1
|
Kurian ASN, Mazumder MI, Gurukandure A, Easley CJ. An electrochemical proximity assay (ECPA) for antibody detection incorporating flexible spacers for improved performance. Anal Bioanal Chem 2024; 416:6529-6539. [PMID: 39367148 PMCID: PMC11541272 DOI: 10.1007/s00216-024-05546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
A clever approach for biosensing is to leverage the concept of the proximity effect, where analyte binding to probes can be coupled to a second, controlled binding event such as short DNA strands. This analyte-dependent effect has been exploited in various sensors with optical or electrochemical readouts. Electrochemical proximity assays (ECPA) are more amenable to miniaturization and adaptation to the point-of-care, yet ECPA has been generally targeted toward protein sensing with antibody-oligonucleotide probes. Antibodies themselves are also important as biomarkers, since they are produced in bodily fluids in response to various diseases or infections, often in low amounts. In this work, by using antigen-DNA conjugates, we targeted an ECPA method for antibody sensing and showed that the assay performance can be greatly enhanced using flexible spacers in the DNA conjugates. After adding flexible polyethylene glycol (PEG) spacers at two distinct positions, the spacers ultimately increased the antibody-dependent current by a factor of 4.0 without significant background increases, similar to our recent work using thermofluorimetric analysis (TFA). The optimized ECPA was applied to anti-digoxigenin antibody quantification at concentrations ranging over two orders of magnitude, from the limit of detection of 300 pM up to 50 nM. The assay was functional in 90% human serum, where increased ionic strength was used to counteract double-layer repulsion effects at the electrode. This flexible-probe ECPA methodology should be useful for sensing other antibodies in the future with high sensitivity, and the mechanism for signal improvement with probe flexibility may be applicable to other DNA-based electrochemical sensor platforms.
Collapse
Affiliation(s)
- Amanda S N Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | | | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
2
|
Kurian ASN, Gurukandure A, Dovgan I, Kolodych S, Easley CJ. Thermofluorimetric Analysis (TFA) using Probes with Flexible Spacers: Application to Direct Antibody Sensing and to Antibody-Oligonucleotide (AbO) Conjugate Valency Monitoring. Anal Chem 2023; 95:11680-11686. [PMID: 37490525 PMCID: PMC10421636 DOI: 10.1021/acs.analchem.3c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Antibodies have long been recognized as clinically relevant biomarkers of disease. The onset of a disease often stimulates antibody production in low quantities, making it crucial to develop sensitive, specific, and easy-to-use antibody assay platforms. Antibodies are also extensively used as probes in bioassays, and there is a need for simpler methods to evaluate specialized probes, such as antibody-oligonucleotide (AbO) conjugates. Previously, we demonstrated that thermofluorimetric analysis (TFA) of analyte-driven DNA assembly can be leveraged to detect protein biomarkers using AbO probes. A key advantage of this technique is its ability to circumvent autofluorescence arising from biological samples, which otherwise hampers homogeneous assays. The analysis of differential DNA melt curves (dF/dT) successfully distinguishes the signal from the background and interferences. Expanding the applicability of TFA further, herein we demonstrate a unique proximity based TFA assay for antibody quantification that is functional in 90% human plasma. We show that the conformational flexibility of the DNA-based proximity probes is critically important for optimal performance in these assays. To promote stable, proximity-induced hybridization of the short DNA strands, substitution of poly(ethylene glycol) (PEG) spacers in place of ssDNA segments led to improved conformational flexibility and sensor performance. Finally, by applying these flexible spacers to study AbO conjugates directly, we validate this modified TFA approach as a novel tool to elucidate the probe valency, clearly distinguishing between monovalent and multivalent AbOs and reducing the reagent amounts by 12-fold.
Collapse
Affiliation(s)
- Amanda S. N. Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849
| | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849
| | | | | | | |
Collapse
|
3
|
Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron 2022; 211:114282. [DOI: 10.1016/j.bios.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 01/04/2023]
|
4
|
Beyond G-Quadruplexes-The Effect of Junction with Additional Structural Motifs on Aptamers Properties. Int J Mol Sci 2021; 22:ijms22189948. [PMID: 34576112 PMCID: PMC8466185 DOI: 10.3390/ijms22189948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes constitute an important type of nucleic acid structure, which can be found in living cells and applied by cell machinery as pivotal regulatory elements. Importantly, robust development of SELEX technology and modern, nucleic acid-based therapeutic strategies targeted towards various molecules have also revealed a large group of potent aptamers whose structures are grounded in G-quadruplexes. In this review, we analyze further extension of tetraplexes by additional structural elements and investigate whether G-quadruplex junctions with duplex, hairpin, triplex, or second G-quadruplex motifs are favorable for aptamers stability and biological activity. Furthermore, we indicate the specific and pivotal role of the G-quadruplex domain and the additional structural elements in interactions with target molecules. Finally, we consider the potency of G-quadruplex junctions in future applications and indicate the emerging research area that is still waiting for development to obtain highly specific and effective nucleic acid-based molecular tools.
Collapse
|
5
|
Zhang Z, Liu N, Zhang Z, Xu D, Ma S, Wang X, Zhou T, Zhang G, Wang F. Construction of Aptamer-Based Molecular Beacons with Varied Blocked Structures and Targeted Detection of Thrombin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8738-8745. [PMID: 34270267 DOI: 10.1021/acs.langmuir.1c00994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A kind of blocked aptamer-functionalized molecular beacon (MB) was designed as fluorescence sensors to detect thrombins by binding-induced "turn on" structural transformation. Three MBs named MB(8 + 8), MB(15 + 8), and MB(15 + 6) consisted of two single-stranded oligonucleotides. One long single-stranded oligonucleotide (abbreviated as SS) contained a thrombin aptamer sequence and was modified with a fluorescence group and quenching group on each end side. Another short single-stranded oligonucleotide (written as cDNA) was partially complementary to the long SS. It was interesting to find that the complementary sequence length of cDNA greatly influenced the structure of the MBs. The construction of MB experiments proved that MB(8 + 8) and MB(15 + 8) could form the quenching MBs but MB(15 + 6) could not. MB(8 + 8) was composed of a SS strand paired with a complementary cDNA(8 + 8), which was called one-to-one combination, while MB(15 + 8) was two-to-two combination and MB(15 + 6) was one-to-two combination. When the ratio of SS and cDNA (15 + 8) was 1:1, the quenching efficiency reached maximum. But with the molar ratio of SS and cDNA(8 + 8) increasing, the quenching efficiency increased continuously. Under the optimal conditions that we studied, the detection limit of thrombin by MB(8 + 8) and MB(15 + 8) was 0.19 and 1.2 nM, respectively. In addition, the assay proved to be selective, and the average recovery of thrombin detected by MB(8 + 8) and MB(15 + 8) in diluted serum was 95.4 and 94.5%, respectively.
Collapse
Affiliation(s)
- Zhiqing Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Nana Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zichen Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Dongyan Xu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuai Ma
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiufeng Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Ting Zhou
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Guodong Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
6
|
Santos T, Miranda A, Campello MPC, Paulo A, Salgado G, Cabrita EJ, Cruz C. Recognition of nucleolin through interaction with RNA G-quadruplex. Biochem Pharmacol 2021; 189:114208. [PMID: 32860827 DOI: 10.1016/j.bcp.2020.114208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The development of novel biomarkers for early-stage diagnosis of prostate cancer (PCa) has attracted the attention of researchers in the last decade. Nucleolin (NCL) has emerged as a possible biomarker of PCa due to its high expression levels in the surface of PCa cells and affinity towards parallel G4s since it contains four RNA-binding domains (RBDs). Herein, we developed a novel strategy based on a microfluidic platform for the detection of NCL in biological samples, such as human plasma. The RNA G4 (rG4) sequence found in human precursor microRNA 92b (pre-miR-92b) was used as a molecular recognition probe since it forms a single dominant parallel rG4 conformation in the presence of 0.1 mM K+ as confirmed by NMR spectroscopy. The additional stability of the rG4 structure was provided by the acridine orange derivative ligand C8, which stabilizes the pre-miR-92b rG4 structure, as denoted by an increase in more than 30 °C of its melting temperature. FRET-melting assay revealed a remarkable synergistic effect of NCL RBD1,2 and C8 on the stabilization of the pre-miR-92b rG4. The binding of pre-miR-92b to NCL RBD1,2 was determined by in silico studies, which revealed a binding pocket formed by a 12-residue linker between RBD1 and RBD2. Both, pre-miR-92b rG4 and pre-miR-92b rG4/C8 complex demonstrated high affinity towards NCL RBD1,2, as proved by fluorimetric titrations (KD range between 10-12 and 10-9 M). The stability and nuclease resistance of pre-miR-92b rG4 and pre-miR-92b rG4/C8 complex were evaluated as molecular recognition probes to capture and detect NCL. Finally, the microfluidic platform detects NCL in complex biological samples, such as human plasma. Overall, this work demonstrates the usefulness of the microfluidic platform based on the pre-miR-92b to detect NCL and the possibility to be used as a valuable biomedical tool in PCa diagnosis.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Maria P C Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Gilmar Salgado
- Univ. Bordeaux, ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
7
|
Miranda A, Santos T, Carvalho J, Alexandre D, Jardim A, Caneira CF, Vaz V, Pereira B, Godinho R, Brito D, Chu V, Conde JP, Cruz C. Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta 2021; 226:122037. [PMID: 33676639 DOI: 10.1016/j.talanta.2020.122037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
We have investigated the expression of nucleolin (NCL) in liquid biopsies of prostate cancer (PCa) patients and healthy controls to determine its correlation with tumor prognosis. To detect NCL we used a modified AS1411 aptamer designated by AS1411-N5. In presence of NCL, AS1411-N5 increases the fluorescence by assuming a G-quadruplex (G4) structure, while in the absence of NCL the fluorescence signal remains quenched. The structural characterization of AS1411-N5 was performed by biophysical studies, which demonstrated the formation of G4 parallel conformation in the presence of 100 mM K+ and the ability to recognize NCL with high affinity (KD = 138.1 ± 5.5 nM). Furthermore, the clinical relevance of NCL in PCa liquid biopsies was assessed by using an NCL-based ELISA assay. The protein was measured in the peripheral blood mononuclear cells (PBMCs) cell lysate of 158 individuals, including PCa patients and healthy individuals. The results depicted a remarkable increase of NCL levels in the PBMC's lysate of PCa patients (mean of 626.1 pg/mL whole blood) when compared to healthy individuals (mean of 198.5 pg/mL whole blood). The ELISA results also provided evidence for the usefulness of determining NCL levels in advanced PCa stages. Furthermore, a microfluidic assay showed the ability of AS1411-N5 in recognizing NCL in spiked human plasma samples.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Daniela Alexandre
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Andreia Jardim
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal; Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - CatarinaR F Caneira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Vírgilio Vaz
- Serviço de Urologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), Covilhã, Portugal
| | - Bruno Pereira
- Faculdade de Ciências da Saúde, Universidade da Beira Interior (FCS-UBI), Covilhã, Portugal; Instituto Português de Oncologia (IPO), Coimbra, Portugal
| | | | - Duarte Brito
- Instituto Português de Oncologia (IPO), Coimbra, Portugal
| | - Virgínia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
8
|
Bezerra AB, Kurian ASN, Easley CJ. Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Anal Chem 2021; 93:198-214. [PMID: 33147015 PMCID: PMC7855502 DOI: 10.1021/acs.analchem.0c04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Gray MD, Deore PS, Chung AJ, Van Riesen AJ, Manderville RA, Prabhakar PS, Wetmore SD. Lighting Up the Thrombin-Binding Aptamer G-Quadruplex with an Internal Cyanine-Indole-Quinolinium Nucleobase Surrogate. Direct Fluorescent Intensity Readout for Thrombin Binding without Topology Switching. Bioconjug Chem 2020; 31:2596-2606. [PMID: 33156614 DOI: 10.1021/acs.bioconjchem.0c00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent nucleobases represent an important class of molecular reporters of nucleic acid interactions. In this work, the advantages of utilizing a noncanonical fluorescent nucleobase surrogate for monitoring thrombin binding by the 15-mer thrombin binding aptamer (TBA) is presented. TBA folds into an antiparallel G-quadruplex (GQ) with loop thymidine (T) residues interacting directly with the protein in the thrombin-TBA complex. In the free GQ, T3 is solvent-exposed and does not form canonical base-pairs within the antiparallel GQ motif. Upon thrombin binding, T3 interacts directly with a hydrophobic protein binding pocket. Replacing T3 with a cyanine-indole-quinolinium (4QI) hemicyanine dye tethered to an acyclic 1,2-propanediol linker is shown to have minimal impact on GQ stability and structure with the internal 4QI displaying a 40-fold increase in emission intensity at 586 nm (excitation 508 nm) compared to the free dye in solution. Molecular dynamics (MD) simulations demonstrate that the 4QI label π-stacks with T4 and T13 within the antiparallel GQ fold, which is supported by strong energy transfer (ET) fluorescence from the GQ (donor) to the 4QI label (acceptor). Thrombin binding to 4QI-TBA diminishes π-stacking interactions between 4QI and the GQ structure to cause a turn-off emission intensity response with an apparent dissociation constant (Kd) of 650 nM and a limit of detection (LoD) of 150 nM. These features highlight the utility of internal noncanonical fluorescent surrogates for monitoring protein binding by GQ-folding aptamers in the absence of DNA topology switching.
Collapse
Affiliation(s)
- Micaela D Gray
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Prashant S Deore
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andrew J Chung
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Abigail J Van Riesen
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Preethi Seelam Prabhakar
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
10
|
Manochehry S, McConnell EM, Li Y. Unraveling Determinants of Affinity Enhancement in Dimeric Aptamers for a Dimeric Protein. Sci Rep 2019; 9:17824. [PMID: 31780794 PMCID: PMC6883073 DOI: 10.1038/s41598-019-54005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022] Open
Abstract
High-affinity aptamers can be derived de novo by using stringent conditions in SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments or can be engineered post SELEX via dimerization of selected aptamers. Using electrophoretic mobility shift assays, we studied a series of heterodimeric and homodimeric aptamers, constructed from two DNA aptamers with distinct primary sequences and secondary structures, previously isolated for VEGF-165, a homodimeric protein. We investigated four factors envisaged to impact the affinity of a dimeric aptamer to a dimeric protein: (1) length of the linker between two aptamer domains, (2) linking orientation, (3) binding-site compatibility of two component aptamers in a heterodimeric aptamer, and (4) steric acceptability of the two identical aptamers in a homodimeric aptamer. All heterodimeric aptamers for VEGF-165 were found to exhibit monomeric aptamer-like affinity and the lack of affinity enhancement was attributed to binding-site overlap by the constituent aptamers. The best homodimeric aptamer showed 2.8-fold better affinity than its monomeric unit (Kd = 13.6 ± 2.7 nM compared to 37.9 ± 14 nM), however the barrier to further affinity enhancement was ascribed to steric interference of the constituent aptamers. Our findings point to the need to consider the issues of binding-site compatibility and spatial requirement of aptamers for the development of dimeric aptamers capable of bivalent recognition. Thus, determinants highlighted herein should be assessed in future multimerization efforts.
Collapse
Affiliation(s)
- Sepehr Manochehry
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada. .,Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
11
|
Ebrahimi SB, Samanta D, Cheng HF, Nathan LI, Mirkin CA. Forced Intercalation (FIT)-Aptamers. J Am Chem Soc 2019; 141:13744-13748. [PMID: 31441661 DOI: 10.1021/jacs.9b06450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aptamers are oligonucleotide sequences that can be evolved to bind to various analytes of interest. Here, we present a general design strategy that transduces an aptamer-target binding event into a fluorescence readout via the use of a viscosity-sensitive dye. Target binding to the aptamer leads to forced intercalation (FIT) of the dye between oligonucleotide base pairs, increasing its fluorescence by up to 20-fold. Specifically, we demonstrate that FIT-aptamers can report target presence through intramolecular conformational changes, sandwich assays, and target-templated reassociation of split-aptamers, showing that the most common aptamer-target binding modes can be coupled to a FIT-based readout. This strategy also can be used to detect the formation of a metallo-base pair within a duplexed strand and is therefore attractive for screening for metal-mediated base pairing events. Importantly, FIT-aptamers reduce false-positive signals typically associated with fluorophore-quencher based systems, quantitatively outperform FRET-based probes by providing up to 15-fold higher signal to background ratios, and allow rapid and highly sensitive target detection (nanomolar range) in complex media such as human serum. Taken together, FIT-aptamers are a new class of signaling aptamers which contain a single modification, yet can be used to detect a broad range of targets.
Collapse
|
12
|
Dual Aptamer-Functionalized 3D Plasmonic Metamolecule for Thrombin Sensing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA nanotechnology offers the possibility to rationally design structures with emergent properties by precisely controlling their geometry and functionality. Here, we demonstrate a DNA-based plasmonic metamolecule that is capable of sensing human thrombin proteins. The chiral reconfigurability of a DNA origami structure carrying two gold nanorods was used to provide optical read-out of thrombin binding through changes in the displayed plasmonic circular dichroism. In our experiments, each arm of the structure was modified with one of two different thrombin-binding aptamers—thrombin-binding aptamer (TBA) and HD22—in such a way that a thrombin molecule could be sandwiched by the aptamers to lock the metamolecule in a state of defined chirality. Our structure exhibited a Kd of 1.4 nM, which was an order of magnitude lower than those of the individual aptamers. The increased sensitivity arose from the avidity gained by the cooperative binding of the two aptamers, which was also reflected by a Hill coefficient of 1.3 ± 0.3. As we further exploited the strong plasmonic circular dichroism (CD) signals of the metamolecule, our method allowed one-step, high sensitivity optical detection of human thrombin proteins in solution.
Collapse
|
13
|
Small molecule electro-optical binding assay using nanopores. Nat Commun 2019; 10:1797. [PMID: 30996223 PMCID: PMC6470146 DOI: 10.1038/s41467-019-09476-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 01/12/2023] Open
Abstract
The identification of short nucleic acids and proteins at the single molecule level is a major driving force for the development of novel detection strategies. Nanopore sensing has been gaining in prominence due to its label-free operation and single molecule sensitivity. However, it remains challenging to detect small molecules selectively. Here we propose to combine the electrical sensing modality of a nanopore with fluorescence-based detection. Selectivity is achieved by grafting either molecular beacons, complementary DNA, or proteins to a DNA molecular carrier. We show that the fraction of synchronised events between the electrical and optical channels, can be used to perform single molecule binding assays without the need to directly label the analyte. Such a strategy can be used to detect targets in complex biological fluids such as human serum and urine. Future optimisation of this technology may enable novel assays for quantitative protein detection as well as gene mutation analysis with applications in next-generation clinical sample analysis. Nanopore detection of small molecules can be improved using molecular carriers, but separating a small analyte from the carrier signal can be challenging. Here the authors address this challenge using simultaneous electrical and optical readout in nanopore sensing to detect small molecules and quantify binding affinities.
Collapse
|
14
|
Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm J 2019; 27:312-319. [PMID: 30976173 PMCID: PMC6438676 DOI: 10.1016/j.jsps.2018.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Nanobiosensors based on aptamer are extensively being studied as potent analytical tools in clinical analysis. These biosensors provide high sensitivity, fast response, specificity and desired portability in addition to simplicity and decreased cost compared to conventional methods. The purpose of this manuscript is to provide readers with an overview of current advances about electrochemical, electrochemiluminescent and photoelectrochemical aptasensors from the sea of available literature. These are mainly used for determination of protein-based biomarkers, especially for cancer diagnosis. Here in we have given special emphasis on nanosize-based aptasensors which have been reported to show considerable improvement in the analytical performance.
Collapse
Affiliation(s)
- Aamir Hanif
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Rabia Farooq
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Rehan Khan
- Nanotherapeutics, Institute of Nanoscience & Technology (DST-INST), Habitat Centre Phase 10, Mohali, Punjab, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Allabush F, Mendes PM, Tucker JHR. Acrylamide-dT: a polymerisable nucleoside for DNA incorporation. RSC Adv 2019; 9:31511-31516. [PMID: 35527933 PMCID: PMC9072585 DOI: 10.1039/c9ra07570d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Nucleoside derivative Acrylamide-dT can be readily synthesised and incorporated multiple times into DNA sequences at any position via automated synthesis.
Collapse
Affiliation(s)
- Francia Allabush
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
- School of Chemical Engineering
| | - Paula M. Mendes
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| | | |
Collapse
|
16
|
Abstract
Aptamer biosensor that can switch its structure upon target binding offers a powerful strategy for molecular detection. However, the process of converting an aptamer into a "structure-switching" biosensor is challenging and often relies on trial-and-error without established design principles. In this Sensor Issues, we examine a variety of design approaches for incorporating structure-switching functionality into existing aptamers, and provide thermodynamic analyses to highlight the variables that most strongly influence their performance. Finally, we also describe emerging efforts for incorporating the structure-switching functionality directly into the aptamer selection process.
Collapse
Affiliation(s)
- Trevor A. Feagin
- Department of Electrical Engineering, Stanford University,350 Serra Mall, Stanford, California 94305, United States
- Department of Radiology, Stanford University School of Medicine,300 Pasteur Drive, Stanford, California 94305, United States
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University,350 Serra Mall, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University,350 Serra Mall, Stanford, California 94305, United States
- Department of Radiology, Stanford University School of Medicine,300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
17
|
Huang Y, Zheng W, Li X. Detection of protein targets with a single binding epitope using DNA-templated photo-crosslinking and strand displacement. Anal Biochem 2018; 545:84-90. [DOI: 10.1016/j.ab.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
|
18
|
Somasundaram S, Holtan MD, Easley CJ. Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry. Anal Chem 2018; 90:3584-3591. [PMID: 29385341 DOI: 10.1021/acs.analchem.8b00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV). Using custom instrumentation, we first show that precise control of temperature can provide both electrochemical signal amplification and background signal depreciation in SWV readout of small oligonucleotides. Next, we thoroughly compared 25 different combinations of binding energies by their signal-to-background ratios and differences. These data served as a guide to select the optimal parameters of binding energy, SWV frequency, and assay temperature. Finally, the influence of experimental workflow on the sensitivity and limit of detection (LOD) of the sensor is demonstrated. This study highlights the importance of precisely controlling temperature and SWV frequency in DNA-driven assays on electrode surfaces while also presenting a novel instrumental design for fine-tuning of such systems.
Collapse
Affiliation(s)
- Subramaniam Somasundaram
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Mark D Holtan
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Christopher J Easley
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| |
Collapse
|
19
|
Abstract
Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.
Collapse
|
20
|
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers (Basel) 2017; 9:cancers9120174. [PMID: 29261171 PMCID: PMC5742822 DOI: 10.3390/cancers9120174] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement (“signal-on”) or a quenching (“signal-off”) effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment.
Collapse
|
21
|
Wang J, Gu Y, Liu L, Wang C, Wang J, Ding S, Li J, Qiu L, Jiang P. Novel application of fluorescence coupled capillary electrophoresis to resolve the interaction between the G-quadruplex aptamer and thrombin. J Sep Sci 2017; 40:3161-3167. [PMID: 28594110 DOI: 10.1002/jssc.201700456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/27/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
The dynamic binding status between the thrombin and its G-quadruplex aptamers and the stability of its interaction partners were probed using our previously established fluorescence-coupled capillary electrophoresis method. A 29-nucleic acid thrombin binding aptamer was chosen as a model to study its binding affinity with the thrombin ligand. First, the effects of the cations on the formation of G-quadruplex from unstructured 29-nucleic acid thrombin binding aptamer were examined. Second, the rapid binding kinetics between the thrombin and 6-carboxyfluorescein labeled G-quadruplex aptamer was measured. Third, the stability of G-quadruplex aptamer-thrombin complex was also examined in the presence of the interfering species. Remarkably, it was found that the complementary strand of 29-nucleic acid thrombin binding aptamer could compete with G-quadruplex aptamer and thus disassociated the G-quadruplex structure into an unstructured aptamer. These data suggest that our in-house established fluorescence-coupled capillary electrophoresis assay could be applied to binding studies of the G-quadruplex aptamers, thrombin, and their ligands, while overcoming the complicated and costly approaches currently available.
Collapse
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Yaqin Gu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Cheli Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Jianpeng Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Shumin Ding
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Jinping Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China.,Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P.R. China
| |
Collapse
|
22
|
Li B, Xu L, Chen Y, Zhu W, Shen X, Zhu C, Luo J, Li X, Hong J, Zhou X. Sensitive and Label-Free Fluorescent Detection of Transcription Factors Based on DNA-Ag Nanoclusters Molecular Beacons and Exonuclease III-Assisted Signal Amplification. Anal Chem 2017; 89:7316-7323. [DOI: 10.1021/acs.analchem.7b00055] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bingzhi Li
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Lei Xu
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Yue Chen
- Department
of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Wanying Zhu
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Xin Shen
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Chunhong Zhu
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Jieping Luo
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Xiaoxu Li
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Junli Hong
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| | - Xuemin Zhou
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, People’s Republic of China
| |
Collapse
|
23
|
Zhu D, Wang L, Xu X, Jiang W. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors. Biosens Bioelectron 2017; 89:978-983. [DOI: 10.1016/j.bios.2016.09.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
|
24
|
Hou Y, Liu J, Hong M, Li X, Ma Y, Yue Q, Li CZ. A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique. Biosens Bioelectron 2017; 92:259-265. [PMID: 28231553 DOI: 10.1016/j.bios.2017.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/28/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
The design of molecular nanodevices attracted great interest in these years. Herein, a reusable, sensitive and specific aptasensor was constructed based on an extension-contraction movement of DNA interconversion for the application of human thrombin detection. The present biosensor was based on resonance light scattering (RLS) using magnetic nanoparticles (MNPs) as the RLS probe. MNPs coated with streptavidin can combine with biotin labeled thrombin aptamers. The combined nanoparticles composite is monodispersed in aqueous medium. When thrombin was added a sandwich structure can form on the surface of MNPs, which induced MNPs aggregation. RLS signal was therefore enhanced, and there is a linear relationship between RLS increment and thrombin concentration in the range of 60pM-6.0nM with a limit of detection at 3.5pM (3.29SB/m, according to the recent recommendation of IUPAC). The present aptasensor can be repeatedly used for at least 6 cycling times by heat to transfer G-quadruplex conformation to single strand of DNA sequence and release thrombin. MNPs can be captured by applying the external magnetic field. Furthermore, the proposed biosensor was successfully applied to detect thrombin in human plasma.
Collapse
Affiliation(s)
- Yining Hou
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Jifeng Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Hong
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Yanhua Ma
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.
| |
Collapse
|
25
|
Gujar VB, Ottoor D. Medium dependent dual turn on/turn off fluorescence sensing for Cu 2+ ions using AMI/SDS assemblies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:666-674. [PMID: 27776319 DOI: 10.1016/j.saa.2016.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 09/30/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2+ ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2+ ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2+ ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2+ ion sensing is illustrated in this work.
Collapse
Affiliation(s)
- Varsha B Gujar
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Divya Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
26
|
Lv X, Zhang Y, Liu G, Du L, Wang S. Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra01474k] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A simple, rapid, low cost and highly sensitive method for the detection of ochratoxin A (OTA) was developed based on the principle that dispersed AuNPs show a better fluorescence quenching effect than aggregated AuNPs.
Collapse
Affiliation(s)
- Xin Lv
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Yuanfu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Guofu Liu
- College of Life Science
- Liaocheng University
- Liaocheng 252059
- China
| | - Lingyun Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Shuhao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|
27
|
Ma C, Yang Y, Li C, Liu Y. The influence of π-conjugation framework on intramolecular proton transfer and Stokes shift in 1,8-Dihydroxydibenzo[a,c]phenazine molecule: a DFT and TD-DFT study. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1986-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Li F, Tang Y, Traynor SM, Li XF, Le XC. Kinetics of Proximity-Induced Intramolecular DNA Strand Displacement. Anal Chem 2016; 88:8152-7. [PMID: 27454138 DOI: 10.1021/acs.analchem.6b01900] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proximity-induced intramolecular DNA strand displacement (PiDSD) is one of the key mechanisms involved in many DNA-mediated proximity assays and protein-responsive DNA devices. However, the kinetic profile of PiDSD has never been systematically examined before. Herein, we report a systematic study to explore the kinetics of PiDSD by combining the uses of three DNA strand displacement techniques, including a binding-induced DNA strand displacement to generate PiDSD, an intermolecular DNA strand-exchange strategy to measure a set of key kinetic parameters for PiDSD, and a toehold-mediated DNA strand displacement to generate fluorescence signals for the real-time monitoring of PiDSD. By using this approach, we have successfully revealed the kinetic profiles of PiDSD, determined the enhanced local effective concentrations of DNA probes that are involved in PiDSD, and identified a number of key factors that influence the kinetics of PiDSD. Our study on PiDSD establishes knowledge and strategies that can be used to guide the design and operation of various DNA-mediated proximity assays and protein-triggered DNA devices.
Collapse
Affiliation(s)
- Feng Li
- Department of Chemistry and Center for Biotechnology, Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | - Yanan Tang
- Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Sarah M Traynor
- Department of Chemistry and Center for Biotechnology, Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | - Xing-Fang Li
- Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
29
|
Wu YX, Kwon YJ. Aptamers: The "evolution" of SELEX. Methods 2016; 106:21-8. [PMID: 27109056 DOI: 10.1016/j.ymeth.2016.04.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/09/2023] Open
Abstract
It has been more than two decades since the first aptamer molecule was discovered. Since then, aptamer molecules have gain much attention in the scientific field. This increasing traction can be attributed to their many desirable traits, such as 1) their potentials to bind a wide range of molecules, 2) their malleability, and 3) their low cost of production. These traits have made aptamer molecules an ideal platform to pursue in the realm of pharmaceuticals and bio-sensors. Despite the broad applications of aptamers, tedious procedure, high resource consumption, and limited nucleobase repertoire have hindered aptamer in application usage. To address these issues, new innovative methodologies, such as automation and single round SELEX, are being developed to improve the outcomes and rates in which aptamers are discovered.
Collapse
Affiliation(s)
- Yi Xi Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
30
|
Abstract
Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms.
Collapse
Affiliation(s)
- Muslum Ilgu
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA and Ames Laboratory, US DOE, Ames IA 50011, USA
| |
Collapse
|
31
|
Cao T, Nie J, Cai LY, Zhang XH, Zhang DW, Zhou YL, Zhang XX. A cupric ion triggered DNA diode based on a tandem linkage–cleavage reaction. Chem Commun (Camb) 2016; 52:12490-12493. [DOI: 10.1039/c6cc07293c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel DNA functional element, a DNA diode, was developed based on a tandem linkage–cleavage process consisting of click chemistry and DNAzyme.
Collapse
Affiliation(s)
- Ting Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ji Nie
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Liang-Yuan Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xiao-Hui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - De-Wen Zhang
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- China Academy of Engineering Physics
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
32
|
Fiore E, Dausse E, Dubouchaud H, Peyrin E, Ravelet C. Ultrafast capillary electrophoresis isolation of DNA aptamer for the PCR amplification-based small analyte sensing. Front Chem 2015; 3:49. [PMID: 26322305 PMCID: PMC4533002 DOI: 10.3389/fchem.2015.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR) amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization) of capillary electrophoresis (CE) and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s) was developed by designing a CE input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 μM.
Collapse
Affiliation(s)
- Emmanuelle Fiore
- Département de Pharmacochimie Moléculaire UMR 5063, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Eric Dausse
- Laboratoire ARNA, Institut National de la Santé et de la Recherche Médicale U869, Université Bordeaux Bordeaux, France
| | - Hervé Dubouchaud
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Institut National de la Santé et de la Recherche Médicale U1055, University Grenoble Alpes Grenoble, France
| | - Eric Peyrin
- Département de Pharmacochimie Moléculaire UMR 5063, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Corinne Ravelet
- Département de Pharmacochimie Moléculaire UMR 5063, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| |
Collapse
|
33
|
Duan RR, Ou ZB, Wang W, Chen S, Zhou XH. Synthesis, crystal structures, photoluminescence properties and DNA binding of triazine-nickel(II) complexes for DNA detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:64-71. [PMID: 26125984 DOI: 10.1016/j.saa.2015.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
We report here the synthesis of three new nickel(II) complexes: [Ni(PzTA)2CO3]·5H2O (PzTA=2,4-diamino-6-(2'-pyrazin)-1,3,5-triazine) in 1, [NiQ(PyTA)(H2O)2]Cl·H2O (HQ=8-hydroxyquinoline, PyTA=2,4-diamino-6-(2'-pyridyl)-1,3,5-triazine) in 2, [NiQ(PzTA)(H2O)2]Cl·H2O in 3, and they were characterized by UV spectroscopy, elemental analysis, molar conductivity and X-ray single crystal diffraction. Binding of the complexes to ct-DNA was investigated with electronic spectroscopy, ethidium bromide displacement from DNA, viscometry and cyclic voltammetry. The results depicted the DNA binding mode of the three complexes was intercalation, and complex 1 together with external static-electricity. Moreover, the three complexes also presented potential anti-oxidant activity. Interestingly, we found 1 was sensitive to oxygen and to the polarity of nonaqueous solvents in fluorescence spectroscopy. Fluorescence of 2 and 3 is weak in neutral aqueous solvents, but is greatly enhanced by addition of ct-DNA. Thus, 2 and 3 can be used to DNA detection as DNA fluorescence probes with a LOD of 1.61 ng mL(-1), 4.90 ng mL(-1) for the relative wide linear range of 0.01-20 μg mL(-1), 0.02-30 μg mL(-1), respectively. These findings indicate that 1 may be a potential optical probe for oxygen-free environments in nonaqueous form, while 2 and 3 were DNA-targeted probes.
Collapse
Affiliation(s)
- Ran-Ran Duan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhi-Bin Ou
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Wei Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Shi Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Hua Zhou
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
34
|
Lee JW, Cho JH, Cho EJ. Aptamer-based optical switch for biosensors. ANALYTICAL SCIENCE AND TECHNOLOGY 2014. [DOI: 10.5806/ast.2014.27.3.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection. Biosens Bioelectron 2014; 61:336-43. [PMID: 24912033 DOI: 10.1016/j.bios.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/15/2022]
Abstract
Thrombin plays the role in cardiovascular diseases and regulates many processes in inflammation and could be a feature of many pathological conditions, including the thromboembolic disease, cancer and neurodegenerative diseases. An ultrasensitive and amplified electrochemical sandwich assay using screen-printed carbon electrode (SPCE) strips for thrombin detection was established in this study. The conductivity and sensing performance of the carbon electrodes were enhanced by using gold nanoparticles (AuNPs). The aptamer addressed on the strips was used as a primary probe to capture thrombin in the detected samples. An amplifier was invented for recognizing thrombin captured on the SPCE, which is the multiple molecules of anti-thrombin antibody (Ab) and horseradish peroxidase (HRP) co-modified AuNPs (AuNPs/Ab-HRP). Hydrogen peroxide was used as the substrate for HRP and then the response current (RC) could be detected. The optimization of these AuNPs conjugates-amplified aptamer immunosensing SPCE strips was conducted for thrombin detection. The detection sensitivity showed a linear relation between RC and thrombin concentration in the range of 10 pM-100 nM, and limit of detection (LOD) was 1.5 pM. The fabricated AuNPs/Ab-HRP-amplified aptamer immunosensing SPCE strips were further used to detect thrombin in human serum with a linear range of 100 pM-100 nM. This study provided the promising SPCE strips with highly sensitive and rapid detection for thrombin by the electrochemical aptasensor combined with AuNPs conjugates for amplifying the detection signal.
Collapse
|
36
|
Ngubane NAC, Gresh L, Pym A, Rubin EJ, Khati M. Selection of RNA aptamers against the M. tuberculosis EsxG protein using surface plasmon resonance-based SELEX. Biochem Biophys Res Commun 2014; 449:114-9. [PMID: 24813997 DOI: 10.1016/j.bbrc.2014.04.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 01/20/2023]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis, remains one of the most prevalent infectious diseases worldwide which causes high morbidity and mortality. However, there is still limited understanding of the physiological processes that allow M. tuberculosis to survive in its host environment. One of the challenges is the limited availability of molecular probes that can be used to study some of the complex systems in mycobacteria. One such system is the ESX-3 secretion system, a specialized type VII secretion (T7S) system. This system is essential for optimal growth of pathogenic mycobacteria in low iron environments similar to that encountered by mycobacteria in macrophages during infection. EsxG, a protein of unknown function, is both encoded within the ESX-3 locus and secreted by the ESX-3 system. There are currently no molecular probes with high affinity and specificity to the EsxG protein that can be used to study it. Here we demonstrate the use of surface plasmon resonance-based systematic evolution of ligands by exponential enrichment (SELEX) to identify two aptamers, G43 and G78 that bind EsxG with high affinities, KD of 8.04±1.90 nM and 78.85±9.40 nM, respectively. Moreover, these aptamers preferentially bind EsxG over its homologue EsxA. Availability of such probes enables biological investigation of the role of this protein in mycobacteria and its potential as a biomarker for TB diagnosis.
Collapse
Affiliation(s)
- Nqobile A C Ngubane
- Emerging Health Technologies, Biosciences Unit, CSIR, P.O. Box 395, Pretoria 0001, Gauteng, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Lionel Gresh
- Emerging Health Technologies, Biosciences Unit, CSIR, P.O. Box 395, Pretoria 0001, Gauteng, South Africa
| | - Alexander Pym
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, United States
| | - Makobetsa Khati
- Emerging Health Technologies, Biosciences Unit, CSIR, P.O. Box 395, Pretoria 0001, Gauteng, South Africa; Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
37
|
Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC. Aptamer binding assays for proteins: the thrombin example--a review. Anal Chim Acta 2014; 837:1-15. [PMID: 25000852 DOI: 10.1016/j.aca.2014.04.055] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Experimentally selected single-stranded DNA and RNA aptamers are able to bind to specific target molecules with high affinity and specificity. Many analytical methods make use of affinity binding between the specific targets and their aptamers. In the development of these methods, thrombin is the most frequently used target molecule to demonstrate the proof-of-principle. This paper critically reviews more than one hundred assays that are based on aptamer binding to thrombin. This review focuses on homogeneous binding assays, electrochemical aptasensors, and affinity separation techniques. The emphasis of this review is placed on understanding the principles and unique features of the assays. The principles of most assays for thrombin are applicable to the determination of other molecular targets.
Collapse
Affiliation(s)
- Bin Deng
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Yanwen Lin
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Chuan Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Feng Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Zhixin Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Xing-Fang Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
38
|
Yi X, Li L, Peng Y, Guo L. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification. Biosens Bioelectron 2014; 57:103-9. [PMID: 24561524 DOI: 10.1016/j.bios.2014.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
A novel versatile electrochemical platform for ultrasensitive detection of small biomolecules was developed using ligation-rolling circle amplification (L-RCA) with analyte-mediated sticky ends. In order to achieve DNA cyclization, we designed two ss-DNA probes: the leftpart probe could form a "hairpin" structure by denaturing; the rightpart probe could also form a "hairpin" structure based on analyte-activated conformation change. Then the two probes with the same sticky ends (G-AATTC) could be ligated in the presence of Escherichia coli DNA ligase, forming a circular template for rolling circle amplification (RCA), which could be triggered by adding the primer probe and Phi29 DNA polymerase. Electrochemical impedance spectroscopy (EIS) was employed as the detection method. Overall, the proposed L-RCA-based sensing system not only exhibits excellent analytical characteristics with a detection limit of 320 pM and a linear range of 5 orders of magnitude (1 nM-10 μM), but also provides a universal design idea of L-RCA, which broadens the use of DNA amplification method and holds great promise in ultrasensitive bioassay in the future.
Collapse
Affiliation(s)
- Xiaohui Yi
- School of Chemistry & Environment, Beihang University, Xueyuan Road #37, Haidian District, Beijing 100191, China
| | - Lidong Li
- School of Chemistry & Environment, Beihang University, Xueyuan Road #37, Haidian District, Beijing 100191, China.
| | - Yi Peng
- School of Chemistry & Environment, Beihang University, Xueyuan Road #37, Haidian District, Beijing 100191, China
| | - Lin Guo
- School of Chemistry & Environment, Beihang University, Xueyuan Road #37, Haidian District, Beijing 100191, China.
| |
Collapse
|
39
|
Päkkilä H, Blom S, Kopra K, Soukka T. Aptamer-directed lanthanide chelate self-assembly for rapid thrombin detection. Analyst 2014; 138:5107-12. [PMID: 23807946 DOI: 10.1039/c3an00192j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a sensitive assay method for homogeneous thrombin detection. The method is based on lanthanide chelate complementation, where the luminescent complex is split into two separate label moieties, which are intrinsically non-luminescent. A luminescent mixed chelate complex is formed only when the label moieties are brought into close proximity directed by two separate binding events of aptamers to the analyte. This results in high specificity in signal generation while time-resolved fluorescence detection eliminates the short lifetime autofluorescence, which is inherent to many homogeneous assays and limits their applicability. The developed method is also very rapid as the maximum signal is obtained in just five minutes. Lanthanide chelate complementation can be applied for the detection of other proteins when two binders recognizing separate epitopes of the analyte are available.
Collapse
Affiliation(s)
- Henna Päkkilä
- Department of Biotechnology, University of Turku, Tykistökatu 6 A 6th floor, FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|
40
|
Lin KC, Kuo CY, Nieh CC, Tseng WL. Molecular beacon-based NAND logic gate for sensing triplex DNA binders. RSC Adv 2014. [DOI: 10.1039/c4ra06158f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular beacon-based NAND logic gate was simple, rapid, selective, and sensitive for probing triplex DNA binders.
Collapse
Affiliation(s)
- Kai-Cheng Lin
- Department of Emergency Medicine
- Division of Traumatology
- Kaohsiung Veterans General Hospital
- Taiwan
| | - Chia-Yin Kuo
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung, Taiwan
| | - Chih-Chun Nieh
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung, Taiwan
- School of Pharmacy
- College of Pharmacy
| |
Collapse
|
41
|
Zhang H, Li F, Dever B, Wang C, Li XF, Le XC. DNA-Assemblierung mittels Affinitätsbindung für die ultraempfindliche Proteindetektion. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Zhang H, Li F, Dever B, Wang C, Li XF, Le XC. Assembling DNA through affinity binding to achieve ultrasensitive protein detection. Angew Chem Int Ed Engl 2013; 52:10698-705. [PMID: 24038633 DOI: 10.1002/anie.201210022] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/17/2013] [Indexed: 11/06/2022]
Abstract
Recent advances in DNA assembly and affinity binding have enabled exciting developments of nanosensors and ultrasensitive assays for specific proteins. These sensors and assays share three main attractive features: 1) the detection of proteins can be accomplished by the detection of amplifiable DNA, thereby dramatically enhancing the sensitivity; 2) assembly of DNA is triggered by affinity binding of two or more probes to a single target molecule, thereby resulting in increased specificity; and 3) the assay is conducted in solution with no need for separation, thus making the assay attractive for potential point-of-care applications. We illustrate here the principle of assembling DNA through affinity binding, and we highlight novel applications to the detection of proteins.
Collapse
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G3 (Canada) http://www.ualberta.ca/∼xcle
| | | | | | | | | | | |
Collapse
|
43
|
Zhao Q, Geng X, Wang H. Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer. Anal Bioanal Chem 2013; 405:6281-6. [PMID: 23728728 DOI: 10.1007/s00216-013-7047-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 01/15/2023]
Abstract
We explored a fluorescent strategy for sensing ochratoxin A (OTA) by using a single fluorophore-labeled aptamer for detection of OTA. This method relied on the change of the fluorescence intensity of the labeled dye induced by the specific binding of the fluorescent aptamer to OTA. Different fluorescein labeling sites of aptamers were screened, including the internal thymine bases, 3'-end, and 5'-end of the aptamer, and the effect of the labeling on the aptamer affinity was investigated. Some fluorophore-labeled aptamers showed a signal-on or signal-off response. With the fluorescent aptamer switch, simple, rapid, and selective sensing of OTA at nanomolar concentrations was achieved. OTA spiked in diluted red wine could be detected, showing the feasibility of the fluorescent aptamer for a complex matrix. This method shows potential for designing aptamer sensors for other targets.
Collapse
Affiliation(s)
- Qiang Zhao
- Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan, China.
| | | | | |
Collapse
|
44
|
Zhang L, Cui P, Zhang B, Gao F. Aptamer-based turn-on detection of thrombin in biological fluids based on efficient phosphorescence energy transfer from Mn-doped ZnS quantum dots to carbon nanodots. Chemistry 2013; 19:9242-50. [PMID: 23712510 DOI: 10.1002/chem.201300588] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 01/14/2023]
Abstract
This paper presents the first example of a sensitive, selective, and stable phosphorescent sensor based on phosphorescence energy transfer (PET) for thrombin that functions through thrombin-aptamer recognition events. In this work, an efficient PET donor-acceptor pair using Mn-doped ZnS quantum dots labeled with thrombin-binding aptamers (TBA QDs) as donors, and carbon nanodots (CNDs) as acceptors has been constructed. Due to the π-π stacking interaction between aptamer and CNDs, the energy donor and acceptor are taken into close proximity, leading to the phosphorescence quenching of donors, TBA QDs. A maximum phosphorescence quenching efficiency as high as 95.9% is acquired. With the introduction of thrombin to the "off state" of the TBA-QDs-CNDs system, the phosphorescence is "turned on" due to the formation of quadruplex-thrombin complexes, which releases the energy acceptor CNDs from the energy donors. Based on the restored phosphorescence, an aptamer-based turn-on thrombin biosensor has been demonstrated by using the phosphorescence as a signal transduction method. The sensor displays a linear range of 0-40 nM for thrombin, with a detection limit as low as 0.013 nM in pure buffers. The proposed aptasensor has also been used to monitor thrombin in complex biological fluids, including serum and plasma, with satisfactory recovery ranging from 96.8 to 104.3%. This is the first time that Mn-doped ZnS quantum dots and CNDs have been employed as a donor-acceptor pair to construct PET-based biosensors, which combines both the photophysical merits of phosphorescence QDs and the superquenching ability of CNDs and thus affords excellent analytical performance. We believe this proposed method could pave the way to a new design of biosensors using PET systems.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory of Optical Probes and Bioelectrocatalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | | | | | | |
Collapse
|
45
|
Xie L, You L, Cao X. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:110-115. [PMID: 23501724 DOI: 10.1016/j.saa.2013.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/25/2013] [Accepted: 02/02/2013] [Indexed: 06/01/2023]
Abstract
A novel electrogenerated chemiluminescence (ECL) assay for sensitive determination of thrombin is designed employing CdSe/ZnS quantum dots served as an ECL label. This ECL sensor is fabricated on graphene modified glassy carbon electrode which is then covered with a low surface coverage of gold nanoparticles (AuNPs). An aptamer is used to selectively recognize the target. The thiol-terminated aptamer is first immobilized on AuNPs/graphene modified electrode, and then thrombin is imported to form the aptamer-thrombin complexes. After blocking the nonspecifically bound oligonucleotides with MCH solution, another CdSe/ZnS quantum dots modified aptamer is hybridized with the free thiol-terminated aptamer to form a DNA complexe. A decreased ECL signal is observed upon recognition of the target thrombin. The integrated ECL intensity versus the concentration of thrombin is linear in the range from 0.01 to 50 nM. The detection limit is 10 fM. The present aptasensor also exhibits excellent selectivity, stability and reusability. This sensing system can provide a promising label-free model for aptamer-based compounds sensitive detection.
Collapse
Affiliation(s)
- Lingling Xie
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | | | | |
Collapse
|
46
|
Xiao SJ, Hu PP, Chen LQ, Zhen SJ, Peng L, Li YF, Huang CZ. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots. PLoS One 2013; 8:e53935. [PMID: 23393552 PMCID: PMC3564804 DOI: 10.1371/journal.pone.0053935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/07/2012] [Indexed: 01/07/2023] Open
Abstract
Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.
Collapse
Affiliation(s)
- Sai Jin Xiao
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
- Jiangxi Key Laboratory of Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, Jiangxi Province, China
| | - Ping Ping Hu
- College of Life Science, Southwest University, Chongqing, China
| | - Li Qiang Chen
- College of Life Science, Southwest University, Chongqing, China
| | - Shu Jun Zhen
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Li Peng
- College of Life Science, Southwest University, Chongqing, China
| | - Yuan Fang Li
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Cheng Zhi Huang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
47
|
de la Escosura-Muñiz A, Chunglok W, Surareungchai W, Merkoçi A. Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens Bioelectron 2013; 40:24-31. [DOI: 10.1016/j.bios.2012.05.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/10/2012] [Accepted: 05/15/2012] [Indexed: 11/28/2022]
|
48
|
Zhang H, Li F, Dever B, Li XF, Le XC. DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev 2012; 113:2812-41. [PMID: 23231477 DOI: 10.1021/cr300340p] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | |
Collapse
|
49
|
Babu E, Mareeswaran PM, Rajagopal S. Highly sensitive optical biosensor for thrombin based on structure switching aptamer-luminescent silica nanoparticles. J Fluoresc 2012; 23:137-46. [PMID: 22965479 DOI: 10.1007/s10895-012-1127-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/02/2012] [Indexed: 12/17/2022]
Abstract
We describe here the construction of a sensitive and selective optical sensor system for the detection of human α-thrombin. The surface functionalized luminescent [Ru(dpsphen)(3)](4-) (dpsphen-4,7-diphenyl-1,10-phenanthroline disulfonate) ion doped silica nanoparticles (SiNPs) with a size ~70 nm have been prepared. The DABCYL (2-(4-dimethylaminophenyl)diazenyl-benzoic acid) quencher labeled thrombin binding aptamer is conjugated to the surface of SiNPs using BS(3) (bis(sulfosuccinimidyl) suberate) as a cross-linker, resulting in the conformational change of aptamer to form G-quadruplex structure upon the addition of thrombin. The binding event is translated into a change in the luminescence intensity of Ru(II) complex via FRET mechanism, due to the close proximity of DABCYL quencher with SiNPs. The selective detection of thrombin using the SiNPs-aptamer system up to 4 nM is confirmed by comparing its sensitivity towards other proteins. This work demonstrates the application of simple aptamer-SiNPs conjugate as a highly sensitive system for the detection of thrombin and also it is highly sensitive towards thrombin in the presence of other proteins and complex medium such as BSA.
Collapse
Affiliation(s)
- Ethiraju Babu
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
| | | | | |
Collapse
|
50
|
Li J, Zhong X, Zhang H, Le XC, Zhu JJ. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal Chem 2012; 84:5170-4. [PMID: 22607314 DOI: 10.1021/ac3006268] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present here a binding-induced fluorescence turn-on assay for protein detection. Key features of this assay include affinity binding-induced DNA hybridization and fluorescence enhancement of silver nanoclusters (Ag NCs) using guanine-rich DNA sequences. In an example of an assay for human α-thrombin, two aptamers (Apt15 and Apt29) were used and were modified by including additional sequence elements. A 12-nucleotide (nt) sequence was used to link the first aptamer with a nanocluster nucleation sequence at the 5'-end. The second aptamer was linked through a complementary sequence (12-nt) to a G-rich overhang at the 3'-end. Binding of the two aptamer probes to the target protein initiates hybridization between the complementary linker sequences attached to each aptamer and thereby bring the end of the G-rich overhang to close proximity to Ag NCs, resulting in a significant fluorescence enhancement. With this approach, a detection limit of 1 nM and a linear dynamic range of 5 nM-2 μM were achieved for human α-thrombin. This fluorescence assay is performed in a single tube, and it does not require washing or separation steps. The principle of the binding-induced DNA hybridization and fluorescence enhancement of Ag NCs can be extended to other homogeneous assay applications provided that two appropriate probes are available to bind with the same target molecule.
Collapse
|