; 14:nu14081606. [PMID: 35458168 PMCID: PMC9024864 DOI: 10.3390/nu14081606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Dietary components exert protective effects against obesity and related metabolic and cardiovascular disturbances by interfering with the molecular pathways leading to these pathologies. Dietary biomolecules are currently promising strategies to help in the management of obesity and metabolic syndrome, which are still unmet medical issues. Olive oil, a key component of the Mediterranean diet, provides an exceptional lipid matrix highly rich in bioactive molecules. Among them, the pentacyclic triterpenic acids (i.e., oleanolic acid) have gained clinical relevance in the last decade due to their wide range of biological actions, particularly in terms of vascular function, obesity and insulin resistance. Considering the promising effects of these triterpenic compounds as nutraceuticals and components of functional foods against obesity and associated complications, the aim of our review is to decipher and discuss the main molecular mechanisms underlying these effects driven by olive oil triterpenes, in particular by oleanolic acid. Special attention is paid to their signaling and targets related to glucose and insulin homeostasis, lipid metabolism, adiposity and cardiovascular dysfunction in obesity. Our study is aimed at providing a better understanding of the impact of dietary components of olive oil in the long-term management of obesity and metabolic syndrome in humans.
Collapse
Affiliation(s)
- Carmen M. Claro-Cala
- Departament of Pharmacology, Pediatríc y Radiology, Faculty of Medicine, University of Seville, 41009 Seville, Spain;
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Sebastián Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Valles, Spain;
| | - Rosalia Rodriguez-Rodriguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Valles, Spain;
- Correspondence: ; Tel.: +34-935-042-002
| |
Collapse
|
13
|
Zheng Y, Li Z, Yang Y, Shi H, Chen H, Gao Y. A nanosensitizer self-assembled from oleanolic acid and chlorin e6 for synergistic chemo/sono-photodynamic cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153788. [PMID: 34634745 DOI: 10.1016/j.phymed.2021.153788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sono-photodynamic therapy (SPDT) which is the combination of photodynamic therapy (PDT) and sonodynamic therapy (SDT), could exert much better anti-cancer effects than monotherapy. The combination of chemotherapy and PDT or SDT has shown great potential for cancer treatment. However, the combination of SPDT and chemotherapy for cancer treatment is rarely explored. PURPOSE We utilized a natural hydrophobic anti-cancer drug oleanolic acid (OA) and a photosensitizer chlorin e6 (Ce6) through self-assembly technology to form a carrier-free nanosensitizer OC for combined chemotherapy and SPDT for cancer treatment. No studies involving using carrier-free nanomedicine for combined chemotherapy/SPDT have been reported yet. STUDY DESIGN After fully characterization of OC, the in vitro and in vivo anti-cancer activities of OC were investigated and the mechanisms of the synergistic therapeutic effects were studied. METHODS OC were synthesized through self-assembly technology and characterized by dynamic light scattering (DLS) and an atomic force microscope (AFM). Confocal microscope was used to investigate the intracellular uptake efficiency and the penetration ability of OC. The cell viability of PC9 and 4T1 cells treated with OC under laser and ultrasound (US) irradiation was determined by MTT assay. Furthermore, flow cytometry was performed to detect the reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), cell apoptosis and cell cycle arrest. Finally, the anti-tumor therapeutic efficacy of OC was investigated in orthotopic 4T1 breast tumor-bearing mouse model. RESULTS OC showed an average particle size of around 100 nm with excellent light stability. OC increased more than 23 times accumulation of Ce6 in cancer cells and had strong tumor penetration ability in three-dimensional (3D) multicellular tumor spheroids (MCTSs). Compared with other therapeutic options, OC showed obvious synergistic inhibitory effects under light and US irradiation in PC9 and 4T1 cells with a significant decrease in IC50 values. Mechanism studies showed that OC could generate high ROS, induce MMP loss, and cause apoptosis and cell cycle arrest. In vivo studies also approved the synergistic therapeutic effects of OC in 4T1 mouse models. CONCLUSION Self-assembled carrier-free nanosensitizer OC could be a promising therapeutic agent for synergistic chemo/sono-photodynamic therapy for cancer treatment.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huifang Shi
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
14
|
Muhammad N, Lembede BW, Erlwanger KH. Neonatal zingerone protects against the development of high-fructose diet-induced metabolic syndrome in adult Sprague-Dawley rats. J Dev Orig Health Dis 2021; 12:671-679. [PMID: 32500848 DOI: 10.1017/s2040174420000525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the early postnatal period, dietary manipulations can alter the developmental trajectory of the growing offspring, causing beneficial or adverse health outcomes later in adult life. We investigated the potential preventive effects of neonatal zingerone intake on the development of fructose-induced metabolic derangements in rats.Four-day old male and female Sprague-Dawley rat pups (n = 79) were randomly grouped and administered: 10 ml/kg body weight (bwt) of distilled water (W), 10 ml/kg bwt 20% fructose solution (FS), 10 ml/kg bwt fructose solution + 40 mg/kg bwt of zingerone in distilled water (ZF) or 40 mg/kg bwt of zingerone in distilled water (ZW) pre-weaning. After weaning, W and ZW continued on unlimited tap water, while FS and ZF continued on unlimited fructose solution for 10 weeks. Body mass and food and fluid intake were evaluated, plasma was collected for metabolic assays and visceral fat was quantified.Food intake was decreased, fructose and overall caloric intake were increased due to fructose feeding in both sexes (P < 0.05). When compared with the controls, the high-fructose diet significantly raised the terminal body masses of females (P < 0.0001), concentrations of triglycerides, total cholesterol, LDL-c, TG:HDL-c ratio and visceral fat mass relative to bwt in both sexes (P < 0.05). Zingerone prevented (P < 0.05) the fructose-induced increase in body mass (females) and hypercholesterolemia (both sexes). Levels of HDL-c, glycaemic parameters and adiponectin were not affected by the interventions (P > 0.05). Sex-related differences were observed in food, fluid and caloric intake, terminal mass, cholesterol subtypes and visceral fat percentage (P < 0.05).Zingerone could be used strategically in the neonatal phase as a prophylatic management of high-fructose diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- N Muhammad
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Physiology, College of Health Sciences, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - B W Lembede
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - K H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Xue C, Li Y, Lv H, Zhang L, Bi C, Dong N, Shan A, Wang J. Oleanolic Acid Targets the Gut-Liver Axis to Alleviate Metabolic Disorders and Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7884-7897. [PMID: 34251802 DOI: 10.1021/acs.jafc.1c02257] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigated the effects of oleanolic acid (OA) on hepatic lipid metabolism and gut-liver axis homeostasis in an obesity-related non-alcoholic fatty liver disease (NAFLD) nutritional animal model and explored possible molecular mechanisms behind its effects. The results revealed that OA ameliorated the development of metabolic disorders, insulin resistance, and hepatic steatosis in obese rats. Meanwhile, OA restored high-fat-diet (HFD)-induced intestinal barrier dysfunction and endotoxin-mediated induction of toll-like-receptor-4-related pathways, subsequently inhibiting endotoxemia and systemic inflammation and balancing the homeostasis of the gut-liver axis. OA also reshaped the composition of the gut microbiota of HFD-fed rats by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of butyrate-producing bacteria. Our results support the applicability of OA as a treatment for obesity-related NAFLD through its anti-inflammatory, antioxidant, and prebiotic integration responses mediated by the gut-liver axis.
Collapse
Affiliation(s)
- Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Hao Lv
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Jiali Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| |
Collapse
|
16
|
Mukonowenzou NC, Dangarembizi R, Chivandi E, Nkomozepi P, Erlwanger KH. Administration of ursolic acid to new-born pups prevents dietary fructose-induced non-alcoholic fatty liver disease in Sprague Dawley rats. J Dev Orig Health Dis 2021; 12:101-112. [PMID: 32188531 DOI: 10.1017/s2040174420000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overconsumption of fructose time dependently induces the development of non-alcoholic fatty liver disease (NAFLD). We investigated whether ursolic acid (UA) intake by new-born rats would protect against fructose-induced NAFLD. One hundred and seven male and female Sprague Dawley rat pups were randomly grouped and gavaged (10 ml/kg body weight) with either 0.5% dimethylsulphoxide (vehicle control), 0.05% UA, 50% fructose mixed with UA (0.05%) or 50% fructose alone, from postnatal day 6 (P6) to P20. Post-weaning (P21-P69), the rats received normal rat chow (NRC) and water to drink. On P70, the rats in each group were continued on water or 20% fructose to drink, as a secondary high fructose diet during adulthood. After 8 weeks, body mass, food and fluid intake, circulating metabolites, visceral adiposity, surrogate markers of liver function and indices of NAFLD were determined. Food intake was reduced as a result of fructose feeding in both male and female rats (p < 0.0001). Fructose consumption in adulthood significantly increased fluid intake and visceral adiposity in female rats (p < 0.05) and had no apparent effects in male rats (p > 0.05). In both sexes of rats, fructose had no significant (p > 0.05) effects on body mass, circulating metabolites, total calorie intake and surrogate markers of hepatic function. Fructose consumption in both early life and adulthood in female rats promoted hepatic lipid accumulation (p < 0.001), hypertrophy, microvesicular and macrovesicular steatosis (p < 0.05). Early-life UA intake significantly (p < 0.001) reduced fructose-induced hepatic lipid accumulation in both male and female rats. Administration of UA during periods of developmental plasticity shows prophylactic potential against dietary fructose-induced NAFLD.
Collapse
Affiliation(s)
- Nyasha C Mukonowenzou
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Box AC 939, Ascot, Bulawayo, Zimbabwe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Rachael Dangarembizi
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Box AC 939, Ascot, Bulawayo, Zimbabwe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, 37 Nind Street, Doornfontein, Johannesburg, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
17
|
Protective Role of Probiotic Supplements in Hepatic Steatosis: A Rat Model Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5487659. [PMID: 33299871 PMCID: PMC7704153 DOI: 10.1155/2020/5487659] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Background Treating nonalcoholic fatty liver disease (NAFLD) is considered one of the public health priorities in the past decade. So far, probiotics have represented promising results in controlling the signs and symptoms of NAFLD. However, attempts to find the ideal probiotic strain are still ongoing. The present study is designed to find the best strain amongst suitable probiotic strains according to their ability to ameliorate histopathological and oxidative stress biomarkers in hepatic steatosis-induced rats. Methods Initially, four probiotics species, including Lactobacillus (L.) acidophilus, L. casei, L. reuteri, and Bacillus coagulans, were cultured and prepared as a lyophilized powder for animals. The experiment lasted for fifty days. Initially, hepatic steatosis was induced by excessive ingestion of D-fructose in rats for eight weeks, followed by eight weeks of administering probiotics and D-fructose concurrently. Forty-two six-week-old male rats were alienated to different groups and were supplemented with different probiotics (1∗109 CFU in 500 mL drinking water). After eight weeks, blood and liver samples were taken for further evaluation, and plasma and oxidative stress markers corresponding to liver injuries were examined. Results Administration of probiotics over eight weeks reversed hepatic and blood triglyceride concentration and blood glucose levels. Also, probiotics significantly suppressed markers of oxidative stress in the liver tissue. Conclusions Although some of the single probiotic formulations were able to mitigate oxidative stress markers, mixtures of probiotics significantly ameliorated more symptoms in the NAFLD animals. This enhanced effect might be due to probiotics' cumulative potential to maintain oxidative stress and deliver improved lipid profiles, liver function markers, and inflammatory markers.
Collapse
|
18
|
Nyakudya TT, Tshabalala T, Dangarembizi R, Erlwanger KH, Ndhlala AR. The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules 2020; 25:molecules25112669. [PMID: 32526850 PMCID: PMC7321241 DOI: 10.3390/molecules25112669] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
Metabolic syndrome (MetS) is a prevalent, multifactorial and complex disease that is associated with an increased risk of developing diabetes and other major cardiovascular complications. The rise in the global prevalence of MetS has been attributed to genetic, epigenetic, and environmental factors. The adoption of sedentary lifestyles that are characterized by low physical activity and the consumption of high-energy diets contributes to MetS development. Current management criteria for MetS risk factors involve changes in lifestyle and the use of pharmacological agents that target specific biochemical pathways involved in the metabolism of nutrients. Pharmaceutical drugs are usually expensive and are associated with several undesirable side effects. Alternative management strategies of MetS risk factors involve the use of medicinal plants that are considered to have multiple therapeutic targets and are easily accessible. Medicinal plants contain several different biologically active compounds that provide health benefits. The impact of phytochemicals present in local medicinal plants on sustainable health and well-being of individuals has been studied for many years and found to involve a plethora of complex biochemical, metabolic, and physiological mechanisms. While some of these phytochemicals are the basis of mainstream prescribed drugs (e.g., metformin, reserpine, quinine, and salicin), there is a need to identify more medicinal plants that can be used for the management of components of MetS and to describe their possible mechanisms of action. In this review, we assess the potential health benefits of South African ethnomedicinal plants in protecting against the development of health outcomes associated with MetS. We aim to provide the state of the current knowledge on the use of medicinal plants and their therapeutically important phytochemicals by discussing the current trends, with critical examples from recent primary references of how medicinal plants are being used in South African rural and urban communities.
Collapse
Affiliation(s)
- Trevor T. Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Thulani Tshabalala
- Agricultural Research Council (ARC), Vegetable and Ornamental Plants, Private Bag X923, Pretoria 0001, South Africa;
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Rachael Dangarembizi
- Department of Human Biology Neuroscience Institute, Faculty of Health Sciences, Division of Physiological Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa;
| | - Kennedy H. Erlwanger
- School of Physiology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa;
| | - Ashwell R. Ndhlala
- Green Technologies Research Centre of Excellence, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
- Correspondence: or ; Tel.: +27-15-268-2190
| |
Collapse
|
19
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
20
|
Fernández-Aparicio Á, Schmidt-RioValle J, Perona JS, Correa-Rodríguez M, Castellano JM, González-Jiménez E. Potential Protective Effect of Oleanolic Acid on the Components of Metabolic Syndrome: A Systematic Review. J Clin Med 2019; 8:jcm8091294. [PMID: 31450844 PMCID: PMC6780804 DOI: 10.3390/jcm8091294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The high prevalence of obesity is a serious public health problem in today’s world. Both obesity and insulin resistance favor the development of metabolic syndrome (MetS), which is associated with a number of pathologies, especially type 2 diabetes mellitus, and cardiovascular diseases. This serious problem highlights the need to search for new natural compounds to be employed in therapeutic and preventive strategies, such as oleanolic acid (OA). This research aimed to systematically review the effects of OA on the main components of MetS as well as oxidative stress in clinical trials and experimental animal studies. Databases searched included PubMed, Medline, Web of Science, Scopus, EMBASE, Cochrane, and CINAHL from 2013 to 2019. Thus, both animal studies (n = 23) and human clinical trials (n = 1) were included in our review to assess the effects of OA formulations on parameters concerning insulin resistance and the MetS components. The methodological quality assessment was performed through using the SYRCLE’s Risk of Bias for animal studies and the Jadad scale. According to the studies in our review, OA improves blood pressure levels, hypertriglyceridemia, hyperglycemia, oxidative stress, and insulin resistance. Although there is scientific evidence that OA has beneficial effects in the prevention and treatment of MetS and insulin resistance, more experimental studies and randomized clinical trials are needed to guarantee its effectiveness.
Collapse
Affiliation(s)
- Ángel Fernández-Aparicio
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| | - Jacqueline Schmidt-RioValle
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain.
| | - Javier S Perona
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013 Seville, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| | - Jose M Castellano
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013 Seville, Spain
| | - Emilio González-Jiménez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| |
Collapse
|
21
|
Matumba MG, Ayeleso AO, Nyakudya T, Erlwanger K, Chegou NN, Mukwevho E. Long-Term Impact of Neonatal Intake of Oleanolic Acid on the Expression of AMP-Activated Protein Kinase, Adiponectin and Inflammatory Cytokines in Rats Fed with a High Fructose Diet. Nutrients 2019; 11:nu11020226. [PMID: 30678182 PMCID: PMC6412886 DOI: 10.3390/nu11020226] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known to regulate both glucose and lipid metabolism, which play vital roles in the development of metabolic syndrome. One way of regulating AMPK is through hormonal activation using adiponectin. Patients diagnosed with type-2 diabetes (T2D) and obesity exhibit low adiponectin concentration levels in their blood. Moreover, studies have also shown that inflammatory processes play a significant role in the etiology of these metabolic diseases. In this study, the long-term effects of neonatal intake of oleanolic acid (OA) on the AMPK gene, genes associated with glucose transport and lipid metabolism, adiponectin levels, and inflammatory biomarkers in rats fed with a high fructose diet were investigated. Seven day old pups were randomly divided into five groups and treated as follows; 0.5% dimethylsulphoxide v/v in distilled water vehicle control (CON), oleanolic acid (OA, 60 mg/kg), high fructose diet (HF, 20% w/v), high fructose diet combined with oleanolic acid (HF+OA), and high fructose diet combined with metformin (HF+MET, 500 mg/kg). The treatments were administered once daily until day 14. The rats were then weaned at day 21 and fed standard rat chow and had ad libitum access to plain drinking water until day 112. The quantitative polymerase chain reaction (qPCR) was used to analyze the gene expressions of AMPK, Glut-4, Cpt-1, AdipoR1, AdipoR2, TNF-α, and IL-6 in the skeletal muscles. Bio-Plex Pro magnetic bead-based assay was used to measure plasma levels of inflammatory markers (TNF-α, IL-6, VEGF, and MCP-1) while ELISA kits were used to measure adiponectin concentration in blood plasma. The results obtained in this study showed that neonatal supplementation with OA significantly increased AMPK gene expression approximately ~4-fold in OA fed rats compared to those that were fed with HF alone. In addition, glut-4 gene expression was also significantly higher in the OA treatment group compared to all the other experimental groups except the CON group whereas Cpt-1 gene was more expressed when OA was administered alone. Together, these results indicated that OA can play a role in glucose and lipid metabolism gene regulation. Furthermore, the results showed that the OA group had ~1.5-fold increase in adiponectin concentration when comparedto the HF group. Moreover, HF increased levels of inflammatory cytokines, which was attenuated by neonatal administration of OA. Plasma concentration and gene expression in the skeletal muscle for TNF-α and IL-6 were significantly increased in rats that were treated with HF alone when compared to all the other groups. On the contrary, the high levels of TNF-α and IL-6 were reduced when OA was administered. These findings suggest that intake of oleanolic acid during the neonatal stage of development could be a potential strategic intervention for the long-term prevention of metabolic diseases such as T2D and obesity.
Collapse
Affiliation(s)
- Mashudu Given Matumba
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Ademola Olabode Ayeleso
- Department of Biochemistry, Faculty of Science, Adeleke University, P.M.B. 250, Ede, Osun State 232101, Nigeria.
| | - Trevor Nyakudya
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Kennedy Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa.
| | - Novel N Chegou
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
22
|
Molepo M, Ayeleso A, Nyakudya T, Erlwanger K, Mukwevho E. A Study on Neonatal Intake of Oleanolic Acid and Metformin in Rats ( Rattus norvegicus) with Metabolic Dysfunction: Implications on Lipid Metabolism and Glucose Transport. Molecules 2018; 23:molecules23102528. [PMID: 30282899 PMCID: PMC6222354 DOI: 10.3390/molecules23102528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/15/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome, a cluster of different disorders which include diabetes, obesity and cardiovascular diseases, is a global epidemic that is growing at an alarming rate. The origins of disease can be traced back to early developmental stages of life. This has increased mortalities and continues to reduce life expectancies of individuals across the globe. The aim of this study was to investigate the sub-acute and long term effects of neonatal oral administration of oleanolic acid and metformin on lipids (free fatty acids, FFAs) and genes associated with lipid metabolism and glucose transport using a neonatal rat experimental model. In the first study, seven days old pups were randomly grouped into control—distilled water (DW); oleanolic acid (60 mg/kg), metformin (500 mg/kg), high fructose diet (20% w/v, HF), oleanolic acid (OA) + high fructose diet (OA + HF), and Metformin + high fructose diet (MET + HF) groups. The pups were treated for 7 days, and then terminated on postnatal day (PD) 14. In the second study, rat pups were initially treated similarly to study 1 and weaned onto normal rat chow and plain drinking water on PD 21 till they reached adulthood (PD112). Tissue and blood samples were collected for further analyses. Measurement of the levels of free fatty acids (FFAs) was done using gas chromatography-mass spectrometry. Quantitative polymerase chain reaction (qPCR) was used to analyze the gene expression of glut-4, glut-5, fas, acc-1, nrf-1 and cpt-1 in the skeletal muscle. The results showed that HF accelerated accumulation of saturated FFAs within skeletal muscles. The HF fed neonatal rats had increased stearic acid, which was associated with decreased glucose, suppressed expression of glut-4, glut-5, nrf-1 and cpt-1 genes, and increased expression of acc-1 (p < 0.01) and fas. OA + HF and MET + HF treated groups had increased mono- and polyunsaturated FFAs; oleic, and octadecadienoic acids than the HF group. These unsaturated FFAs were associated with increased glut-4, glut-5 and nrf-1 (p < 0.01) and decreased acc-1 and fas (p < 0.05) in both OA + HF and MET + HF treated groups. Conclusions: The present study shows that neonatal oral administration of oleanolic acid and metformin potentially protects against the development of fructose-induced metabolic dysfunction in the rats in both short and long time periods.
Collapse
Affiliation(s)
- Mmahiine Molepo
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Ademola Ayeleso
- Department of Biochemistry, Faculty of Science, Adeleke University, Ede 232, P.M.B. 250, Osun State, Nigeria.
| | - Trevor Nyakudya
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Kennedy Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa.
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|