1
|
Reyes Monroy K, McCrary R, Parry I, Webber C, Golden TD, Verbeck GF. Analysis of Fentanyl and Fentanyl Analogs Using Atmospheric Pressure Chemical Ionization Gas Chromatography-Mass Spectrometry (APCI-GC-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:587-600. [PMID: 39895126 PMCID: PMC11887434 DOI: 10.1021/jasms.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Illicit fentanyl and fentanyl analogs are a growing concern in the United States as opioid related deaths rise. Given that fentanyl analogs are readily obtained by modifying the structure of fentanyl, illicit fentanyl analogs appearing on the black market often contain similar structures, making analogue differentiation and identification difficult. Thus, obtaining both precursor and product ion data during analysis is becoming increasingly valuable in fentanyl analog characterization. In this paper, we provide GC column retention time, precursor, and product ion mass spectrum data for 74 fentanyl analogs that were analyzed using atmospheric pressure chemical ionization-gas chromatography-mass spectrometry (APCI-GC-MS) utilizing a triple quadrupole mass analyzer. During analysis, precursor ions underwent collision induced dissociation (CID) by increasing the collision energy (10, 20, 30, 40, and 50 V) throughout a single run. Data reveal that APCI readily produces product ions of the piperidine and N-alkyl chain but rarely provides data on the acyl group. Furthermore, fentanyl analogs with greater substitution at the N-alkyl chain demonstrate a greater preference for dissociation at the N-αC and αC-βC bond, while greater substitution at the amide group leads to fragmentation at the N-C4 bond.
Collapse
Affiliation(s)
- Karen
A. Reyes Monroy
- Department of Chemistry, University of North Texas, 1155 Union Circle #30570, Denton, Texas 76203, United States
| | - Richard McCrary
- Department of Chemistry, University of North Texas, 1155 Union Circle #30570, Denton, Texas 76203, United States
| | - Isabelle Parry
- Department of Chemistry, University of North Texas, 1155 Union Circle #30570, Denton, Texas 76203, United States
| | - Catherine Webber
- Department of Chemistry, University of North Texas, 1155 Union Circle #30570, Denton, Texas 76203, United States
| | - Teresa D. Golden
- Department of Chemistry, University of North Texas, 1155 Union Circle #30570, Denton, Texas 76203, United States
| | - Guido F. Verbeck
- Department of Chemistry, University of North Texas, 1155 Union Circle #30570, Denton, Texas 76203, United States
| |
Collapse
|
2
|
Wang Q, Mesaros C. Advances and challenges in liquid chromatography-spectrometry (LC-MS) methodology for quantifying androgens and estrogens in human serum and plasma. J Steroid Biochem Mol Biol 2025; 245:106618. [PMID: 39313162 DOI: 10.1016/j.jsbmb.2024.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Accurate quantification of androgens and estrogens is critical for elucidating their roles in endocrine disorders and advancing research on their functions in human biology and pathophysiology. This review highlights recent advances and ongoing challenges in liquid chromatography- mass spectrometry (LC- MS) methodology for quantifying androgens and estrogens in human serum and plasma. We summarized current approaches for analyzing the different forms of androgens and estrogens, along with their reported levels in publications from 2010 to the present. These published levels pointed out the inconsistencies in reference intervals across studies. To address these issues, advances in derivatization methods and chromatographic separation techniques are reviewed. Future perspectives for improving the accuracy and consistency of hormone quantification in clinical and research settings were also proposed.
Collapse
Affiliation(s)
- Qingqing Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Görs PE, Ayala-Cabrera JF, Meckelmann SW. Unraveling the Double Bond Position of Fatty Acids by GC-MS Using Electron Capture APCI and In-Source Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2538-2546. [PMID: 37751542 DOI: 10.1021/jasms.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The position of double bonds in unsaturated fatty acids is strongly connected to their biological effects, but their analytical characterization is still challenging. However, the ionization of unsaturated fatty acids by a GC-APCI leads to regiospecific in-source fragment ions, which can be used to identify the double bond position. The fragment ions are oxidized species that occur mostly at the double bond closest to the carboxylic acid group. This effect can be further promoted by using benzaldehyde as a gas-phase reactant. This allows the identification of the Δ-notation of the fatty acid, and based on additional information such as m/z and retention time, it is possible to annotate the corresponding fatty acid. The developed method also enables the quantification of fatty acids in one step with high selectivity and sensitivity. Moreover, rare fatty acids can be identified in suspected target approaches that are often not available as standards. This was demonstrated by analyzing fish oil samples that provide a complex mixture of highly unsaturated fatty acids and by identifying rare fatty acids such as hexadecatetraenoic acid (FA 16:4 Δ6).
Collapse
Affiliation(s)
- Paul E Görs
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Juan F Ayala-Cabrera
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa, Biscay, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Biscay, Basque Country, Spain
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
4
|
Wang Q, Xu PJ, Mesaros C. Ultrasensitive quantification of estrogens in serum and plasma by liquid chromatography-tandem mass spectrometry. Methods Enzymol 2023; 689:433-452. [PMID: 37802582 DOI: 10.1016/bs.mie.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Stable isotope dilution (SID) methodology coupled with liquid chromatography-tandem mass spectrometry (LC-MS) is rapidly becoming the gold standard for measuring estrogens in serum and plasma due to improved specificity, high accuracy, and the ability to conduct a more comprehensive analysis. A general consideration of the problems associated with measuring estrogens and two detailed derivatization methods are described in this chapter. These methods quantify estrogens and their metabolites in serum and plasma samples using this state-of-art technology, which is applicable to the routine clinical laboratory.
Collapse
Affiliation(s)
- Qingqing Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Peining Jimmy Xu
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Rashid CS, Bansal A, Mesaros C, Bartolomei MS, Simmons RA. Paternal bisphenol A exposure in mice impairs glucose tolerance in female offspring. Food Chem Toxicol 2020; 145:111716. [PMID: 32890688 DOI: 10.1016/j.fct.2020.111716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Humans are ubiquitously exposed bisphenol A (BPA), and epidemiological studies show a positive association between BPA exposure and diabetes risk, but the impact of parental exposure on offspring diabetes risk in humans is unknown. Our previous studies in mice show disruption of metabolic health upon maternal BPA exposure. The current study was undertaken to determine whether exposure in fathers causes adverse metabolic consequences in offspring. Male C57BL/6 J mice were exposed to BPA in the diet beginning at 5 weeks of age resulting in the following dietary exposure groups: Control (0 μg/kg/day), Lower BPA (10 μg/kg/day) and Upper BPA (10 mg/kg/day). After 12 weeks of dietary exposure, males were mated to control females. Mothers and offspring were maintained on the control diet. Post-pubertal paternal BPA exposure did not affect offspring body weight, body composition or glucose tolerance. However, when fathers were exposed to BPA during gestation and lactation, their female offspring displayed impaired glucose tolerance in the absence of compromised in vivo insulin sensitivity or reduced ex vivo glucose-stimulated insulin secretion. Male offspring exhibited normal glucose tolerance. Taken together, these studies show there is an early window of susceptibility in which paternal BPA exposure can cause sex-specific impairments in glucose homeostasis.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Center for Research in Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amita Bansal
- Center for Research in Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA; ANU Medical School, John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, 2601, Australia
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marisa S Bartolomei
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca A Simmons
- Center for Research in Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
|
7
|
Li L, Zhong S, Shen X, Li Q, Xu W, Tao Y, Yin H. Recent development on liquid chromatography-mass spectrometry analysis of oxidized lipids. Free Radic Biol Med 2019; 144:16-34. [PMID: 31202785 DOI: 10.1016/j.freeradbiomed.2019.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) in the cellular membrane can be oxidized by various enzymes or reactive oxygen species (ROS) to form many oxidized lipids. These metabolites are highly bioactive, participating in a variety of physiological and pathophysiological processes. Mass spectrometry (MS), coupled with Liquid Chromatography, has been increasingly recognized as an indispensable tool for the analysis of oxidized lipids due to its excellent sensitivity and selectivity. We will give an update on the understanding of the molecular mechanisms related to generation of various oxidized lipids and recent progress on the development of LC-MS in the detection of these bioactive lipids derived from fatty acids, cholesterol esters, and phospholipids. The purpose of this review is to provide an overview of the formation mechanisms and technological advances in LC-MS for the study of oxidized lipids in human diseases, and to shed new light on the potential of using oxidized lipids as biomarkers and mechanistic clues of pathogenesis related to lipid metabolism. The key technical problems associated with analysis of oxidized lipids and challenges in the field will also discussed.
Collapse
Affiliation(s)
- Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qiujing Li
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Wenxin Xu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100000, China.
| |
Collapse
|
8
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Mazaleuskaya LL, Salamatipour A, Sarantopoulou D, Weng L, FitzGerald GA, Blair IA, Mesaros C. Analysis of HETEs in human whole blood by chiral UHPLC-ECAPCI/HRMS. J Lipid Res 2018; 59:564-575. [PMID: 29301865 PMCID: PMC5832923 DOI: 10.1194/jlr.d081414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Indexed: 12/30/2022] Open
Abstract
The biosynthesis of eicosanoids occurs enzymatically via lipoxygenases, cyclooxygenases, and cytochrome P450, or through nonenzymatic free radical reactions. The enzymatic routes are highly enantiospecific. Chiral separation and high-sensitivity detection methods are required to differentiate and quantify enantioselective HETEs in complex biological fluids. We report here a targeted chiral lipidomics analysis of human blood using ultra-HPLC-electron capture (EC) atmospheric pressure chemical ionization/high-resolution MS. Monitoring the high-resolution ions formed by the fragmentation of pentafluorobenzyl derivatives of oxidized lipids during the dissociative EC, followed by in-trap fragmentation, increased sensitivity by an order of magnitude when compared with the unit resolution MS. The 12(S)-HETE, 12(S)-hydroxy-(5Z,8E,10E)-heptadecatrienoic acid [12(S)-HHT], and 15(S)-HETE were the major hydroxylated nonesterified chiral lipids in serum. Stimulation of whole blood with zymosan and lipopolysaccharide (LPS) resulted in stimulus- and time-dependent effects. An acute exposure to zymosan induced ∼80% of the chiral plasma lipids, including 12(S)-HHT, 5(S)-HETE, 15(R)-HETE, and 15(S)-HETE, while a maximum response to LPS was achieved after a long-term stimulation. The reported method allows for a rapid quantification with high sensitivity and specificity of enantiospecific responses to in vitro stimulation or coagulation of human blood.
Collapse
Affiliation(s)
- Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ashkan Salamatipour
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Liwei Weng
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ian A Blair
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160.,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Clementina Mesaros
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160 .,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| |
Collapse
|
10
|
Wang Z, Tang S, Hattori M, Zhang H, Wu X. Simultaneous determination of paeonilactone A and paeonilactone B in rat plasma after oral administration of albiflorin by UPLC/TOF/MS following picolinoyl derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:327-333. [PMID: 28783562 DOI: 10.1016/j.jchromb.2017.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
A new highly sensitive analytical method was developed to investigate the in vivo metabolism of albiflorin, one of the most principal components in traditional Chinese medicine. After hydrolyzation with sulfatase, the main metabolites paeonilactone A and paeonilactone B of paeoniflorin in rat plasma were successfully detected for the first time by liquid chromatography mass spectrometry following picolinoyl derivatization. Borneol was used as the internal standard compound to quantify paeonilactone A and paeonilactone B in rat plasma. Paeonilactone A and paeonilactone B show different pharmacokinetic behaviors. The maximum plasma concentration of paeonilactone A reached 36.4±5.6ng/mL at about 8h after oral administration of albiflorin at a dose of 5mg/kg, while the maximum plasma concentration of paeonilactone B reached 12.4±3.4ng/mL at about 2h. The total metabolic pathway of albiflorin in rats was proposed. Albiflorin was found to be metabolized to the sulfate of paeonilactone A and paeonilactone B which may be responsible for the biological effect of albiflorin. The new analytical method may help to elucidate the clinical efficacy of traditional Chinese formula containing albiflorin.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shuhan Tang
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Harbin Children's Hospital, Youyi Road 57, Harbin, China
| | - Masao Hattori
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Shaanxi 710061, China
| | - Xiuhong Wu
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
11
|
New analytical method for determination of epimer metabolites in rat plasma after oral administration of Paeoniflorin by UPLC-TOF-MS following picolinoyl derivatization. J Pharm Biomed Anal 2017; 141:173-179. [DOI: 10.1016/j.jpba.2017.03.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022]
|
12
|
Meckelmann SW, Hellhake S, Steuck M, Krohn M, Schebb NH. Comparison of derivatization/ionization techniques for liquid chromatography tandem mass spectrometry analysis of oxylipins. Prostaglandins Other Lipid Mediat 2017; 130:8-15. [DOI: 10.1016/j.prostaglandins.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/22/2016] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
|
13
|
Ferguson PL, Stapleton HM. Comment on "Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3588-3590. [PMID: 28282131 DOI: 10.1021/acs.est.7b00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Gołębiowski M, Stepnowski P, Leszczyńska D. Application of carbon nanotubes as solid-phase extraction sorbent for analysis of chlorophenols in water samples. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0098-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wang Q, Mesaros C, Blair IA. Ultra-high sensitivity analysis of estrogens for special populations in serum and plasma by liquid chromatography-mass spectrometry: Assay considerations and suggested practices. J Steroid Biochem Mol Biol 2016; 162:70-9. [PMID: 26767303 PMCID: PMC4931956 DOI: 10.1016/j.jsbmb.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
Estrogen measurements play an important role in the clinical evaluation of many endocrine disorders as well as in research on the role of hormones in human biology and disease. It remains an analytical challenge to quantify estrogens and their metabolites in specimens from special populations including older men, children, postmenopausal women and women receiving aromatase inhibitors. Historically, immunoassays have been used for measuring estrogens and their metabolites in biological samples for risk assessment. However, the lack of specificity and accuracy of immunoassay-based methods has caused significant problems when interpreting data generated from epidemiological studies and across different laboratories. Stable isotope dilution (SID) methodology coupled with liquid chromatography-selected reaction monitoring-mass spectrometry (LC-SRM/MS) is now accepted as the 'gold-standard' to quantify estrogens and their metabolites in serum and plasma due to improved specificity, high accuracy, and the ability to monitor multiple estrogens when compared with immunoassays. Ultra-high sensitivity can be obtained with pre-ionized derivatives when using triple quadruple mass spectrometers in the selected reaction monitoring (SRM) mode coupled with nanoflow LC. In this review, we have examined the special issues related to utilizing ultra-high sensitivity SID LC-SRM/MS-based methodology to accurately quantify estrogens and their metabolites in the serum and plasma from populations with low estrogen levels. The major issues that are discussed include: sample preparation for both unconjugated and conjugated estrogens, derivatization, chromatographic separation, matrix effects, and assay validation.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States.
| |
Collapse
|
16
|
Khedr A, Alahdal AM. Liquid chromatography-tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:181-188. [PMID: 27497156 DOI: 10.1016/j.jchromb.2016.07.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/18/2022]
Abstract
The measurement of estrogens at sub-picogram levels is essential for research on breast cancer and postmenopausal plasma. Heretofore, these concentration levels have rarely been achieved. However, it is possible through derivatization but still represent problems for monitoring catechol estrogens and 16α-hydroxyestrone (16α-OH-E1). Estrogens possess poor ionization efficiency in MS/MS, which results in insufficient sensitivity for analyzing samples at trace concentrations. The method presented here was used to extract ten estrogen metabolites (EMs) with a derivatization step involving a new adduct. The electrospray ionization (ESI) MS/MS sensitivity for the EMs was enhanced by derivatization with 3-bromomethyl-propyphenazone (BMP). The lower limits of quantification (LLOQ) of the EMs were 12-100 femtogram on-column, equivalent to 0.3-3.6pg/mL plasma, and the limits of detection (LOD) were 0.1-0.8pg/mL plasma. The percentage coefficient of variation (CV%) at the LLOQ was <20 for all investigated EMs. Ionization suppression was minimized by reacting the excess reagent, BMP, with methanol. The method was successfully applied for the determination of ten EMs in the plasma of fifty healthy postmenopausal and fifty ductal breast cancer women aged 47-65 years old. 16α-OH-E1 and three catechol estrogen metabolites, 4-OH-E1, 2-OH-E2 and 4-OH-E2, were successfully measured in the plasma of healthy and breast cancer women. The methyl-propyphenazone-EM derivatives exhibited better sensitivity in ESI-MS (7.5-fold) compared to the commonly used dansylation procedure.
Collapse
Affiliation(s)
- Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia.
| | - Abdulrahman M Alahdal
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Locatelli M, Sciascia F, Cifelli R, Malatesta L, Bruni P, Croce F. Analytical methods for the endocrine disruptor compounds determination in environmental water samples. J Chromatogr A 2016; 1434:1-18. [PMID: 26805600 DOI: 10.1016/j.chroma.2016.01.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
The potential risk of exposure to different xenobiotics, which can modulate the endocrine system and represent a treat for the wellness of an increasing number of people, has recently drawn the attention of international environmental and health agencies. Several agents, characterized by structural diversity, may interfer with the normal endocrine functions that regulate cell growth, homeostasis and development. Substances such as pesticides, herbicides, plasticizers, metals, etc. having endocrine activity (EDCs) are used in agriculture and industry and are also used as drugs for humans and animals. A difficulty in the analytical determination of these substances is the complexity of the matrix in which they are present. In fact, the samples most frequently analyzed consist of groundwater and surface water, including influent and effluent of wastewater treatment plants and drinking water. In this review, several sample pretreatment protocols, assays and different instrumental techniques recently used in the EDCs determination have been considered. This review concludes with a paragraph in which the most recent hyphenated-instrument techniques are treated, highlighting their sensitivity and selectivity for the analyses of environmental water samples.
Collapse
Affiliation(s)
- Marcello Locatelli
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy; Interuniversity Consortium of Structural and Systems Biology INBB, Viale Medaglie d'oro 305, 00136 Roma, Italy.
| | - Francesco Sciascia
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Roberta Cifelli
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Luciano Malatesta
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Pantaleone Bruni
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Fausto Croce
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| |
Collapse
|
18
|
Guo L, Shestov AA, Worth AJ, Nath K, Nelson DS, Leeper DB, Glickson JD, Blair IA. Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine. J Biol Chem 2015; 291:42-57. [PMID: 26521302 PMCID: PMC4697178 DOI: 10.1074/jbc.m115.697516] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/13/2022] Open
Abstract
The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism.
Collapse
Affiliation(s)
- Lili Guo
- From the Penn Superfund Research and Training Program Center, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics and
| | - Alexander A Shestov
- Laboratory of Molecular Imaging Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Andrew J Worth
- From the Penn Superfund Research and Training Program Center, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics and
| | - Kavindra Nath
- Laboratory of Molecular Imaging Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - David S Nelson
- Laboratory of Molecular Imaging Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jerry D Glickson
- Laboratory of Molecular Imaging Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Ian A Blair
- From the Penn Superfund Research and Training Program Center, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics and
| |
Collapse
|
19
|
|
20
|
Derivatization of steroids in biological samples for GC–MS and LC–MS analyses. Bioanalysis 2015; 7:2515-36. [DOI: 10.4155/bio.15.176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The determination of steroids in biological samples is essential in different areas of knowledge. MS combined with either GC or LC is considered the best analytical technique for specific and sensitive determinations. However, due to the physicochemical properties of some steroids, and the low concentrations found in biological samples, the formation of a derivative prior to their analysis is required. In GC–MS determinations, derivatization is needed for generating volatile and thermally stable compounds. The improvement in terms of stability and chromatographic retention are the main reasons for selecting the derivatization agent. On the other hand, derivatization is not compulsory in LC–MS analyses and the derivatization is typically used for improving the ionization and therefore the overall sensitivity achieved.
Collapse
|
21
|
Jjunju FPM, Maher S, Li A, Syed SU, Smith B, Heeren RMA, Taylor S, Cooks RG. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives. Anal Chem 2015; 87:10047-55. [PMID: 26329926 DOI: 10.1021/acs.analchem.5b02684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.
Collapse
Affiliation(s)
- Fred P M Jjunju
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K.,Q-Technologies Ltd. , 100 Childwall Road, Liverpool L15 6UX, U.K
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K
| | - Anyin Li
- Chemistry Department, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarfaraz U Syed
- M4I, the Maastricht Multi Modal Molecular Imaging Institute, University of Maastricht , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Barry Smith
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K.,Q-Technologies Ltd. , 100 Childwall Road, Liverpool L15 6UX, U.K
| | - Ron M A Heeren
- M4I, the Maastricht Multi Modal Molecular Imaging Institute, University of Maastricht , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Stephen Taylor
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K.,Q-Technologies Ltd. , 100 Childwall Road, Liverpool L15 6UX, U.K
| | - R Graham Cooks
- Chemistry Department, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
What are the main considerations for bioanalysis of estrogens and androgens in plasma and serum samples from postmenopausal women? Bioanalysis 2015; 6:3073-5. [PMID: 25529875 DOI: 10.4155/bio.14.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Wang Q, Bottalico L, Mesaros C, Blair IA. Analysis of estrogens and androgens in postmenopausal serum and plasma by liquid chromatography-mass spectrometry. Steroids 2015; 99:76-83. [PMID: 25150018 PMCID: PMC4336238 DOI: 10.1016/j.steroids.2014.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 01/26/2023]
Abstract
Liquid chromatography-selected reaction monitoring/mass spectrometry-based methodology has evolved to the point where accurate analyses of trace levels of estrogens and androgens in postmenopausal serum and plasma can be accomplished with high precision and accuracy. A suite of derivatization procedures has been developed, which together with modern mass spectrometry instrumentation provide investigators with robust and sensitive methodology. Pre-ionized derivatives are proving to be useful as they are not subject to suppression of the electrospray signal. Postmenopausal women with elevated plasma or serum estrogens are thought to be at increased risk for breast and endometrial cancer. Therefore, significant advances in risk assessment should be possible now that reliable methodology is available. It is also possible to conduct analyses of multiple estrogens in plasma or serum. Laboratories that are currently employing liquid chromatography/mass spectrometry methodology can now readily implement this strategy. This will help conserve important plasma and serum samples available in Biobanks, as it will be possible to conduct high sensitivity analyses using low initial sample volumes. Reported levels of both conjugated and non-conjugated estrogen metabolites are close to the limits of sensitivity of many assays to date, urging caution in the interpretation of these low values. The analysis of serum androgen precursors in postmenopausal women has not been conducted routinely in the past using liquid chromatography/mass spectrometry methodology. Integration of serum androgen levels into the panel of metabolites analyzed could provide additional information for assessing cancer risk and should be included in the future.
Collapse
Affiliation(s)
- Qingqing Wang
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lisa Bottalico
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Clementina Mesaros
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Ian A Blair
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA.
| |
Collapse
|
24
|
Cossette C, Gravel S, Reddy CN, Gore V, Chourey S, Ye Q, Snyder NW, Mesaros CA, Blair IA, Lavoie JP, Reinero CR, Rokach J, Powell WS. Biosynthesis and actions of 5-oxoeicosatetraenoic acid (5-oxo-ETE) on feline granulocytes. Biochem Pharmacol 2015; 96:247-55. [PMID: 26032638 DOI: 10.1016/j.bcp.2015.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
The 5-lipoxygenase product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most powerful human eosinophil chemoattractant among lipid mediators and could play a major pathophysiological role in eosinophilic diseases such as asthma. Its actions are mediated by the OXE receptor, orthologs of which are found in many species from humans to fish, but not rodents. The unavailability of rodent models to examine the pathophysiological roles of 5-oxo-ETE and the OXE receptor has substantially hampered progress in this area. As an alternative, we have explored the possibility that the cat could serve as an appropriate animal model to investigate the role of 5-oxo-ETE. We found that feline peripheral blood leukocytes synthesize 5-oxo-ETE and that physiologically relevant levels of 5-oxo-ETE are present in bronchoalveolar lavage fluid from cats with experimentally induced asthma. 5-Oxo-ETE (EC50, 0.7nM) is a much more potent activator of actin polymerization in feline eosinophils than various other eicosanoids, including leukotriene (LT) B4 and prostaglandin D2. 5-Oxo-ETE and LTB4 induce feline leukocyte migration to similar extents at low concentrations (1nM), but at higher concentrations the response to 5-oxo-ETE is much greater. Although high concentrations of selective human OXE receptor antagonists blocked 5-oxo-ETE-induced actin polymerization in feline granulocytes, their potencies were about 200 times lower than for human granulocytes. We conclude that feline leukocytes synthesize and respond to 5-oxo-ETE, which could potentially play an important role in feline asthma, a common condition in this species. The cat could serve as a useful animal model to investigate the pathophysiological role of 5-oxo-ETE.
Collapse
Affiliation(s)
- Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Sylvie Gravel
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Vivek Gore
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Nathaniel W Snyder
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Clementina A Mesaros
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Ian A Blair
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Jean-Pierre Lavoie
- Dept. of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe J2S 6C7, QC, Canada.
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E Campus Drive, Columbia, MO 65211, USA.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
25
|
Worth AJ, Gillespie KP, Mesaros C, Guo L, Basu SS, Snyder NW, Blair IA. Rotenone Stereospecifically Increases (S)-2-Hydroxyglutarate in SH-SY5Y Neuronal Cells. Chem Res Toxicol 2015; 28:948-54. [PMID: 25800467 PMCID: PMC4721232 DOI: 10.1021/tx500535c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The α-ketoglutarate metabolite, 2-hydroxyglutarate (2-HG), has emerged as an important mediator in a subset of cancers and rare inherited inborn errors of metabolism. Because of potential enantiospecific metabolism, chiral analysis is essential for determining the biochemical impacts of altered 2-HG metabolism. We have developed a novel application of chiral liquid chromatography-electron capture/atmospheric pressure chemical ionization/mass spectrometry, which allows for the quantification of both (R)-2-HG (D-2-HG) and (S)-2-HG (L-2-HG) in human cell lines. This method avoids the need for chiral derivatization, which could potentially distort enantiomer ratios through racemization during the derivatization process. The study revealed that the pesticide rotenone (100 nM), a mitochondrial complex I inhibitor, caused a significant almost 3-fold increase in the levels of (S)-2-HG, (91.7 ± 7.5 ng/10(6) cells) when compared with the levels of (R)-2-HG (24.1 ± 1.2 ng/10(6) cells) in the SH-SY5Y neuronal cells, a widely used model of human neurons. Stable isotope tracers and isotopologue analysis revealed that the increased (S)-2-HG was derived primarily from l-glutamine. Accumulation of highly toxic (S)-2-HG occurs in the brains of subjects with reduced L-2-HG dehydrogenase activity that results from mutations in the L2HGDH gene. This suggests that the observed stereospecific increase of (S)-2-HG in neuronal cells is due to rotenone-mediated inhibition of L-2-HG dehydrogenase but not D-2-HG dehydrogenase. The high sensitivity chiral analytical methodology that has been developed in the present study can also be employed for analyzing other disruptions to 2-HG formation and metabolism such as those resulting from mutations in the isocitrate dehydrogenase gene.
Collapse
Affiliation(s)
- Andrew J. Worth
- Penn SRP Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kevin P. Gillespie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Clementina Mesaros
- Penn SRP Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lili Guo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sankha S. Basu
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nathaniel W. Snyder
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ian A. Blair
- Penn SRP Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:456-68. [PMID: 25486530 PMCID: PMC4323855 DOI: 10.1016/j.bbalip.2014.11.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Oxidation of polyunsaturated fatty acids (PUFA) through enzymatic or non-enzymatic free radical-mediated reactions can yield an array of lipid metabolites including eicosanoids, octadecanoids, docosanoids and related species. In mammals, these oxygenated PUFA mediators play prominent roles in the physiological and pathological regulation of many key biological processes in the cardiovascular, renal, reproductive and other systems including their pivotal contribution to inflammation. Mass spectrometry-based technology platforms have revolutionized our ability to analyze the complex mixture of lipid mediators found in biological samples, with increased numbers of metabolites that can be simultaneously quantified from a single sample in few analytical steps. The recent development of high-sensitivity and high-throughput analytical tools for lipid mediators affords a broader view of these oxygenated PUFA species, and facilitates research into their role in health and disease. In this review, we illustrate current analytical approaches for a high-throughput lipidomic analysis of eicosanoids and related mediators in biological samples. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Giuseppe Astarita
- Waters Corporation, Milford, MA, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra C Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Edward A Dennis
- Department of Chemistry/Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA; Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
27
|
Wang Q, Rangiah K, Mesaros C, Snyder NW, Vachani A, Song H, Blair IA. Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry. Steroids 2015; 96:140-52. [PMID: 25637677 PMCID: PMC4369926 DOI: 10.1016/j.steroids.2015.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
An ultrasensitive stable isotope dilution liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for multiplexed quantitative analysis of six unconjugated and conjugated estrogens in human serum. The quantification utilized a new derivatization procedure, which formed analytes as pre-ionized N-methyl pyridinium-3-sulfonyl (NMPS) derivatives. This method required only 0.1mL of human serum, yet was capable of simultaneously quantifying six estrogens within 20min. The lower limit of quantitation (LLOQ) for estradiol (E2), 16α-hydroxy (OH)-E2, 4-methoxy (MeO)-E2 and 2-MeO-E2 was 1fg on column, and was 10fg on column for 4-OH-E2 and 2-OH-E2. All analytes demonstrated a linear response from 0.5 to 200pg/mL (5-2000pg/mL for 4-OH-E2 and 2-OH-E2). Using this validated method, the estrogen levels in human serum samples from 20 female patients and 20 male patients were analyzed and compared. The levels found for unconjugated serum E2 from postmenopausal women (mean 2.7pg/mL) were very similar to those obtained by highly sensitive gas chromatography-mass spectrometry (GC-MS) methodology. However, the level obtained in serum from older men (mean 9.5pg/mL) was lower than has been reported previously by both GC-MS and LC-MS procedures. The total (unconjugated+conjugated) 4-MeO-E2 levels were significantly higher in female samples compared with males (p<0.05). The enhanced sensitivity offered by the present method will allow for a more specific analysis of estrogens and their metabolites. Our observations might suggest that the level of total 4-MeO-E2 could be a potential biomarker for breast cancer cases.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kannan Rangiah
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; NCBS, Center for Cellular and Molecular Platforms, Bangalore, India
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nathaniel W Snyder
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
28
|
Nguyen TT, Aschner M. F3-Isoprostanes as a Measure of in vivo Oxidative Damage in Caenorhabditis elegans. ACTA ACUST UNITED AC 2014; 62:11.17.1-13. [PMID: 25378241 DOI: 10.1002/0471140856.tx1117s62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidative stress has been implicated in the development of a wide variety of disease processes, including cardiovascular disease, cancer, and neurodegenerative diseases, as well as progressive and normal aging processes. Isoprostanes (IsoPs) are prostaglandin-like compounds that are generated in vivo from lipid peroxidation of arachidonic acid (AA, C20:4, ω-6) and other polyunsaturated fatty acids (PUFA). Since the discovery of IsoPs by Morrow and Roberts in 1990, quantification of IsoPs has been shown to be an excellent source of biomarkers of in vivo oxidative damage. Eicosapentaenoic acid (EPA, C20:5, ω-3) is the most abundant PUFA in Caenorhabditis elegans and gives rise to F3-IsoPs upon nonenzymatic free-radical-catalyzed lipid peroxidation. The protocol presented is the current methodology that our laboratory uses to quantify F3-IsoPs in C. elegans using gas chromatography/mass spectrometry (GC/MS). The methods described herein have been optimized and validated to provide the best sensitivity and selectivity for quantification of F3-IsoPs from C. elegans lysates.
Collapse
Affiliation(s)
- Thuy T Nguyen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
29
|
Worth AJ, Basu SS, Snyder NW, Mesaros C, Blair IA. Inhibition of neuronal cell mitochondrial complex I with rotenone increases lipid β-oxidation, supporting acetyl-coenzyme A levels. J Biol Chem 2014; 289:26895-26903. [PMID: 25122772 DOI: 10.1074/jbc.m114.591354] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that β-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone.
Collapse
Affiliation(s)
- Andrew J Worth
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Sankha S Basu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Nathaniel W Snyder
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160.
| |
Collapse
|
30
|
Habib A, Usmanov D, Ninomiya S, Chen LC, Hiraoka K. Alternating current corona discharge/atmospheric pressure chemical ionization for mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2760-2766. [PMID: 24214861 DOI: 10.1002/rcm.6744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Although alternating current (ac) corona discharge has been widely used in the fields of material science and technology, no reports have been published on its application to an atmospheric pressure chemical ionization (APCI) ion source. In this work, ac corona discharge for an APCI ion source has been examined for the first time. METHODS The ambient atmospheric pressure ac corona discharge (15 kHz, 2.6 kVptp ) was generated by using a stainless steel acupuncture needle. The generated ions were measured using an ion trap mass spectrometer. A comparative study on ac and direct current (dc) corona APCI ion sources was carried out using triacetone triperoxide and trinitrotoluene as test samples. RESULTS The ac corona discharge gave ion signals as strong as dc corona discharge for both positive and negative ion modes. In addition, softer ionization was obtained with ac corona discharge than with dc corona discharge. The erosion of the needle tip induced by ac corona was less than that obtained with positive mode dc corona. CONCLUSIONS A good 'yardstick' for assessing ac corona is that it can be used for both positive and negative ion modes without changing the polarity of the high-voltage power supply. Thus, ac corona can be an alternative to conventional dc corona for APCI ion sources.
Collapse
Affiliation(s)
- Ahsan Habib
- Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | | | | | | | | |
Collapse
|
31
|
Wang S, Tang S, Sun Y, Wang H, Wang X, Zhang H, Wang Z. Highly sensitive determination of new metabolite in rat plasma after oral administration of swertiamarin by liquid chromatography/time of flight mass spectrometry following picolinoyl derivatization. Biomed Chromatogr 2013; 28:939-46. [DOI: 10.1002/bmc.3099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/22/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Shanshan Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Heping Road 24 Harbin 150040 China
| | - Shuhan Tang
- Institute of Natural Medicine; University of Toyama; 2630 Sugitani Toyama 930-0194 Japan
- Harbin Children Hospital; Youyi road 57 Harbin China
| | - Yujia Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Heping Road 24 Harbin 150040 China
| | - Huiyu Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Heping Road 24 Harbin 150040 China
| | - Xijun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Heping Road 24 Harbin 150040 China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Shaanxi 710061 China
| | - Zhigang Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Heping Road 24 Harbin 150040 China
- Institute of Natural Medicine; University of Toyama; 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
32
|
Cobice DF, Mackay CL, Goodwin RJA, McBride A, Langridge-Smith PR, Webster SP, Walker BR, Andrew R. Mass spectrometry imaging for dissecting steroid intracrinology within target tissues. Anal Chem 2013; 85:11576-84. [PMID: 24134553 PMCID: PMC4392804 DOI: 10.1021/ac402777k] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steroid concentrations within tissues are modulated by intracellular enzymes. Such "steroid intracrinology" influences hormone-dependent cancers and obesity and provides targets for pharmacological inhibition. However, no high resolution methods exist to quantify steroids within target tissues. We developed mass spectrometry imaging (MSI), combining matrix assisted laser desorption ionization with on-tissue derivatization with Girard T and Fourier transform ion cyclotron resonance mass spectrometry, to quantify substrate and product (11-dehydrocorticosterone and corticosterone) of the glucocorticoid-amplifying enzyme 11β-HSD1. Regional steroid distribution was imaged at 150-200 μm resolution in rat adrenal gland and mouse brain sections and confirmed with collision induced dissociation/liquid extraction surface analysis. In brains of mice with 11β-HSD1 deficiency or inhibition, MSI quantified changes in subregional corticosterone/11-dehydrocorticosterone ratio, distribution of inhibitor, and accumulation of the alternative 11β-HSD1 substrate, 7-ketocholesterol. MSI data correlated well with LC-MS/MS in whole brain homogenates. MSI with derivatization is a powerful new tool to investigate steroid biology within tissues.
Collapse
Affiliation(s)
- Diego F. Cobice
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C. Logan Mackay
- SIRCAMS, School of Chemistry, Joseph Black Building, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, U.K
| | | | - Andrew McBride
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Patrick R. Langridge-Smith
- SIRCAMS, School of Chemistry, Joseph Black Building, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, U.K
| | - Scott P. Webster
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Brian R. Walker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
33
|
Halogenated phenolic compound determination in plasma and serum by solid phase extraction, dansylation derivatization and liquid chromatography–positive electrospray ionization–tandem quadrupole mass spectrometry. J Chromatogr A 2013; 1320:111-7. [DOI: 10.1016/j.chroma.2013.10.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/09/2013] [Accepted: 10/19/2013] [Indexed: 11/20/2022]
|
34
|
Batchu SR, Quinete N, Panditi VR, Gardinali PR. Online solid phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) method for the determination of sucralose in reclaimed and drinking waters and its photo degradation in natural waters from South Florida. Chem Cent J 2013; 7:141. [PMID: 23965251 PMCID: PMC3844442 DOI: 10.1186/1752-153x-7-141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/15/2013] [Indexed: 11/29/2022] Open
Abstract
Background Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods (offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose in environmental samples. Results An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water, drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (<20%) was observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with molecular formula C12H20Cl2O8. Conclusions Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental samples. Sucralose was frequently detected (>80%) indicating that the conventional treatment process employed in the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer of anthropogenic wastewater intrusion into the environment.
Collapse
Affiliation(s)
- Sudha Rani Batchu
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st ST, FIU Biscayne Bay Campus, MSB-356, North Miami, FL 33181, USA.
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
36
|
Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet 2013; 9:e1003401. [PMID: 23593014 PMCID: PMC3616904 DOI: 10.1371/journal.pgen.1003401] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 02/07/2013] [Indexed: 11/29/2022] Open
Abstract
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. BPA is a widely used compound to which humans are exposed, and recent studies have demonstrated the association between exposure and adverse developmental outcomes in both animal models and humans. Unfortunately, exact mechanisms of BPA–induced health abnormalities are unclear, and elucidation of these relevant biological pathways is critical for understanding the public health implication of exposure. Recently, increasing data have demonstrated the ability of BPA to induce changes in DNA methylation, suggesting that epigenetic mechanisms are relevant. In this work, we study effects of BPA exposure on expression and regulation of imprinted genes in the mouse. Imprinted genes are regulated by differential DNA methylation, and they play critical roles during fetal, placental, and postnatal development. We have found that fetal exposure to BPA at physiologically relevant doses alters expression and methylation status of imprinted genes in the mouse embryo and placenta, with the latter tissue exhibiting the more significant changes. Additionally, abnormal imprinting is associated with defective placental development. Our data demonstrate that BPA exposure may perturb fetal and postnatal health through epigenetic changes in the embryo as well as through alterations in placental development.
Collapse
Affiliation(s)
- Martha Susiarjo
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Isaac Sasson
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ibrahim H, Couderc F, Perio P, Collin F, Nepveu F. Behavior of N-oxide derivatives in atmospheric pressure ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:621-628. [PMID: 23413221 DOI: 10.1002/rcm.6493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/26/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE Indolone-N-oxide derivatives possess interesting biological properties. The analysis of these compounds using mass spectrometry (MS) may lead to interference or under-estimation due to the tendency of the N-oxides to lose oxygen. All the previous works focused only on the temperature of the heated parts (vaporizer and ion-transfer tube) of the mass spectrometer without investigating other parameters. This work is extended to the investigation of other parameters. METHODS The behavior of N-oxides during atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) has been investigated using MS(n) ion trap mass spectrometry. Different parameters were investigated to clarify the factors implicated in the deoxygenation process. The investigated parameters were vaporizer temperature (APCI), ion-transfer tube temperature, solvent type, and the flow rates of the sheath gas, auxiliary gas, sweep gas and mobile phase. RESULTS The deoxygenation increased when the vaporizer temperature increased. The extent of the 'thermally' induced deoxygenation was inversely proportional to the ion-transfer tube temperature and auxiliary gas flow rate and in direct proportion to the mobile phase flow rate. Deoxygenation was not detected under MS/MS fragmentation and hence it is a non-collision-induced dissociation. N-Oxides have the tendency to form abundant 'non-classical' dimers under ESI, which fragment via dehydration rather than giving their corresponding monomer. CONCLUSIONS Deoxygenation is not solely a 'classical' thermal process but it is a thermal process that is solvent-mediated in the source. Deoxygenation was maximal with an APCI source while dimerization was predominant with an ESI source. Therefore, attention should be paid to these molecular changes in the mass spectrometer as well as to the choice of the ionization mode for N-oxides.
Collapse
Affiliation(s)
- Hany Ibrahim
- Université de Toulouse, UPS, UMR 152 (PHARMA-DEV), F-31062 Toulouse cedex 9, France.
| | | | | | | | | |
Collapse
|
38
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
39
|
Mesaros C, Blair IA. Targeted chiral analysis of bioactive arachidonic Acid metabolites using liquid-chromatography-mass spectrometry. Metabolites 2012; 2:337-65. [PMID: 24957514 PMCID: PMC3901208 DOI: 10.3390/metabo2020337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS); whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M) and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Tomšíková H, Aufartová J, Solich P, Nováková L, Sosa-Ferrera Z, Santana-Rodríguez JJ. High-sensitivity analysis of female-steroid hormones in environmental samples. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.11.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Gelhaus SL, Mesaros AC, Blair IA. Cellular lipid extraction for targeted stable isotope dilution liquid chromatography-mass spectrometry analysis. J Vis Exp 2011:3399. [PMID: 22127066 DOI: 10.3791/3399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The metabolism of fatty acids, such as arachidonic acid (AA) and linoleic acid (LA), results in the formation of oxidized bioactive lipids, including numerous stereoisomers(1,2). These metabolites can be formed from free or esterified fatty acids. Many of these oxidized metabolites have biological activity and have been implicated in various diseases including cardiovascular and neurodegenerative diseases, asthma, and cancer(3-7). Oxidized bioactive lipids can be formed enzymatically or by reactive oxygen species (ROS). Enzymes that metabolize fatty acids include cyclooxygenase (COX), lipoxygenase (LO), and cytochromes P450 (CYPs)(1,8). Enzymatic metabolism results in enantioselective formation whereas ROS oxidation results in the racemic formation of products. While this protocol focuses primarily on the analysis of AA- and some LA-derived bioactive metabolites; it could be easily applied to metabolites of other fatty acids. Bioactive lipids are extracted from cell lysate or media using liquid-liquid (l-l) extraction. At the beginning of the l-l extraction process, stable isotope internal standards are added to account for errors during sample preparation. Stable isotope dilution (SID) also accounts for any differences, such as ion suppression, that metabolites may experience during the mass spectrometry (MS) analysis(9). After the extraction, derivatization with an electron capture (EC) reagent, pentafluorylbenzyl bromide (PFB) is employed to increase detection sensitivity(10,11). Multiple reaction monitoring (MRM) is used to increase the selectivity of the MS analysis. Before MS analysis, lipids are separated using chiral normal phase high performance liquid chromatography (HPLC). The HPLC conditions are optimized to separate the enantiomers and various stereoisomers of the monitored lipids(12). This specific LC-MS method monitors prostaglandins (PGs), isoprostanes (isoPs), hydroxyeicosatetraenoic acids (HETEs), hydroxyoctadecadienoic acids (HODEs), oxoeicosatetraenoic acids (oxoETEs) and oxooctadecadienoic acids (oxoODEs); however, the HPLC and MS parameters can be optimized to include any fatty acid metabolites(13). Most of the currently available bioanalytical methods do not take into account the separate quantification of enantiomers. This is extremely important when trying to deduce whether or not the metabolites were formed enzymatically or by ROS. Additionally, the ratios of the enantiomers may provide evidence for a specific enzymatic pathway of formation. The use of SID allows for accurate quantification of metabolites and accounts for any sample loss during preparation as well as the differences experienced during ionization. Using the PFB electron capture reagent increases the sensitivity of detection by two orders of magnitude over conventional APCI methods. Overall, this method, SID-LC-EC-atmospheric pressure chemical ionization APCI-MRM/MS, is one of the most sensitive, selective, and accurate methods of quantification for bioactive lipids.
Collapse
Affiliation(s)
- Stacy L Gelhaus
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, USA
| | | | | |
Collapse
|
42
|
Brouwers JF. Liquid chromatographic–mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:763-75. [DOI: 10.1016/j.bbalip.2011.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
|
43
|
Keski-Rahkonen P, Huhtinen K, Poutanen M, Auriola S. Fast and sensitive liquid chromatography-mass spectrometry assay for seven androgenic and progestagenic steroids in human serum. J Steroid Biochem Mol Biol 2011; 127:396-404. [PMID: 21684334 DOI: 10.1016/j.jsbmb.2011.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
A fast and sensitive LC-MS/MS method for the quantitative analysis of seven steroid hormones in 150 μl of human serum was developed and validated. The following compounds were included: 17α-hydroxypregnenolone, 17α-hydroxyprogesterone, androstenedione, dehydroepiandrosterone, testosterone, pregnenolone, and progesterone. Individual stable isotope-labeled analogues were used as internal standards. Sample preparation was performed by liquid-liquid extraction, followed by oxime derivatization to improve the ionization efficiency of the analytes. In contrast to the common derivatization-based methods, the reaction was incorporated into the sample preparation process and the only additional step due to the derivatization was a short heating of the autosampler vials before the sample injection. Chromatographic separation was achieved on a reversed-phase column using a methanol-water gradient. For the analyte detection, a triple quadrupole instrument with electrospray ionization was used. Total run time was 7.0 min and the lower limits of quantification were in the range of 0.03-0.34 nM (0.01-0.10 ng/ml), depending on the analyte. The method was validated using human serum samples from both sexes and applied for the serum steroid profiling of endometriosis patients.
Collapse
Affiliation(s)
- Pekka Keski-Rahkonen
- Department of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
44
|
Yin H, Xu L, Porter NA. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem Rev 2011; 111:5944-72. [DOI: 10.1021/cr200084z] [Citation(s) in RCA: 1422] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiyong Yin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
45
|
Rangiah K, Shah SJ, Vachani A, Ciccimaro E, Blair IA. Liquid chromatography/mass spectrometry of pre-ionized Girard P derivatives for quantifying estrone and its metabolites in serum from postmenopausal women. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1297-307. [PMID: 21488127 PMCID: PMC3732066 DOI: 10.1002/rcm.4982] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An ultrasensitive stable isotope dilution liquid chromatography/selected reaction monitoring/mass spectrometry (LC/SRM/MS) assay has been developed for serum estrone, 16α-hydroxyestrone, 4-methoxyestrone, and 2- methoxyestrone. The enhanced sensitivity was obtained by the use of Girard P (GP) pre-ionized derivatives coupled with microflow LC. The limit of detection for each estrogen using 0.5 mL of serum was 0.156 pg/mL and linear standard curves were obtained up to 20 pg/mL. Serum samples from 20 postmenopausal women (10 lifetime non-smokers and 10 current smokers) were analyzed using this new assay. Mean serum concentrations of estrone and 2-methoxyestrone were 14.06 pg/mL (±1.56 pg/mL) and 3.30 pg/mL (±1.00 pg/mL), respectively, for the 20 subjects enrolled in the study. The mean estrone concentration determined by our ultrasensitive and highly specific assay was significantly lower than that reported for the control groups in most previous breast cancer studies of postmenopausal women. In addition (and contrary to many reports) serum 16α-hydroxyestrone was not detected in any of the subjects, and 4-methoxyestrone was detected in only one of the subjects. Furthermore, there were no significant differences in the mean serum concentrations of estrone and 2-methoxyestrone or the ratio of serum 2- methoxyestrone to estrone between the non-smoking and smoking groups. Interestingly, the one subject with measurable serum 4-methoxyestrone (2.3 pg/mL) had the lowest estrone and 2-methoxyestrone concentrations. Using this assay it will now be possible to obtain definitive information on the levels of serum estrone, 4-methoxyestrone, and 2-methoxyestrone in studies of cancer risk using small serum volumes available from previous epidemiology studies.
Collapse
Affiliation(s)
- Kannan Rangiah
- Center for Cancer Pharmacology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Sumit J. Shah
- Center for Cancer Pharmacology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Eugene Ciccimaro
- Thermo Fisher Scientific, 265 Davidson Avenue, Somerset, NJ 08873-4120, USA
| | - Ian A. Blair
- Center for Cancer Pharmacology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
- Center of Excellence in Environmental Toxicology, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| |
Collapse
|
46
|
Mesaros C, Lee SH, Blair IA. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3237-47. [PMID: 20972997 PMCID: PMC3348553 DOI: 10.1002/rcm.4760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [(13)C(20)]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Arachidonic Acid/chemistry
- Arachidonic Acid/metabolism
- Aryl Hydrocarbon Hydroxylases/metabolism
- Carbon Isotopes/chemistry
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Humans
- Linear Models
- Mice
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Rats
- Reference Standards
- Reproducibility of Results
- Sensitivity and Specificity
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Electrospray Ionization/standards
- Stereoisomerism
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobaku, Sendai 980-8578, Japan
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
47
|
Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spectrometry/mass spectrometry. J Chromatogr A 2010; 1217:5724-31. [PMID: 20684958 DOI: 10.1016/j.chroma.2010.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/16/2010] [Accepted: 07/01/2010] [Indexed: 11/22/2022]
Abstract
Due to the different physico-chemical properties of phenols, the development of a methodology for the simultaneous extraction and determination of phenolic compounds belonging to several families, such as chlorophenols (CPs), alkylphenols (APs), nitrophenols (NTPs) and cresols is difficult. This study shows the development and validation of a method for the analysis of 13 phenolic compounds (including CPs, APs, NTPs and cresols) in agricultural soils. For this purpose, a quick, easy, cheap, effective, rugged and safe (QuEChERS)-based procedure was developed, validated and applied to the analysis of real samples. A derivatization step prior to the final determination by gas chromatography (GC) coupled to a triple quadrupole analyzer operating in tandem mass spectrometry (QqQ-MS/MS) was performed by using acetic acid anhydride (AAA) and pyridine (Py). The optimized procedure was validated, obtaining average extraction recoveries in the range 69-103% (10microgkg(-1)), 65-98% (50microgkg(-1)), 76-112% (100microgkg(-1)) and 76-112% (300microgkg(-1)), with precision values (expressed as relative standard deviation, RSD)< or =22% (except for 4-chlorophenol) involving intra-day and inter-day studies. Furthermore, 15 real soil samples were analyzed by the proposed method in order to assess its applicability. Some phenolic compounds (e.g. 2,4,6-trichlorophenol or 4-tert-octylphenol) were found in the samples at trace levels (<10microgkg(-1)).
Collapse
|
48
|
Honda A, Miyazaki T, Ikegami T, Iwamoto J, Yamashita K, Numazawa M, Matsuzaki Y. Highly sensitive and specific analysis of sterol profiles in biological samples by HPLC-ESI-MS/MS. J Steroid Biochem Mol Biol 2010; 121:556-64. [PMID: 20302936 DOI: 10.1016/j.jsbmb.2010.03.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/27/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) is a powerful method for the microanalysis of compounds in biological samples. Compared with gas chromatography-mass spectrometry (GC-MS), this method is more broadly applicable to various compounds and usually does not require a derivatization step before analysis. However, when neutral sterols are analyzed, the sensitivities of usual HPLC-MS/MS method are not superior to those of GC-MS because the sterols are relatively resistant to ionization. In this review, we introduce the recent development of HPLC-MS/MS analysis for the quantification of non-cholesterol sterols. By adding an effective derivatization step to the conventional procedure, sterol analysis by HPLC-MS/MS surpassed that obtained by GC-MS in sensitivity. In addition, sufficient specificity of this method was achieved by selected reaction monitoring (SRM) and thorough chromatographic separation of each sterol.
Collapse
Affiliation(s)
- Akira Honda
- Center for Collaborative Research, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Penning TM, Lee SH, Jin Y, Gutierrez A, Blair IA. Liquid chromatography-mass spectrometry (LC-MS) of steroid hormone metabolites and its applications. J Steroid Biochem Mol Biol 2010; 121:546-55. [PMID: 20083198 PMCID: PMC2894289 DOI: 10.1016/j.jsbmb.2010.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/09/2010] [Accepted: 01/11/2010] [Indexed: 11/17/2022]
Abstract
Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-electrospray ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5alpha-dihydrotestosterone (DHT)-17beta-glucuronide, DHT-17beta-sulfate, and tibolone-17beta-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16alpha-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16alpha-hydroxy-E1 from 5pg/mL to 2000pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment.
Collapse
Affiliation(s)
- Trevor M Penning
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA.
| | | | | | | | | |
Collapse
|
50
|
Medvedovici A, Albu F, David V. HANDLING DRAWBACKS OF MASS SPECTROMETRIC DETECTION COUPLED TO LIQUID CHROMATOGRAPHY IN BIOANALYSIS. J LIQ CHROMATOGR R T 2010. [DOI: 10.1080/10826076.2010.484375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrei Medvedovici
- a Department of Analytical Chemistry, Faculty of Chemistry , University of Bucharest , Bucharest , Romania
| | - Florin Albu
- b Bioanalytical Laboratory , S.C. LaborMed Pharma S.A. , Bucharest , Romania
| | - Victor David
- a Department of Analytical Chemistry, Faculty of Chemistry , University of Bucharest , Bucharest , Romania
| |
Collapse
|