1
|
Simião CG, Bettanin F, Honorio KM, Silva Junior GJ, Veiga TAM, de Oliveira HPM, Bertotti M, Valle EMA, Codognoto L. Glycosylated flavonoid kaempferitrin: Electroanalytical detection and the proposal of an oxidation mechanism supported by quantum chemical calculations. Talanta 2024; 278:126513. [PMID: 38970965 DOI: 10.1016/j.talanta.2024.126513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In this work, the electrochemical behavior of the glycosylated flavonoid kaempferitrin was studied, and an electroanalytical methodology was developed for its determination in infusions of Bauhinia forficata using a boron-doped diamond electrode (BDD). The electrochemical behavior of the flavonoid was studied by cyclic voltammetry, and two irreversible oxidation peaks at 0.80 and 1.0 V vs Ag/AgCl were observed. The influence of the pH on the voltammograms was examined, and higher sensitivity was found at pH 7.0. The electrochemical process corresponding to peak 1 at 0.80 V is predominantly diffusion-controlled, as the study shows at varying scan rates. An analytical plot was obtained by square wave voltammetry at optimized experimental conditions (frequency = 100 s-1, amplitude = 90 mV, and step potential = 8 mV) in the concentration range from 3.4 μmol L-1 to 58 μmol L-1, with a linearity of 0.99. The limit of detection and limit of quantification values were 1.0 μmol L-1 and 3.4 μmol L-1, respectively. Three samples of Bauhinia forficata infusions (2 g of sample in 100 mL of water) were analyzed, and the KF values found were 5.0 × 10-4 mol L-1, 3.0 × 10-4 mol L-1, and 7.0 × 10-4 mol L-1, with recovery percentages of 98 %, 106 % and 94 %, respectively. Finally, experiments were performed with two other flavonoids (chrysin and apeginin) to compare and propose an electrochemical oxidation mechanism for kaempferitrin, which was supported by quantum chemical calculations.
Collapse
Affiliation(s)
- Carolina G Simião
- Department of Chemistry, Federal University of São Paulo, R. Professor Artur Riedel, 275, 09972-270, Diadema, SP, Brazil
| | - Fernanda Bettanin
- School of Arts, Science and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, 03828-000, São Paulo, SP, Brazil
| | - Kathia Maria Honorio
- School of Arts, Science and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, 03828-000, São Paulo, SP, Brazil
| | - Gilberto J Silva Junior
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Thiago André M Veiga
- Department of Chemistry, Federal University of São Paulo, R. Professor Artur Riedel, 275, 09972-270, Diadema, SP, Brazil
| | - Hueder Paulo Moises de Oliveira
- Center of Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, 09210-580, Santo André, SP, Brazil
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Eliana Maíra Agostini Valle
- Department of Chemistry, Federal University of São Paulo, R. Professor Artur Riedel, 275, 09972-270, Diadema, SP, Brazil
| | - Lucia Codognoto
- Department of Chemistry, Federal University of São Paulo, R. Professor Artur Riedel, 275, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
2
|
Arnot DJ, Yan S, Pace A, Ma L, Ehrlich SN, Takeuchi ES, Marschilok AC, Colosqui CE, Takeuchi KJ. Electrochemistry Beyond Solutions: Modeling Particle Self-Crowding of Nanoparticle Suspensions. J Am Chem Soc 2024; 146:26360-26368. [PMID: 39259825 PMCID: PMC11440487 DOI: 10.1021/jacs.4c09149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Nanoparticle suspensions hold promise to transform functionality of next-generation electrochemical systems including batteries, capacitors, wastewater treatment, and sensors, challenging the limits of existing electrochemical models. Classical solution-based electrochemistry assumes that charge is transported and transferred by point-like carriers. Herein, we examine the electrochemistry of a model aqueous suspension of nondissolvable electroactive nanoparticles over a wide concentration range using a rotating disk electrode. Past a concentration and rotation rate threshold, the electrochemistry deviates from solution theory with a maximum attainable current due to particle "self-crowding" where reacted particles on the electrode surface reduce the area accessible for charge transfer by unreacted particles. The observed response is rationalized with an analytical model considering the physical adsorption/desorption kinetics and interfacial transport of nondissolvable finite-size charge carriers. Experimental validation shows the model to be applicable across a range of electrode sizes and thus suitable for engineering electrochemical systems employing nondissolvable nanoparticle suspensions.
Collapse
Affiliation(s)
- David J Arnot
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Shan Yan
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Alexis Pace
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Carlos E Colosqui
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Limon MSR, Ahmad Z. Heterogeneity in Point Defect Distribution and Mobility in Solid Ion Conductors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50948-50960. [PMID: 39263738 DOI: 10.1021/acsami.4c12128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Alkali metal anodes paired with solid ion conductors offer promising avenues for enhancing battery energy density and safety. To facilitate rapid ion transport crucial for fast charging and discharging of batteries, it is essential to understand the behavior of point defects in these conductors. In this study, we investigate the heterogeneity of defect distribution in two prototypical solid ion conductors, Li3OCl and Li2PO2N (LiPON), by quantifying the defect formation energy (DFE) as a function of distance from the surface and interface through first-principles simulations. To simulate defects at the electrode-electrolyte interface, we perform calculations of Li+ vacancy in Li3OCl near its interface with lithium metal. Our results reveal a significant difference between the bulk and surface/interface DFE which could lead to defect aggregation/depletion near the surface/interface. Interestingly, while Li3OCl has a lower surface DFE than the bulk in most cases, LiPON follows the opposite trend with a higher surface DFE compared to the bulk. Due to this difference between bulk and surface DFE, the defect density can be up to 14 orders of magnitude higher at surfaces compared to the bulk. Further, we reveal that the DFE transition from surface/interface to bulk is precisely characterized by an exponentially decaying function. By incorporating this exponential trend, we develop a revised model for the average behavior of defects in solid ion conductors that offers a more accurate description of the influence of grain sizes. Surface effects dominate for grain sizes ≲1 μm, highlighting the importance of surface defect engineering and the DFE function for accurately capturing ion transport in devices. We further explore the kinetics of defect redistribution by calculating the migration barriers for defect movement between bulk and surfaces. We find a highly asymmetric energy landscape for the lithium vacancies, exhibiting lower migration barriers for movement toward the surface compared to the bulk, while interstitial defects exhibit comparable kinetics between surface and bulk regions. These insights highlight the importance of considering both thermodynamic and kinetic factors in designing solid ion conductors for improved ion transport at surfaces and interfaces.
Collapse
Affiliation(s)
- Md Salman Rabbi Limon
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Zeeshan Ahmad
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Sy M, Ibrahim EA, Farooq A. VOC-Certifire: Certifiably Robust One-Shot Spectroscopic Classification via Randomized Smoothing. ACS OMEGA 2024; 9:39033-39042. [PMID: 39310143 PMCID: PMC11411668 DOI: 10.1021/acsomega.4c05757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Spectroscopic methods are advantageous for gas detection with applications ranging from safety to operational efficiency. Despite the potential of laser-based sensors, real-world challenges, such as noise, interference and unseen conditions, hinder the accurate identification of species. The use of conventional machine learning (ML) models is constrained by extensive data requirements and their limited adaptability to new conditions. Although augmentation-based strategies have proven to improve the robustness of machine learning models, they still do not offer a complete defense. To address these challenges, this study focuses on three primary goals: first, to detect pressure-induced spectral broadening using simple yet effective augmentations; second, to bypass the need for extensive data sets by deploying a one-shot learning approach that can identify up to 12 volatile organic compounds (VOCs); and third, to provide a provable certification for the one-shot learning model predictions via randomized smoothing. To assess the effectiveness of our proposed augmentations and randomized smoothing, we perform a comparative study with four distinct models: VOC-net, VOC-lite, VOC-plus, and VOC-certifire. Remarkably, the one-shot learning model proposed herein, VOC-certifire, delivers predictions that match the baseline model VOC-net. The VOC-certifire predictions not only exhibit robustness and reliability but are also certified within a predefined norm radius. Such a certification is particularly useful for gas detection, where the robustness, precision and consistency are key to well-informed decision-making.
Collapse
Affiliation(s)
- Mohamed Sy
- Physical Science and Engineering
Division (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Emad Al Ibrahim
- Physical Science and Engineering
Division (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Aamir Farooq
- Physical Science and Engineering
Division (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Patrick SC, Hein R, Beer PD, Davis JJ. Non-faradaic capacitive cation sensing under flow. Chem Sci 2024:d4sc05271d. [PMID: 39263657 PMCID: PMC11382808 DOI: 10.1039/d4sc05271d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
The ability to continually monitor target ion species in real-time is a highly sought-after endeavour in the field of host-guest chemistry, given its direct pertinence to medical and environmental applications. Developing methodologies which support sensitive and continuous ion sensing in aqueous media, however, remains a challenge. Herein, we present a versatile and facile, proof-of-concept electrochemical sensing methodology based on non-faradaic capacitance, which can be operated continuously with high temporal resolution (≈1.4 s), in conjunction with custom-designed integrated microfluidics. The potential of this method is demonstrated for cation sensing at a chemically simple benzo-15-crown-5-based molecular film (B15C5SAM) as a representative redox-inactive, receptive interface. Detection limits as low as 4 μM are obtained for Na+ by these entirely reagentless analyses, and are additionally characterised by exceptional baseline stabilities that are able to support continuous sensing over multiple days. The platform performs well in artificial sweat across physiologically relevant spans of sodium concentration, and provides meaningful dose-dependent responses in freshwater samples. Finally, the high assay temporal resolution affords an ability to resolve both the kinetics of binding (association/dissociation) and notably characteristic fingerprints for different alkali metals which may be diagnostic of different interfacial ion binding modes.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Robert Hein
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
6
|
Farahani S, Glasco DL, Elhassan MM, Sireesha P, Bell JG. Integration of 3D printed Mg 2+ potentiometric sensors into microfluidic devices for bioanalysis. LAB ON A CHIP 2024; 24:4096-4104. [PMID: 39086302 DOI: 10.1039/d4lc00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Electrochemical sensors provide an affordable and reliable approach towards the detection and monitoring of important biological species ranging from simple ions to complex biomolecules. The ability to miniaturize electrochemical sensors, coupled with their affordability and simple equipment requirements for signal readout, permits the use of these sensors at the point-of-care where analysis using non-invasively obtainable biofluids is receiving growing interest by the research community. This paper describes the design, fabrication, and integration of a 3D printed Mg2+ potentiometric sensor into a 3D printed microfluidic device for the quantification of Mg2+ in low-sample volume biological fluids. The sensor employs a functionalized 3D printable photocurable methacrylate-based ion-selective membrane affixed to a carbon-mesh/epoxy solid-contact transducer for the selective determination of Mg2+ in sweat, saliva and urine. The 3D printed Mg2+ ion-selective electrode (3Dp-Mg2+-ISE) provided a Nernstian response of 27.5 mV per decade with a linear range of 10 mM to 39 μM, covering the normal physiological and clinically relevant levels of Mg2+ in biofluids. 3Dp-Mg2+-ISEs selectively measure Mg2+ over other biologically present cations - sodium, potassium, calcium, ammonium - as well as provide high stability in the analytical signal with a drift of just 13 μV h-1 over 10 hours. Comparison with poly(vinylchloride)-based Mg2+-ISEs showed distinct advantages to the use of 3Dp-Mg2+-ISEs, with respect to stability, resilience towards biofouling and importantly providing a streamlined and rapid approach towards mass production of selective and reliable sensors. The miniaturization capabilities of 3D printing coupled with the benefits of microfluidic analysis (i.e., low sample volumes, minimal reagent consumption, automation of multiple assays, etc.), provides exciting opportunities for the realization of the next-generation of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Sarah Farahani
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA.
| | - Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA.
| | - Manar M Elhassan
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA.
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Pedaballi Sireesha
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA.
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA.
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Washington 99164, USA
| |
Collapse
|
7
|
Pan Y, Baster D, Käch D, Reger J, Wettstein L, Krumeich F, El Kazzi M, Bezdek MJ. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angew Chem Int Ed Engl 2024:e202412084. [PMID: 39087346 DOI: 10.1002/anie.202412084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV/Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.
Collapse
Affiliation(s)
- Yanlin Pan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Dominika Baster
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jan Reger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Lionel Wettstein
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Mario El Kazzi
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Máté J Bezdek
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Shi M, Wada H. Optimized Ammonia-Sensing Electrode with CeO 2/rGO Nano-Composite Coating Synthesized by Focused Laser Ablation in Liquid. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1238. [PMID: 39120343 PMCID: PMC11314089 DOI: 10.3390/nano14151238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
This study investigated the synthesis of cerium oxide (CeO2) nanoparticles (NPs) and composites with reduced graphene oxide (rGO) for the enhanced electrochemical sensing of ammonia. CeO2 NPs were prepared by the focused laser ablation in liquid (LAL) method, which enabled the production of high-purity, spherical nanoparticles with a uniform dispersion and sizes under 50 nm in a short time. The effects of varying irradiation fluence and time on the nanoparticle size, production yield, and dispersion were systematically studied. The synthesized CeO2 NPs were doped with rGO to form CeO2/rGO composites, which were drop casted to modify the glassy carbon electrodes (GCE). The CeO2/rGO-GCE electrodes exhibited superior electrochemical properties compared with single-component electrodes, which demonstrated the significant potential for ammonia detection, especially at a 4 J/cm2 fluence. The CeO2/rGO composites showed uniformly dispersed CeO2 NPs between the rGO sheets, which enhanced the conductivity, as confirmed by SEM, EDS mapping, and XRD analysis. Cyclic voltammetry data demonstrated superior electrochemical activity of the CeO2/rGO composite electrodes, with the 2rGO/1CeO2 ratio showing the highest current response and sensitivity. The CV response to varying ammonia concentrations exhibited a linear relationship, indicating the electrode's capability for accurate quantification. These findings highlight the effectiveness of focused laser ablation in enhancing nanoparticle synthesis and the promising synergistic effects of CeO2 and rGO in developing high-performance electrochemical sensors.
Collapse
Affiliation(s)
| | - Hiroyuki Wada
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan;
| |
Collapse
|
9
|
Lei S, Zou Z, Tian K, Zheng Y, Ding M, Hu G, Bin Yang H, Guo C, Li C, Hu FX. Sensitive subcellular scale and real-time detection of hydrogen peroxide by a W-doped Pt microelectrode. Chem Commun (Camb) 2024; 60:7630-7633. [PMID: 38958176 DOI: 10.1039/d4cc02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A W-doped Pt modified graphene oxide (Pt-W-GO) electrochemical microelectrode was developed to detect hydrogen peroxide (H2O2) in real time at a subcellular scale. Interestingly, results showed that the concentration of H2O2 in the nucleus of HeLa cells was 2.68 times and 0.51 times that in the extracellular membrane and cytoplasm, respectively.
Collapse
Affiliation(s)
- Shaohui Lei
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zhuo Zou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Kangling Tian
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yan Zheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mei Ding
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Guangxuan Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Fang Xin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
10
|
Priscillal IJD, Wang SF. Neodymium niobate nanospheres on functionalized carbon nanofibers: a nanoengineering approach for highly sensitive vanillin detection. NANOSCALE 2024; 16:12459-12473. [PMID: 38855854 DOI: 10.1039/d4nr00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Vanillin (VAN), the primary aroma compound in vanilla, contributes significantly to sensory delight; however, its unrestrained presence poses notable health risks. In response to the demanding concern regarding food safety, researchers have directed their efforts towards the detection of VAN, seeking sustainable strategies for contamination prevention. A groundbreaking solution has emerged in the form of a novel sensing platform, whose core lies on a finely tuned electrode, crafted through the incorporation of nano-sized NdNbO4 spheres onto carbon nanofibers (CNFs). This incorporation serves to augment the capabilities of a glassy carbon electrode (GCE), transforming it into a highly sensitive detector primed for vanillin detection. The NdNbO4/f-CNF nanocomposite embodies a paradigm of synergistic collaboration, wherein the nonlinear cumulative effects of synergism and quantum confinement impart exceptional performance characteristics. Notably, the sensor achieves a low detection limit of 6.3 nmol L-1, indicative of its remarkable sensitivity of 2.3 μA μ(mol L-1)-1 cm-2 and precision of 1.519 and 4.72%. Moreover, the sensor boasts a wide linear range spanning from 0.001 to 63.101 μmol L-1. These attributes, coupled with its discerning selectivity and robust stability, underscore its efficacy as a versatile tool for vanillin detection. Indeed, its successful deployment in monitoring food samples underscores its applicability across diverse culinary contexts, further cementing its status as a pivotal asset in safeguarding food quality and consumer well-being.
Collapse
Affiliation(s)
- I Jenisha Daisy Priscillal
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
11
|
Zheng R, Wu A, Li J, Tang Z, Zhang J, Zhang M, Wei Z. Progress and Outlook on Electrochemical Sensing of Lung Cancer Biomarkers. Molecules 2024; 29:3156. [PMID: 38999110 PMCID: PMC11243195 DOI: 10.3390/molecules29133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Electrochemical biosensors have emerged as powerful tools for the ultrasensitive detection of lung cancer biomarkers like carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and alpha fetoprotein (AFP). This review comprehensively discusses the progress and potential of nanocomposite-based electrochemical biosensors for early lung cancer diagnosis and prognosis. By integrating nanomaterials like graphene, metal nanoparticles, and conducting polymers, these sensors have achieved clinically relevant detection limits in the fg/mL to pg/mL range. We highlight the key role of nanomaterial functionalization in enhancing sensitivity, specificity, and antifouling properties. This review also examines challenges related to reproducibility and clinical translation, emphasizing the need for standardization of fabrication protocols and robust validation studies. With the rapid growth in understanding lung cancer biomarkers and innovations in sensor design, nanocomposite electrochemical biosensors hold immense potential for point-of-care lung cancer screening and personalized therapy guidance. Realizing this goal will require strategic collaboration among material scientists, engineers, and clinicians to address technical and practical hurdles. Overall, this work provides valuable insight for developing next-generation smart diagnostic devices to combat the high mortality of lung cancer.
Collapse
Affiliation(s)
- Rui Zheng
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Aochun Wu
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Jiyue Li
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Zhengfang Tang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Junping Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Mingli Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Zheng Wei
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| |
Collapse
|
12
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
13
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
14
|
Saya L, Ratandeep, Arya B, Rastogi K, Verma M, Rani S, Sahu PK, Singh MR, Singh WR, Hooda S. Recent advances in sensing toxic nerve agents through DMMP model simulant using diverse nanomaterials-based chemical sensors. Talanta 2024; 272:125785. [PMID: 38394750 DOI: 10.1016/j.talanta.2024.125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| | - Ratandeep
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Bipasa Arya
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Kanjika Rastogi
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sanjeeta Rani
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Prasanta Kumar Sahu
- Department of Chemistry, Shivaji College, (University of Delhi), Raja Garden, New Delhi, 110027, India
| | - M Ramananda Singh
- Department of Chemistry, Kirorimal College, (University of Delhi), Delhi, 110007, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
15
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
16
|
Shahzad U, Saeed M, Marwani HM, Al-Humaidi JY, Rehman SU, Althomali RH, Awual MR, Rahman MM. Recent Progress on Potentiometric Sensor Applications Based on Nanoscale Metal Oxides: A Comprehensive Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38593048 DOI: 10.1080/10408347.2024.2337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemical sensors have been the subject of much research and development as of late, with several publications detailing new designs boasting enhanced performance metrics. That is, without a doubt, because such sensors stand out from other analytical tools thanks to their excellent analytical characteristics, low cost, and ease of use. Their progress has shown a trend toward seeking out novel useful nano structure materials. A variety of nanostructure metal oxides have been utilized in the creation of potentiometric sensors, which are the subject of this article. For screen-printed pH sensors, metal oxides have been utilized as sensing layers due to their mixed ion-electron conductivity and as paste-ion-selective electrode components and in solid-contact electrodes. Further significant uses include solid-contact layers. All the metal oxide uses mentioned are within the purview of this article. Nanoscale metal oxides have several potential uses in the potentiometry method, and this paper summarizes such uses, including hybrid materials and single-component layers. Potentiometric sensors with outstanding analytical properties can be manufactured entirely from metal oxides. These novel sensors outperform the more traditional, conventional electrodes in terms of useful characteristics. In this review, we looked at the potentiometric analytical properties of different building solutions with various nanoscale metal oxides.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shujah Ur Rehman
- Institute of Energy & Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, Saudi Arabia
| | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Silva-Neto HA, Jaime JC, Rocha DS, Sgobbi LF, Coltro WKT. Fabrication of paper-based analytical devices using stencil-printed glass varnish barriers for colorimetric detection of salivary α-amylase. Anal Chim Acta 2024; 1297:342336. [PMID: 38438226 DOI: 10.1016/j.aca.2024.342336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Developing disposable paper-based devices has positively impacted analytical science, particularly in developing countries. Some benefits of those devices include their versatility, affordability, environmentally friendly, and the possibility of being integrated with portable electrochemical or colorimetric detectors. Paper-based analytical devices (PADs) comprising circular zones and microfluidic networks have been successfully employed in the analytical chemistry reign. However, the combination of the stencil-printing method and alternative binder has not been satisfactorily explored for fabricating colorimetric paper devices. RESULTS We developed PADs exploring the stencil printing approach and glass varnish as the hydrophobic chemical agent. As a proof-of-concept, the colorimetric assay of salivary α-amylase (sAA) was performed in saliva samples. Through the scanning electron microscopy measurements, it was possible to indicate satisfactory definitions between native fibers and barrier, and that the measured values for the channel width revealed suitable fidelity (R2 = 0.99) with the nominal widths (ranging from 400 to 5000 μm). The proposed hydrophobic barrier exhibited excellent chemical resistance. The analytical applicability for detecting sAA revealed linear behavior in the range from 2 to 12 U mL-1 (R2 = 0.99), limit of detection of 0.75 U mL-1, reproducibility (RSD ≤2.4%), recovery experiments ranged from 89 to 108% and AGREE response (0.86). In addition, the colorimetric analysis of sAA in four different saliva samples demonstrated levels ranging from 202 to 2080 U mL-1, which enabled monitoring the absence and presence of periodontitis. SIGNIFICANCE This report has presented the first use of a self-adhesive mask and glass varnish for creating circular zones and microfluidic architectures on paper without using thermic or UV curing treatments. Also, the proposed analytical methodology for detecting sAA exhibited suitable ecological impact considering the AGREE tool. We believe the proposed fabrication of paper devices emerges as a novel, simple, high-fidelity microfluidic channel and portable analytical approach for colorimetric sensing.
Collapse
Affiliation(s)
- Habdias A Silva-Neto
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Jordana C Jaime
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Danielly S Rocha
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
18
|
Honda T, Takemura K, Matsumae S, Morita N, Iwasaki W, Arita R, Ueda S, Liang YW, Fukuda O, Kikunaga K, Ohmagari S. Quantification of caffeine in coffee cans using electrochemical measurements, machine learning, and boron-doped diamond electrodes. PLoS One 2024; 19:e0298331. [PMID: 38530838 DOI: 10.1371/journal.pone.0298331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 03/28/2024] Open
Abstract
Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.
Collapse
Affiliation(s)
- Tatsuya Honda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Kenshin Takemura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Susumu Matsumae
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Nobutomo Morita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Wataru Iwasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Ryoji Arita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Suguru Ueda
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Yeoh Wen Liang
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Osamu Fukuda
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Kazuya Kikunaga
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Shinya Ohmagari
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| |
Collapse
|
19
|
Patel V, Mardolkar A, Shelar A, Tiwari R, Srivastava R. Wearable sweat chloride sensors: materials, fabrication and their applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1439-1453. [PMID: 38411394 DOI: 10.1039/d3ay01979a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chloride is a crucial anion required for multiple functions in the human body including maintaining acid-base balance, fluid balance, electrical neutrality and supporting muscles and nerve cells. Low-chloride levels can cause nausea, diarrhoea, etc. Chloride levels are measured in different body fluids such as urine, serum, sweat and saliva. Sweat chloride measurements are used for multiple applications including disease diagnosis, sports monitoring, and geriatric care. For instance, a sweat chloride test is performed for cystic fibrosis screening. Further, sweat also offers continuous non-invasive access to body fluids for real-time monitoring of chloride that could be used for sports and geriatric care. This review focuses on wearable chloride sensors that are used for periodic and continuous chloride monitoring. The multiple sections in the paper discuss the clinical significance of chloride, detection methods, sensor fabrication methods and their application in cystic fibrosis screening, sports and geriatric care. Finally, the last section discusses the limitation of current sensors and future directions for wearable chloride sensors.
Collapse
Affiliation(s)
- Vinay Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India, 400076.
| | - Anvi Mardolkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India, 400076.
| | - Akshata Shelar
- St. Xavier's College, Autonomous, Mumbai, Maharashtra 400001, India
| | - Ritu Tiwari
- Guru Nanak Khalsa College, Matunga East, Mumbai, Maharashtra 400019, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India, 400076.
| |
Collapse
|
20
|
Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem Soc Rev 2024; 53:2530-2577. [PMID: 38299314 DOI: 10.1039/d2cs00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
- Korea Sensor Lab, Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
21
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
22
|
Erdem A, Senturk H. Smartphone-Controlled Aptasensor for Voltammetric Detection of Patulin in Apple Juice. SENSORS (BASEL, SWITZERLAND) 2024; 24:754. [PMID: 38339470 PMCID: PMC10856927 DOI: 10.3390/s24030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
Patulin (PAT) is a mycotoxin that adversely affects the health of humans and animals. PAT can be particularly found in products such as apples and apple juice and can cause many health problems if consumed. Therefore, accurate and sensitive determination of PAT is very important for food quality and human and animal health. A voltammetric aptasensor was introduced in this study for PAT determination while measuring the changes at redox probe signal. The limit of detection (LOD) was found to be 0.18 pg/mL in the range of 1-104 pg/mL of PAT in buffer medium under optimum experimental conditions. The selectivity of the PAT aptasensor against ochratoxin A, fumonisin B1 and deoxynivalenol mycotoxins was examined and it was found that the aptasensor was very selective to PAT. PAT determination was performed in an apple juice medium for the first time by using a smartphone-integrated portable device, and accordingly, an LOD of 0.47 pg/mL was achieved in diluted apple juice medium. A recovery range of 91.24-93.47% was obtained for PAT detection.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova 35100, Izmir, Turkey
| | | |
Collapse
|
23
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
24
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
25
|
Anh NT, Tung LM, Vinh LK, Van Quy N, Van Hoang O, Dinh NX, Le AT. An on-site and portable electrochemical sensing platform based on spinel zinc ferrite nanoparticles for the quality control of paracetamol in pharmaceutical samples. NANOSCALE ADVANCES 2023; 6:256-267. [PMID: 38125592 PMCID: PMC10729869 DOI: 10.1039/d3na00749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, crystalline spinel zinc ferrite nanoparticles (ZnFe2O4 NPs) were successfully prepared and proposed as a high-performance electrode material for the construction of an electrochemical sensing platform for the detection of paracetamol (PCM). By modifying a screen-printed carbon electrode (SPE) with ZnFe2O4 NPs, the electrochemical characteristics of the ZnFe2O4/SPE and the electrochemical oxidation of PCM were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV) methods. The calculated electrochemical kinetic parameters from these techniques including electrochemically active surface area (ECSA), peak-to-peak separation (ΔEp), charge transfer resistance (Rct), standard heterogeneous electron-transfer rate constants (k0), electron transfer coefficient (α), catalytic rate constant (kcat), adsorption capacity (Γ), and diffusion coefficient (D) proved that the as-synthesized ZnFe2O4 NPs have rapid electron/mass transfer characteristics, intrinsic electrocatalytic activity, and facilitate the adsorption-diffusion of PCM molecules towards the modified electrode surface. As expected, the ZnFe2O4/SPE offered excellent analytical performance towards sensing of PCM with a detection limit of 0.29 μM, a wide linear range of 0.5-400 μM, and high electrochemical sensitivity of 1.1 μA μM-1 cm-2. Moreover, the proposed ZnFe2O4-based electrochemical nanosensor also exhibited good repeatability, high anti-interference ability, and practical feasibility toward PCM sensing in a pharmaceutical tablet. Based on these observations, the designed electrochemical platform not only provides a high-performance nanosensor for the rapid and highly efficient detection of PCM but also opens a new avenue for routine quality control analysis of pharmaceutical formulations.
Collapse
Affiliation(s)
- Nguyen Tuan Anh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang University My Tho City Tien Giang Province Vietnam
| | - Le Khanh Vinh
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology (VAST) Ho Chi Minh 70000 Vietnam
| | - Nguyen Van Quy
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) 01 Dai Co Viet Road Hanoi 10000 Vietnam
| | - Ong Van Hoang
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
- University of Transport Technology Trieu Khuc, Thanh Xuan District Hanoi Viet Nam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, PHENIKAA University Hanoi 12116 Vietnam
| |
Collapse
|
26
|
Huang K, Wang YH, Zhang H, Wang TY, Liu XH, Liu L, Jiang H, Wang XM. Application and outlook of electrochemical technology in single-cell analysis. Biosens Bioelectron 2023; 242:115741. [PMID: 37816284 DOI: 10.1016/j.bios.2023.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Cellular heterogeneity, especially in some important diseased cells like tumor cells, acts as an invisible driver for disease development like cancer progression in the tumor ecosystem, contributing to differences in the macroscopic and microscopic detection of disease lesions like tumors. Traditional analysis techniques choose group information masked by the mean as the analysis sample, making it difficult to achieve precise diagnosis and target treatment, on which could be shed light via the single-cell level determination/bioanalysis. Hence, in this article we have reviewed the special characteristic differences among various kinds of typical single-cell bioanalysis strategies and electrochemical techniques, and then focused on the recent advance and special bio-applications of electrochemiluminescence and micro-nano electrochemical sensing mediated in single-cell bioimaging & bioanalysis. Especially, we have summarized the relevant research exploration of the possibility to establish the in-situ single-cell electrochemical methods to detect cell heterogeneity through determination of specific biomolecules and bioimaging of some important biological processes. Eventually, this review has explored some important advances of electrochemical single-cell detection techniques for the real-time cellular bioimaging and diagnostics of some disease lesions like tumors. It raises the possibility to provide the specific in-situ platform to exploit the versatile, sensitive, and high-resolution electrochemical single-cell analysis for the promising biomedical applications like rapid tracing of some disease lesions or in vivo bioimaging for precise cancer theranostics.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Han Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ting Ya Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiao Hui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xue Mei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
27
|
Cao Y, Wu R, Gao YY, Zhou Y, Zhu JJ. Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks. NANO-MICRO LETTERS 2023; 16:37. [PMID: 38032432 PMCID: PMC10689676 DOI: 10.1007/s40820-023-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Covalent organic frameworks (COFs), a rapidly developing category of crystalline conjugated organic polymers, possess highly ordered structures, large specific surface areas, stable chemical properties, and tunable pore microenvironments. Since the first report of boroxine/boronate ester-linked COFs in 2005, COFs have rapidly gained popularity, showing important application prospects in various fields, such as sensing, catalysis, separation, and energy storage. Among them, COFs-based electrochemical (EC) sensors with upgraded analytical performance are arousing extensive interest. In this review, therefore, we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors. Notably, the emerged COFs in the electrochemiluminescence (ECL) realm are thoroughly covered along with their preliminary applications. Additionally, final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors, as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ru Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yan-Yan Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
28
|
Lenar N, Piech R, Wardak C, Paczosa-Bator B. Application of Metal Oxide Nanoparticles in the Field of Potentiometric Sensors: A Review. MEMBRANES 2023; 13:876. [PMID: 37999362 PMCID: PMC10672869 DOI: 10.3390/membranes13110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Recently, there has been rapid development of electrochemical sensors, and there have been numerous reports in the literature that describe new constructions with improved performance parameters. Undoubtedly, this is due to the fact that those sensors are characterized by very good analytical parameters, and at the same time, they are cheap and easy to use, which distinguishes them from other analytical tools. One of the trends observed in their development is the search for new functional materials. This review focuses on potentiometric sensors designed with the use of various metal oxides. Metal oxides, because of their remarkable properties including high electrical capacity and mixed ion-electron conductivity, have found applications as both sensing layers (e.g., of screen-printing pH sensors) or solid-contact layers and paste components in solid-contact and paste-ion-selective electrodes. All the mentioned applications of metal oxides are described in the scope of the paper. This paper presents a survey on the use of metal oxides in the field of the potentiometry method as both single-component layers and as a component of hybrid materials. Metal oxides are allowed to obtain potentiometric sensors of all-solid-state construction characterized by remarkable analytical parameters. These new types of sensors exhibit properties that are competitive with those of the commonly used conventional electrodes. Different construction solutions and various metal oxides were compared in the scope of this review based on their analytical parameters.
Collapse
Affiliation(s)
- Nikola Lenar
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, PL-20031 Lublin, Poland;
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| |
Collapse
|
29
|
Baharfar M, Lin J, Kilani M, Zhao L, Zhang Q, Mao G. Gas nanosensors for health and safety applications in mining. NANOSCALE ADVANCES 2023; 5:5997-6016. [PMID: 37941945 PMCID: PMC10629029 DOI: 10.1039/d3na00507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The ever-increasing demand for accurate, miniaturized, and cost-effective gas sensing systems has eclipsed basic research across many disciplines. Along with the rapid progress in nanotechnology, the latest development in gas sensing technology is dominated by the incorporation of nanomaterials with different properties and structures. Such nanomaterials provide a variety of sensing interfaces operating on different principles ranging from chemiresistive and electrochemical to optical modules. Compared to thick film and bulk structures currently used for gas sensing, nanomaterials are advantageous in terms of surface-to-volume ratio, response time, and power consumption. However, designing nanostructured gas sensors for the marketplace requires understanding of key mechanisms in detecting certain gaseous analytes. Herein, we provide an overview of different sensing modules and nanomaterials under development for sensing critical gases in the mining industry, specifically for health and safety monitoring of mining workers. The interactions between target gas molecules and the sensing interface and strategies to tailor the gas sensing interfacial properties are highlighted throughout the review. Finally, challenges of existing nanomaterial-based sensing systems, directions for future studies, and conclusions are discussed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Liang Zhao
- Azure Mining Technology Pty Ltd Sydney New South Wales 2067 Australia
| | - Qing Zhang
- CCTEG Changzhou Research Institute Changzhou 213015 China
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| |
Collapse
|
30
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
31
|
Faqihi AA, Keegan N, Šiller L, Hedley J. Effect of Ambient Environment on Laser Reduction of Graphene Oxide for Applications in Electrochemical Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8002. [PMID: 37766056 PMCID: PMC10536370 DOI: 10.3390/s23188002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Electrochemical sensors play an important role in a variety of applications. With the potential for enhanced performance, much of the focus has been on developing nanomaterials, in particular graphene, for such sensors. Recent work has looked towards laser scribing technology for the reduction of graphene oxide as an easy and cost-effective option for sensor fabrication. This work looks to develop this approach by assessing the quality of sensors produced with the effect of different ambient atmospheres during the laser scribing process. The graphene oxide was reduced using a laser writing system in a range of atmospheres and sensors characterised with Raman spectroscopy, XPS and cyclic voltammetry. Although providing a slightly higher defect density, sensors fabricated under argon and nitrogen atmospheres exhibited the highest average electron transfer rates of approximately 2 × 10-3 cms-1. Issues of sensor reproducibility using this approach are discussed.
Collapse
Affiliation(s)
- Abdullah A. Faqihi
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.A.F.); (L.Š.)
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Neil Keegan
- Translational and Clinical Research Institute, Newcastle upon Tyne NE1 7RU, UK;
| | - Lidija Šiller
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.A.F.); (L.Š.)
| | - John Hedley
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.A.F.); (L.Š.)
| |
Collapse
|
32
|
Dabhade AH, Verma RP, Paramasivan B, Kumawat A, Saha B. Development of silver nanoparticles and aptamer conjugated biosensor for rapid detection of E. coli in a water sample. 3 Biotech 2023; 13:244. [PMID: 37346389 PMCID: PMC10279593 DOI: 10.1007/s13205-023-03663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
A simple, rapid, and sensitive electrochemical biosensor based on a screen-printed carbon electrode (SPCE) was developed for onsite detection of E. coli in real time. This work analyzed the effect of aptamer conjugation and PBS buffer solution on the colloidal stability of the silver nanoparticles (AgNPs). Aggregations of the AgNPs after aptamer conjugation in PBS buffer were observed from the particle size distribution analysis. The AgNP-aptamer conjugation and its affinity towards E. coli (DH5α) were confirmed by UV-visible spectrophotometry, which showed a linear increment in the absorption with increasing E.coli concentration. The screen-printed carbon electrodes were modified by drop-casting of AgNPs, which were used as an effective immobilization platform for E. coli-specific aptamers. The modified electrode's surface modification and redox behavior were characterized using cyclic voltammetry. Finally, E. coli was detected using differential pulse voltammetry with an optimized incubation time of 15 min. The developed biosensors showed a linear decrease in current intensity with an increase in the concentration of E. coli. The biosensor had a relative standard deviation (RSD) of 6.91% (n = 3), which showed good reproducibility. The developed biosensors are highly sensitive and have a limit of detection (LOD) as low as 150 CFU/ml. The biosensor showed good selectivity for E.coli coli when comparing the signal response obtained for bacteria other than E.coli. Also, the biosensor was found stable for four weeks at room temperature and showed high recoveries from 95.27% to 107% during the tap water sensitivity validation.
Collapse
Affiliation(s)
- Ajinkya Hariram Dabhade
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Ravi Prakash Verma
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Adhidesh Kumawat
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Biswajit Saha
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355 India
| |
Collapse
|
33
|
Priscillal IJD, Wang SF. Nanoengineered lanthanum niobate nanocaviar anchored carbon nanofibers for trace level detection of menadione in environmental samples. ENVIRONMENTAL RESEARCH 2023; 227:115794. [PMID: 37011790 DOI: 10.1016/j.envres.2023.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/11/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
An innovative sensor is prepared by electrode modification through a nano-ranged electrode modifier composed of LaNbO4 nano caviars decorated on the enmeshed carbon nanofibers to identify excess vitamins in animal feed. Menadione (Vitamins K3) is a micronutrient fundamentally required in precise quantities for animal health upkeep. Still, its exploitation has recently resulted in water reservoir contamination through waste generated from animal husbandry. Sustainable prevention of water contamination makes menadione detection highly imperative and flickered the attention of researchers. Considering these aspects, a novel menadione sensing platform is designed by interdisciplinary incorporation of nanoscience and electrochemical engineering. The structural and crystallographic features and the electrode modifier's morphological insights were keenly investigated. The hierarchal arrangement of individual constituents in nanocomposite is benefited through hybrid heterojunction and quantum confinement that synchronously activate the menadione detection with a LOD of 68.5 nM and 67.49 nM for oxidation and reduction, respectively. The as-prepared sensor has a wide linear range (0.1-173.6 μM), high sensitivity, good selectivity, and stability. The application of this sensor is extended to a water sample to monitor the consistency of the proposed sensor.
Collapse
Affiliation(s)
- I Jenisha Daisy Priscillal
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| |
Collapse
|
34
|
Zhang M, Zhang J. Highly Selective NH 3 Sensor Based on MoS 2/WS 2 Heterojunction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1835. [PMID: 37368265 DOI: 10.3390/nano13121835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
In this paper, the heterostructure of MoS2/WS2 was prepared by a hydrothermal method; the n-n heterostructure was demonstrated using TEM combined with Mott-Schottky analysis. The valence and conduction band positions were further identified by the XPS valence band spectra. The NH3-sensing properties were assessed at room temperature by changing the mass ratio of the MoS2 and WS2 components. The 50 wt%-MoS2/WS2 sample exhibited the best performance, with a peak response of 23643% to NH3 at a concentration of 500 ppm, a minimum detection limit of 20 ppm, and a fast recovery time of 2.6 s. Furthermore, the composites-based sensors demonstrated an excellent humidity immune property with less than one order of magnitude in the humidity range of 11-95% RH, revealing the practical application value of these sensors. These results suggest that the MoS2/WS2 heterojunction is an intriguing candidate for fabricating NH3 sensors.
Collapse
Affiliation(s)
- Min Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinzhu Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
35
|
Jenisha Daisy Priscillal I, Wang SF. Fergusonite-type rare earth niobates ANbO 4 (A = Nd, Sm, and Eu) as electrode modifiers: deep insights into A site variations towards bifunctional electrochemical sensing applications. NANOSCALE 2023; 15:8693-8705. [PMID: 36971234 DOI: 10.1039/d3nr00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lanthanide orthoniobates, LnNbO4 (Ln = Nd, Sm, and Eu), are a domineering class of binary metal oxides with significant catalytic behavior and effective charge transfer ability, acting as eminent candidates to be explored as electrode materials. However, niobates have limitations to be used in sensing platforms due to the complicated synthetic procedures, which have been addressed in this study by proposing a facile hydrothermal tactic based on in situ homoleptic complex formation. All three niobates are isostructural with the monoclinic form of fergusonite structure, which was confirmed by XRD studies. The impact of the A site variation in the fergusonite crystal was verified by FTIR spectroscopy analysis, and the elemental composition was determined by XPS studies. FESEM with EDX spectroscopy obviously proved the morphological differences. Furthermore, a LnNbO4-modified GCE was employed to detect pharmaceutical pollutants, namely, furazolidone (FZD) and dimetridazole (DMZ). Cyclic voltammetry studies were used to optimize the parameters of the sensing platform, and differential pulse voltammetry was performed to obtain the detection limits and linear range. SmNbO4/GCE exhibited superior performance to other electrodes with a wide linear range of 0.01 μM to 264 μM and LOD values of 4 nM and 2 nM for FZD and DMZ, respectively. Finally, the feasibility of the proposed electrode in real-time analysis was studied by extending the voltammetry experiment to saliva and water samples.
Collapse
Affiliation(s)
- I Jenisha Daisy Priscillal
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
36
|
S A, Vidya YS, Manjunatha HC, Prashantha SC, Kottam N, Sridhar KN, Damodara Gupta PS, Mahendrakumar C. Photoluminescence, antibacterial, X-ray/gamma ray absorption, supercapacitor and sensor applications of ZrTiO 4 nanorods. RSC Adv 2023; 13:14782-14796. [PMID: 37197183 PMCID: PMC10184272 DOI: 10.1039/d3ra00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
In the present communication, ZrTiO4 nanoparticles (NPs) are synthesized by the solution combustion method using urea (ZTOU) and oxalyl dihydrazide (ODH) (ZTODH) as fuel and calcined at 700 °C. The synthesized samples were characterized with different techniques. Powder X-ray diffraction studies show the presence of diffraction peaks corresponding to ZrTiO4. In addition to these peaks, a few additional peaks corresponding to the monoclinic and cubic phases of ZrO2 and the rutile phase of TiO2 are observed. The surface morphology of ZTOU and ZTODH consists of nanorods with different lengths. The TEM and HRTEM images confirm the formation of nanorods along with NPs, and the estimated crystallite size matches well with that of PXRD. The direct energy band gap was calculated using Wood and Tauc's relation and was found to be 2.7 and 3.2 eV for ZTOU and ZTODH respectively. The photoluminescence emission peaks (λ = 350 nm), CIE and CCT of ZTOU and ZTODH clearly confirm that the present nanophosphor might be a good nanophosphor material for blue or aqua green light emitting diodes. Furthermore, antibacterial activity and a viability test were conducted on two food borne pathogens. The X-ray/gamma ray absorption properties are also studied, which clearly show the ZrTiO4 might be a good absorbing material. Furthermore, cyclic voltammetry (CV) analysis of ZTOU nanorods shows very good redox peaks compared to that of ZTODH. From the electrochemical impedance spectroscopy (EIS) measurements, the charge-transfer resistances for prepared nanorods ZTOU and ZTODH are found to be 151.6 Ω, and 184.5 Ω respectively. The modified graphite electrode with ZTOU shows good sensing activity for both paracetamol and ascorbic acid, compared to ZTODH.
Collapse
Affiliation(s)
- Akshay S
- Department of Physics, Maharani Lakshmi Ammanni College for Women Autonomous Malleshwaram Bengaluru 560012 Karnataka India
- Department of Physics, East West Institute of Technology Bengaluru 560091 Karnataka India
| | - Y S Vidya
- Department of Physics, Lal Bahadur Shastri Government First Grade College RT Nagar Bangalore 560032 Karnataka India
| | - H C Manjunatha
- Department of Physics, Government College for Women Kolar 563101 Karnataka India
| | - S C Prashantha
- Department of Physics, East West Institute of Technology Bengaluru 560091 Karnataka India
| | - Nagaraju Kottam
- Department of Chemistry, M S Ramaiah Institute of Technology affiliated to Visvesvaraya Technological University Belguam Bengaluru 560054 Karnataka India
| | - K N Sridhar
- Department of Physics, Government First Grade College Kolar 563101 Karnataka India
| | - P S Damodara Gupta
- Department of Physics, Government College for Women Kolar 563101 Karnataka India
| | - C Mahendrakumar
- Department of Biotechnology, Government First Grade College Kolar 563101 Karnataka India
| |
Collapse
|
37
|
Belsley A. Quantum-Enhanced Absorption Spectroscopy with Bright Squeezed Frequency Combs. PHYSICAL REVIEW LETTERS 2023; 130:133602. [PMID: 37067300 DOI: 10.1103/physrevlett.130.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Absorption spectroscopy is a widely used technique that permits the detection and characterization of gas species at low concentrations. We propose a sensing strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state. A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies and is robust against dispersion across the absorption profile. We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor. An order of magnitude improvement beyond the standard quantum limit is possible with state-of-the-art squeezing levels facilitating high precision gas sensing.
Collapse
Affiliation(s)
- Alexandre Belsley
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom and Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
38
|
Ullah F, Ibrahim K, Mistry K, Samad A, Shahin A, Sanderson J, Musselman K. WS 2 and WS 2-ZnO Chemiresistive Gas Sensors: The Role of Analyte Charge Asymmetry and Molecular Size. ACS Sens 2023; 8:1630-1638. [PMID: 36926856 DOI: 10.1021/acssensors.2c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We investigate the interaction of various analytes (toluene, acetone, ethanol, and water) possessing different structures, bonding, and molecular sizes with a laser-exfoliated WS2 sensing material in a chemiresistive sensor. The sensor showed a clear response to all analytes, which was significantly enhanced by modifying the WS2 surface. This was achieved by creating WS2-ZnO heterojunctions via the deposition of ZnO nanoparticles on the WS2 surface with a high-throughput, atmospheric-pressure spatial atomic layer deposition system. Water and ethanol produced a much higher response compared to acetone and toluene for both the WS2 and WS2-ZnO sensing mediums. We resolved that the charge-asymmetry points in analyte molecules play a key role in determining the sensor response. High charge-asymmetry points correspond to highly polar bonds (HPBs) in a neutral molecule that have a high probability of interaction with the sensing medium. Our results indicate that the polarity of the HPBs primarily dictates the interaction between the analyte and sensing medium and consequently controls the response of the sensor. Moreover, the size of the analyte molecule was found to affect the sensing response; if two molecules have the same HPBs and are exposed to the same sensing medium, the smaller molecule is likely to produce a higher and faster response. Our study provides a comprehensive picture of analyte-sensor interactions that can help in advancing semiconductor gas sensors, including those based on two-dimensional materials.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Khaled Ibrahim
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kissan Mistry
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Abdus Samad
- Department of Materials Science and Engineering, Southern University of Science and Technology 1088 Xueyuan Avenue, Shenzhen 517055, China
| | - Ahmed Shahin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Joseph Sanderson
- Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kevin Musselman
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
39
|
Alexander S, Prasantha Sudhakaran A, Anirudhan TS. Fabrication of selective electrochemical sensor for the detection of folic acid in spinach, wheat and tablets using functionalized graphene-oxide based molecular imprinted polymer. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Sheeba Alexander
- Post Graduate and Research Department of Chemistry, St. Stephen's College, Pathanapuram, Kollam-689 695, India
| | | | - Thayyath Sreenivasan Anirudhan
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum - 695 581, India
| |
Collapse
|
40
|
Hussein OG, Ahmed DA, Abdelkawy M, Rezk MR, Mahmoud AM, Rostom Y. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Adv 2023; 13:7645-7655. [PMID: 36908536 PMCID: PMC9993128 DOI: 10.1039/d3ra00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.
Collapse
Affiliation(s)
- Ola G Hussein
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Dina A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Mohamed Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Yasmin Rostom
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| |
Collapse
|
41
|
Tan KJ, Morikawa S, Ozbek N, Lenz M, Arlt CR, Tschöpe A, Franzreb M, Hatton TA. Redox Polyelectrolytes with pH-Sensitive Electroactive Functionality in Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2943-2956. [PMID: 36794996 DOI: 10.1021/acs.langmuir.2c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A framework of ferrocene-containing polymers bearing adjustable pH- and redox-active properties in aqueous electrolyte environments was developed. The electroactive metallopolymers were designed to possess enhanced hydrophilicity compared to the vinylferrocene (VFc) homopolymer, poly(vinylferrocene) (PVFc), by virtue of the comonomer incorporated into the macromolecule, and could also be prepared as conductive nanoporous carbon nanotube (CNT) composites that offered a variety of different redox potentials spanning a ca. 300 mV range. The presence of charged non-redox-active moieties such as methacrylate (MA) in the polymeric structure endowed it with acid dissociation properties that interacted synergistically with the redox activity of the ferrocene moieties to impart pH-dependent electrochemical behavior to the overall polymer, which was subsequently studied and compared to several Nernstian relationships in both homogeneous and heterogeneous configurations. This zwitterionic characteristic was leveraged for the enhanced electrochemical separation of several transition metal oxyanions using a P(VFc0.63-co-MA0.37)-CNT polyelectrolyte electrode, which yielded an almost twofold preference for chromium as hydrogen chromate versus its chromate form, and also exemplified the electrochemically mediated and innately reversible nature of the separation process through the capture and release of vanadium oxyanions. These investigations into pH-sensitive redox-active materials provide insight for future developments in stimuli-responsive molecular recognition, with extendibility to areas such as electrochemical sensing and selective separation for water purification.
Collapse
Affiliation(s)
- Kai-Jher Tan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - Satoshi Morikawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - Nil Ozbek
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Magdalena Lenz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - Carsten-René Arlt
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - André Tschöpe
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| | - Matthias Franzreb
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Württemberg 76344, Germany
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
42
|
Swetha PDP, Nikitha A, Shenoy MM, Shim YB, Prasad KS. Ni/Ni(OH) 2-rGO nanocomposites sensor for the detection of long forgotten mycotoxin, xanthomegnin. Talanta 2023; 253:123953. [PMID: 36179558 DOI: 10.1016/j.talanta.2022.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
Xanthomegnin, a known fungal toxin, secondary metabolite, and pigment diffuses from the dermatophytes has gained attention as local virulence factor because of the mutagenicity, toxicity, cytocidal, and immunosuppressive properties. Not only as a dermatophyte in skin related disorders, the production of xanthomegnin is implicated as a powerful diagnostic marker in patients suffering from ocular mycoses. Incidentally also attributed to death in livestock's majorly by exposing themselves to food-borne fungi like Aspergillus and Penicillium. The production of xanthomegnin in dermetophytic species Trichophyton rubrum, found commonly in infected skin and nails. In this study nickel/nickel hydroxide nanoparticles decorated reduced graphene oxide (Ni/Ni(OH)2-rGO) modified glassy carbon electrode has been successfully used for non-enzymatic detection of xanthomegnin. The Ni/Ni(OH)2-rGO composites were synthesized through a simple microwave assisted technique with less harmful reducing agent. The UV-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and electrochemical investigations demonstrated the robust formation of the sensor. The sensor exhibited improved electrochemical properties with enhanced electrochemical active area and excellent electrochemical behavior towards xanthomegnin detection with a limit of detection of 0.12 μM. The selectivity, stability, and analytical recovery studies proved the potential use of the sensor for the detection of xanthomegnin in real samples. Further, the sensor successfully detected xanthomegnin produced by the Trichophyton rubrum, the most common superficial fungus, accounting for at least 60% of all superficial fungal infections in humans. Validation studies showed satisfiable and quantifiable amount of xanthomegnin in comparison with common bench mark UV-Vis studies meant for fungal mycotoxin detection.
Collapse
Affiliation(s)
- P D Priya Swetha
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - A Nikitha
- Department of Dermatology,Venereology and Leprosy, Yenepoya Medical College, Deralakatte, Mangalore, 575018, India
| | - M Manjunath Shenoy
- Department of Dermatology,Venereology and Leprosy, Yenepoya Medical College, Deralakatte, Mangalore, 575018, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
43
|
Sun P, Shi Y, Shi Y. Multivariate Regression in Conjunction with GA-BP for Optimization of Data Processing of Trace NO Gas Flow in Active Pumping Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2023; 23:1524. [PMID: 36772572 PMCID: PMC9919135 DOI: 10.3390/s23031524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Exhaled nitric oxide trace gas at the ppb level is a biomarker of human airway inflammation. To detect this, we developed a method for the collection of active pumping electronic nose bionic chamber gas. An optimization algorithm based on multivariate regression (MR) and genetic algorithm-back propagation (GA-BP) was proposed to improve the accuracy of trace-level gas detection. An electronic nose was used to detect NO gas at the ppb level by substituting breathing gas with a sample gas. The impact of the pump suction flow capacity variation on the response of the electronic nose system was determined using an ANOVA. Further, the optimization algorithm based on MR and GA-BP was studied for flow correction. The results of this study demonstrate an increase in the detection accuracy of the system by more than twofold, from 17.40%FS before correction to 6.86%FS after correction. The findings of this research lay the technical groundwork for the practical application of electronic nose systems in the daily monitoring of FeNO.
Collapse
Affiliation(s)
- Pengjiao Sun
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
- Electronics and Communication Engineering School, Jilin Technology College of Electronic Information, Jilin 132021, China
| | - Yunbo Shi
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
- National Experimental Teaching Demonstration Center for Measurement and Control Technology and Instrumentation, Harbin University of Science and Technology, Harbin 150080, China
| | - Yeping Shi
- The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
- Electronics and Communication Engineering School, Jilin Technology College of Electronic Information, Jilin 132021, China
| |
Collapse
|
44
|
Banerjee R, Ghosh D, Bhaduri SN, Biswas R, Biswas P. Electrochemical Detection of Chloramphenicol Using Metal Free Ordered Mesoporous Carbon. ChemistrySelect 2023. [DOI: 10.1002/slct.202202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rumeli Banerjee
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Debojit Ghosh
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Samanka Narayan Bhaduri
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Rima Biswas
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Papu Biswas
- Department of Chemistry Indian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| |
Collapse
|
45
|
Xia Q, Fan Y, Li S, Zhou A, Shinde N, Mane RS. MXene-based chemical gas sensors: Recent developments and challenges. DIAMOND AND RELATED MATERIALS 2023; 131:109557. [PMID: 36415485 PMCID: PMC9671876 DOI: 10.1016/j.diamond.2022.109557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/01/2023]
Abstract
The long-running Covid-19 pandemic has forced researchers across the globe to develop novel sensors and sensor materials for detecting minute quantities of biogenic viruses with high accuracy in a short period. In this context, MXene galleries comprising carbon/nitride two-dimensional nanolayered materials have emerged as excellent host materials in chemical gas sensors owing to their multiple advantages, including high surface area, high electrical conductivity, good thermal/chemical conductivity and chemical stability, composition diversity, and layer-spacing tunability; furthermore, they are popular in clinical, medical, food production, and chemical industries. This review summarizes recent advances in the synthesis, structure, and gas-sensing properties of MXene materials. Current opportunities and future challenges for obtaining MXene-based chemical gas sensors with high sensitivity, selectivity, response/recovery time, and chemical durability are addressed. This review provides a rational and in-depth understanding of the relationship between the gas-sensing properties of MXenes and structure/components, which will promote the further development of two-dimensional MXene-based gas sensors for technical device fabrication and industrial processing applications.
Collapse
Affiliation(s)
- Qixun Xia
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yulong Fan
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shiwen Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Aiguo Zhou
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Nanasaheb Shinde
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Rajaram S Mane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
46
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Oktaviyanti IK, Ali DS, Awadh SA, Opulencia MJC, Yusupov S, Dias R, Alsaikhan F, Mohammed MM, Sharma H, Mustafa YF, Saleh MM. RETRACTED ARTICLE: Recent advances on applications of immunosensing systems based on nanomaterials for CA15-3 breast cancer biomarker detection. Anal Bioanal Chem 2023; 415:367. [PMID: 35641643 DOI: 10.1007/s00216-022-04150-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Ika Kustiyah Oktaviyanti
- Department of Pathology & Anatomy, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Diyar Salahuddin Ali
- Chemistry Department, College of Science, Salahaddin University, Erbil, 44002, Iraq
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | | | - Shukhrat Yusupov
- Department of Pediatric Surgical Diseases, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan
| | - Rui Dias
- School of Business and Administration, Polytechnic Institute of Setúbal, Portugal and CEFAGE-UE, IIFA, University of Évora, Évora, Portugal
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mais Mahmood Mohammed
- Department of Medical Laboratory Techniques, Medical Technology College, Al-Farahidi University, Baghdad, Iraq
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Al anbar, Iraq.
| |
Collapse
|
48
|
Lenar N, Piech R, Paczosa-Bator B. The New Reliable pH Sensor Based on Hydrous Iridium Dioxide and Its Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:192. [PMID: 36614531 PMCID: PMC9821908 DOI: 10.3390/ma16010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The new reliable sensor for pH determination was designed with the use of hydrous iridium dioxide and its composites. Three different hIrO2-based materials were prepared and applied as solid-contact layers in pH-selective electrodes with polymeric membrane. The material choice included standalone hydrous iridium oxide; composite material of hydrous iridium oxide, carbon nanotubes, and triple composite material composed of hydrous iridium oxide; carbon nanotubes; and poly(3-octylthiophene-2,5-diyl). The paper depicts that the addition of functional material to standalone metal oxide is beneficial for the performance of solid-state ion-selective electrodes and presents the universal approach to designing this type of sensors. Each component contributed differently to the sensors' performance-the addition of carbon nanotubes increased the electrical capacitance of sensor (up to 400 µF) while the addition of conducting polymer allowed it to increase the contact angle of material changing its wetting properties and enhancing the stability of potentiometric response. Hydrous iridium oxide contacted electrodes exhibit linear response in wide linear range of pH (2-11) and stable potentiometric response (the lowest potential drift of 0.036 mV/h is attributed to the electrode with triple composite material).
Collapse
Affiliation(s)
| | | | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland
| |
Collapse
|
49
|
Khandelwal G, Deswal S, Dahiya R. Triboelectric Nanogenerators as Power Sources for Chemical Sensors and Biosensors. ACS OMEGA 2022; 7:44573-44590. [PMID: 36530315 PMCID: PMC9753505 DOI: 10.1021/acsomega.2c06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The recent advances of portable sensors in flexible and wearable form factors are drawing increasing attention worldwide owing to their requirement applications ranging from health monitoring to environment monitoring. While portability is critical for these applications, real-time data gathering also requires a reliable power supply-which is largely met with batteries. Besides the need for regular charging, the use of toxic chemicals in batteries makes it difficult to rely on them, and as a result different types of energy harvesters have been explored in recent years. Among these, triboelectric nanogenerators (TENGs) provide a promising platform for harnessing ambient energy and converting it into usable electric signals. The ease of fabrication and possibility to develop TENGs with a diverse range of easily available materials also make them attractive. This review focuses on the TENG technology and its efficient use as a power source for various types of chemical sensors and biosensors. The paper describes the underlying mechanism, various modes of working of TENGs, and representative examples of their utilization as power sources for sensing a multitude of analytes. The challenges associated with their adoption for commercial solutions are also discussed to stimulate further advances and innovations.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Swati Deswal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ravinder Dahiya
- Bendable Electronics
and Sustainable Technologies Group, Electrical and Computer
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
Pedrayes OD, Lema DG, Usamentiaga R, García DF. Detection and localization of fugitive emissions in industrial plants using surveillance cameras. COMPUT IND 2022. [DOI: 10.1016/j.compind.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|