1
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Yu Y, Wang S, Luo Y, Gu C, Shi X, Shen F. Quantitative Investigation of Methylation Heterogeneity by Digital Melting Curve Analysis on a SlipChip for Atrial Fibrillation. ACS Sens 2023; 8:3595-3603. [PMID: 37590470 DOI: 10.1021/acssensors.3c01309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Methylation is an essential epigenetic modification involved in regulating gene expression and maintaining genome stability. Methylation patterns can be heterogeneous, exhibiting variations in both level and density. However, current methods of methylation analysis, including sequencing, methylation-specific PCR, and high-resolution melting curve analysis (HRM), face limitations of high cost, time-consuming workflows, and the difficulty of both accurate heterogeneity analysis and precise quantification. Here, a droplet array SlipChip-based (da-SlipChip-based) digital melting curve analysis (MCA) method was developed for the accurate quantification of both methylation level (ratio of methylated molecules to total molecules) and methylation density (ratio of methylated CpG sites to total CpG sites). The SlipChip-based digital MCA system supplements an in situ thermal cycler with a fluorescence imaging module for real-time MCA. The da-SlipChip can generate 10,656 droplets of 1 nL each, which can be separated into four lanes, enabling the simultaneous analysis of four samples. This method's clinical application was demonstrated by analyzing samples from ten healthy individuals and twenty patients with atrial fibrillation (AF), the most common arrhythmia. This method can distinguish healthy individuals from those with AF of both the paroxysmal and persistent types. It also holds potential for broader application in various research and clinical settings requiring methylation analysis.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Sheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
3
|
Luo Y, Cao Z, Liu Y, Zhang R, Yang S, Wang N, Shi Q, Li J, Dong S, Fan C, Zhao J. The emerging landscape of microfluidic applications in DNA data storage. LAB ON A CHIP 2023; 23:1981-2004. [PMID: 36946437 DOI: 10.1039/d2lc00972b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA has been considered a promising alternative to the current solid-state devices for digital information storage. The past decade has witnessed tremendous progress in the field of DNA data storage contributed by researchers from various disciplines. However, the current development status of DNA storage is still far from practical use, mainly due to its high material cost and time consumption for data reading/writing, as well as the lack of a comprehensive, automated, and integrated system. Microfluidics, being capable of handling and processing micro-scale fluid samples in a massively paralleled and highly integrated manner, has gradually been recognized as a promising candidate for addressing the aforementioned issues. In this review, we provide a discussion on recent efforts of applying microfluidics to advance the development of DNA data storage. Moreover, to showcase the tremendous potential that microfluidics can contribute to this field, we will further highlight the recent advancements of applying microfluidics to the key functional modules within the DNA data storage workflow. Finally, we share our perspectives on future directions for how to continue the infusion of microfluidics with DNA data storage and how to advance toward a truly integrated system and reach real-life applications.
Collapse
Affiliation(s)
- Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shijia Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shurong Dong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| |
Collapse
|
4
|
Xu D, Zhang W, Li H, Li N, Lin JM. Advances in droplet digital polymerase chain reaction on microfluidic chips. LAB ON A CHIP 2023; 23:1258-1278. [PMID: 36752545 DOI: 10.1039/d2lc00814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The PCR technique has been known to the general public since the pandemic outbreak of COVID-19. This technique has progressed through three stages: from simple PCR to real-time fluorescence PCR to digital PCR. Among them, the microfluidic-based droplet digital PCR technique has attracted much attention and has been widely applied due to its advantages of high throughput, high sensitivity, low reagent consumption, low cross-contamination, and absolute quantification ability. In this review, we introduce various designs of microfluidic-based ddPCR developed within the last decade. The microfluidic-based droplet generation methods, thermal cycle strategies, and signal counting approaches are described, and the applications in the fields of single-cell analysis, disease diagnosis, and pathogen detection are introduced. Further, the challenges and prospects of microfluidic-based ddPCR are discussed. We hope that this review can contribute to the further development of the microfluidic-based ddPCR technique.
Collapse
Affiliation(s)
- Danfeng Xu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| |
Collapse
|
5
|
Li X, Liu X, Yu Z, Luo Y, Hu Q, Xu Z, Dai J, Wu N, Shen F. Combinatorial screening SlipChip for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2022; 22:3952-3960. [PMID: 36106408 DOI: 10.1039/d2lc00661h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) by bacteria is a serious global threat, and a rapid, high-throughput, and easy-to-use phenotypic antimicrobial susceptibility testing (AST) method is essential for making timely treatment decisions and controlling the spread of antibiotic resistant micro-organisms. Traditional culture-based methods are time-consuming, and their capability to screen against a large number of different conditions is limited; meanwhile genotypic based methods, including sequencing and PCR based methods, are constrained by rarely identified resistance genes and complicated resistance mechanisms. Here, a combinatorial-screening SlipChip (cs-SlipChip) containing 192 nanoliter-sized compartments is developed which can perform high-throughput phenotypic AST within three hours by monitoring the bacterial growth within nanoliter-sized droplets with bright-field imaging and analyzing the changes in bacterial number and morphology. The minimum inhibitory concentration (MIC) of Escherichia coli ATCC 25922 against four antibiotics (ampicillin, ciprofloxacin, ceftazidime, and nitrofurantoin) can be measured in one chip within 3 hours. Furthermore, five antibiotic-resistant E. coli strains were isolated from patients diagnosed with urinary tract infections (UTIs), and an individual isolate was tested using four antibiotics and eleven antibiotic combinations simultaneously with three different concentrations of each. The results from the cs-SlipChip agree with those of a VITEK 2 automated system. This cs-SlipChip provides a practical high-throughput and rapid phenotypic method for AST and can also be used to screen different chemicals and antibiotic combinations for the treatment of multiple antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Zhenye Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Jia Dai
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
6
|
Cao Z, Ye Y, Li G, Zhang R, Dong S, Liu Y. Monolithically integrated microchannel plate functionalized with ZnO nanorods for fluorescence-enhanced digital polymerase chain reaction. Biosens Bioelectron 2022; 213:114499. [DOI: 10.1016/j.bios.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
|
7
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
A multiplexed electrochemical quantitative polymerase chain reaction platform for single-base mutation analysis. Biosens Bioelectron 2022; 214:114496. [DOI: 10.1016/j.bios.2022.114496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
9
|
Yaginuma H, Ohtake K, Akamatsu T, Noji H, Tabata KV. A microreactor sealing method using adhesive tape for digital bioassays. LAB ON A CHIP 2022; 22:2001-2010. [PMID: 35481587 DOI: 10.1039/d2lc00065b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Digital assays using microreactors fabricated on solid substrates are useful for carrying out sensitive assays of infectious diseases and other biological tests. However, sealing of the microchambers using fluid oil is difficult for non-experts, and thus hinders the widespread use of digital microreactor assays. Here, we propose the physical isolation of tiny reactors with adhesive tape (PITAT) using simple, commercially available pressure-sensitive adhesive (PSA) tape as a separator of the microreactors. We confirmed that PSA tape can effectively seal the microreactors and prevent molecules from diffusing out. By testing several types of adhesive tape, we found that rubber-based adhesives are the most suitable for this purpose. In addition, we demonstrated that single-molecule enzyme assays can be successfully performed inside microreactors sealed with PSA tape. The results obtained using PITAT are quantitatively comparable to conventional oil sealing, although it is quick and cost-effective. Finally, we demonstrated that single-particle virus counting of the influenza virus can be achieved using PITAT. Collectively, our results suggest that PITAT may be suitable for use in the design of sensitive tests for infectious diseases at the point of care, where no sophisticated equipment or machines are available.
Collapse
Affiliation(s)
- Hideyuki Yaginuma
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kuniko Ohtake
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Takako Akamatsu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
- Sothis Technologies, Tokyo, Japan
| |
Collapse
|
10
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Lin PH, Li BR. Passively driven microfluidic device with simple operation in the development of nanolitre droplet assay in nucleic acid detection. Sci Rep 2021; 11:21019. [PMID: 34697372 PMCID: PMC8549005 DOI: 10.1038/s41598-021-00470-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/07/2021] [Indexed: 01/20/2023] Open
Abstract
Since nucleic acid amplification technology has become a vital tool for disease diagnosis, the development of precise applied nucleic acid detection technologies in point-of care testing (POCT) has become more significant. The microfluidic-based nucleic acid detection platform offers a great opportunity for on-site diagnosis efficiency, and the system is aimed at user-friendly access. Herein, we demonstrate a microfluidic system with simple operation that provides reliable nucleic acid results from 18 uniform droplets via LAMP detection. By using only micropipette regulation, users are able to control the nanoliter scale of the droplets in this valve-free and pump-free microfluidic (MF) chip. Based on the oil enclosure method and impermeable fabrication, we successfully preserved the reagent inside the microfluidic system, which significantly reduced the fluid loss and condensation. The relative standard deviation (RSD) of the fluorescence intensity between the droplets and during the heating process was < 5% and 2.0%, respectively. Additionally, for different nucleic acid detection methods, the MF-LAMP chip in this study showed good applicability to both genome detection and gene expression analysis.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hseh Rd., Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hseh Rd., Hsinchu, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
12
|
Kim JM, Jung S, Jeon EJ, Kim BK, No JY, Kim MJ, Kim H, Song CS, Kim SK. Highly Selective Multiplex Quantitative Polymerase Chain Reaction with a Nanomaterial Composite Hydrogel for Precise Diagnosis of Viral Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30295-30305. [PMID: 34165969 DOI: 10.1021/acsami.1c03434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As viruses have been threatening global public health, fast diagnosis has been critical to effective disease management and control. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is now widely used as the gold standard for detecting viruses. Although a multiplex assay is essential for identifying virus types and subtypes, the poor multiplicity of RT-qPCR makes it laborious and time-consuming. In this paper, we describe the development of a multiplex RT-qPCR platform with hydrogel microparticles acting as independent reactors in a single reaction. To build target-specific particles, target-specific primers and probes are integrated into the particles in the form of noncovalent composites with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). The thermal release characteristics of DNA, primer, and probe from the composites of primer-BNNT and probe-CNT allow primer and probe to be stored in particles during particle production and to be delivered into the reaction. In addition, BNNT did not absorb but preserved the fluorescent signal, while CNT protected the fluorophore of the probe from the free radicals present during particle production. Bicompartmental primer-incorporated network (bcPIN) particles were designed to harness the distinctive properties of two nanomaterials. The bcPIN particles showed a high RT-qPCR efficiency of over 90% and effective suppression of non-specific reactions. 16-plex RT-qPCR has been achieved simply by recruiting differently coded bcPIN particles for each target. As a proof of concept, multiplex one-step RT-qPCR was successfully demonstrated with a simple reaction protocol.
Collapse
Affiliation(s)
- Jung Min Kim
- Molecular Recognition Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seungwon Jung
- Molecular Recognition Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eui Ju Jeon
- Molecular Recognition Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bong Kyun Kim
- Molecular Recognition Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Biomedical Engineering, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jin Yong No
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Myung Jong Kim
- Functional Composite Materials Research Center, KIST, Jeonbuk 55324, Republic of Korea
| | - Heesuk Kim
- Photo-Electronic Hybrids Research Center, KIST, Seoul 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, UST, Daejeon 34113, Republic of Korea
| | - Chang Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Kyung Kim
- Molecular Recognition Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Gaňová M, Zhang H, Zhu H, Korabečná M, Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens Bioelectron 2021; 181:113155. [PMID: 33740540 DOI: 10.1016/j.bios.2021.113155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/13/2021] [Accepted: 03/06/2021] [Indexed: 01/30/2023]
Abstract
The digital polymerase chain reaction (dPCR) multiplexing method can simultaneously detect and quantify closely related deoxyribonucleic acid sequences in complex mixtures. The dPCR concept is continuously improved by the development of microfluidics and micro- and nanofabrication, and different complex techniques are introduced. In this review, we introduce dPCR techniques based on sample compartmentalization, droplet- and chip-based systems, and their combinations. We then discuss dPCR multiplexing methods in both laboratory research settings and advanced or routine clinical applications. We focus on their strengths and weaknesses with regard to the character of biological samples and to the required precision of such analysis, as well as showing recently published work based on those methods. Finally, we envisage possible future achievements in this field.
Collapse
Affiliation(s)
- Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Haoqing Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Marie Korabečná
- 1st Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital, 12800, Prague, Czech Republic
| | - Pavel Neužil
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; The Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Liu X, Wang Y, Gao Y, Song Y. Gas-propelled biosensors for quantitative analysis. Analyst 2021; 146:1115-1126. [PMID: 33459312 DOI: 10.1039/d0an02154g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gas-propelled biosensors display a simple gas-based signal amplification with quantitative detection features based on the target recognition event in combination with gas propulsion. Due to the liquid-gas conversion, the gas not only pushes the ink bar forward in the microchannel, but also serves as the power to propel the micromotors in the liquid. Thus, this continuous motion leads to a shift in distances which is associated with the target amount. Therefore, gas-propelled biosensors provide a visual quantification based on distance or speed signals without the need for expensive instruments. In this review, we focus on current developments in gas-propelled biosensors for quantitative analysis. First, we list the types of gas utilized as actuators in biosensors. Second, we review the representative gas-propelled biosensors, including the propulsion mechanisms and fabrication methods. Moreover, gas-propelled quantification based on distance and speed is summarized. Finally, we cover applications and provide a future perspective of gas-propelled biosensors.
Collapse
Affiliation(s)
- Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
15
|
Destgeer G, Ouyang M, Di Carlo D. Engineering Design of Concentric Amphiphilic Microparticles for Spontaneous Formation of Picoliter to Nanoliter Droplet Volumes. Anal Chem 2021; 93:2317-2326. [DOI: 10.1021/acs.analchem.0c04184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ghulam Destgeer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Kathrada AI, Wei SC, Xu Y, Cheow, LF, Chen CH. Microfluidic compartmentalization to identify gene biomarkers of infection. BIOMICROFLUIDICS 2020; 14:061502. [PMID: 33312326 PMCID: PMC7717927 DOI: 10.1063/5.0032849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 05/20/2023]
Abstract
Infectious diseases caused by pathogens, such as SARS-COV, H7N9, severe fever with thrombocytopenia syndrome virus, and human immunodeficiency virus, have fatal outcomes with common features of severe fever and subsequent bacterial invasion progressing to multiorgan failure. Gene biomarkers are promising to distinguish specific infections from others with similar presenting symptoms for the prescription of correct therapeutics, preventing pandemics. While routine laboratory methods based on polymerase chain reaction (PCR) to measure gene biomarkers have provided highly sensitive and specific viral detection techniques over the years, they are still hampered by their precision and resource intensity precluding their point-of-care use. Recently, there has been growing interest in employing microfluidic technologies to advance current methods for infectious disease determination via gene biomarker measurements. Here, based on the requirement of infection detection, we will review three microfluidic approaches to compartmentalize gene biomarkers: (1) microwell-based PCR platforms; (2) droplet-based PCR; and (3) point-of-care devices including centrifugal chip, SlipChip, and self-powered integrated microfluidic point-of-care low-cost enabling chip. By capturing target genes in microwells with a small sample volume (∼μl), sensitivity can be enhanced. Additionally, with the advance of significant sample volume minimization (∼pl) using droplet technology, gene quantification is possible. These improvements in cost, automation, usability, and portability have thereby allowed point-of-care applications to decentralize testing platforms from laboratory-based settings to field use against infections.
Collapse
Affiliation(s)
- Ahmad Ismat Kathrada
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore 117583
| | | | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
| | | | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
17
|
Xing W, Liu Y, Wang H, Li S, Lin Y, Chen L, Zhao Y, Chao S, Huang X, Ge S, Deng T, Zhao T, Li B, Wang H, Wang L, Song Y, Jin R, He J, Zhao X, Liu P, Li W, Cheng J. A High-Throughput, Multi-Index Isothermal Amplification Platform for Rapid Detection of 19 Types of Common Respiratory Viruses Including SARS-CoV-2. ENGINEERING 2020; 6:1130-1140. [PMID: 33520332 PMCID: PMC7833526 DOI: 10.1016/j.eng.2020.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Fast and accurate diagnosis and the immediate isolation of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are regarded as the most effective measures to restrain the coronavirus disease 2019 (COVID-19) pandemic. Here, we present a high-throughput, multi-index nucleic acid isothermal amplification analyzer (RTisochip™-W) employing a centrifugal microfluidic chip to detect 19 common respiratory viruses, including SARS-CoV-2, from 16 samples in a single run within 90 min. The limits of detection of all the viruses analyzed by the RTisochip™-W system were equal to or less than 50 copies·μL-1, which is comparable to those of conventional reverse transcription polymerase chain reaction. We also demonstrate that the RTisochip™-W system possesses the advantages of good repeatability, strong robustness, and high specificity. Finally, we analyzed 201 cases of preclinical samples, 14 cases of COVID-19-positive samples, 25 cases of clinically diagnosed samples, and 614 cases of clinical samples from patients or suspected patients with respiratory tract infections using the RTisochip™-W system. The test results matched the referenced results well and reflected the epidemic characteristics of the respiratory infectious diseases. The coincidence rate of the RTisochip™-W with the referenced kits was 98.15% for the detection of SARS-CoV-2. Based on these extensive trials, we believe that the RTisochip™-W system provides a powerful platform for fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Wanli Xing
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Technology, Beijing 101111, China
| | - Yingying Liu
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Huili Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yongping Lin
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Zhao
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Chao
- Department of Pediatrics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiaolan Huang
- Experiment Center, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shaolin Ge
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Tao Deng
- CapitalBio Technology, Beijing 101111, China
| | - Tian Zhao
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Baolian Li
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Hanbo Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Lei Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | | | - Ronghua Jin
- President's Office, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jianxing He
- Department of Cardiothoracic Surgery, State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiuying Zhao
- Department of Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| |
Collapse
|
18
|
Yin J, Zou Z, Yin F, Liang H, Hu Z, Fang W, Lv S, Zhang T, Wang B, Mu Y. A Self-Priming Digital Polymerase Chain Reaction Chip for Multiplex Genetic Analysis. ACS NANO 2020; 14:10385-10393. [PMID: 32794742 DOI: 10.1021/acsnano.0c04177] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital PCR (polymerase chain reaction) is a powerful and attractive tool for the quantification of nucleic acids. However, the multiplex detection capabilities of this system are limited or require expensive instrumentation and reagents, all of which can hinder multiplex detection goals. Here, we propose strategies toward solving these issues regarding digital PCR. We designed and tested a self-priming digital PCR chip containing 6-plex detection capabilities using monochrome fluorescence, which has six detection areas and four-layer structures. This strategy achieved multiplex digital detection by the use of self-priming to preintroduce the specific reaction mix to a certain detection area. This avoids competition when multiple primer pairs coexist, allowing for multiplexing in a shorter time while using less reagents and low-cost instruments. This also prevents the digital PCR chip from experiencing long sample introduction time and evaporation. For further validation, this multiplex digital PCR chip was used to detect five types of EGFR (epidermal growth factor receptor) gene mutations in 15 blood samples from lung cancer patients. We conclude that this technique can precisely quantify EGFR mutations in high-performance diagnostics. This multiplex digital detection chip is a simple and inexpensive test intended for liquid biopsies. It can be applied and used in prenatal diagnostics, the monitoring of residual disease, rapid pathogen detection, and many other procedures.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zheyu Zou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fangfang Yin
- Weifang People's Hospital, Weifang 261000, China
| | - Hongxiao Liang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zhenming Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Weibo Fang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
19
|
Rodriguez-Manzano J, Moser N, Malpartida-Cardenas K, Moniri A, Fisarova L, Pennisi I, Boonyasiri A, Jauneikaite E, Abdolrasouli A, Otter JA, Bolt F, Davies F, Didelot X, Holmes A, Georgiou P. Rapid Detection of Mobilized Colistin Resistance using a Nucleic Acid Based Lab-on-a-Chip Diagnostic System. Sci Rep 2020; 10:8448. [PMID: 32439986 PMCID: PMC7242339 DOI: 10.1038/s41598-020-64612-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022] Open
Abstract
The increasing prevalence of antimicrobial resistance is a serious threat to global public health. One of the most concerning trends is the rapid spread of Carbapenemase-Producing Organisms (CPO), where colistin has become the last-resort antibiotic treatment. The emergence of colistin resistance, including the spread of mobilized colistin resistance (mcr) genes, raises the possibility of untreatable bacterial infections and motivates the development of improved diagnostics for the detection of colistin-resistant organisms. This work demonstrates a rapid response for detecting the most recently reported mcr gene, mcr−9, using a portable and affordable lab-on-a-chip (LoC) platform, offering a promising alternative to conventional laboratory-based instruments such as real-time PCR (qPCR). The platform combines semiconductor technology, for non-optical real-time DNA sensing, with a smartphone application for data acquisition, visualization and cloud connectivity. This technology is enabled by using loop-mediated isothermal amplification (LAMP) as the chemistry for targeted DNA detection, by virtue of its high sensitivity, specificity, yield, and manageable temperature requirements. Here, we have developed the first LAMP assay for mcr−9 - showing high sensitivity (down to 100 genomic copies/reaction) and high specificity (no cross-reactivity with other mcr variants). This assay is demonstrated through supporting a hospital investigation where we analyzed nucleic acids extracted from 128 carbapenemase-producing bacteria isolated from clinical and screening samples and found that 41 carried mcr−9 (validated using whole genome sequencing). Average positive detection times were 6.58 ± 0.42 min when performing the experiments on a conventional qPCR instrument (n = 41). For validating the translation of the LAMP assay onto a LoC platform, a subset of the samples were tested (n = 20), showing average detection times of 6.83 ± 0.92 min for positive isolates (n = 14). All experiments detected mcr−9 in under 10 min, and both platforms showed no statistically significant difference (p-value > 0.05). When sample preparation and throughput capabilities are integrated within this LoC platform, the adoption of this technology for the rapid detection and surveillance of antimicrobial resistance genes will decrease the turnaround time for DNA detection and resistotyping, improving diagnostic capabilities, patient outcomes, and the management of infectious diseases.
Collapse
Affiliation(s)
- Jesus Rodriguez-Manzano
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom. .,Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom.
| | - Nicolas Moser
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Kenny Malpartida-Cardenas
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Ahmad Moniri
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Lenka Fisarova
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Ivana Pennisi
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Adhiratha Boonyasiri
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Alireza Abdolrasouli
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan A Otter
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.,Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
| | - Frances Bolt
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alison Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Xu L, Wang A, Li X, Oh KW. Passive micropumping in microfluidics for point-of-care testing. BIOMICROFLUIDICS 2020; 14:031503. [PMID: 32509049 PMCID: PMC7263483 DOI: 10.1063/5.0002169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/14/2020] [Indexed: 05/11/2023]
Abstract
Suitable micropumping methods for flow control represent a major technical hurdle in the development of microfluidic systems for point-of-care testing (POCT). Passive micropumping for point-of-care microfluidic systems provides a promising solution to such challenges, in particular, passive micropumping based on capillary force and air transfer based on the air solubility and air permeability of specific materials. There have been numerous developments and applications of micropumping techniques that are relevant to the use in POCT. Compared with active pumping methods such as syringe pumps or pressure pumps, where the flow rate can be well-tuned independent of the design of the microfluidic devices or the property of the liquids, most passive micropumping methods still suffer flow-control problems. For example, the flow rate may be set once the device has been made, and the properties of liquids may affect the flow rate. However, the advantages of passive micropumping, which include simplicity, ease of use, and low cost, make it the best choice for POCT. Here, we present a systematic review of different types of passive micropumping that are suitable for POCT, alongside existing applications based on passive micropumping. Future trends in passive micropumping are also discussed.
Collapse
Affiliation(s)
- Linfeng Xu
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Anyang Wang
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Kwang W. Oh
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| |
Collapse
|
21
|
Droplet digital PCR enabled by microfluidic impact printing for absolute gene quantification. Talanta 2020; 211:120680. [DOI: 10.1016/j.talanta.2019.120680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023]
|
22
|
Li J, Qiu Y, Zhang Z, Li C, Li S, Zhang W, Guo Z, Yao J, Zhou L. Heterogeneous modification of through-hole microwell chips for ultralow cross-contamination digital polymerase chain reaction. Analyst 2020; 145:3116-3124. [PMID: 32162628 DOI: 10.1039/d0an00220h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chip-based dPCR (cdPCR) with a physical boundary between micro-units allows for high parallelism, robustness and sensitivity. However, cross-contamination between micro-units is still a problem that affects the accuracy of results. To overcome this problem, we introduced a heterogeneous modification strategy by microcontact printing to prepare a through-hole microwell chip (TMC) with a hydrophobic exterior surface and hydrophilic interior surface. The modified TMC can reduce cross-contamination (sample residual rate (SRR) of (4.9 ± 1.5)%) by an efficient partitioning yield (unit filling rate (UFR) of (91.1 ± 2.2)%). The sample-residual properties of modified TMCs could be tuned by the reaction conditions. As the contact time increased, the surface CA of the TMC increased, which caused decreases of the SRR and UFR. However, prolonging the contact time to 25 s would cause a sharp reduction of the UFR. The modified TMCs with high UFRs were used for further dPCR studies. The fluorescence images of dPCR chips were collected by fluorescence microscopy and a self-developed optical system, followed by image processing and data statistics to obtain quantitative results. The copy number variation results of the surface hydrophobic TMC was closer to the true value compared to that of the hydrophilic TMC. The results indicated that the sample residue on the hydrophilic TMC would increase the number of positive points, which would cause false positives and clustering error. The absolute quantitative results of gradient dilution plasmid DNA of JAK2 gene using modified TMC also proved that heterogeneous modification made the quantitative results more accurate. The heterogeneous modified TMC is expected to be used for high-throughput, high-sensitivity and high-specificity biological analyses, such as circulating tumor DNA and cell analysis.
Collapse
Affiliation(s)
- Jinze Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Yajun Qiu
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhiqi Zhang
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and University of Science and Technology of China, Hefei 230026, China
| | - Chuanyu Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and University of Science and Technology of China, Hefei 230026, China
| | - Shuli Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and Shanghai University, Shanghai 200444, China
| | - Wei Zhang
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhen Guo
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Jia Yao
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and Soochow University, Suzhou 215163, China
| | - Lianqun Zhou
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
23
|
Savela ES, Schoepp NG, Cooper MM, Rolando JC, Klausner JD, Soge OO, Ismagilov RF. Surfactant-enhanced DNA accessibility to nuclease accelerates phenotypic β-lactam antibiotic susceptibility testing of Neisseria gonorrhoeae. PLoS Biol 2020; 18:e3000651. [PMID: 32191696 PMCID: PMC7081974 DOI: 10.1371/journal.pbio.3000651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Rapid antibiotic susceptibility testing (AST) for Neisseria gonorrhoeae (Ng) is critically needed to counter widespread antibiotic resistance. Detection of nucleic acids in genotypic AST can be rapid, but it has not been successful for β-lactams (the largest antibiotic class used to treat Ng). Rapid phenotypic AST for Ng is challenged by the pathogen's slow doubling time and the lack of methods to quickly quantify the pathogen's response to β-lactams. Here, we asked two questions: (1) Is it possible to use nucleic acid quantification to measure the β-lactam susceptibility phenotype of Ng very rapidly, using antibiotic-exposure times much shorter than the 1- to 2-h doubling time of Ng? (2) Would such short-term antibiotic exposures predict the antibiotic resistance profile of Ng measured by plate growth assays over multiple days? To answer these questions, we devised an innovative approach for performing a rapid phenotypic AST that measures DNA accessibility to exogenous nucleases after exposure to β-lactams (termed nuclease-accessibility AST [nuc-aAST]). We showed that DNA in antibiotic-susceptible cells has increased accessibility upon exposure to β-lactams and that a judiciously chosen surfactant permeabilized the outer membrane and enhanced this effect. We tested penicillin, cefixime, and ceftriaxone and found good agreement between the results of the nuc-aAST after 15-30 min of antibiotic exposure and the results of the gold-standard culture-based AST measured over days. These results provide a new pathway toward developing a critically needed phenotypic AST for Ng and additional global-health threats.
Collapse
Affiliation(s)
- Emily S. Savela
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Nathan G. Schoepp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Matthew M. Cooper
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Justin C. Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Jeffrey D. Klausner
- David Geffen School of Medicine, Division of Infectious Disease, University of California Los Angeles, Los Angeles, California, United States of America
| | - Olusegun O. Soge
- Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Rustem F. Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
24
|
Zhukov DV, Khorosheva EM, Khazaei T, Du W, Selck DA, Shishkin AA, Ismagilov RF. Microfluidic SlipChip device for multistep multiplexed biochemistry on a nanoliter scale. LAB ON A CHIP 2019; 19:3200-3211. [PMID: 31441477 PMCID: PMC11537478 DOI: 10.1039/c9lc00541b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have developed a multistep microfluidic device that expands the current SlipChip capabilities by enabling multiple steps of droplet merging and multiplexing. Harnessing the interfacial energy between carrier and sample phases, this manually operated device accurately meters nanoliter volumes of reagents and transfers them into on-device reaction wells. Judiciously shaped microfeatures and surface-energy traps merge droplets in a parallel fashion. Wells can be tuned for different volumetric capacities and reagent types, including for pre-spotted reagents that allow for unique identification of original well contents even after their contents are pooled. We demonstrate the functionality of the multistep SlipChip by performing RNA transcript barcoding on-device for synthetic spiked-in standards and for biologically derived samples. This technology is a good candidate for a wide range of biological applications that require multiplexing of multistep reactions in nanoliter volumes, including single-cell analyses.
Collapse
Affiliation(s)
- Dmitriy V Zhukov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA.
| | - Eugenia M Khorosheva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA.
| | - Tahmineh Khazaei
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Wenbin Du
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - David A Selck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA.
| | - Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA. and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
25
|
Márquez A, Aymerich J, Dei M, Rodríguez-Rodríguez R, Vázquez-Carrera M, Pizarro-Delgado J, Giménez-Gómez P, Merlos Á, Terés L, Serra-Graells F, Jiménez-Jorquera C, Domínguez C, Muñoz-Berbel X. Reconfigurable multiplexed point of Care System for monitoring type 1 diabetes patients. Biosens Bioelectron 2019; 136:38-46. [DOI: 10.1016/j.bios.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/15/2023]
|
26
|
Lyu W, Yu M, Qu H, Yu Z, Du W, Shen F. Slip-driven microfluidic devices for nucleic acid analysis. BIOMICROFLUIDICS 2019; 13:041502. [PMID: 31312285 PMCID: PMC6625959 DOI: 10.1063/1.5109270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 05/17/2023]
Abstract
Slip-driven microfluidic devices can manipulate fluid by the relative movement of microfluidic plates that are in close contact. Since the demonstration of the first SlipChip device, many slip-driven microfluidic devices with different form factors have been developed, including SlipPAD, SlipDisc, sliding stripe, and volumetric bar chart chip. Slip-driven microfluidic devices can be fabricated from glass, quartz, polydimethylsiloxane, paper, and plastic with various fabrication methods: etching, casting, wax printing, laser cutting, micromilling, injection molding, etc. The slipping operation of the devices can be performed manually, by a micrometer with a base station, or autonomously, by a clockwork mechanism. A variety of readout methods other than fluorescence microscopy have been demonstrated, including both fluorescence detection and colorimetric detection by mobile phones, direct visual detection, and real-time fluorescence imaging. This review will focus on slip-driven microfluidic devices for nucleic acid analysis, including multiplex nucleic acid detection, digital nucleic acid quantification, real-time nucleic acid amplification, and sample-in-answer-out nucleic acid analysis. Slip-driven microfluidic devices present promising approaches for both life science research and clinical molecular diagnostics.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Mengchao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Haijun Qu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
27
|
Kreutz JE, Wang J, Sheen AM, Thompson AM, Staheli JP, Dyen MR, Feng Q, Chiu DT. Self-digitization chip for quantitative detection of human papillomavirus gene using digital LAMP. LAB ON A CHIP 2019; 19:1035-1040. [PMID: 30734822 PMCID: PMC6420227 DOI: 10.1039/c8lc01223g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Digital nucleic acid amplification and detection methods provide excellent sensitivity and specificity and allow absolute quantification of target nucleic acids. Isothermal methods such as digital loop-mediated isothermal amplification (digital LAMP) have potential for use in rapid disease diagnosis in low-resource settings due to their speed and lack of thermal cycling. We previously developed a self-digitization (SD) chip, a simple microfluidics device that automatically digitizes a sample into an array of nanoliter wells, for use in digital LAMP. In this work, we improve the SD chip design to increase sample loading efficiency, speed, and completeness, and test a range of well volumes and numbers. We demonstrate the diagnostic capability of this platform by applying it to quantifying human papillomavirus 18 gene.
Collapse
Affiliation(s)
- Jason E Kreutz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology - recent advances and future perspectives. LAB ON A CHIP 2018; 18:3717-3732. [PMID: 30402632 DOI: 10.1039/c8lc00990b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has remained a "hot topic" in the last two decades due to its potential applications in cell biology, genetic engineering, and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in the literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in terms of hardware simplicity, portability, cost-effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with possible improvements toward portable, low-cost and automatic digital PCR systems.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | | | | | | | | |
Collapse
|
29
|
Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn 2017; 18:7-17. [PMID: 29115895 DOI: 10.1080/14737159.2018.1400384] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Early detection of cancers through the analysis of ctDNA could have a significant impact on morbidity and mortality of cancer patients. However, using ctDNA for early cancer diagnosis is challenging partly due to the low amount of tumor DNA released in the circulation and its dilution within DNA originating from non-tumor cells. Development of new technologies such as droplet-based digital PCR (ddPCR) or optimized next generation sequencing (NGS) has greatly improved the sensitivity, specificity and precision for the detection of rare sequences. Areas covered: This paper will focus on the potential application of ddPCR and optimized NGS to detect ctDNA for detection of cancer recurrence and minimal residual disease as well as early diagnosis of cancer patients. Expert commentary: Compared to tumor tissue biopsies, blood-based ctDNA analyses are minimally invasive and accessible for regular follow-up of cancer patients. They are also described as a better picture of patients' pathology allowing to highlight both tumor heterogeneity and multiple tumor sites. After a brief introduction on the application of the follow-up of ctDNA using genetic or epigenetic biomarkers for prognosis and surveillance of cancer patients, potential perspectives of using ctDNA for early diagnosis of cancers will be presented.
Collapse
Affiliation(s)
- Mathilde Postel
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| | - Alice Roosen
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| | - Pierre Laurent-Puig
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France.,b Department of Biology , European Georges Pompidou Hospital, AP-HP , Paris , France
| | - Valerie Taly
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| | - Shu-Fang Wang-Renault
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| |
Collapse
|
30
|
Verma MS, Tsaloglou MN, Sisley T, Christodouleas D, Chen A, Milette J, Whitesides GM. Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron 2017; 99:77-84. [PMID: 28738231 PMCID: PMC5628584 DOI: 10.1016/j.bios.2017.07.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 02/08/2023]
Abstract
This article describes a 3D microfluidic paper-based analytical device that can be used to conduct an enzyme-linked immunosorbent assay (ELISA). The device comprises two parts: a sliding strip (which contains the active sensing area) and a structure surrounding the sliding strip (which holds stored reagents—buffers, antibodies, and enzymatic substrate—and distributes fluid). Running an ELISA involves adding sample (e.g. blood) and water, moving the sliding strip at scheduled times, and analyzing the resulting color in the sensing area visually or using a flatbed scanner. We demonstrate that this device can be used to detect C-reactive protein (CRP)—a biomarker for neonatal sepsis, pelvic inflammatory disease, and inflammatory bowel diseases—at a concentration range of 1–100 ng/mL in 1000-fold diluted blood (1–100 µg/mL in undiluted blood). The accuracy of the device (as characterized by the area under the receiver operator characteristics curve) is 89% and 83% for cut-offs of 10 ng/mL (for neonatal sepsis and pelvic inflammatory disease) and 30 ng/mL (for inflammatory bowel diseases) CRP in 1000-fold diluted blood respectively. In resource-limited settings, the device can be used as a part of a kit (containing the device, a fixed-volume capillary, a pre-filled tube, a syringe, and a dropper); this kit would cost ~ $0.50 when produced in large scale (>100,000 devices/week). This kit has the technical characteristics to be employed as a pre-screening tool, when combined with other data such as patient history and clinical signs. 3D microfluidic paper-based analytical device performs ELISA with colorimetric results. Two components enable separation of reagents in the device: a sliding-strip and a functional dock. All required reagents (antibodies, enzyme, substrate, buffers) are stored in the device. User only needs to add sample and water using the provided kit. Device can detect C-reactive protein for possible pre-screening of neonatal sepsis, pelvic inflammatory disease, or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mohit S Verma
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Maria-Nefeli Tsaloglou
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Diagnostics for All, 4 Technology Way, Salem, MA 02138, USA
| | - Tyler Sisley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Dionysios Christodouleas
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Austin Chen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jonathan Milette
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA; Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Mepham A, Besant JD, Weinstein AW, Burgess IB, Sargent EH, Kelley SO. Power-free, digital and programmable dispensing of picoliter droplets using a Digit Chip. LAB ON A CHIP 2017; 17:1505-1514. [PMID: 28350406 DOI: 10.1039/c7lc00199a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is a growing need for power-free methods to manipulate small volumes of liquids and thereby enable use of diagnostic assays in resource-limited settings. Most existing self-powered devices provide analog manipulation of fluids using paper, capillary or pressure-driven pumps. These strategies are well-suited to manipulating larger micro- and milliliter-scale volumes at constant flow rates; however, they fail to enable the manipulation of nanoliter and picoliter volumes required in assays using droplets, capillary sampling (e.g. finger prick), or expensive reagents. Here we report a device, termed the Digit Chip, that provides programmable and power-free digital manipulation of sub-nanoliter volumes. The device consists of a user-friendly button interface and a series of chambers connected by capillary valves that serve as digitization elements. Via a button press, the user dispenses and actuates ultra-small, quantitatively-programmed volumes. The device geometry is optimized using design models and experiments and precisely dispenses volumes as low as 21 pL with 97% accuracy. The volume dispensed can be tuned in 10 discrete steps across one order-of-magnitude with 98% accuracy. As a proof-of-principle that nanoliter-scale reagents can be precisely actuated and combined on-chip, we deploy the device to construct a precise concentration gradient with 10 discrete concentrations. Additionally, we apply this device alongside an inexpensive smartphone-based fluorescence imaging platform to perform a titration of E. coli with ampicillin. We observe the onset of bacterial death at a concentration of 5 μg mL-1, increasing to a maximum at 50 μg mL-1. These results establish the utility of the Digit Chip for diagnostic applications in low-resource environments.
Collapse
Affiliation(s)
- A Mepham
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Digital nucleic acid amplification (Digital NAA) quantifies nucleic acid by compartmentalizing a sample of DNA or RNA into a large number of discrete partitions and performing parallel nucleic acid amplification, such as polymerase chain reaction (PCR) or isothermal amplification reactions. With the counts of positive wells, total number of wells, and volumes of wells, the concentration of the target nucleic acid in the sample can be quantified. Digital NAA is considered increasingly powerful for ultra-sensitive detection and accurate quantification of nucleic acid for biological research and potentially medical diagnostics. Here, we describe glass SlipChip devices to perform digital NAA without cumbersome manual manipulation or complex fluidic control systems.
Collapse
Affiliation(s)
- Feng Shen
- SlipChip Corporation, 230 Constitution Drive, Menlo Park, CA, 94025, USA.
| |
Collapse
|
33
|
Abstract
The volumetric bar-chart chip (V-Chip) is a microfluidics-based, point-of-care (POC) device for the multiplexed and quantitative measurement of biomarkers. Volumetric readouts, based on the measurement of oxygen generated by a reaction between catalase and hydrogen peroxide, allow instant visual quantitation of target biomarkers and provide visualized bar charts without any assistance from instruments and without the need for data processing or graphics plotting. V-Chip shows potential capabilities in POC and personalized diagnostics; for instance, it can be utilized for making high-throughput, multiplexed, and quantitative measurements. Further, this system is highly portable and can be performed at low cost. The development of the V-Chip thus marks a POC milestone and opens up the possibility of instrument-free personalized diagnostics. Here, we describe the protocols for the fabrication of V-Chip and the use of silica nanoparticles as the probe carrier for the V-Chip-based enzyme-linked immunosorbent assay (ELISA) for the detection of biomarkers.
Collapse
Affiliation(s)
- Yujun Song
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ying Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Perkins G, Lu H, Garlan F, Taly V. Droplet-Based Digital PCR: Application in Cancer Research. Adv Clin Chem 2016; 79:43-91. [PMID: 28212714 DOI: 10.1016/bs.acc.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient characterization of genetic and epigenetic alterations in oncology, virology, or prenatal diagnostics requires highly sensitive and specific high-throughput approaches. Nevertheless, with the use of conventional methods, sensitivity and specificity were largely limited. By partitioning individual target molecules within distinct compartments, digital PCR (dPCR) could overcome these limitations and detect very rare sequences with unprecedented precision and sensitivity. In dPCR, the sample is diluted such that each individual partition will contain no more than one target sequence. Following the assay reaction, the dPCR process provides an absolute value and analyzable quantitative data. The recent coupling of dPCR with microfluidic systems in commercial platforms should lead to an essential tool for the management of patients with cancer, especially adapted to the analysis of precious samples. Applications in cancer research range from the analysis of tumor heterogeneity to that of a range of body fluids. Droplet-based dPCR is indeed particularly appropriate for the emerging field of liquid biopsy analysis. In this review, following an overview of the development in dPCR technology and different strategies based on the use of microcompartments, we will focus particularly on the applications and latest development of microfluidic droplet-based dPCR in oncology.
Collapse
Affiliation(s)
- G Perkins
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France; European Georges Pompidou Hospital, AP-HP - Paris Descartes University, Paris, France
| | - H Lu
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - F Garlan
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - V Taly
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
35
|
Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices. PLoS One 2016; 11:e0163060. [PMID: 27760148 PMCID: PMC5070811 DOI: 10.1371/journal.pone.0163060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our fundamental understanding of single-molecule reactions and providing advancements in practical applications such as medical diagnostics, forensics and environmental sampling.
Collapse
|
36
|
Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying Hui L, Xu F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 2016; 90:459-474. [PMID: 27818047 DOI: 10.1016/j.bios.2016.09.082] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022]
Abstract
Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingye Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Ying Hui
- Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
37
|
Smith GT, Dwork N, Khan SA, Millet M, Magar K, Javanmard M, Ellerbee Bowden AK. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. LAB ON A CHIP 2016; 16:2069-78. [PMID: 27166097 PMCID: PMC4935544 DOI: 10.1039/c6lc00340k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We introduce a novel manifold and companion software for dipstick urinalysis that eliminate many of the aspects that are traditionally plagued by user error: precise sample delivery, accurate readout timing, and controlled lighting conditions. The proposed all-acrylic slipping manifold is reusable, reliable, and low in cost. A simple timing mechanism ensures results are read out at the appropriate time. Results are obtained by capturing videos using a mobile phone and by analyzing them using custom-designed software. We show that the results obtained with the proposed device are as accurate and consistent as a properly executed dip-and-wipe method, the industry gold-standard, suggesting the potential for this strategy to enable confident urinalysis testing in home environments.
Collapse
Affiliation(s)
- Gennifer T Smith
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Nicholas Dwork
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Saara A Khan
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Matthew Millet
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Kiran Magar
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ, USA
| | | |
Collapse
|
38
|
Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids. PLoS One 2016; 11:e0153359. [PMID: 27074005 PMCID: PMC4830604 DOI: 10.1371/journal.pone.0153359] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022] Open
Abstract
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.
Collapse
|
39
|
Konry T, Sarkar S, Sabhachandani P, Cohen N. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction. Annu Rev Biomed Eng 2016; 18:259-84. [PMID: 26928209 DOI: 10.1146/annurev-bioeng-090215-112735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
Collapse
Affiliation(s)
- Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Noa Cohen
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| |
Collapse
|
40
|
Ma X, Xu W, Chen C, Lu Z, Li J. A microfabrication-free nanoliter droplet array for nucleic acid detection combined with isothermal amplification. Analyst 2016; 140:4370-3. [PMID: 25988200 DOI: 10.1039/c5an00573f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A nanoliter droplet array based on a hydrophilic-hydrophobic patterned chip is developed without using microfabrication technology. Combined with the isothermal amplification technology, it has been applied to perform nucleic acid detection, showing excellent specificity and sensitivity. As a versatile platform, it is used to detect three gene targets successfully.
Collapse
Affiliation(s)
- Xiaodong Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Mukhitov N, Spear JM, Stagg SM, Roper MG. Interfacing Microfluidics with Negative Stain Transmission Electron Microscopy. Anal Chem 2016; 88:629-34. [PMID: 26642355 PMCID: PMC4730115 DOI: 10.1021/acs.analchem.5b03884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microfluidic platform is presented for preparing negatively stained grids for use in transmission electron microscopy (EM). The microfluidic device is composed of glass etched with readily fabricated features that facilitate the extraction of the grid poststaining and maintains the integrity of the sample. Utilization of this device simultaneously reduced environmental contamination on the grids and improved the homogeneity of the heavy metal stain needed to enhance visualization of biological specimens as compared to conventionally prepared EM grids. This easy-to-use EM grid preparation device provides the basis for future developments of systems with more integrated features, which will allow for high-throughput and dynamic structural biology studies.
Collapse
Affiliation(s)
- Nikita Mukhitov
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL USA 32306
| | - John M. Spear
- Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, FL USA 32306
| | - Scott M. Stagg
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL USA 32306
- Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, FL USA 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL USA 32306
| |
Collapse
|
42
|
Popova AA, Demir K, Hartanto TG, Schmitt E, Levkin PA. Droplet-microarray on superhydrophobic–superhydrophilic patterns for high-throughput live cell screenings. RSC Adv 2016. [DOI: 10.1039/c6ra06011k] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Droplet-microarray platform based on superhydrophobic–superhydrophilic patterning allows for miniaturized high throughput drug and transfection screenings of live cells in separated nanoliter droplets.
Collapse
Affiliation(s)
- Anna A. Popova
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Konstantin Demir
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Titus Genisius Hartanto
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Eric Schmitt
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
43
|
Tsaloglou MN, Watson RJ, Rushworth CM, Zhao Y, Niu X, Sutton JM, Morgan H. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform. Analyst 2015; 140:258-64. [PMID: 25371968 DOI: 10.1039/c4an01683a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clostridium difficile is one of the key bacterial pathogens that cause infectious diarrhoea both in the developed and developing world. Isothermal nucleic acid amplification methods are increasingly used for identification of toxinogenic infection by clinical labs. For this purpose, we developed a low-cost microfluidic platform based on the SlipChip concept and implemented real-time isothermal recombinase polymerase amplification (RPA). The on-chip RPA assay targets the Clostridium difficile toxin B gene (tcdB) coding for toxin B, one of the proteins responsible for bacterial toxicity. The device was fabricated in clear acrylic using rapid prototyping methods. It has six replicate 500 nL reaction wells as well as two sets of 500 nL control wells. The reaction can be monitored in real-time using exonuclease fluorescent probes with an initial sample volume of as little as 6.4 μL. We demonstrated a limit of detection of 1000 DNA copies, corresponding to 1 fg, at a time-to-result of <20 minutes. This miniaturised platform for pathogen detection has potential for use in resource-limited environments or at the point-of-care because of its ease of use and low cost, particularly if combined with preserved reagents.
Collapse
Affiliation(s)
- M-N Tsaloglou
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Microfluidic Slipchip-based Reaction Microarray with Dual Concentration Gradient. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60868-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Popova AA, Schillo SM, Demir K, Ueda E, Nesterov-Mueller A, Levkin PA. Droplet-Array (DA) Sandwich Chip: A Versatile Platform for High-Throughput Cell Screening Based on Superhydrophobic-Superhydrophilic Micropatterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5217-5222. [PMID: 26255809 DOI: 10.1002/adma.201502115] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/30/2015] [Indexed: 06/04/2023]
Abstract
A droplet-array (DA) sandwich chip is a miniaturized platform for cell-based high-throughput screening. It is based on sandwiching of a glass slide with a preprinted library and a superhydrophobic-superhydrophilic pattern, which consists of thousands of simultaneously formed microdroplets containing cells. The DA sandwich chip allows for one-step cell seeding, simultaneous initiation of screening, and 1000 times less reagent consumption than a regular 96-well plate.
Collapse
Affiliation(s)
- Anna A Popova
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sebastian M Schillo
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Konstantin Demir
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Erica Ueda
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - A Nesterov-Mueller
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
46
|
Xu Y, Yan H, Zhang Y, Jiang K, Lu Y, Ren Y, Wang H, Wang S, Xing W. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification. LAB ON A CHIP 2015; 15:2826-2834. [PMID: 26016439 DOI: 10.1039/c5lc00244c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.
Collapse
Affiliation(s)
- Youchun Xu
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chang CW, Peng CC, Liao WH, Tung YC. Polydimethylsiloxane SlipChip for mammalian cell culture applications. Analyst 2015; 140:7355-65. [DOI: 10.1039/c5an00547g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A polydimethylsiloxane (PDMS) SlipChip for in vitro mammalian cell culture applications, including multiple-treatment assays, cell co-culture, and cytokine detection assays.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| |
Collapse
|
48
|
Abstract
Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation.
Collapse
Affiliation(s)
- Evgenia Yu Basova
- Masaryk University
- CEITEC, Central European Institute Technology
- Brno
- Czech Republic
| | - Frantisek Foret
- Masaryk University
- CEITEC, Central European Institute Technology
- Brno
- Czech Republic
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic
| |
Collapse
|
49
|
Cai D, Xiao M, Xu P, Xu YC, Du W. An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens. LAB ON A CHIP 2014; 14:3917-3924. [PMID: 25082458 DOI: 10.1039/c4lc00669k] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The early identification of causative pathogens in clinical specimens that require no cultivation is essential for directing evidence-based antimicrobial treatments in resource limited settings. Here, we describe an integrated microfluidic device for the rapid identification of pathogens in complex physiological matrices such as blood. The device was designed and fabricated using SlipChip technologies, which integrated four channels processing independent samples and identifying up to twenty different pathogens. Briefly, diluted whole human blood samples were directly injected into the device for analysis. The pathogens were extracted from the blood by dielectrophoresis, retained in an array of grooves, and identified by multiplex array PCR in nanoliter volumes with end-point fluorescence detection. The universality of the dielectrophoretic separation of pathogens from physiological fluids was evaluated with a panel of clinical isolates covering predominant bacterial and fungal species. Using this system, we simultaneously identified Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli O157:H7 within 3 h. In addition to the prompt diagnosis of bloodstream infections, this method may also be utilized for differentiating microorganisms in contaminated water and environmental samples.
Collapse
Affiliation(s)
- Dongyang Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China.
| | | | | | | | | |
Collapse
|
50
|
Chudobova D, Cihalova K, Skalickova S, Zitka J, Rodrigo MAM, Milosavljevic V, Hynek D, Kopel P, Vesely R, Adam V, Kizek R. 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles. Electrophoresis 2014; 36:457-66. [PMID: 25069433 DOI: 10.1002/elps.201400321] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen occurring not only in hospitals but also in foodstuff. Currently, discussions on the issue of the increasing resistance, and timely and rapid diagnostic of resistance strains have become more frequent and sought. Therefore, the aim of this study was to design an effective platform for DNA isolation from different species of microorganisms as well as the amplification of mecA gene that encodes the resistance to β-lactam antibiotic formation and is contained in MRSA. For this purpose, we fabricated 3D-printed chip that was suitable for bacterial cultivation, DNA isolation, PCR, and detection of amplified gene using gold nanoparticle (AuNP) probes as an indicator of MRSA. Confirmation of the MRSA presence in the samples was based on a specific interaction between mecA gene with the AuNP probes and a colorimetric detection, which utilized the noncross-linking aggregation phenomenon of DNA-functionalized AuNPs. To test the whole system, we analyzed several real refractive indexes, in which two of them were positively scanned to find the presence of mecA gene. The aggregation of AuNP probes were reflected by 75% decrease of absorbance (λ = 530 nm) and change in AuNPs size from 3 ± 0.05 to 4 ± 0.05 nm (n = 5). We provide the one-step identification of mecA gene using the unique platform that employs the rapid, low-cost, and easy-to-use colorimetric method for MRSA detection in various samples.
Collapse
Affiliation(s)
- Dagmar Chudobova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|