1
|
Siddiqui MU, Sibtain M, Ahmad F, Zushi Y, Nabi D. Screening Disinfection Byproducts in Arid-Coastal Wastewater: A Workflow Using GC×GC-TOFMS, Passive Sampling, and NMF Deconvolution Algorithm. J Xenobiot 2024; 14:554-574. [PMID: 38804286 PMCID: PMC11130967 DOI: 10.3390/jox14020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Disinfection during tertiary municipal wastewater treatment is a necessary step to control the spread of pathogens; unfortunately, it also gives rise to numerous disinfection byproducts (DBPs), only a few of which are regulated because of the analytical challenges associated with the vast number of potential DBPs. This study utilized polydimethylsiloxane (PDMS) passive samplers, comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS), and non-negative matrix factorization (NMF) spectral deconvolution for suspect screening of DBPs in treated wastewater. PDMS samplers were deployed upstream and downstream of the chlorination unit in a municipal wastewater treatment plant located in Abu Dhabi, and their extracts were analyzed using GC×GC-TOFMS. A workflow incorporating a multi-tiered, eight-filter screening process was developed, which successfully enabled the reliable isolation of 22 candidate DBPs from thousands of peaks. The NMF spectral deconvolution improved the match factor score of unknown mass spectra to the reference mass spectra available in the NIST library by 17% and facilitated the identification of seven additional DBPs. The close match of the first-dimension retention index data and the GC×GC elution patterns of DBPs, both predicted using the Abraham solvation model, with their respective experimental counterparts-with the measured data available in the NIST WebBook and the GC×GC elution patterns being those observed for the candidate peaks-significantly enhanced the accuracy of peak assignment. Isotopic pattern analysis revealed a close correspondence for 11 DBPs with clearly visible isotopologues in reference spectra, thereby further strengthening the confidence in the peak assignment of these DBPs. Brominated analogues were prevalent among the detected DBPs, possibly due to seawater intrusion. The fate, behavior, persistence, and toxicity of tentatively identified DBPs were assessed using EPI Suite™ and the CompTox Chemicals Dashboard. This revealed their significant toxicity to aquatic organisms, including developmental, mutagenic, and endocrine-disrupting effects in certain DBPs. Some DBPs also showed activity in various CompTox bioassays, implicating them in adverse molecular pathways. Additionally, 11 DBPs demonstrated high environmental persistence and resistance to biodegradation. This combined approach offers a powerful tool for future research and environmental monitoring, enabling accurate identification and assessment of DBPs and their potential risks.
Collapse
Affiliation(s)
- Muhammad Usman Siddiqui
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
| | - Muhammad Sibtain
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
| | - Farrukh Ahmad
- BioEnergy & Environmental Laboratory (BEEL), Masdar Institute Campus, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- California Environmental Protection Agency, Cypress, CA 90630, USA
| | - Yasuyuki Zushi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Ibaraki, Japan
| | - Deedar Nabi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
- BioEnergy & Environmental Laboratory (BEEL), Masdar Institute Campus, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| |
Collapse
|
2
|
Aakash A, Kulsoom R, Khan S, Siddiqui MS, Nabi D. Novel Models for Accurate Estimation of Air-Blood Partitioning: Applications to Individual Compounds and Complex Mixtures of Neutral Organic Compounds. J Chem Inf Model 2023; 63:7056-7066. [PMID: 37956246 PMCID: PMC10685450 DOI: 10.1021/acs.jcim.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The air-blood partition coefficient (Kab) is extensively employed in human health risk assessment for chemical exposure. However, current Kab estimation approaches either require an extensive number of parameters or lack precision. In this study, we present two novel and parsimonious models to accurately estimate Kab values for individual neutral organic compounds, as well as their complex mixtures. The first model, termed the GC×GC model, was developed based on the retention times of nonpolar chemical analytes on comprehensive two-dimensional gas chromatography (GC×GC). This model is unique in its ability to estimate the Kab values for complex mixtures of nonpolar organic chemicals. The GC×GC model successfully accounted for the Kab variance (R2 = 0.97) and demonstrated strong prediction power (RMSE = 0.31 log unit) for an independent set of nonpolar chemical analytes. Overall, the GC×GC model can be used to estimate Kab values for complex mixtures of neutral organic compounds. The second model, termed the partition model (PM), is based on two types of partition coefficients: octanol to water (Kow) and air to water (Kaw). The PM was able to effectively account for the variability in Kab data (n = 344), yielding an R2 value of 0.93 and root-mean-square error (RMSE) of 0.34 log unit. The predictive power and explanatory performance of the PM were found to be comparable to those of the parameter-intensive Abraham solvation models (ASMs). Additionally, the PM can be integrated into the software EPI Suite, which is widely used in chemical risk assessment for initial screening. The PM provides quick and reliable estimation of Kab compared to ASMs, while the GC×GC model is uniquely suited for estimating Kab values for complex mixtures of neutral organic compounds. In summary, our study introduces two novel and parsimonious models for the accurate estimation of Kab values for both individual compounds and complex mixtures.
Collapse
Affiliation(s)
- Ahmad Aakash
- Institute
of Environmental Science and Engineering (IESE), School of Civil and
Environmental Engineering (SCEE), National
University of Sciences and Technology (NUST), H-12, 48000 Islamabad, Pakistan
| | - Ramsha Kulsoom
- Institute
of Environmental Science and Engineering (IESE), School of Civil and
Environmental Engineering (SCEE), National
University of Sciences and Technology (NUST), H-12, 48000 Islamabad, Pakistan
| | - Saba Khan
- Institute
of Environmental Science and Engineering (IESE), School of Civil and
Environmental Engineering (SCEE), National
University of Sciences and Technology (NUST), H-12, 48000 Islamabad, Pakistan
| | - Musab Saeed Siddiqui
- Institute
of Environmental Science and Engineering (IESE), School of Civil and
Environmental Engineering (SCEE), National
University of Sciences and Technology (NUST), H-12, 48000 Islamabad, Pakistan
| | - Deedar Nabi
- Institute
of Environmental Science and Engineering (IESE), School of Civil and
Environmental Engineering (SCEE), National
University of Sciences and Technology (NUST), H-12, 48000 Islamabad, Pakistan
- GEOMAR
Helmholtz Center for Ocean Research, Wischhofstrasse 1-3, 24148 Kiel, Germany
| |
Collapse
|
3
|
Gaida M, Stefanuto PH, Focant JF. Theoretical modeling and machine learning-based data processing workflows in comprehensive two-dimensional gas chromatography-A review. J Chromatogr A 2023; 1711:464467. [PMID: 37871505 DOI: 10.1016/j.chroma.2023.464467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
In recent years, comprehensive two-dimensional gas chromatography (GC × GC) has been gradually gaining prominence as a preferred method for the analysis of complex samples due to its higher peak capacity and resolution power compared to conventional gas chromatography (GC). Nonetheless, to fully benefit from the capabilities of GC × GC, a holistic approach to method development and data processing is essential for a successful and informative analysis. Method development enables the fine-tuning of the chromatographic separation, resulting in high-quality data. While generating such data is pivotal, it does not necessarily guarantee that meaningful information will be extracted from it. To this end, the first part of this manuscript reviews the importance of theoretical modeling in achieving good optimization of the separation conditions, ultimately improving the quality of the chromatographic separation. Multiple theoretical modeling approaches are discussed, with a special focus on thermodynamic-based modeling. The second part of this review highlights the importance of establishing robust data processing workflows, with a special emphasis on the use of advanced data processing tools such as, Machine Learning (ML) algorithms. Three widely used ML algorithms are discussed: Random Forest (RF), Support Vector Machine (SVM), and Partial Least Square-Discriminate Analysis (PLS-DA), highlighting their role in discovery-based analysis.
Collapse
Affiliation(s)
- Meriem Gaida
- Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
| |
Collapse
|
4
|
Corrêa AM, Sousa JM, Leal KZ, Bernardes MC. Comprehensive Two-Dimensional Gas Chromatography in Petroleum Derived Samples: A Review on Advances in Source and Weathering Studies of Spilled Oil. Crit Rev Anal Chem 2023; 54:3409-3427. [PMID: 37632737 DOI: 10.1080/10408347.2023.2250858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Since its introduction comprehensive two-dimensional gas chromatography (GC × GC) has been widely applied to analyze complex samples due to its enhanced peak capacity and selectivity, thereby increasing the number of identifiable peaks and improving coelution issues. Even though it is still undergoing development, GC × GC provides many advantages in the analysis of petroleum-derived samples, whether in reservoir geochemistry applications or in environmental studies associated with spilled oils. In general, it facilitates more thorough fingerprinting and compositional evaluation. In environmental studies, it helps enhance understanding of weathering processes and the environmental behavior of hydrocarbons, as its chromatographic retention indices can robustly estimate liquid vapor pressures, aqueous solubility and other physical chemical properties. This review presents a brief history of GC × GC instrumentation, discussing recent and significant advances in petroleum applications, from data handling techniques to reservoir geochemistry and environmental forensics, as well as some specific advantages achieved and certain limitations that continue to be encountered.
Collapse
Affiliation(s)
- Antônia M Corrêa
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Juliana M Sousa
- Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Kátia Z Leal
- Departamento de Físico-Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Marcelo C Bernardes
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Geoquímica, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
5
|
Arey JS, Martin Aparicio A, Vaiopoulou E, Forbes S, Lyon D. Modeling the GCxGC Elution Patterns of a Hydrocarbon Structure Library To Innovate Environmental Risk Assessments of Petroleum Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17913-17923. [PMID: 36475671 PMCID: PMC9775207 DOI: 10.1021/acs.est.2c06922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Comprehensive two-dimensional gas chromatography (GCxGC) offers unrivaled separation of petroleum substances, which can contain thousands of constituents or more. However, interpreting substance compositions from GCxGC data is costly and requires expertise. To facilitate environmental risk assessments, industries provide aggregated compositional information known as "hydrocarbon blocks" (HCBs), but these proprietary methods do not transparently associate the HCBs with GCxGC chromatogram data. These obstacles frustrate efforts to study the environmental risks of petroleum substances and associated environmental samples. To address this problem, we developed a GCxGC elution model for user-defined petroleum substance compositions. We calibrated the elution model to experimental GCxGC retention times of 56 known hydrocarbons by fitting three tunable model parameters to two candidate instrument methods. With the calibrated model, we simulated retention times for a library of 15,447-15,455 hydrocarbon structures (plus 40-48 predicted as chromatographically unretained) spanning 11 classes of petroleum substance constituents in the C10-C30 range. The resulting simulation data reveal that GCxGC retention times are quantitatively associated with hydrocarbon class and carbon number information throughout the GCxGC chromatogram. These innovations enable the development of transparent and efficient technical methods to investigate the chemical compositions and environmental properties of petroleum substances, including in environmental and lab-weathered samples.
Collapse
Affiliation(s)
- J. Samuel Arey
- ExxonMobil
Biomedical Sciences Inc., Annandale, New Jersey08801, United States
| | | | | | | | | |
Collapse
|
6
|
Wise SA, Rodgers RP, Reddy CM, Nelson RK, Kujawinski EB, Wade TL, Campiglia AD, Liu Z. Advances in Chemical Analysis of Oil Spills Since the Deepwater Horizon Disaster. Crit Rev Anal Chem 2022; 53:1638-1697. [PMID: 35254870 DOI: 10.1080/10408347.2022.2039093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 Deepwater Horizon (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes. The capabilities of high-resolution MS (HRMS) were utilized to extend the analytical characterization window beyond conventional GC-based methods to include polar and high molecular mass components (>400 Da) and to provide new opportunities for discovery, characterization, and investigation of photooxidation and biotransformation products. Novel separation approaches to reduce the complexity of the oil and weathered oil prior to high-resolution MS and advanced fluorescence spectrometry have increased the information available on spilled oil and transformation products. HRMS methods were developed to achieve the required precision and sensitivity for detection of dispersants and to provide molecular-level characterization of the complex surfactants. Overall, research funding following the DWH oil spill significantly advanced and expanded the use of analytical techniques for chemical analysis to support petroleum and dispersant characterization and investigations of fate and effects of not only the DWH oil spill but future spills.
Collapse
Affiliation(s)
- Stephen A Wise
- Scientist Emeritus, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Ryan P Rodgers
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
7
|
Desmond DS, Saltymakova D, Crabeck O, Schreckenbach G, Xidos JD, Barber DG, Isleifson D, Stern GA. Methods for Interpreting the Partitioning and Fate of Petroleum Hydrocarbons in a Sea Ice Environment. J Phys Chem A 2022; 126:772-786. [PMID: 35080411 DOI: 10.1021/acs.jpca.1c08357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Decreases in Arctic Sea ice extent and thickness have led to more open ice conditions, encouraging both shipping traffic and oil exploration within the northern Arctic. As a result, the increased potential for accidental releases of crude oil or fuel into the Arctic environment threatens the pristine marine environment, its ecosystem, and local inhabitants. Thus, there is a need to develop a better understanding of oil behavior in a sea ice environment on a microscopic level. Computational quantum chemistry was used to simulate the effects of evaporation, dissolution, and partitioning within sea ice. Vapor pressures, solubilities, octanol-water partition coefficients, and molecular volumes were calculated using quantum chemistry and thermodynamics for pure liquid solutes (oil constituents) of interest. These calculations incorporated experimentally measured temperatures and salinities taken throughout an oil-in-ice mesocosm experiment conducted at the University of Manitoba in 2017. Their potential for interpreting the relative movements of oil constituents was assessed. Our results suggest that the relative movement of oil constituents is influenced by differences in physical properties. Lighter molecules showed a greater tendency to be controlled by brine advection processes due to their greater solubility. Molecules which are more hydrophobic were found to concentrate in areas of lower salt concentration.
Collapse
Affiliation(s)
| | | | - Odile Crabeck
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Bruxelles 99131, Belgium.,Unité d'Océanographie Chimique, Freshwater and Oceanic sCience Unit reSearch (FOCUS), Université de Liège, 4000 Liège, Belgium
| | | | - James D Xidos
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - David G Barber
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - Gary A Stern
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
8
|
Investigation of partition coefficients and fingerprints of atmospheric gas- and particle-phase intermediate volatility and semi-volatile organic compounds using pixel-based approaches. J Chromatogr A 2022; 1665:462808. [PMID: 35032735 DOI: 10.1016/j.chroma.2022.462808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Ambient gas- and particle-phase intermediate volatility and semi-volatile organic compounds (I/SVOCs) of Beijing were analyzed by a thermal desorption comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (TD-GC × GC-qMS). A pixel-based scheme combing the integration-based approach was applied for partition coefficients estimation and fingerprints identification. Blob-by-blob recognition was firstly utilized to characterize I/SVOCs from the molecular level. 412 blobs in gas-phase and 460 blobs in particle-phase were resolved, covering a total response of 47.5% and 43.5%. A large pool of I/SVOCs was found with a large diversity of chemical classes in both gas- and particle-phase. Acids (8.5%), b-alkanes (5.8%), n-alkanes (C8-C25, 5.3%), and aromatics (4.4%) were dominant in gas-phase while esters (7.0%, including volatile chemical product compounds, VCPs), n-alkanes (C9-C34, 5.7%), acids (4.6%), and siloxanes (3.6%) were abundant in particle-phase. Air pollutants were then evaluated by a two-parameter linear free energy relationship (LFER) model, which could be further implemented in the two-dimensional volatility basis set (2D-VBS) model. Multiway principal component analysis (MPCA) and partial least squares-discriminant analysis (PLS-DA) implied that naphthalenes, phenol, propyl-benzene isomers, and oxygenated volatile organic compounds (OVOCs) were key components in the gas-phase under different pollution levels. This work gives more insight into property estimation and fingerprints identification for complex ambient samples.
Collapse
|
9
|
Boegelsack N, Sandau C, McMartin DW, Withey JM, O'Sullivan G. Development of retention time indices for comprehensive multidimensional gas chromatography and application to ignitable liquid residue mapping in wildfire investigations. J Chromatogr A 2020; 1635:461717. [PMID: 33254004 DOI: 10.1016/j.chroma.2020.461717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 01/07/2023]
Abstract
In this study, we introduce a simple three-step workflow for a universally applicable RI system, to be used in GC×GC analysis of ignitable liquid residue (ILR) for arson investigations. The proposed RI system applies a combination of two well-established GC RI systems: non-isothermal Kovats (K) index in the first dimension and Lee (L) index in the second dimension. The proposed KLI RI system showed very good correlations when compared with predicted values and existing RI systems (r2 = 0.97 in first dimension, r2 = 0.99 in second dimension) and was valid for a wide range of analyte concentrations and operational settings (coefficient of variance (CV) < 1% in first dimension, < 10% in second dimension). Using the KLI RI, an ILR classification contour map was created to assist with the identification of ILR types within ASTM E1618. The contour map was successfully applied to neat fuels and a fire scene sample, highlighting the application to wildfire investigation. Standardizing the RI process and establishing acceptable error margins allows the exploration and comparison of comprehensive data generated from GC×GC analysis of ILRs regardless of location, time, or system, further enhancing comprehensive and tenable chemometric analyses of samples. Overall, the KLI workflow was inexpensive, quick to apply, and user-friendly with its simple 3-step design.
Collapse
Affiliation(s)
- Nadin Boegelsack
- Department of Earth and Environmental Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB Canada, T3E 6K6; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK Canada, S7N 5A9.
| | - Court Sandau
- Department of Earth and Environmental Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB Canada, T3E 6K6; Chemistry Matters Inc., 104-1240 Kensington Rd NW Suite 405, Calgary, AB Canada, T2N 3P7
| | - Dena W McMartin
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK Canada, S7N 5A9
| | - Jonathan M Withey
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB Canada, T3E 6K6
| | - Gwen O'Sullivan
- Department of Earth and Environmental Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB Canada, T3E 6K6
| |
Collapse
|
10
|
Development of gas chromatographic pattern recognition and classification tools for compliance and forensic analyses of fuels: A review. Anal Chim Acta 2020; 1132:157-186. [DOI: 10.1016/j.aca.2020.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 01/29/2023]
|
11
|
Kim J, Yu J. Measurements of relative distribution constants of vaporized hydrocarbons between air and polydimethylsiloxane via capillary columns for the calculation of headspace hydrocarbon compositions. J Chromatogr A 2020; 1627:461405. [PMID: 32823110 DOI: 10.1016/j.chroma.2020.461405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
This study focused on the measurements and validity of relative distribution constants of vaporized hydrocarbons between air and polydimethylsiloxane (PDMS) using commercially available capillary columns. Capillary column gas chromatography (CCGC) measurements, using two columns containing a PDMS stationary phase with different film thicknesses, were conducted to determine the relative distribution constants of n-heptane, toluene, n-octane, p-xylene, n-nonane, and 1,2,4-trimethylbenzene between air and PDMS at 90 and 120 °C. To validate the accuracy of the relative distribution constants via CCGC, the compositions of three headspace samples containing different amounts of hydrocarbons were calculated using the relative distribution constants via CCGC and extracted amounts via PDMS solid phase microextraction (SPME) at 90 and 120 °C. It was found that calculated hydrocarbon compositions of headspace samples were comparable to true headspace hydrocarbon compositions via direct vapor analysis, with an average absolute relative error of 3.2%. Our results indicate that CCGC is an alternative method that can provide a reliable and convenient method to determine the relative distribution constants of various hydrocarbons between air and PDMS for quantitative chemical analysis of headspace.
Collapse
Affiliation(s)
- Joonyeong Kim
- Department of Chemistry, Buffalo State, SUNY, 1300 Elmwood Avenue, Buffalo, NY 14222, United States.
| | - Jihnhee Yu
- Department of Biostatistics, University at Buffalo, SUNY, Buffalo, NY 14214, United States
| |
Collapse
|
12
|
Drollette BD, Gentner DR, Plata DL. Waste Containment Ponds Are a Major Source of Secondary Organic Aerosol Precursors from Oil Sands Operations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9872-9881. [PMID: 32806916 DOI: 10.1021/acs.est.0c01735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface mining and bitumen extraction of oil sands (OS) generates over one million barrels of heavy oil each day in the Alberta Oil Sands Region of Canada. Recent observations suggest that emissions from OS development contribute to secondary organic aerosol (SOA) formation, but the chemical composition, mass fluxes, and sources of those emissions are poorly delineated. Here, we simulated OS extraction and used comprehensive two-dimensional gas chromatography to quantify and characterize direct air emissions, bitumen froth, residual wastewater, and tailings components, ultimately enabling fate modeling of over 1500 chromatographic features simultaneously. During the non-ice cover season, tailings ponds emissions contributed 15 000-72 000 metric tonnes of hydrocarbon SOA precursors, translating to 3000-13 000 tonnes of SOA, whereas direct emissions during the extraction process itself were notably smaller (960 ± 500 tonnes SOA yr-1). These results suggest that tailings pond waste management practices should be targeted to reduce environmental emissions.
Collapse
Affiliation(s)
- Brian D Drollette
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Exponent, Incorporated, Maynard, Massachusetts 01754, United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Desiree L Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Bos TS, Knol WC, Molenaar SR, Niezen LE, Schoenmakers PJ, Somsen GW, Pirok BW. Recent applications of chemometrics in one- and two-dimensional chromatography. J Sep Sci 2020; 43:1678-1727. [PMID: 32096604 PMCID: PMC7317490 DOI: 10.1002/jssc.202000011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
The proliferation of increasingly more sophisticated analytical separation systems, often incorporating increasingly more powerful detection techniques, such as high-resolution mass spectrometry, causes an urgent need for highly efficient data-analysis and optimization strategies. This is especially true for comprehensive two-dimensional chromatography applied to the separation of very complex samples. In this contribution, the requirement for chemometric tools is explained and the latest developments in approaches for (pre-)processing and analyzing data arising from one- and two-dimensional chromatography systems are reviewed. The final part of this review focuses on the application of chemometrics for method development and optimization.
Collapse
Affiliation(s)
- Tijmen S. Bos
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Wouter C. Knol
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Stef R.A. Molenaar
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Leon E. Niezen
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Peter J. Schoenmakers
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Bob W.J. Pirok
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| |
Collapse
|
14
|
Zushi Y, Hanari N, Nabi D, Lin BL. Mixture Touch: A Web Platform for the Evaluation of Complex Chemical Mixtures. ACS OMEGA 2020; 5:8121-8126. [PMID: 32309721 PMCID: PMC7161061 DOI: 10.1021/acsomega.0c00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Risk assessment of chemical mixtures isRisk assessment of chemical mixtures is challenging because information about the chemical structure, concentration, properties, and toxicity, down to the individual compounds, is generally not readily accessible. To cope with this challenge, we think Mixture Touch- a web platform that offers a one-window solution, for free, for the risk assessment of complex mixtures that are analyzed with comprehensive two-dimensional gas chromatography (GC × GC). GC × GC is a powerful analytical technique for target and nontarget analysis of complex mixtures. Our web platform allows users to visualize the GC × GC data, conduct spectral identification, estimate properties, and analyze potential risks based on established methods. For illustration purpose, we show how to assess the aquatic bioaccumulation potential of short-chain chlorinated paraffin (SCCP), which is an industrially manufactured mixture. The platform readily demonstrated that most of the SCCP congeners did not have the tendency to accumulate in aquatic organisms but in humans. The platform can bridge the gap between the GC × GC experts, GC × GC users, analytical experts, and risk assessors. It could enhance the level of risk assessments of mixtures utilizing the high performance of the state-of-the-art analytical instruments.
Collapse
Affiliation(s)
- Yasuyuki Zushi
- Research
Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology
(AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Nobuyasu Hanari
- Research
Institute for Material and Chemical Measurement, National Metrology Institute of Japan, National Institute of Advanced
Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Deedar Nabi
- Institute
of Environmental Sciences and Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
- College
of Health Sciences, Jumeira University, Latifa Bint Hamdan Street, P.O.Box: 555532, Dubai United Arab Emirates
| | - Bin-Le Lin
- Research
Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology
(AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
15
|
Idroes R, Muslem, Mahmudi, Saiful, Idroes GM, Suhendra R, Irvanizam. The effect of column and temperature variation on the determination of the dead time in gas chromatographic systems using indirect methods. Heliyon 2020; 6:e03302. [PMID: 32083207 PMCID: PMC7016382 DOI: 10.1016/j.heliyon.2020.e03302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022] Open
Abstract
The precise determination of the dead time is essential in a chromatography system as it is a primary parameter for the determination of other secondary parameters such as the adjusted retention time, relative retention time, retention factor and retention index. Several of the indirect methods used for the determination of the dead time in this study were iteration, nonlinear, spreadsheet and statistics methods, which were implemented using the ANSI C programming language. The calculation of each method was tested with temperature and column variations for measuring the retention time of a n-alkane homologous series and accuracy analysis of each mathematical method (indirect method) to the marker substance (direct method). Changes in the temperature and column variations (type, polarity and column length) affected the calculation of the dead time values but did not affect its accuracy. The value of the dead time generated by the non-linear method was relatively high, with errors above 10%, while the other methods utilized are quite good with errors below 8% regardless of the column and temperature variations.
Collapse
Affiliation(s)
- Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Muslem
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Mahmudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Saiful
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Ghazi Mauer Idroes
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Rivansyah Suhendra
- Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Irvanizam
- Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| |
Collapse
|
16
|
Dimandja JM. Introduction and historical background: the “inside” story of comprehensive two-dimensional gas chromatography. SEP SCI TECHNOL 2020. [DOI: 10.1016/b978-0-12-813745-1.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Zushi Y, Yamatori Y, Nagata J, Nabi D. Comprehensive two-dimensional gas-chromatography-based property estimation to assess the fate and behavior of complex mixtures: A case study of vehicle engine oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:739-745. [PMID: 30893629 DOI: 10.1016/j.scitotenv.2019.03.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
A method was developed to estimate the properties and assess the potential environmental risk of analytes in a complex mixture by comprehensive two-dimensional gas chromatography (GC × GC). A GC × GC-based estimation model was calibrated for 12 physicochemical properties that were relevant to the environment or to biological organisms, including human beings. Vehicle engine oil that had been contaminated by numerous compounds during its use was investigated as a case study to which the GC × GC model could be applied. Engine-oil samples were collected from a vehicle at intervals over a distance of 11407 km. The carbon and nitrogen contents in the oil remained unchanged at 83%-84% and 2%-5%, respectively, during the run; however, in excess of 100 compounds were present in the oil upon completion of the run. Post analyses of the studied mixture samples were performed with the developed GC × GC model, which links mass spectral information for structural identification. The GC × GC model allows us to classify the detected analytes in complex mixtures in terms of their properties, such as their aquatic bioaccumulation potential. The application of the model showed that the analyzed engine oil contained in excess of 100 compounds that could accumulate in aquatic biota and reach the arctic via long-range transport, which suggests that the components in the complex mixture of engine oil could pose a risk. The newly developed model that was derived in this study shows great potential for use in the mixture assessment.
Collapse
Affiliation(s)
- Yasuyuki Zushi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Yuki Yamatori
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Jun Nagata
- Global Application Development Center, Shimadzu Corporation, 380-1, Horiyamashita, Hadano, Kanagawa 259-1304, Japan
| | - Deedar Nabi
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, H-12 Islamabad, Pakistan
| |
Collapse
|
18
|
Jiang M. Facile Approach for Calculation of Second Dimensional Retention Indices in Comprehensive Two Dimensional Gas Chromatography with Single Injection. Anal Chem 2019; 91:4085-4091. [DOI: 10.1021/acs.analchem.8b05717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, #13 Hangkong Road, Wuhan, Hubei 430030, PR China
| |
Collapse
|
19
|
Baedecker MJ, Eganhouse RP, Qi H, Cozzarelli IM, Trost JJ, Bekins BA. Weathering of Oil in a Surficial Aquifer. GROUND WATER 2018; 56:797-809. [PMID: 29193024 DOI: 10.1111/gwat.12619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The composition of crude oil in a surficial aquifer was determined in two locations at the Bemidji, MN, spill site. The abundances of 71 individual hydrocarbons varied within 16 locations sampled. Little depletion of these hydrocarbons (relative to the pipeline oil) occurred in the first 10 years after the spill, whereas losses of 25% to 85% of the total measured hydrocarbons occurred after 30 years. The C6-30 n-alkanes, toluene, and o-xylene were the most depleted hydrocarbons. Some hydrocarbons, such as the n-C10-24 cyclohexanes, tri- and tetra- methylbenzenes, acyclic isoprenoids, and naphthalenes were the least depleted. Benzene was detected at every sampling location 30 years after the spill. Degradation of the oil led to increases in the percent organic carbon and in the δ 13 C of the oil. Another method of determining hydrocarbon loss was by normalizing the total measured hydrocarbon concentrations to that of the most conservative analytes. This method indicated that the total measured hydrocarbons were depleted by 47% to 77% and loss of the oil mass over 30 years was 18% to 31%. Differences in hydrocarbon depletion were related to the depth of the oil in the aquifer, local topography, amount of recharge reaching the oil, availability of electron acceptors, and the presence of less permeable soils above the oil. The results from this study indicate that once crude oil has been in the subsurface for a number of years there is no longer a "starting oil concentration" that can be used to understand processes that affect its fate and the transport of hydrocarbons in groundwater.
Collapse
Affiliation(s)
| | - Robert P Eganhouse
- U.S. Geological Survey, MS431, 12201 Sunrise Valley Drive, Reston, VA, 20192
| | - Haiping Qi
- U.S. Geological Survey, MS431, 12201 Sunrise Valley Drive, Reston, VA, 20192
| | | | - Jared J Trost
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN 55112
| | - Barbara A Bekins
- U.S. Geological Survey, MS496, McKelvey Building, 345 Middlefield Road, Menlo Park, CA 94025
| |
Collapse
|
20
|
Redman AD, Butler JD, Letinski DJ, Di Toro DM, Leon Paumen M, Parkerton TF. Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances. CHEMOSPHERE 2018; 199:585-594. [PMID: 29455127 DOI: 10.1016/j.chemosphere.2018.02.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Solid-phase microextraction fibers coated with polydimethylsiloxane (PDMS) provide a convenient passive sampling format to characterize bioavailability of petroleum substances. Hydrocarbons absorb onto PDMS in proportion to both freely dissolved concentrations and partitioning properties of the individual constituents, which parallels the mechanistic basis used to predict aquatic toxicity in the PETROTOX model. When deployed in a non-depletive manner, combining SPME with thermal desorption and quantification using gas chromatography-flame ionization creates a biomimetic extraction (BE) procedure that has the potential to simplify aquatic hazard assessments of petroleum substances since the total moles of all hydrocarbons sorbed to the fiber can be related to toxic thresholds in target lipid of aquatic organisms. The objective of this work is to describe the technical basis for applying BE measurements to predict toxicity of petroleum substances. Critical BE-based PDMS concentrations corresponding to adverse effects were empirically derived from toxicity tests on different petroleum substances with multiple test species. The resulting species sensitivity distribution (SSD) of PDMS effect concentrations was then compared and found consistent with the previously reported target lipid-based SSD. Further, BE data collected on samples of aqueous media dosed with a wide range of petroleum substances were highly correlated to predicted toxic units derived using the PETROTOX model. These findings provide justification for applying BE in environmental hazard and risk evaluations of petroleum substances and related mixtures.
Collapse
Affiliation(s)
- A D Redman
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA.
| | - J D Butler
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA
| | - D J Letinski
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA
| | | | - M Leon Paumen
- ExxonMobil Petroleum and Chemical, Machelen, Belgium
| | - T F Parkerton
- ExxonMobil Biomedical Sciences, Inc. Spring, TX, USA
| |
Collapse
|
21
|
Veenaas C, Haglund P. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J Chromatogr A 2018; 1536:67-74. [DOI: 10.1016/j.chroma.2017.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 10/19/2022]
|
22
|
Nabi D, Arey JS. Predicting Partitioning and Diffusion Properties of Nonpolar Chemicals in Biotic Media and Passive Sampler Phases by GC × GC. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3001-3011. [PMID: 28195714 DOI: 10.1021/acs.est.6b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemical parameters needed to explain and predict bioavailability, biodynamics, and baseline toxicity are not readily available for most nonpolar chemicals detected in the environment. Here, we demonstrate that comprehensive two-dimensional gas chromatography (GC × GC) retention times can be used to predict 26 relevant properties for nonpolar chemicals, specifically: partition coefficients for diverse biotic media and passive sampler phases; aquatic baseline toxicity; and relevant diffusion coefficients. The considered biotic and passive sampler phases include membrane and storage lipids, serum and muscle proteins, carbohydrates, algae, mussels, polydimethylsiloxane, polyethylene, polyoxymethylene, polyacrylate, polyurethane, and semipermeable membrane devices. GC × GC-based chemical property predictions are validated with a compilation of 1038 experimental property data collected from the literature. As an example application, we overlay a map of baseline toxicity to fathead minnows onto the separated analyte signal of a polychlorinated alkanes (chlorinated paraffins) technical mixture that contains 7820 congeners. In a second application, GC × GC-estimated properties are used to parametrize multiphase partitioning models for mammalian tissues and organs. In a third example, we estimate chemical depuration kinetics for mussels. Finally, we illustrate an approach to screen the GC × GC chromatogram for nonpolar chemicals of potentially high concern, defined based on their GC × GC-estimated biopartitioning properties, diffusion properties, and baseline toxicity.
Collapse
Affiliation(s)
- Deedar Nabi
- School of Architecture, Civil, and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
- Bigelow Laboratory for Ocean Sciences , East Boothbay, Maine 04544, United States
| | - J Samuel Arey
- School of Architecture, Civil, and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Wang FCY. Comprehensive three-dimensional gas chromatography mass spectrometry separation of diesel. J Chromatogr A 2017; 1489:126-133. [DOI: 10.1016/j.chroma.2017.01.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
|
24
|
Ghasemi Damavandi H, Sen Gupta A, Nelson RK, Reddy CM. Interpreting comprehensive two-dimensional gas chromatography using peak topography maps with application to petroleum forensics. Chem Cent J 2016; 10:75. [PMID: 27994639 PMCID: PMC5125045 DOI: 10.1186/s13065-016-0211-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Background Comprehensive two-dimensional gas chromatography \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) provides high-resolution separations across hundreds of compounds in a complex mixture, thus unlocking unprecedented information for intricate quantitative interpretation. We exploit this compound diversity across the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) topography to provide quantitative compound-cognizant interpretation beyond target compound analysis with petroleum forensics as a practical application. We focus on the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) topography of biomarker hydrocarbons, hopanes and steranes, as they are generally recalcitrant to weathering. We introduce peak topography maps (PTM) and topography partitioning techniques that consider a notably broader and more diverse range of target and non-target biomarker compounds compared to traditional approaches that consider approximately 20 biomarker ratios. Specifically, we consider a range of 33–154 target and non-target biomarkers with highest-to-lowest peak ratio within an injection ranging from 4.86 to 19.6 (precise numbers depend on biomarker diversity of individual injections). We also provide a robust quantitative measure for directly determining “match” between samples, without necessitating training data sets. Results We validate our methods across 34 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) injections from a diverse portfolio of petroleum sources, and provide quantitative comparison of performance against established statistical methods such as principal components analysis (PCA). Our data set includes a wide range of samples collected following the 2010 DeepwaterHorizon disaster that released approximately 160 million gallons of crude oil from the Macondo well (MW). Samples that were clearly collected following this disaster exhibit statistically significant match \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(99.23 \pm 1.66 )\,\%$$\end{document}(99.23±1.66)% using PTM-based interpretation against other closely related sources. PTM-based interpretation also provides higher differentiation between closely correlated but distinct sources than obtained using PCA-based statistical comparisons. In addition to results based on this experimental field data, we also provide extentive perturbation analysis of the PTM method over numerical simulations that introduce random variability of peak locations over the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) biomarker ROI image of the MW pre-spill sample (sample \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\#1$$\end{document}#1 in Additional file 4: Table S1). We compare the robustness of the cross-PTM score against peak location variability in both dimensions and compare the results against PCA analysis over the same set of simulated images. Detailed description of the simulation experiment and discussion of results are provided in Additional file 1: Section S8. Conclusions We provide a peak-cognizant informational framework for quantitative interpretation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) topography. Proposed topographic analysis enables \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(GC \times GC)$$\end{document}(GC×GC) forensic interpretation across target petroleum biomarkers, while including the nuances of lesser-known non-target biomarkers clustered around the target peaks. This allows potential discovery of hitherto unknown connections between target and non-target biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s13065-016-0211-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ananya Sen Gupta
- Department of Electrical Engineering, University of Iowa, 103 S Capitol Street, Iowa City, IA 52242 USA
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543 USA
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543 USA
| |
Collapse
|
25
|
Gros J, Reddy CM, Nelson RK, Socolofsky SA, Arey JS. Simulating Gas-Liquid-Water Partitioning and Fluid Properties of Petroleum under Pressure: Implications for Deep-Sea Blowouts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7397-7408. [PMID: 27117673 DOI: 10.1021/acs.est.5b04617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (>100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas-liquid-water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng-Robinson equation-of-state and the modified Henry's law (Krychevsky-Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279-280 pseudocomponents, including 131-132 individual compounds. We define >n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29-44% gas and ∼56-71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1-C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.
Collapse
Affiliation(s)
- Jonas Gros
- Environmental Chemistry Modeling Laboratory (LMCE), GR C2 544, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 2, CH-1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Christopher M Reddy
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution , Woods Hole, Massachusetts 02543, United States
| | - Robert K Nelson
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution , Woods Hole, Massachusetts 02543, United States
| | - Scott A Socolofsky
- Zachry Department of Civil Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - J Samuel Arey
- Environmental Chemistry Modeling Laboratory (LMCE), GR C2 544, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 2, CH-1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
26
|
O'Neil GW, Nelson RK, Wright AM, Reddy CM. A One-Pot/Single-Analysis Approach to Substrate Scope Investigations Using Comprehensive Two-Dimensional Gas Chromatography (GC×GC). J Org Chem 2016; 81:3533-41. [PMID: 27078746 DOI: 10.1021/acs.joc.6b00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A representative substrate scope investigation for an enantioselective catalytic ketone-reduction has been performed as a single reaction on a mixture containing equimolar amounts of nine (9) prototypical compounds. The resulting analyte pool containing 18 potential products from nine different reactions could all be completely resolved in a single chromatographic injection using comprehensive two-dimensional gas chromatography (GC×GC) with time-of-flight mass spectrometry, allowing for simultaneous determination of percent conversion and enantiomeric excess for each substrate. The results obtained for an enantioselective iron-catalyzed asymmetric transfer hydrogenation using this one-pot/single-analysis approach were similar to those reported for the individualized reactions, demonstrating the utility of this strategy for streamlining substrate scope investigations. Moreover, for this particular catalyst, activity and selectivity were not greatly affected by the presence of other ketones or enantioenriched reduced products. This approach allows for faster and greener analyses that are central to new reaction development, as well as an opportunity to gain further insights into other established transformations.
Collapse
Affiliation(s)
- Gregory W O'Neil
- Department of Chemistry, Western Washington University , Bellingham, Washington 98225, United States
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution , Woods Hole, Massachusetts 02543, United States
| | - Alicia M Wright
- Department of Chemistry, Western Washington University , Bellingham, Washington 98225, United States
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution , Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
27
|
Redman AD, Parkerton TF. Guidance for improving comparability and relevance of oil toxicity tests. MARINE POLLUTION BULLETIN 2015; 98:156-70. [PMID: 26162510 DOI: 10.1016/j.marpolbul.2015.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/22/2015] [Accepted: 06/28/2015] [Indexed: 05/25/2023]
Abstract
The complex nature and limited aqueous solubility of petroleum substances pose challenges for consistently characterizing exposures in aquatic life hazard assessments. This paper reviews important considerations for the design, conduct and interpretation of laboratory toxicity tests with physically and chemically dispersed oils based on an understanding of the behavior and toxicity of the hydrocarbons that comprise these substances. Guiding principles are provided that emphasize the critical need to understand and, when possible, characterize dissolved hydrocarbon exposures that dictate observed toxicity in these tests. These principles provide a consistent framework for interpreting toxicity studies performed using different substances and test methods by allowing varying dissolved exposures to be expressed in terms of a common metric based on toxic units (TUs). The use of passive sampling methods is also advocated since such analyses provide an analytical surrogate for TUs. The proposed guidance is translated into a series of questions that can be used in evaluating existing data and in guiding design of future studies. Application of these questions to a number of recent publications indicates such considerations are often ignored, thus perpetuating the difficulty of interpreting and comparing results between studies and limiting data use in objective hazard assessment. Greater attention to these principles will increase the comparability and utility of oil toxicity data in decision-making.
Collapse
Affiliation(s)
- Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA.
| | - Thomas F Parkerton
- ExxonMobil Biomedical Sciences, Inc., 22777 Springwood Village Parkway, Spring, TX 77339, USA
| |
Collapse
|
28
|
Mcllroy JW, Jones AD, McGuffin VL. Gas chromatographic retention index as a basis for predicting evaporation rates of complex mixtures. Anal Chim Acta 2014; 852:257-66. [DOI: 10.1016/j.aca.2014.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
29
|
Antle PM, Zeigler CD, Livitz DG, Robbat A. Two-dimensional gas chromatography/mass spectrometry, physical property modeling and automated production of component maps to assess the weathering of pollutants. J Chromatogr A 2014; 1364:223-33. [DOI: 10.1016/j.chroma.2014.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
30
|
N-way partial least squares with variable importance in projection combined to GC × GC-TOFMS as a reliable tool for toxicity identification of fresh and weathered crude oils. Anal Bioanal Chem 2014; 407:285-95. [DOI: 10.1007/s00216-014-8076-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/08/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
|
31
|
Gros J, Nabi D, Würz B, Wick LY, Brussaard CPD, Huisman J, van der Meer JR, Reddy CM, Arey JS. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9400-9411. [PMID: 25103722 DOI: 10.1021/es502437e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.
Collapse
Affiliation(s)
- Jonas Gros
- Environmental Chemistry Modeling Laboratory (LMCE), GR C2 544, Swiss Federal Institute of Technology at Lausanne (EPFL) , Station 2, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nabi D, Gros J, Dimitriou-Christidis P, Arey JS. Mapping environmental partitioning properties of nonpolar complex mixtures by use of GC × GC. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6814-6826. [PMID: 24901063 DOI: 10.1021/es501674p] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Comprehensive two-dimensional gas chromatography (GC × GC) is effective for separating and quantifying nonpolar organic chemicals in complex mixtures. Here we present a model to estimate 11 environmental partitioning properties for nonpolar analytes based on GC × GC chromatogram retention time information. The considered partitioning properties span several phases including pure liquid, air, water, octanol, hexadecane, particle natural organic matter, dissolved organic matter, and organism lipids. The model training set and test sets are based on a literature compilation of 648 individual experimental partitioning property data. For a test set of 50 nonpolar environmental contaminants, predicted partition coefficients exhibit root-mean-squared errors ranging from 0.19 to 0.48 log unit, outperforming Abraham-type solvation models for the same chemical set. The approach is applicable to nonpolar organic chemicals containing C, H, F, Cl, Br, and I, having boiling points ≤402 °C. The presented model is calibrated, easy to apply, and requires the user only to identify a small set of known analytes that adapt the model to the GC × GC instrument program. The analyst can thus map partitioning property estimates onto GC × GC chromatograms of complex mixtures. For example, analyzed nonpolar chemicals can be screened for long-range transport potential, aquatic bioaccumulation potential, arctic contamination potential, and other characteristic partitioning behaviors.
Collapse
Affiliation(s)
- Deedar Nabi
- Environmental Chemistry Modeling Laboratory, GR C2 544, Swiss Federal Institute of Technology at Lausanne (EPFL) , Station 2, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
33
|
Gros J, Reddy CM, Aeppli C, Nelson RK, Carmichael CA, Arey JS. Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1628-1637. [PMID: 24447243 DOI: 10.1021/es4042836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.
Collapse
Affiliation(s)
- Jonas Gros
- Environmental Chemistry Modeling Laboratory, GR C2 544, Swiss Federal Institute of Technology at Lausanne (EPFL) , Station 2, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
McGinitie TM, Ebrahimi-Najafabadi H, Harynuk JJ. Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography. J Chromatogr A 2014; 1325:204-12. [DOI: 10.1016/j.chroma.2013.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
35
|
Hoffmann N, Wilhelm M, Doebbe A, Niehaus K, Stoye J. BiPACE 2D—graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry. Bioinformatics 2013; 30:988-95. [DOI: 10.1093/bioinformatics/btt738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Redman AD, Parkerton TF, McGrath JA, Di Toro DM. PETROTOX: an aquatic toxicity model for petroleum substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2498-506. [PMID: 22887448 DOI: 10.1002/etc.1982] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/04/2012] [Accepted: 07/11/2012] [Indexed: 05/14/2023]
Abstract
A spreadsheet model (PETROTOX) is described that predicts the aquatic toxicity of complex petroleum substances from petroleum substance composition. Substance composition is characterized by specifying mass fractions in constituent hydrocarbon blocks (HBs) based on available analytical information. The HBs are defined by their mass fractions within a defined carbon number range or boiling point interval. Physicochemical properties of the HBs are approximated by assigning representative hydrocarbons from a database of individual hydrocarbons with associated physicochemical properties. A three-phase fate model is used to simulate the distribution of each structure among the water-, air-, and oil-phase liquid in the laboratory test system. Toxicity is then computed based on the predicted aqueous concentrations and aquatic toxicity of each structure and the target lipid model. The toxicity of the complex substance is computed assuming additivity of the contribution of the individual assigned hydrocarbons. Model performance was evaluated by using direct comparisons with measured toxicity data for petroleum substances with sufficient analytical characterization to run the model. Indirect evaluations were made by comparing predicted toxicity distributions using analytical data on petroleum substances from different product categories with independent, empirical distributions of toxicity data available for the same categories. Predictions compared favorably with measured aquatic toxicity data across different petroleum substance categories. These findings demonstrate the utility of PETROTOX for assessing environmental hazards of petroleum substances given knowledge of substance composition.
Collapse
|
37
|
Gros J, Nabi D, Dimitriou-Christidis P, Rutler R, Arey JS. Robust algorithm for aligning two-dimensional chromatograms. Anal Chem 2012; 84:9033-40. [PMID: 23082816 DOI: 10.1021/ac301367s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comprehensive two-dimensional gas chromatography (GC × GC) chromatograms typically exhibit run-to-run retention time variability. Chromatogram alignment is often a desirable step prior to further analysis of the data, for example, in studies of environmental forensics or weathering of complex mixtures. We present a new algorithm for aligning whole GC × GC chromatograms. This technique is based on alignment points that have locations indicated by the user both in a target chromatogram and in a reference chromatogram. We applied the algorithm to two sets of samples. First, we aligned the chromatograms of twelve compositionally distinct oil spill samples, all analyzed using the same instrument parameters. Second, we applied the algorithm to two compositionally distinct wastewater extracts analyzed using two different instrument temperature programs, thus involving larger retention time shifts than the first sample set. For both sample sets, the new algorithm performed favorably compared to two other available alignment algorithms: that of Pierce, K. M.; Wood, Lianna F.; Wright, B. W.; Synovec, R. E. Anal. Chem.2005, 77, 7735-7743 and 2-D COW from Zhang, D.; Huang, X.; Regnier, F. E.; Zhang, M. Anal. Chem.2008, 80, 2664-2671. The new algorithm achieves the best matches of retention times for test analytes, avoids some artifacts which result from the other alignment algorithms, and incurs the least modification of quantitative signal information.
Collapse
Affiliation(s)
- Jonas Gros
- Environmental Chemistry Modeling Laboratory (LMCE), GR C2 544, Swiss Federal Institute of Technology at Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Meinert C, Meierhenrich UJ. Die umfassende zweidimensionale Gaschromatographie - eine neue Dimension für analytische Trennwissenschaften. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Meinert C, Meierhenrich UJ. A New Dimension in Separation Science: Comprehensive Two-Dimensional Gas Chromatography. Angew Chem Int Ed Engl 2012; 51:10460-70. [DOI: 10.1002/anie.201200842] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/12/2012] [Indexed: 11/11/2022]
|
40
|
Nizio KD, McGinitie TM, Harynuk JJ. Comprehensive multidimensional separations for the analysis of petroleum. J Chromatogr A 2012; 1255:12-23. [DOI: 10.1016/j.chroma.2012.01.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 12/16/2022]
|
41
|
Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models. J Chromatogr A 2012; 1255:184-9. [DOI: 10.1016/j.chroma.2012.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 11/17/2022]
|
42
|
Tcaciuc AP, Nelson RK, Reddy CM, Gschwend PM. Estimating phospholipid membrane-water partition coefficients using comprehensive two-dimensional gas chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3449-3456. [PMID: 22397714 DOI: 10.1021/es203792e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent studies have shown that membrane-water partition coefficients of organic chemicals can be used to predict bioaccumulation and type I narcosis toxicity more accurately than the traditional K(OW)-based approach. In this paper, we demonstrate how comprehensive two-dimensional gas chromatography (GC × GC) can be used to estimate such membrane-water partition coefficients (K(PLW)s), focusing in particular on phosphatidyl choline based lipids. This method performed well for a set of 38 compounds, including polycyclic aromatic hydrocarbons, polychlorinated benzenes and biphenyls, and substituted benzenes including some phenols and anilines. The average difference between the estimated and the measured log K(PLW) values of 0.47 log units is smaller than in the case of a log K(OW) correlation approach but larger than seen using a polyparameter linear free energy relationship based approach. However, the GC × GC based method presents the advantage that it can be applied to mixtures of chemicals that are not completely identified, such as petroleum hydrocarbon mixtures. At the same time, our application of the GC × GC method suffered larger errors when applied to certain hydrogen bonding compounds due to the inability of the GC × GC capillary columns phases that we used to interact with analytes via hydrogen bond donation/electron acceptance.
Collapse
Affiliation(s)
- A Patricia Tcaciuc
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
| | | | | | | |
Collapse
|
43
|
Retention indices in comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 2011; 401:2351-60. [DOI: 10.1007/s00216-011-5247-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
|
44
|
Yao C, Li T, Twu P, Pitner WR, Anderson JL. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids. J Chromatogr A 2011; 1218:1556-66. [PMID: 21324466 DOI: 10.1016/j.chroma.2011.01.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf(2)). Compounds containing tertiary amine functionality were extracted with high selectivity and sensitivity by the 1-(6-amino-hexyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (HNH(2)MPL-FAP) IL compared to other FAP-based ILs and the BMIM-NTf(2) IL. On the other hand, polar or acidic compounds without amine groups exhibited higher enrichment factors using the BMIM-NTf(2) IL. The detection limits for the studied analytes varied from 0.1 to 55.1 μg/L using the traditional IL DLLME method with the HNH(2)MPL-FAP IL as extraction solvent, and from 0.1 to 55.8 μg/L using in situ IL DLLME method with BMIM-Cl+LiNTf(2) as extraction solvent. A 93-fold decrease in the detection limit of caffeine was observed when using the HNH(2)MPL-FAP IL compared to that obtained using in situ IL DLLME method. Real water samples including tap water and creek water were analyzed with both IL DLLME methods and yielded recoveries ranging from 91% to 110%.
Collapse
Affiliation(s)
- Cong Yao
- Department of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
45
|
Lemkau KL, Peacock EE, Nelson RK, Ventura GT, Kovecses JL, Reddy CM. The M/V Cosco Busan spill: source identification and short-term fate. MARINE POLLUTION BULLETIN 2010; 60:2123-2129. [PMID: 20888014 DOI: 10.1016/j.marpolbul.2010.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
Understanding the fate of heavy fuel oils (HFOs) in the environment is critical for sound decisions regarding its usage and spill cleanup. To study weathering of HFOs, we examined the M/V Cosco Busan spill (November 2007; San Francisco Bay, CA, USA). In this baseline report, we identified which ruptured tank (port tank 3 or 4) was the source of the spilled oil and characterized changes in the oil composition across location and time. Samples from three impacted shorelines, collected within 80 days of the spill, were analyzed using one- and two-dimensional gas chromatography (GC and GC × GC, respectively). Weathering varied across sites, but compounds with GC retention times less than n-C(16) were generally lost by evaporation and dissolution. Changes in n-C(18)/phytane and benz[a]anthracene/chrysene ratios indicated some biodegradation and photodegradation, respectively.
Collapse
Affiliation(s)
- Karin L Lemkau
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, USA.
| | | | | | | | | | | |
Collapse
|
46
|
D’Archivio AA, Incani A, Ruggieri F. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 2010; 399:903-13. [DOI: 10.1007/s00216-010-4326-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/20/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
|
47
|
Begue NJ, Simpson GJ. Chemically selective analysis of molecular monolayers by nonlinear optical stokes ellipsometry. Anal Chem 2010; 82:559-66. [PMID: 20000785 DOI: 10.1021/ac901832u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of nonlinear optical Stokes ellipsometry (NOSE) coupled with principal component analysis (PCA) is demonstrated for the chemically selective analysis of molecular monolayers. NOSE allows for rapid polarization measurements of nonlinear optical materials and thin surface films, which in turn benefits from comparably fast data analysis approaches. PCA combined with linear curve fitting techniques greatly reduce the analysis time relative to nonlinear curve fitting. NOSE-PCA is first validated with studies of z-cut quartz, followed by analysis of four thin dye films with similar nonlinear optical properties. The high precision of NOSE measurements combined with the rapid analysis time enabled chemical discrimination between different dyes and the practical realization of NOSE microscopy.
Collapse
Affiliation(s)
- Nathan J Begue
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette Indiana 47907, USA
| | | |
Collapse
|
48
|
Klee MS, Blumberg LM. Measurement of retention in comprehensive two-dimensional gas chromatography using flow modulation with methane dopant. J Chromatogr A 2010; 1217:1830-7. [DOI: 10.1016/j.chroma.2010.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/29/2009] [Accepted: 01/08/2010] [Indexed: 11/28/2022]
|
49
|
Mao D, Lookman R, Van De Weghe H, Vanermen G, De Brucker N, Diels L. Aqueous solubility calculation for petroleum mixtures in soil using comprehensive two-dimensional gas chromatography analysis data. J Chromatogr A 2009; 1216:2873-80. [DOI: 10.1016/j.chroma.2008.08.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 11/26/2022]
|
50
|
Analysis of organic compounds of water-in-crude oil emulsions separated by microwave heating using comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. J Chromatogr A 2009; 1216:2860-5. [DOI: 10.1016/j.chroma.2008.09.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 11/23/2022]
|