1
|
Fan H, Lu Y. Improving the Sensitivity of a Mn(II)-Specific DNAzyme for Cellular Imaging Sensor through Sequence Mutations. Anal Chem 2024; 96:3853-3858. [PMID: 38375826 PMCID: PMC11060987 DOI: 10.1021/acs.analchem.3c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Detection of Mn2+ in living cells is important in understanding the roles of Mn2+ in cellular processes and investigating its potential implications in various diseases and disorders. Toward this goal, we have previously selected a Mn2+-specific 11-5 DNAzyme through an in vitro selection method and converted it into a fluorescence sensor for intracellular Mn2+ sensing. Despite the progress, the nucleotides responsible for the activity are unclear, and the performance of the DNAzyme needs to be improved in order for more effective applications in biological systems. To address these issues, we herein report site-specific mutations within the catalytic domain of the selected 11-5 DNAzyme. As a result, we successfully identified a variant DNAzyme, designated as Mn5V, which exhibited a twofold increase in activity compared to the original 11-5 DNAzyme. Importantly, Mn5V DNAzyme maintained its high selectivity for Mn2+ over other competing metal ions. Upon the addition of Mn2+, Mn5V DNAzyme exhibited a higher fluorescence signal within the tumor cells compared to that of the 11-5 DNAzyme. This study therefore provides a better understanding of how the DNAzyme functions and a more sensitive probe for investigating Mn2+ in biological systems.
Collapse
Affiliation(s)
- Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Wu Y, Lewis W, Wai JL, Xiong M, Zheng J, Yang Z, Gordon C, Lu Y, New SY, Zhang XB, Lu Y. Ratiometric Detection of Zn 2+ Using DNAzyme-Based Bioluminescence Resonance Energy Transfer Sensors. CHEMISTRY (BASEL, SWITZERLAND) 2023; 5:1745-1759. [PMID: 38371491 PMCID: PMC10874629 DOI: 10.3390/chemistry5030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While fluorescent sensors have been developed for monitoring metal ions in health and diseases, they are limited by the requirement of an excitation light source that can lead to photobleaching and a high autofluorescence background. To address these issues, bioluminescence resonance energy transfer (BRET)-based protein or small molecule sensors have been developed; however, most of them are not highly selective nor generalizable to different metal ions. Taking advantage of the high selectivity and generalizability of DNAzymes, we report herein DNAzyme-based ratiometric sensors for Zn2+ based on BRET. The 8-17 DNAzyme was labeled with luciferase and Cy3. The proximity between luciferase and Cy3 permiQed BRET when coelenterazine, the substrate for luciferase, was introduced. Adding samples containing Zn2+ resulted in a cleavage of the substrate strand, causing dehybridization of the DNAzyme construct, thus increasing the distance between Cy3 and luciferase and changing the BRET signals. Using these sensors, we detected Zn2+ in serum samples and achieved Zn2+ detection with a smartphone camera. Moreover, since the BRET pair is not the component that determines the selectivity of the sensors, this sensing platform has the potential to be adapted for the detection of other metal ions with other metal-dependent DNAzymes.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Whitney Lewis
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jing Luen Wai
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- School of Pharmacy, Faculty of Science and Engineering, University of No0ingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chloe Gordon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Ying Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of No0ingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Fan H, McGhee CE, Lake RJ, Yang Z, Guo Z, Zhang XB, Lu Y. A Highly Selective Mn(II)-Specific DNAzyme and Its Application in Intracellular Sensing. JACS AU 2023; 3:1615-1622. [PMID: 37388692 PMCID: PMC10302744 DOI: 10.1021/jacsau.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
Manganese is an essential trace element in the human body that acts as a cofactor in many enzymes and metabolisms. It is important to develop methods to detect Mn2+ in living cells. While fluorescent sensors have been very effective in detecting other metal ions, Mn2+-specific fluorescent sensors are rarely reported due to nonspecific fluorescence quenching by the paramagnetism of Mn2+ and poor selectivity against other metal ions such as Ca2+ and Mg2+. To address these issues, we herein report in vitro selection of an RNA-cleaving DNAzyme with exceptionally high selectivity for Mn2+. Through converting it into a fluorescent sensor using a catalytic beacon approach, Mn2+ sensing in immune cells and tumor cells has been achieved. The sensor is also used to monitor degradation of manganese-based nanomaterials such as MnOx in tumor cells. Therefore, this work provides an excellent tool to detect Mn2+ in biological systems and monitor the Mn2+-involved immune response and antitumor therapy.
Collapse
Affiliation(s)
- Huanhuan Fan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Claire E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Wu Y, Torabi SF, Lake RJ, Hong S, Yu Z, Wu P, Yang Z, Nelson K, Guo W, Pawel GT, Van Stappen J, Shao X, Mirica LM, Lu Y. Simultaneous Fe 2+/Fe 3+ imaging shows Fe 3+ over Fe 2+ enrichment in Alzheimer's disease mouse brain. SCIENCE ADVANCES 2023; 9:eade7622. [PMID: 37075105 PMCID: PMC10115418 DOI: 10.1126/sciadv.ade7622] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Visualizing redox-active metal ions, such as Fe2+ and Fe3+ ions, are essential for understanding their roles in biological processes and human diseases. Despite the development of imaging probes and techniques, imaging both Fe2+ and Fe3+ simultaneously in living cells with high selectivity and sensitivity has not been reported. Here, we selected and developed DNAzyme-based fluorescent turn-on sensors that are selective for either Fe2+ or Fe3+, revealing a decreased Fe3+/Fe2+ ratio during ferroptosis and an increased Fe3+/Fe2+ ratio in Alzheimer's disease mouse brain. The elevated Fe3+/Fe2+ ratio was mainly observed in amyloid plaque regions, suggesting a correlation between amyloid plaques and the accumulation of Fe3+ and/or conversion of Fe2+ to Fe3+. Our sensors can provide deep insights into the biological roles of labile iron redox cycling.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Seyed-Fakhreddin Torabi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhengxin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin Nelson
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory T. Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Xiangli Shao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author.
| |
Collapse
|
5
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Zhang J, Lan T, Lu Y. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using Functional Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:151-171. [PMID: 35216531 PMCID: PMC9197978 DOI: 10.1146/annurev-anchem-061020-104216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For many years, numerous efforts have been focused on the development of sensitive, selective, and practical sensors for environmental monitoring, food safety, and medical diagnostic applications. However, the transition from innovative research to commercial success is relatively sparse. In this review, we identify four scientific barriers and one technical barrier to developing successful sensors for practical applications, including the lack of general methods to (a) generate receptors for a wide range of targets, (b) improve sensor selectivity to overcome interferences, (c) transduce the selective binding to different optical, electrochemical, and other signals, and (d) tune dynamic range to match thresholds of detection required for different targets; and the costly development of a new device. We then summarize solutions to overcome these barriers using sensors based on functional nucleic acids that include DNAzymes, aptamers, and aptazymes and how these sensors are coupled to widely available measurement devices to expand their capabilities and lower the barrier for their practical applications in the field and point-of-care settings.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China;
| | - Tian Lan
- GlucoSentient, Inc., Champaign, Illinois, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
7
|
Hua Y, Ma J, Li D, Wang R. DNA-Based Biosensors for the Biochemical Analysis: A Review. BIOSENSORS 2022; 12:bios12030183. [PMID: 35323453 PMCID: PMC8945906 DOI: 10.3390/bios12030183] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 05/21/2023]
Abstract
In recent years, DNA-based biosensors have shown great potential as the candidate of the next generation biomedical detection device due to their robust chemical properties and customizable biosensing functions. Compared with the conventional biosensors, the DNA-based biosensors have advantages such as wider detection targets, more durable lifetime, and lower production cost. Additionally, the ingenious DNA structures can control the signal conduction near the biosensor surface, which could significantly improve the performance of biosensors. In order to show a big picture of the DNA biosensor's advantages, this article reviews the background knowledge and recent advances of DNA-based biosensors, including the functional DNA strands-based biosensors, DNA hybridization-based biosensors, and DNA templated biosensors. Then, the challenges and future directions of DNA-based biosensors are discussed and proposed.
Collapse
|
8
|
Abstract
Studying the catalytic behavior of biocatalysts under different conditions including temperature, buffer conditions, and cofactor concentrations is an important tool to understand their reaction mechanism. We describe two protocols that allow for the investigation of the catalysis of RNA-cleaving DNAzymes. The techniques include the use of FRET-labeled RNA substrates for studying the RNA-cleavage reaction in real-time under high throughput as well as RNA substrates labeled with a fluorescein molecule at the 5' end for gel-based assays. Both methods allow for an accurate determination of rate constants given a reaction model.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Chen Y, Wu H, Qian S, Yu X, Chen H, Wu J. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection. Anal Chim Acta 2021; 1192:339356. [DOI: 10.1016/j.aca.2021.339356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
|
10
|
McGhee C, Yang Z, Guo W, Wu Y, Lyu M, DeLong CJ, Hong S, Ma Y, McInnis MG, O’Shea KS, Lu Y. DNAzyme-Based Lithium-Selective Imaging Reveals Higher Lithium Accumulation in Bipolar Disorder Patient-Derived Neurons. ACS CENTRAL SCIENCE 2021; 7:1809-1820. [PMID: 34841055 PMCID: PMC8614110 DOI: 10.1021/acscentsci.1c00843] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/16/2023]
Abstract
Lithium has been a drug for bipolar disorders (BD) for over 70 years; however, its usage has been limited by its narrow therapeutic window (between 0.6 and 1.2 mM). Understanding the cellular distribution of lithium ions (Li+) in patient cells will offer deep insight into this limitation, but selective imaging of Li+ in living cells under biomedically relevant concentration ranges has not been achieved. Herein, we report in vitro selection and development of a Li+-specific DNAzyme fluorescent sensor with >100-fold selectivity over other biorelevant metal ions. This sensor allows comparative Li+ visualization in HeLa cells, human neuronal progenitor cells (NPCs), and neurons derived from BD patients and healthy controls. Strikingly, we detected enhanced accumulation of Li+ in cells derived from BD patients compared with healthy controls in differentiated neurons but not NPCs. These results establish the DNAzyme-based sensor as a novel platform for biomedical research into BD and related areas using lithium drugs.
Collapse
Affiliation(s)
- Claire
E. McGhee
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weijie Guo
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuting Wu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingkuan Lyu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cynthia J. DeLong
- Department
of Cell and Developmental Biology, The University
of Michigan, Ann Arbor 48109, United States
| | - Shanni Hong
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuan Ma
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Melvin G. McInnis
- Department
of Psychiatry, The University of Michigan, Ann Arbor 48109, United States
| | - K. Sue O’Shea
- Department
of Cell and Developmental Biology, The University
of Michigan, Ann Arbor 48109, United States
- Department
of Psychiatry, The University of Michigan, Ann Arbor 48109, United States
| | - Yi Lu
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Zhang BY, Shi L, Ma XY, Liu L, Fu Y, Zhang XF. Advances in the Functional Nucleic Acid Biosensors for Detection of Lead Ions. Crit Rev Anal Chem 2021; 53:309-325. [PMID: 34304647 DOI: 10.1080/10408347.2021.1951648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lead ions (Pb2+) are destructive to the natural environment and public health, so the efficient detection of Pb2+ is particularly important. Although the instrumental analysis methods have high accuracy, they require high cost and precise operation, which limits their wide application. Therefore, many strategies have been extensively studied for detecting Pb2+ by biosensors. Functional nucleic acids have become an efficient tool in this field. This review focuses on the recent biosensors of detecting Pb2+ based on functional nucleic acids from 2010 to 2020, in which DNAzyme, DNA G-quadruplex and aptamer will be introduced. The biosensors are divided into three categories that colorimetric, fluorometric and electrochemical biosensors according to the different reported signals. The action mechanism and detection effect of each biosensor are explained. Finally, the present situation of nucleic acid biosensor for the detection of Pb2+ is summarized and the future research direction is prospected.
Collapse
Affiliation(s)
- Bu-Yue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiao-Ying Ma
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiu-Feng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
12
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
13
|
Guan H, Yang S, Zheng C, Zhu L, Sun S, Guo M, Hu X, Huang X, Wang L, Shen Z. DNAzyme-based sensing probe protected by DNA tetrahedron from nuclease degradation for the detection of lead ions. Talanta 2021; 233:122543. [PMID: 34215046 DOI: 10.1016/j.talanta.2021.122543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Lead poisoning endangers soil, plants and human health due to its toxic effect. It is urgent to develop ideal tool for the in vivo detection of Pb2+.In this study, tetrahedron-based Pb2+-sensitive DNAzyme sensor (TPS) is constructed by taking advantages of a classic Pb2+-dependent GR-5 DNAzyme and DNA tetrahedral structure, where the cleavage substrate and DNAzyme are modified with fluorophore FAM and quencher BHQ-1, respectively. DNA tetrahedron is arranged at the terminus of substrate/DNAzyme duplex to offer the protective shield against the nuclease attack. In the absence of Pb2+, FAM and BHQ-1 are kept close and FAM fluorescence is efficiently quenched. However, in the presence of Pb2+ cofactor, the DNAzyme exhibits the catalytic activity and cleaves the substrate strands, spatially separating the FAM away from BHQ-1 and releasing fluorescence. Utilizing the sensing probe, the Pb2+ can be quantitatively detected down to 1 nM without the interference from nontarget metal ions. Even if incubating in the human serum solution for 12 h, no substantial nuclease degradation is detected. In different complex biological milieu, the TPS can preserve the 85% of fluorescence signal, indicating that the developed TPS is a promising tool for the future application in the in vivo detection of Pb2+.
Collapse
Affiliation(s)
- Huaqin Guan
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Shulin Yang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Cheng Zheng
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Lingye Zhu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Mengmeng Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xuemei Hu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Xiaoying Huang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Liangxing Wang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Zhifa Shen
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
14
|
Deng L, Zhai J, Du X, Xie X. Ionophore-Based Ion-Selective Nanospheres Based on Monomer-Dimer Conversion in the Near-Infrared Region. ACS Sens 2021; 6:1279-1285. [PMID: 33566586 DOI: 10.1021/acssensors.0c02577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we report ion-selective nanospheres with readout in the near-infrared (NIR) region in both fluorescence and absorbance modes. The nanospheres rely on an ionophore-mediated monomer-dimer conversion of an NIR transducer, DTTC. The DTTC monomer in the nanospheres emits fluorescence around 820 nm, while the dimer in the aqueous environment generates strong blue-shifted emission around 660 nm. With a lead ionophore, an unprecedented lower detection limit of 3 pM for Pb2+ was achieved, allowing us to determine Pb2+ levels in river water without diluting the sample. Also, the Cu2+-selective nanospheres showed a detection limit of 5 nM. Taking advantage of the biologically desired NIR window, blood potassium concentrations were also determined without a complicated sample pretreatment. The sensing process was explained with a theoretical model. The detection range was found finely adjustable by the amount of nanospheres used. Therefore, the nanospheres formed a highly selective, sensitive, versatile, and rapid analytical platform for metal-ion sensing.
Collapse
Affiliation(s)
- Li Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Zhang Y, Wu C, Liu H, Khan MR, Zhao Z, He G, Luo A, Zhang J, Deng R, He Q. Label-free DNAzyme assays for dually amplified and one-pot detection of lead pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124790. [PMID: 33316668 DOI: 10.1016/j.jhazmat.2020.124790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/05/2023]
Abstract
Lead pollution in water and soil often transfers to food, advocating tools for on-site detection of lead pollution to ensure both environmental and food safety. We proposed a label-free, dually amplified and homogeneous DNAzyme assay for sensitive and one-pot detection of lead pollution. Instead of using chemically modified DNA substrate, a structure-response digestion process was introduced to monitor Pb2+ presence-induced cleavage process of unlabeled substrate, further amplifying the response signals and eliminating the use of labeled DNA probes. The DNAzyme assay allowed to detect Pb2+ as low as 0.12 nM and endued a dynamic range from 0.1 nM to 30 nM. In addition, it can specifically identify Pb2+ among other metal ions. We demonstrated that the DNAzyme assay can precisely detect Pb2+ in tap water, milk and fish. Thus, the DNAzyme assay is promising for on-site monitoring lead pollution risk and ensuring environmental and food safety.
Collapse
Affiliation(s)
- Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Hongxin Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Aimin Luo
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 10048, China
| | - Jiaqi Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Ji P, Han G, Huang Y, Jiang H, Zhou Q, Liu X, Kong D. Ultrasensitive ratiometric detection of Pb 2+ using DNA tetrahedron-mediated hyperbranched hybridization chain reaction. Anal Chim Acta 2020; 1147:170-177. [PMID: 33485576 DOI: 10.1016/j.aca.2020.12.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
A fluorescent sensing strategy was developed for rapid, highly sensitive and specific detection of lead (II) ion (Pb2+) on the basis of Pb2+ DNAzyme-controlled tetrahedral DNA nanostructure (TDN)-mediated hyper-branched hybridization chain reaction (hHCR). In this strategy, DNA hairpins used for HCR amplification are modified on the four vertexes of TDN, which are then used to perform rapid TDN-hHCR in the presence of an initiator strand, producing large-sized cross-linked reaction products and thus giving greatly improved fluorescence resonance energy transfer (FRET) signal output. Pb2+ DNAzyme catalyzes the cleavage of the initiator strand, inhibiting the initiation of TDN-hHCR and giving decreased FRET signal. Synergetic signal amplification of Pb2+ DNAzyme-catalyzed cleavage reaction and subsequent TDN-hHCR confers the sensing platform with ultrahigh sensitivity. As low as 0.25 pM Pb2+ can be detected by using either signal "turn-on" or "turn-off" mode. The whole detection process can be finished within 20 min. Strong anti-interference capacity of FRET-based ratiometric detection and high specificity of Pb2+ DNAzyme endow the sensing platform with great practical application potential, which was demonstrated by the accurate detection of Pb2+ in real river water, fruit, vegetable and grain samples.
Collapse
Affiliation(s)
- Pingping Ji
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Guimei Han
- College of Chemistry and Chemical Engineering, Jinan, 250000, PR China
| | - Yan Huang
- College of Life sciences, Nankai University, Tianjin, China
| | - Hongxin Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Qiwen Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xiaowei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Deming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
17
|
A label-free liquid crystal droplet-based sensor used to detect lead ions using single-stranded DNAzyme. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Roozbahani GM, Chen X, Zhang Y, Wang L, Guan X. Nanopore detection of metal ions: Current status and future directions. SMALL METHODS 2020; 4:2000266. [PMID: 33365387 PMCID: PMC7751931 DOI: 10.1002/smtd.202000266] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 05/27/2023]
Abstract
In this review, we highlight recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health. Protein pores use three stochastic sensing-based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nano-channel. Second, large molecules such as nucleic acids and especially peptides could be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion-ligand chelation / coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady-state analysis, synthetic nanopores mainly use two strategies (modification and modification-free) to detect metals. Given the advantages of high sensitivity & selectivity, and label-free detection, nanopore-based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on.
Collapse
Affiliation(s)
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- The University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
| |
Collapse
|
19
|
Huang PJ, Liu J. In vitro Selection of Chemically Modified DNAzymes. ChemistryOpen 2020; 9:1046-1059. [PMID: 33101831 PMCID: PMC7570446 DOI: 10.1002/open.202000134] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
DNAzymes are in vitro selected DNA oligonucleotides with catalytic activities. RNA cleavage is one of the most extensively studied DNAzyme reactions. To expand the chemical functionality of DNA, various chemical modifications have been made during and after selection. In this review, we summarize examples of RNA-cleaving DNAzymes and focus on those modifications introduced during in vitro selection. By incorporating various modified nucleotides via polymerase chain reaction (PCR) or primer extension, a few DNAzymes were obtained that can be specifically activated by metal ions such as Zn2+ and Hg2+. In addition, some modifications were introduced to mimic RNase A that can cleave RNA substrates in the absence of divalent metal ions. In addition, single modifications at the fixed regions of DNA libraries, especially at the cleavage junctions, have been tested, and examples of DNAzymes with phosphorothioate and histidine-glycine modified tertiary amine were successfully obtained specific for Cu2+, Cd2+, Zn2+, and Ni2+. Labeling fluorophore/quencher pair right next to the cleavage junction was also used to obtain signaling DNAzymes for detecting various metal ions and cells. Furthermore, we reviewed work on the cleavage of 2'-5' linked RNA and L-RNA substrates. Finally, applications of these modified DNAzymes as biosensors, RNases, and biochemical probes are briefly described with a few future research opportunities outlined at the end.
Collapse
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| |
Collapse
|
20
|
Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Lake RJ, Yang Z, Zhang J, Lu Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Acc Chem Res 2019; 52:3275-3286. [PMID: 31721559 PMCID: PMC7103667 DOI: 10.1021/acs.accounts.9b00419] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can be beneficial or toxic depending on their identity, oxidation state, and concentration. Therefore, the ability to detect and quantify different types of metal ions using portable sensors or in situ imaging agents is important for better environmental monitoring, in vitro medical diagnostics, and imaging of biological systems. While numerous metal ions in different oxidation states are present in the environment and biological systems, only a limited number of them can be detected effectively using current methods. In this Account, we summarize research results from our group that overcome this limitation by the development of a novel class of activity-based sensors based on metal-dependent DNAzymes, which are DNA molecules with enzymatic activity. First, we have developed an in vitro selection method to obtain DNAzymes from a large DNA library of up to 1015 sequences that can carry out cleavage of an oligonucleotide substrate only in the presence of a specific metal ion with high selectivity. Negative selection steps can further be used to improve the selectivity against potentially competing targets by removing sequences that recognize the competing metal ions. Second, we have developed a patented catalytic beacon method to transform the metal-dependent DNAzyme cleavage reaction into a turn-on fluorescent signal by attaching a fluorophore and quenchers to the DNAzyme complex. Because of the difference in the melting temperatures of DNA hybridization before and after metal-ion-dependent cleavage of the DNAzyme substrate, the fluorophore on the DNA cleavage product can be released from its quenchers to create a turn-on fluorescent signal. Because DNAzymes are easy to conjugate with other signaling moieties, such as gold nanoparticles, lanthanide-doped upconversion nanoparticles, electrochemical agents, and gadolinium complexes, these DNAzymes can also readily be converted into colorimetric sensors, upconversion luminescence sensors, electrochemical sensors, or magnetic resonance contrast agents. In addition to describing recent progress in developing and applying these metal ion sensors for environmental monitoring, point-of-care diagnostics, cellular imaging, and in vivo imaging in zebrafish, we summarize major advantages of this class of activity-based sensors. In addition to advantages common to most activity-based sensors, such as enzymatic turnovers that allow for signal amplification and the use of initial rates instead of absolute signals for quantification to avoid interferences from sample matrices, the DNAzyme-based sensors allow for in vitro selection to expand the method to almost any metal ion under a variety of conditions, negative selection to improve the selectivity against competing targets, and reselection of DNAzymes and combination of active and inactive variants to fine-tune the dynamic range of detection. The use of melting temperature differences to separate target binding from signaling moieties in the catalytic beacon method allows the use of different fluorophores and nanomaterials to extend the versatility and modularity of this sensing platform. Furthermore, sensing and imaging artifacts can be minimized by using an inactive mutant DNAzyme as a negative control, while spatiotemporal control of sensing/imaging can be achieved using optical, photothermal, and endogenous orthogonal caging methods. Finally, current challenges, opportunities, and future perspectives for DNAzymes as activity-based sensors are also discussed.
Collapse
Affiliation(s)
- Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Lin Y, Yang Z, Lake RJ, Zheng C, Lu Y. Enzyme‐Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yao Lin
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu Sichuan 610064 China
| | - Zhenglin Yang
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Ryan J. Lake
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu Sichuan 610064 China
| | - Yi Lu
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
23
|
Lin Y, Yang Z, Lake RJ, Zheng C, Lu Y. Enzyme-Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 58:17061-17067. [PMID: 31529664 PMCID: PMC7174831 DOI: 10.1002/anie.201910343] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Bioorthogonal control of metal-ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18-base pair recognition site of a homing endonuclease (I-SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I-SceI for DNAzyme activation with minimal effect on living cells. Once I-SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore-labeled DNA fragment and produce a fluorescent turn-on signal for Mg2+ . Thus I-SceI bioorthogonally activates the 10-23 DNAzyme for imaging of Mg2+ in HeLa cells.
Collapse
Affiliation(s)
- Yao Lin
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
24
|
Hwang K, Mou Q, Lake RJ, Xiong M, Holland B, Lu Y. Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors. Inorg Chem 2019; 58:13696-13708. [PMID: 31364355 PMCID: PMC7176321 DOI: 10.1021/acs.inorgchem.9b01280] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn2+ in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Brandalynn Holland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
25
|
DNAzyme-Functionalized R-Phycoerythrin as a Cost-Effective and Environment-Friendly Fluorescent Biosensor for Aqueous Pb 2+ Detection. SENSORS 2019; 19:s19122732. [PMID: 31216658 PMCID: PMC6630308 DOI: 10.3390/s19122732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/28/2023]
Abstract
The sensitive detection of Pb2+ is of significant importance for food safety, environmental monitoring, and human health care. To this end, a novel fluorescent biosensor, DNAzyme-functionalized R-phycoerythrin (DNAzyme-R-PE), was presented for Pb2+ analysis. The biosensor was prepared via the immobilization of Iowa Black® FQ-modified DNAzyme–substrate complex onto the surface of SPDP-functionalized R-PE. The biosensor produced a minimal fluorescence signal in the absence of Pb2+. However, Pb2+ recognition can induce the cleavage of substrate, resulting in a fluorescence restoration of R-PE. The fluorescence changes were used to measure sensitively Pb2+ and the limit of detection was 0.16 nM with a linear range from 0.5–75 nM. Furthermore, the proposed biosensor showed excellent selectivity towards Pb2+ even in the presence of other metal ions interferences and was demonstrated to successfully determine Pb2+ in spiked lake water samples.
Collapse
|
26
|
A quencher-free DNAzyme beacon for fluorescently sensing uranyl ions via embedding 2-aminopurine. Biosens Bioelectron 2019; 135:166-172. [PMID: 31009884 DOI: 10.1016/j.bios.2019.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/24/2019] [Accepted: 04/10/2019] [Indexed: 01/23/2023]
Abstract
DNAzyme-based fluorescent probes have provided valuable protocols for detecting uranium, one of the most common radioactive contaminants in the environment, with ultra-high selectivity and sensitivity. Designing novel DNAzyme beacons to update the mode of fluorescence reporting and/or quenching will continuously enhance "turn-on" sensing performance as well as promote actual application of the biological probes. In this work, we developed a novel quencher-free DNAzyme beacon by embedding fluorescent 2-aminopurine for rapid detection of uranyl ion. 2-aminopurine is able to substitute adenine and keep strong fluorescence in single-stranded DNA whereas being quenched in the hybridized double-stranded DNA by the base-stacking interaction. The combination of such trait of 2-aminopurine and cleavage reaction of DNAzyme in the presence of target co-factors possesses two main advantages for ion sensing: simplicity for avoidance of extra quencher groups and high performance because of superiority of DNAzyme essence. The experimental conditions including embedding site, pH and salt concentration of buffer solutions, and the amount ratio of enzyme strand to substrate strand used to form DNAzymes were systematically optimized to inspire the highest performance of the biological beacon. Thus, a detection limit of 9.6 nM, a wide linear range from 5 nM to 400 nM (R2 = 0.997), and selectivity of more than 400 000-fold over other metal ions were achieved by the novel DNAzyme probes. The highly sensitive, selective and quencher-free DNAzyme probes accommodated a simple and cost-efficient alternative to current fluorescent counterparts, holding a great potential for further application in practical ion assay.
Collapse
|
27
|
Peeters B, Daems D, Van der Donck T, Delport F, Lammertyn J. Real-Time FO-SPR Monitoring of Solid-Phase DNAzyme Cleavage Activity for Cutting-Edge Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6759-6768. [PMID: 30682241 DOI: 10.1021/acsami.8b18756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10-23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme-inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.
Collapse
Affiliation(s)
- Bernd Peeters
- Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium
| | - Devin Daems
- Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium
| | - Tom Van der Donck
- Department of Materials Engineering , KU Leuven , Kasteelpark Arenberg 44 , B-3001 Leuven , Belgium
| | - Filip Delport
- FOx Biosystems NV , Veldstraat 120 , B-9140 Temse , Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium
| |
Collapse
|
28
|
Shomali Z, Kompany-Zareh M, Omidikia N. Fluorescence Based Investigation of Temperature-Dependent Pb 2+-Specific 8-17E DNAzyme Catalytic Sensor. J Fluoresc 2019; 29:335-342. [PMID: 30778897 DOI: 10.1007/s10895-019-02346-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
The 8-17E DNAzyme is a temperature-dependent DNA metalloenzyme catalyzing RNA trans esterification in the presence of Pb2+ metal ions. Labeling the stems of the substrate and DNAzyme with the Cy3 and Cy5 respectively, the considered DNAzyme was studied by the fluorescence spectroscopy. The temperature-dependent variability of the Pb2+-specific 8-17E DNAzyme catalytic sensor was investigated trough a number of successive temperature fluctuations from 4 to 25 °C to obtain information. Investigating underlined biochemical system reveals that in this sensor, free single strands Enzyme (Cy5-E) and Substrate (Cy3-S) have higher fluorescence intensities than hybridized forms, suggesting that the fluorophores are in a contact quenched. Increasing the temperature has three effects: 1) Fluorescence intensities for the free fluorophores were reduced, 2) stability of the hybridized form was reduced and cleavage of substrate in presence of Pb2+was occurred, and 3) conformation of ES hybridized form was changed (before cleavage). As a result of conformation changes in ES, S was more affected than E in the ES. Pb2+ ion shows quenching effect on both fluorophores and in the absence of N2(g) purge the effect was more considerable. A main goal that we had in mind was to find if significantly lower concentrations of Pb2+ and ES, compared to previous reports, can generate any observable cleavage in substrate. Analysis of the cleavage reaction for 50 nM ES indicates that S is cleaved at 25 °C in presence of N2(g) and 0.5 μM Pb2+, while in same condition no apparent change occurs in the 4 or 10 °C. The rapid, sensitive and low cost strategy presented here can be applicable to study temperature-dependent behavior of other nucleic acid-based biosensors.
Collapse
Affiliation(s)
- Zohreh Shomali
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada.
| | - Nematollah Omidikia
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| |
Collapse
|
29
|
He E, Cai L, Zheng F, Zhou Q, Guo D, Zhou Y, Zhang X, Li Z. Rapid Quantitative Fluorescence Detection of Copper Ions with Disposable Microcapsule Arrays Utilizing Functional Nucleic Acid Strategy. Sci Rep 2019; 9:36. [PMID: 30631123 PMCID: PMC6328549 DOI: 10.1038/s41598-018-36842-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, an economical and easy-to-use microcapsule array fabricated by ice printing technique has been realized for ultrasensitive fluorescence quantification of copper ions employing functional nucleic acid strategy. With ice printing, the detection reagents are sealed by polystyrene (PS) film isolation and photopolymer, which guarantees a stable and contamination-free environment for functional nucleic acid reaction. Our microcapsule arrays have shown long-term stability (20 days) under -20 °C storage in frozen form before use. During the Cu2+ on-site detection, 1 μL sample is simply injected into the thawy microcapsule by a microliter syringe under room temperature, and after 20 minutes the fluorescence result can be obtained by an LED transilluminator. This method can realize the detection limit to 100 nM (100 fmol/μL) with high specificity.
Collapse
Affiliation(s)
- Enqi He
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Liangyuan Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Fengyi Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Qianyu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Dan Guo
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China. .,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Deng R, Yang H, Dong Y, Zhao Z, Xia X, Li Y, Li J. Temperature-Robust DNAzyme Biosensors Confirming Ultralow Background Detection. ACS Sens 2018; 3:2660-2666. [PMID: 30457325 DOI: 10.1021/acssensors.8b01122] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic DNA/RNA, such as DNAzyme, has been widely adopted to construct biosensors, especially for metal ion analysis. However, traditional DNAzyme biosensors still suffer from fluctuating and relatively high background. Herein, we proposed a temperature-robust DNAzyme, conferring ultralow background in various temperatures, thus leading to highly sensitive and robust detection of metal ions. Instead of labeling substrate to directly output fluorescence signal, our proposed DNAzyme biosensor utilized a sequential detection process with a couple of proximity fluorescent probes, confirming very low background regardless of the conditions of cleavage reaction. This sequential DNAzyme biosensor conferred a signal to background ratio over 20 when the temperature of the catalytic reaction ranged from 20 to 41 °C. Benefitting from its ultralow background, it could confer a detection limit of 0.22 nM, which ranked as one of the highest sensitivity levels among DNAzyme-based fluorescent biosensors. This DNAzyme biosensor was over 6000 times more selective for Pb2+ against the most active interfering metal ions, Zn2+. Further, it has been successfully applied for analyzing lead pollution in tap water and eggs, with total recoveries ranging from 87% to 114%. This facile, simple, and effective design strategy would significantly improve the detection performance of DNAzyme biosensors, thus facilitating its practical applications for both food safety analysis and environment monitoring.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hao Yang
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Zhifeng Zhao
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yue Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
DU ZH, LI XY, TIAN JJ, Zhang YZ, TIAN HT, XU WT. Progress on Detection of Metals Ions by Functional Nucleic Acids Biosensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
33
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
34
|
The Optimization and Characterization of an RNA-Cleaving Fluorogenic DNAzyme Probe for MDA-MB-231 Cell Detection. SENSORS 2017; 17:s17030650. [PMID: 28335559 PMCID: PMC5375936 DOI: 10.3390/s17030650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers in females worldwide and lacks specific biomarkers for early detection. In a previous study, we obtained a selective RNA-cleaving Fluorogenic DNAzyme (RFD) probe against MDA-MB-231 cells, typical breast cancer cells, through the systematic evolution of ligands by exponential process (SELEX). To improve the performance of this probe for actual application, we carried out a series of optimization experiments on the pH value of a reaction buffer, the type and concentration of cofactor ions, and sequence minimization. The length of the active domain of the probe reduced to 25 nt from 40 nt after optimization, which was synthesized more easily and economically. The detection limit of the optimized assay system was 2000 MDA-MB-231 cells in 30 min, which is more sensitive than the previous one (almost 5000 cells). The DNAzyme probe was also capable of distinguishing MDA-MB-231 cell specifically from 3 normal cells and 10 other tumor cells. This probe with high sensitivity, selectivity, and economic efficiency enhances the feasibility for further clinical application in breast cancer diagnosis. Herein, we developed an optimization system to produce a general strategy to establish an easy-to-use DNAzyme-based assay for other targets.
Collapse
|
35
|
Zhao M, Guo Y, Wang L, Luo F, Lin C, Lin Z, Chen G. A sensitive fluorescence biosensor for alkaline phosphatase activity based on the Cu(II)-dependent DNAzyme. Anal Chim Acta 2016; 948:98-103. [DOI: 10.1016/j.aca.2016.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
|
36
|
Han S, Zhou X, Tang Y, He M, Zhang X, Shi H, Xiang Y. Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens Bioelectron 2016; 80:265-272. [DOI: 10.1016/j.bios.2016.01.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
37
|
Zhao XH, Gong L, Wu Y, Zhang XB, Xie J. Cationic-perylene-G-quadruplex complex based fluorescent biosensor for label-free detection of Pb 2+. Talanta 2016; 149:98-102. [DOI: 10.1016/j.talanta.2015.11.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022]
|
38
|
Guo Y, Li J, Zhang X, Tang Y. A sensitive biosensor with a DNAzyme for lead(II) detection based on fluorescence turn-on. Analyst 2016; 140:4642-7. [PMID: 25978496 DOI: 10.1039/c5an00677e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, we described a new DNAzyme-based fluorescent biosensor for the detection of Pb(2+). In the biosensor, the bulged structure is formed between the substrate labeled with fluorescein amidite (FAM) and DNAzyme after being annealed. Ethidium bromide (EB), the DNA intercalator, then intercalates into the double-stranded DNA section. Once FAM is excited, the FRET takes place from FAM to EB, which leads to the fluorescence of FAM decreasing greatly. In the presence of Pb(2+), the substrate is cleaved by DNAzyme, which breaks the bulged structure. Then EB is released and the FRET from FAM to EB is inhibited. In this case, the fluorescence of FAM increases dramatically. Thus, the Pb(2+) ions can be detected by measuring the fluorescence enhancement of FAM. Under optimal conditions, the increased fluorescence intensity ratio of FAM is dependent on the lead level in the sample, and exhibits a linear response over a Pb(2+) concentration range of 0-100 nM with a detection limit of 530 pM. The sensor showed high selectivity in the presence of a number of interference ions. The river water samples were also tested with satisfying results by using the new method. This sensor is highly sensitive and simple without any additional treatments, which provides a platform for other biosensors based on DNAzyme.
Collapse
Affiliation(s)
- Yang Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | | | | | | |
Collapse
|
39
|
Verma N, Kaur G. Trends on Biosensing Systems for Heavy Metal Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Zhu J, Yu YQ, Li JJ, Zhao JW. Colorimetric detection of lead(ii) ions based on accelerating surface etching of gold nanorods to nanospheres: the effect of sodium thiosulfate. RSC Adv 2016. [DOI: 10.1039/c5ra26560f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lead ion-participated etching of gold nanorods leads to qualitative spectral change from double bands to single band LSPR, which results in a distinct irreversible color change of the gold colloid from blue to red.
Collapse
Affiliation(s)
- Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yun-Qi Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
41
|
ZHAO XH, MENG HM, GONG L, QIU LP, ZHANG XB, TAN WH. Recent Progress of DNAzyme-Nanomaterial Based Biosensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Paper-based scanometric assay for lead ion detection using DNAzyme. Anal Chim Acta 2015; 896:152-9. [DOI: 10.1016/j.aca.2015.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/18/2022]
|
43
|
Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, Shen GL, Yu RQ. DNAzyme-based biosensors and nanodevices. Chem Commun (Camb) 2015; 51:979-95. [PMID: 25336076 DOI: 10.1039/c4cc06855f] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNAzymes, screened through in vitro selection, have shown great promise as molecular tools in the design of biosensors and nanodevices. The catalytic activities of DNAzymes depend specifically on cofactors and show multiple enzymatic turnover properties, which make DNAzymes both versatile recognition elements and outstanding signal amplifiers. Combining nanomaterials with unique optical, magnetic and electronic properties, DNAzymes may yield novel fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical and chemiluminescent biosensors. Moreover, some DNAzymes have been utilized as functional components to perform arithmetic operations or as "walkers" to move along DNA tracks. DNAzymes can also function as promising therapeutics, when designed to complement target mRNAs or viral RNAs, and consequently lead to down-regulation of protein expression. This feature article focuses on the most significant achievements in using DNAzymes as recognition elements and signal amplifiers for biosensors, and highlights the applications of DNAzymes in logic gates, DNA walkers and nanotherapeutics.
Collapse
Affiliation(s)
- Liang Gong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst 2015; 139:6326-42. [PMID: 25356810 DOI: 10.1039/c4an01069h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heavy metal contaminants such as lead ions (Pb(2+)), mercury ions (Hg(2+)) and silver ions (Ag(+)) can cause significant harm to humans and generate enduring bioaccumulation in ecological systems. Even though a variety of methods have been developed for Pb(2+), Hg(2+) and Ag(+) assays, most of them are usually laborious and time-consuming with poor sensitivity. Due to their unique advantages of excellent catalytic properties and high affinity for heavy metal ions, functional nucleic acids such as DNAzymes and aptamers show great promise in the development of novel sensors for heavy metal ion assays. In this review, we summarize the development of functional nucleic acid-based sensors for the detection of Pb(2+), Hg(2+) and Ag(+), and especially focus on two categories including the direct assay and the amplification-based assay. We highlight the emerging trends in the development of sensitive and selective sensors for heavy metal ion assays as well.
Collapse
Affiliation(s)
- Guichi Zhu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | | |
Collapse
|
45
|
Teh HB, Li H, Yau Li SF. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor. Analyst 2015; 139:5170-5. [PMID: 25118337 DOI: 10.1039/c4an00922c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, label-free DNAzyme-based quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor was developed for the highly sensitive and specific detection of Pb(2+) ions. To enhance the performance of the sensor, oligonucleotide-functionalized gold nanoparticles were used for both frequency and dissipation amplification. This sensor was developed by immobilizing Pb(2+)-specific DNAzymes onto the QCM-D sensor surface and allowing them to hybridize with substrate-functionalized AuNPs. The DNAzyme catalyzed the cleavage of the substrate in the presence of Pb(2+) ions, causing the cleaved substrate-functionalized AuNPs to be removed from the sensor surface. Thus, Pb(2+) ions can be determined on-line by monitoring the change in frequency and dissipation signals. The results revealed that the sensor showed a sensitive response to Pb(2+) ions with detection limits of 14 nM and 20 nM for frequency and dissipation, respectively. This QCM-D biosensor also exhibited excellent selectivity toward Pb(2+) ions in the presence of other divalent metal ions. In addition, the approach was able to detect Pb(2+) in tap water, demonstrating its great potential for monitoring drinking water quality. The proposed sensor system described here represents a new class of lead ion sensor. Its simple detection strategy makes it feasible for 'pollution-free' detection; thus, the approach could have applications in on-line water quality monitoring.
Collapse
Affiliation(s)
- Hui Boon Teh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | | | | |
Collapse
|
46
|
Chang Y, Chai Y, Xie S, Yuan Y, Zhang J, Yuan R. Cleavage-based hybridization chain reaction for electrochemical detection of thrombin. Analyst 2015; 139:4264-9. [PMID: 24971937 DOI: 10.1039/c4an00712c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present work, we constructed a new label-free "inter-sandwich" electrochemical aptasensor for thrombin (TB) detection by employing a cleavage-based hybridization chain reaction (HCR). The designed single-stranded DNA (defined as binding DNA), which contained the thrombin aptamer binding sequence, a DNAzyme cleavage site and a signal reporter sequence, was first immobilized on the electrode. In the absence of a target TB, the designed DNAzymes could combine with the thrombin aptamer binding sequence via complementary base pairing, and then Cu(2+) could cleave the binding DNA. In the presence of a target TB, TB could combine with the thrombin aptamer binding sequence to predominantly form an aptamer-protein complex, which blocked the DNAzyme cleavage site and prevented the binding DNA from being cleaved by Cu(2+)-dependent DNAzyme. As a result, the signal reporter sequence could leave the electrode surface to trigger HCR with the help of two auxiliary DNA single-strands, A1 and A2. Then, the electron mediator hexaammineruthenium (III) chloride ([Ru(NH3)6](3+)) was embedded into the double-stranded DNA (dsDNA) to produce a strong electrochemical signal for the quantitative measurement of TB. For further amplification of the electrochemical signal, graphene reduced by dopamine (PDA-rGO) was introduced as a platform in this work. With this strategy, the aptasensor displayed a wide linearity in the range of 0.0001 nM to 50 nM with a low detection limit of 0.05 pM. Moreover, the resulting aptasensor exhibited good specificity and acceptable reproducibility and stability. Because of these factors, the fabrication protocol proposed in this work may be extended to clinical application.
Collapse
Affiliation(s)
- Yuanyuan Chang
- Education Ministry Key Laboratory of Luminescent and Real-Time Analytical Chemistry, College of Chemistry and Chemical Engineering, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
47
|
Eriksson J, Helmfors H, Langel Ü. A High-Throughput Kinetic Assay for RNA-Cleaving Deoxyribozymes. PLoS One 2015; 10:e0135984. [PMID: 26309222 PMCID: PMC4550391 DOI: 10.1371/journal.pone.0135984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Determining kinetic constants is important in the field of RNA-cleaving deoxyribozymes (DNAzymes). Using todays conventional gel assays for DNAzyme assays is time-consuming and laborious. There have been previous attempts at producing new and improved assays; however these have drawbacks such as incompatibility with structured DNAzymes, enzyme or substrate modifications and increased cost. Here we present a new method for determining single-turnover kinetics of RNA-cleaving DNAzymes in real-time and in a high-throughput fashion. The assay is based on an intercalating fluorescent dye, PicoGreen, with high specificity for double-stranded DNA and heteroduplex DNA-RNA in this case formed between the DNAzyme and the target RNA. The fluorescence decreases as substrate is converted to product and is released from the enzyme. Using a Flexstation II multimode plate reader with built in liquid handling we could automate parts of the assay. This assay gives the possibility to determine single-turnover kinetics for up to 48 DNAzymes simultaneously. As the fluorescent probe is extrinsic there is no need for enzyme or substrate modifications, making this method less costly compared to other methods. The main novelty of this assay is the possibility of using full-length mRNA as the DNAzyme target.
Collapse
Affiliation(s)
- Jonas Eriksson
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Henrik Helmfors
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
48
|
Torabi SF, Wu P, McGhee CE, Chen L, Hwang K, Zheng N, Cheng J, Lu Y. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proc Natl Acad Sci U S A 2015; 112:5903-8. [PMID: 25918425 PMCID: PMC4434688 DOI: 10.1073/pnas.1420361112] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Over the past two decades, enormous progress has been made in designing fluorescent sensors or probes for divalent metal ions. In contrast, the development of fluorescent sensors for monovalent metal ions, such as sodium (Na(+)), has remained underdeveloped, even though Na(+) is one the most abundant metal ions in biological systems and plays a critical role in many biological processes. Here, we report the in vitro selection of the first (to our knowledge) Na(+)-specific, RNA-cleaving deoxyribozyme (DNAzyme) with a fast catalytic rate [observed rate constant (ko(bs)) ∼ 0.1 min(-1)], and the transformation of this DNAzyme into a fluorescent sensor for Na(+) by labeling the enzyme strand with a quencher at the 3' end, and the DNA substrate strand with a fluorophore and a quencher at the 5' and 3' ends, respectively. The presence of Na(+) catalyzed cleavage of the substrate strand at an internal ribonucleotide adenosine (rA) site, resulting in release of the fluorophore from its quenchers and thus a significant increase in fluorescence signal. The sensor displays a remarkable selectivity (>10,000-fold) for Na(+) over competing metal ions and has a detection limit of 135 µM (3.1 ppm). Furthermore, we demonstrate that this DNAzyme-based sensor can readily enter cells with the aid of α-helical cationic polypeptides. Finally, by protecting the cleavage site of the Na(+)-specific DNAzyme with a photolabile o-nitrobenzyl group, we achieved controlled activation of the sensor after DNAzyme delivery into cells. Together, these results demonstrate that such a DNAzyme-based sensor provides a promising platform for detection and quantification of Na(+) in living cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Zheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jianjun Cheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Departments of Biochemistry, Chemistry, and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
49
|
Freage L, Trifonov A, Tel-Vered R, Golub E, Wang F, McCaskill JS, Willner I. Addressing, amplifying and switching DNAzyme functions by electrochemically-triggered release of metal ions. Chem Sci 2015; 6:3544-3549. [PMID: 29511515 PMCID: PMC5812549 DOI: 10.1039/c5sc00744e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/08/2015] [Indexed: 01/01/2023] Open
Abstract
The addressable potential-controlled release of metal ions into electrolyte solutions containing mixtures of nucleic acids leads to the metal ion-guided generation of different DNAzymes and to the activation of DNA cascades.
The design of artificial cells, which mimic the functions of native cells, is an ongoing scientific goal. The development of stimuli-responsive chemical systems that stimulate cascaded catalytic transformations, trigger chemical networks, and control vectorial branched transformations and dose-controlled processes, are the minimum requirements for mimicking cell functions. We have studied the electrochemical programmed release of ions from electrodes, which trigger selective DNAzyme-driven chemical reactions, cascaded reactions that self-assemble catalytic DNAzyme polymers, and the ON–OFF switching and dose-controlled operation of catalytic reactions. The addressable and potential-controlled release of Pb2+ or Ag+ ions into an electrolyte that includes a mixture of nucleic acids, results in the metal ion-guided selection of nucleic acids yielding the formation of specific DNAzymes, which stimulate orthogonal reactions or activate DNAzyme cascades.
Collapse
Affiliation(s)
- Lina Freage
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Alexander Trifonov
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Ran Tel-Vered
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Eyal Golub
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - Fuan Wang
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| | - John S McCaskill
- Biomolecular Information Processing (BioMIP) , Ruhr-Universität Bochum , Universitätsstr 150 , Bochum , 44801 , Germany
| | - Itamar Willner
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel .
| |
Collapse
|
50
|
QIN CG, LU CX, OUYANG GW, QIN K, ZHANG F, SHI HT, WANG XH. Progress of Azobenzene-based Photoswitchable Molecular Probes and Sensory Chips for Chemical and Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60809-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|