1
|
Cheng P, Pu K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem Soc Rev 2024; 53:10171-10188. [PMID: 39229642 DOI: 10.1039/d4cs00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Optical imaging is an indispensable tool for non-invasive visualization of biomolecules in living organisms, thereby offering a sensitive approach for disease diagnosis and image-guided disease treatment. Single-lock activatable optical probes (SOPs) that specifically switch on optical signals in the presence of biomarkers-of-interest have shown both higher detection sensitivity and imaging quality as compared to conventional "always-on" optical probes. However, such SOPs can still show "false-positive" results in disease diagnosis due to non-specific biomarker expression in healthy tissues. By contrast, multi-lock activatable optical probes (MOPs) that simultaneously detect multiple biomarkers-of-interest could improve detection specificity towards certain biomolecular events or pathological conditions. In this Review, we discuss the recent advancements of enzyme-responsive MOPs, with a focus on their biomedical applications. The higher detection specificity of MOPs could in turn enhance disease diagnosis accuracy and improve treatment efficacy in image-guided disease therapy with minimal toxicity in the surrounding healthy tissues. Finally, we discuss the current challenges and suggest future applications of MOPs.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
2
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
3
|
Iradukunda Y, Kang JY, Zhao XB, Nsanzamahoro S, Fu XK, Liu J, Ding YZ, Ha W, Shi YP. A novel "Turn-on" fluorometric assays triggered reaction for β-glucosidase activity based on quercetin derived silicon nanoparticles and its potential use for cell imaging. Anal Chim Acta 2023; 1280:341880. [PMID: 37858561 DOI: 10.1016/j.aca.2023.341880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
β-Glucosidase (β-Gluco) is an enzyme that is crucial to numerous diseases, including cancer, and in sector of industries, it is used in the manufacturing of food. Measuring its enzymatic activity is critical for biomedical studies and other activities. Herein, we have developed a novel and precise fluorescent sensing method for measuring β-Gluco activity based on the production of yellow-green fluorescent quercetin-silicon nanoparticles (Q-SiNPs) produced from quercetin (QN) as a reducing agent and 3-[2-(2-aminoethyl amino) ethylamino] propyl-trimethoxy silane (AEEA) as a silane molecule. β-Gluco hydrolyzed quercetin-3-O-β-d-glucopyranoside (QO-β-DG) to produce QN, which was then used to produce Q-SiNPs. Reaction parameters, including temperature, time, buffer, pH, and probe concentration, were carefully tuned in this study. Subsequently, the fluorescence intensity was performed, showing good linearity (R2 = 0.989), a broad linear dynamic range between 0.5 and 12 U L-1, and a limit of detection (LOD) as low as 0.428 U L-1, which was proven by fluorescence measurements. Most importantly, various parameters were detected and characterized with or without β-Gluco. The designed probe was successively used to assess β-Gluco activity in human serum and moldy bread. However, the mathematical findings revealed recoveries for human serum ranging from 99.3 to 101.66% and for moldy bread from 100.11 to 102.5%. Additionally, Q-SiNPs were well suited to being incubated in vitro with L929 and SiHa living cells, and after using an Olympus microscope, imaging showed good fluorescence cell images, and their viability evinced minimal cytotoxicity of 77% for L929 and 88% for SiHa. The developed fluorescence biosensor showed promise for general use in diagnostic tests. Therefore, due to this outstanding sensing modality, we anticipate that this research can provide a novel schematic project for creating simple nanostructures with a suitable plan and a green synthetic option for enzyme activity and cell imaging.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Yao B, Zhao J, Ding S, Giel MC, Zhang G, Ding D, Tang Y, Weng ZH, Hong Y. A novel red-emitting aggregation-induced emission probe for determination of β-glucosidase activity. Biomaterials 2023; 295:122046. [PMID: 36804661 DOI: 10.1016/j.biomaterials.2023.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
β-Glucosidase (β-Glu) is a ubiquitous enzyme which has multiple roles in medical diagnosis, food production, agriculture, etc. Existing β-Glu assays have limitations such as complex operation, long running time, and high background noise. Here we report a red-emissive probe TBPG for measuring the activity of β-Glu. The probe was synthesized through conjugating a β-Glu targeting glucoside to an aggregation-induced emission (AIE) fluorophore. In the presence of β-Glu, TBPG was hydrolyzed and exhibited a fluorescence turn-on process. The detection conditions including time, temperature, pH value, buffer, and probe concentration were optimized systematically. Afterwards, fluorescence titration was conducted showing an excellent linearity (R2 = 0.998), a wide linear dynamic range (0-5.0 U/mL), and a limit of detection as low as 0.6 U/L. The detection specificity and ion interference were evaluated by adding various biological species and ions to probe without or with β-Glu. Next, we demonstrate the applicability of probe TBPG in determining the β-Glu activity in living cells using confocal microscopy and flow cytometry. Finally, this newly established assay was applied to real soil samples. Comparable results were obtained as the commercial assay, manifesting its great potential in soil enzyme analysis.
Collapse
Affiliation(s)
- Bicheng Yao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Jiamin Zhao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Siyang Ding
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Marie-Claire Giel
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Guoqiang Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 China
| | - Youhong Tang
- Australia-China Joint Research Centre for Personal Health Technologies, Flinders University, South Australia 5042 Australia
| | - Zhe H Weng
- Department of Animal, Plants & Soil Sciences, Centre for AgriBioscience, La Trobe University, Victoria 3086 Australia; School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| |
Collapse
|
5
|
David M, Jaber Q, Fridman M, Shabat D. Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers. Chemistry 2023; 29:e202300422. [PMID: 36779696 DOI: 10.1002/chem.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Chemiexcitation of phenoxy-1,2-dioxetane chemiluminescent luminophores is initiated by electron transfer from a meta-positioned phenolate ion to the peroxide-dioxetane bond. Here we report the development of a unique 1,2-dioxetane chemiluminescent scaffold with chemiexcitation gated by an OR logic dual-set of triggering events. This scaffold is composed of meta-dihydroxyphenyl-1,2-dioxetane-adamantyl molecules, equipped with acrylic acid and chlorine substituents, that chemiexcitation under physiological conditions. A dual-mode chemiluminescent probe, armed with two different triggering substrates designed for activation by the enzymes β-galactosidase and alkaline phosphatase, was synthesized. The probe emitted intense light signals in the response to each enzyme, demonstrating its ability to serve as a single-component chemiluminescent sensor for dual-analyte detection. We also demonstrated the ability of the probe to detect β-galactosidase and phosphatase activities in bacteria. This is the first 1,2-dioxetane scaffold capable of responding to two different chemiexcitation events from two different positions on the same dioxetane molecule. We anticipate that the OR-gated mode of chemiexcitation, described herein, will find utility in the preparation of chemiluminescent probes with a dual-analyte detection/imaging mode.
Collapse
Affiliation(s)
- Maya David
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Qais Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
6
|
Zhang WY, Tian T, Peng LJ, Zhou HY, Zhang H, Chen H, Yang FQ. A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of β-Glucosidase Activity. BIOSENSORS 2022; 12:893. [PMID: 36291030 PMCID: PMC9599113 DOI: 10.3390/bios12100893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this work, indoxyl-glucoside was used as the substrate to develop a cost-effective, paper-based analytical device for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity through a smartphone. The β-glucosidase can hydrolyze the colorless substrate indoxyl-glucoside to release indoxyl, which will be self-oxidized to generate green products in the presence of oxygen. Meanwhile, the green products emit bright blue-green fluorescence under ultraviolet-visible light irradiation at 365 nm. Fluorescent or colorimetric images were obtained by a smartphone, and the red-green-blue channels were analyzed by the Adobe Photoshop to quantify the β-glucosidase activity. Under the optimum conditions, the relative fluorescent and colorimetric signals have a good linear relationship with the activity of β-glucosidase, in the range of 0.01-1.00 U/mL and 0.25-5.00 U/mL, and the limits of detection are 0.005 U/mL and 0.0668 U/mL, respectively. The activities of β-glucosidase in a crude almond sample measured by the fluorescent and colorimetric methods were 23.62 ± 0.53 U/mL and 23.86 ± 0.25 U/mL, respectively. In addition, the spiked recoveries of normal human serum and crude almond samples were between 87.5% and 118.0%. In short, the paper-based device, combined with a smartphone, can provide a simple, environmentally friendly, and low-cost method for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li-Jing Peng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hang-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Avetyan DL, Shatskiy A, Kärkäs MD, Stepanova EV. Scalable total synthesis of natural vanillin-derived glucoside ω-esters. Carbohydr Res 2022; 522:108683. [PMID: 36179617 DOI: 10.1016/j.carres.2022.108683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
The first total synthesis of vanilloloside, calleryanin, and a series of naturally occurring ω-esters of vanilloloside was realized through direct glycosylation of vanillin-based aglycones or late-stage derivatization of vanilloloside. All aglycones and their fragments were synthesized from vanillin as the sole aromatic precursor. Subsequently, these intermediates were used to construct various vanillin-derived glucoside ω-esters using a mild acidic deacetylation as the key synthetic step, providing the final products in the total yields of 10-50% and general purity of >95%. Additionally, the first operationally simple and sustainable synthesis of litseafoloside B was realized on large scale, avoiding the use of toxic solvents and reagents, providing an attractive alternative to isolation of this and other similar compounds from plant sources.
Collapse
Affiliation(s)
- David L Avetyan
- Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - Andrey Shatskiy
- KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Markus D Kärkäs
- KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Elena V Stepanova
- Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia.
| |
Collapse
|
8
|
Biswas A, Maitra U. Ratiometric rapid distinction of two structurally similar fluoroquinolone antibiotics by a Tb/Eu hydrogel. RSC Adv 2022; 12:26106-26110. [PMID: 36275113 PMCID: PMC9477015 DOI: 10.1039/d2ra03668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Norfloxacin and ofloxacin are two frequently prescribed second-generation fluoroquinolone antibiotics with an identical 4-quinolone chromophore and hence, are difficult to distinguish by conventional methods (UV or fluorescence). We have designed a Tb3+/Eu3+/cholate cocktail that enabled us to differentiate these two drugs and rapidly measure their concentrations when present together. Additionally, a Tb3+-cholate gel-based paper sensor was developed to detect and quantify them in a single drug containing system with a limit of detection (LOD) well below 100 nM.
Collapse
Affiliation(s)
- Ananya Biswas
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|
9
|
Xing M, Han Y, Zhu Y, Sun Y, Shan Y, Wang KN, Liu Q, Dong B, Cao D, Lin W. Two Ratiometric Fluorescent Probes Based on the Hydroxyl Coumarin Chalcone Unit with Large Fluorescent Peak Shift for the Detection of Hydrazine in Living Cells. Anal Chem 2022; 94:12836-12844. [PMID: 36062507 DOI: 10.1021/acs.analchem.2c02798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrazine is widely used in industrial and agricultural production, but excessive hydrazine possesses a serious threat to human health and environment. Here two new ratiometric fluorescence probes, DDP and DDC, with the hydroxyl coumarin chalcone unit as the sensing site are developed, which can achieve colorimetric and ratiometric recognition for hydrazine with good sensitivity, excellent selectivity, and anti-interference. The calculated fluorescence limits of detections are 0.26 μM (DDC) and 0.14 μM (DDP). The ratiometric fluorescence response to hydrazine is realized through the adjustment of donor and receptor units in coumarin conjugate structure terminals, accompanied by fluorescence peak shift about 200 nm (DDC, 188 nm; DDP, 229 nm). Stronger electropositivity in the carbon-carbon double bond is helpful to the first phase addition reaction between the probe and hydrazine. Higher phenol activity in the hydroxyl coumarin moiety will facilitate the following dihydro-pyrazole cyclization reaction. In addition, both of these probes realized the convenient detection of hydrazine vapor. The probes were also successfully applied to detect hydrazine in actual water samples, different soils, and living cells.
Collapse
Affiliation(s)
- Miaomiao Xing
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Han
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yilin Zhu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yatong Sun
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Shan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kang-Nan Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baoli Dong
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Weiying Lin
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
10
|
Dong L, Zhang MY, Han HH, Zang Y, Chen GR, Li J, He XP, Vidal S. A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters. Chem Sci 2021; 13:247-256. [PMID: 35059174 PMCID: PMC8694377 DOI: 10.1039/d1sc05057e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Glycosidases, which are the enzymes responsible for the removal of residual monosaccharides from glycoconjugates, are involved in many different biological and pathological events. The ability to detect sensitively the activity and spatiotemporal distribution of glycosidases in cells will provide useful tools for disease diagnosis. However, the currently developed fluorogenic probes for glycosidases are generally based on the glycosylation of the phenol group of a donor-acceptor type fluorogen. This molecular scaffold has potential drawbacks in terms of substrate scope, sensitivity because of aggregation-caused quenching (ACQ), and the inability for long-term cell tracking. Here, we developed glycoclusters characterized by aggregation-induced emission (AIE) properties as a general platform for the sensing of a variety of glycosidases. To overcome the low chemical reactivity associated with phenol glycosylation, here we developed an AIE-based scaffold, which is composed of tetraphenylethylene conjugated with dicyanomethylene-4H-pyran (TPE-DCM) with a red fluorescence emission. Subsequently, a pair of dendritic linkages was introduced to both sides of the fluorophore, to which six copies of monosaccharides (d-glucose, d-galactose or l-fucose) were introduced through azide-alkyne click chemistry. The resulting AIE-active glycoclusters were shown to be capable of (1) fluorogenic sensing of a diverse range of glycosidases including β-d-galactosidase, β-d-glucosidase and α-l-fucosidase through the AIE mechanism, (2) fluorescence imaging of the endogenous glycosidase activities in healthy and cancer cells, and during cell senescence, and (3) glycosidase-activated, long-term imaging of cells. The present study provides a general strategy to the functional, in situ imaging of glycosidase activities through the multivalent display of sugar epitopes of interest onto properly designed AIE-active fluorogens.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon 1 Rue Victor Grignard F-69622 Villeurbanne France
| | - Min-Yu Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Yi Zang
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Jia Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon 1 Rue Victor Grignard F-69622 Villeurbanne France
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
11
|
Wang J, Zhang Y, Lu Q, Xing D, Zhang R. Exploring Carbohydrates for Therapeutics: A Review on Future Directions. Front Pharmacol 2021; 12:756724. [PMID: 34867374 PMCID: PMC8634948 DOI: 10.3389/fphar.2021.756724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates are important components of foods and essential biomolecules performing various biological functions in living systems. A variety of biological activities besides providing fuel have been explored and reported for carbohydrates. Some carbohydrates have been approved for the treatment of various diseases; however, carbohydrate-containing drugs represent only a small portion of all of the drugs on the market. This review summarizes several potential development directions of carbohydrate-containing therapeutics, with the hope of promoting the application of carbohydrates in drug development.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yukun Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qi Lu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Liu H, Westley J, Thayumanavan S. Excimer-monomer fluorescence changes by supramolecular disassembly for protein sensing and quantification. Chem Commun (Camb) 2021; 57:9776-9779. [PMID: 34486631 PMCID: PMC8761362 DOI: 10.1039/d1cc03944j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A protein binding-induced supramolecular dissociation strategy is developed with the ratio of monomer and excimer fluorescence as the tool for protein sensing and quantification. Due to the "lock-and-key" strategy based on specific ligand-protein binding, the probe exhibits excellent selectivity and quantification accuracy to the protein of interest. The ratiometric approach is immune to interference from extrinsic quenchers, while preserving the opportunity to be protein specific.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA.
| | - Jenna Westley
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA
- Center for Bioactive Delivery, The Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
13
|
Huo W, Miki K, Tokunaga D, Mu H, Oe M, Harada H, Ohe K. Dual-Stimuli-Responsive Probes for Detection of Ovarian Cancer Cells and Quantification of Both pH and Enzyme Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daisuke Tokunaga
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Yao Y, Zhang Y, Yan C, Zhu WH, Guo Z. Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Chem Sci 2021; 12:9885-9894. [PMID: 34349961 PMCID: PMC8317648 DOI: 10.1039/d1sc02069b] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
β-Galactosidase (β-gal), a typical hydrolytic enzyme, is a vital biomarker for cell senescence and primary ovarian cancers. Developing precise and rapid methods to monitor β-gal activity is crucial for early cancer diagnoses and biological research. Over the past decade, activatable optical probes have become a powerful tool for real-time tracking and in vivo visualization with high sensitivity and specificity. In this review, we summarize the latest advances in the design of β-gal-activatable probes via spectral characteristics and responsiveness regulation for biological applications, and particularly focus on the molecular design strategy from turn-on mode to ratiometric mode, from aggregation-caused quenching (ACQ) probes to aggregation-induced emission (AIE)-active probes, from near-infrared-I (NIR-I) imaging to NIR-II imaging, and from one-mode to dual-mode of chemo-fluoro-luminescence sensing β-gal activity.
Collapse
Affiliation(s)
- Yongkang Yao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yutao Zhang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
15
|
Zhou Y, Wang X, Zhang W, Tang B, Li P. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2041-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Huang R, Jin R, Jiang D, Chen HY. Single-cell-resolved measurement of enzyme activity at the tissue level using drop-on-demand microkits. Analyst 2021; 146:1548-1551. [PMID: 33427262 DOI: 10.1039/d0an02247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drop-on-demand microkits with a diameter of ∼20 μm are used to measure the activity of acetylcholinesterase (AChE) in a brain slice with single-cell resolution. The relative standard deviation from 25 cellular regions reached 73.3% exhibiting the difference of enzyme activity in the brain slice. Therefore, this approach utilizing the well-established kits provides an alternative single-cell-resolved strategy for the elucidation of enzymatic heterogeneity at the tissue level.
Collapse
Affiliation(s)
- Rongcan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | | | | | | |
Collapse
|
17
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
18
|
Wang L, Zhang J, An X, Duan H. Recent progress on the organic and metal complex-based fluorescent probes for monitoring nitric oxide in living biological systems. Org Biomol Chem 2020; 18:1522-1549. [PMID: 31995085 DOI: 10.1039/c9ob02561h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important gaseous signaling molecule related to various human diseases. To investigate the biological functions of NO, many strategies have been developed for real-time monitoring the NO levels in biological systems. Among these strategies, fluorescent probes are considered to be one of the most efficient and applicable methods owing to their excellent sensitivity and selectivity, high spatiotemporal resolution, noninvasiveness, and experimental convenience. Therefore, great efforts have been paid to the design, synthesis, and fluorescence investigation of novel NO fluorescent probes in the past several years. However, few of them exhibit practical applications owing to the low concentration, short half-life, and rapid diffusion characteristics of NO in biological systems. Rational design of NO fluorescent probes with excellent selectivity and sensitivity, low cytotoxicity, long-lived fluorescent emission, and low background interference is still a challenge for scientists all over the word. To provide spatial-temporal information, this article focuses on the progress made in the organic and metal complex-based NO fluorescent probes during the past five years. The key structural elements and sensing mechanisms of NO fluorescent probes are discussed. Some novel ratiometric, luminescence, and photoacoustic probes with low background interference and deep tissue penetrating ability are mentioned. All these probes have been used for imaging exogenous and endogenous NO in cells and animal models. More importantly, this article also describes the development of multi-functional NO fluorescent probes, such as organelle targeting probes, dual-analysis probes, and probe-drug conjugates, which will inspire the design of various functional fluorescent probes.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China. and Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China
| | - Juan Zhang
- Shandong Jinan Qilu Science Patent Office Ltd, Ji'nan 250014, Shandong Province, China
| | - Xue An
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| | - Hongdong Duan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| |
Collapse
|
19
|
Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, Tian H, Yoon J, Sessler JL, James TD. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev 2020; 49:5110-5139. [PMID: 32697225 DOI: 10.1039/c9cs00318e] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this tutorial review, we will explore recent advances in the construction and application of Förster resonance energy transfer (FRET)-based small-molecule fluorescent probes. The advantages of FRET-based fluorescent probes include: a large Stokes shift, ratiometric sensing and dual/multi-analyte responsive systems. We discuss the underlying energy donor-acceptor dye combinations and emphasise their applications for the detection or imaging of cations, anions, small neutral molecules, biomacromolecules, cellular microenvionments and dual/multi-analyte responsive systems.
Collapse
Affiliation(s)
- Luling Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pang X, Li Y, Zhou Z, Lu Q, Xie R, Wu C, Zhang Y, Li H. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Talanta 2020; 217:121098. [PMID: 32498839 DOI: 10.1016/j.talanta.2020.121098] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/29/2023]
Abstract
β-Galactosidase (β-gal) is an important biomarker for primary ovarian cancers. Developing noninvasive bioimaging probes for studying the activity of β-gal is highly desirable for cancer diagnosis. Herein, a turn-on near-infrared (NIR) fluorescent probe, 2-((6-(((2S, 3R, 4S, 5R, 6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran -2-yl)oxy)-2,3-dihydro-1H-xanthen-4-yl)methylene)malononitrile named DXM-βgal, was rationally designed based on enzymatic reaction for the detection of β-gal activity both in vitro and in vivo. Upon incubating with β-gal, DXM-βgal displayed a significant fluorescence enhancement at 640 nm, accompanying by a color change of solution color from red to purple. DXM-βgal exhibited high selectivity and sensitively to β-gal with low limit of detection (2.92 × 10-4 U mL-1). Besides, based on its advantages of long-wavelength emission and excellent biocompatibility, DXM-βgal was successfully applied to imaging β-gal in living cells and zebrafish. Given these prominent properties, we believe that DXM-βgal will be a potential tool for investigating β-gal activity in biomedical research.
Collapse
Affiliation(s)
- Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Yaqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ruihua Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
21
|
Yang L, Zhang Y, Ren X, Wang B, Yang Z, Song X, Wang W. Fluorescent Detection of Dynamic H2O2/H2S Redox Event in Living Cells and Organisms. Anal Chem 2020; 92:4387-4394. [DOI: 10.1021/acs.analchem.9b05270] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lei Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yun Zhang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaojie Ren
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhaoguang Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, 1703 E. Mabel Street, Tucson, Arizona 85721-0207, United States
| |
Collapse
|
22
|
Singh M, Watkinson M, Scanlan EM, Miller GJ. Illuminating glycoscience: synthetic strategies for FRET-enabled carbohydrate active enzyme probes. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00134a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates are synthesised, refined and degraded by carbohydrate active enzymes. FRET is emerging as a powerful tool to monitor and quantify their activity as well as to test inhibitors as new drug candidates and monitor disease.
Collapse
Affiliation(s)
- Meenakshi Singh
- Lennard-Jones Laboratories
- School of Chemical and Physical Sciences
- Keele University
- Staffordshire
- UK
| | - Michael Watkinson
- Lennard-Jones Laboratories
- School of Chemical and Physical Sciences
- Keele University
- Staffordshire
- UK
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Gavin J. Miller
- Lennard-Jones Laboratories
- School of Chemical and Physical Sciences
- Keele University
- Staffordshire
- UK
| |
Collapse
|
23
|
Zhang J, Cheng P, Pu K. Recent Advances of Molecular Optical Probes in Imaging of β-Galactosidase. Bioconjug Chem 2019; 30:2089-2101. [PMID: 31269795 DOI: 10.1021/acs.bioconjchem.9b00391] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-Galactosidase (β-Gal), as a lysosomal hydrolytic enzyme, plays an important physiological role in catalyzing the hydrolysis of glycosidic bonds which convert lactose into galactose. Moreover, upregulation of β-Gal is often correlated with the occurrence of primary ovarian cancers and cell senescence. Thereby, detection of β-Gal activity is relevant to cancer diagnosis. Optical imaging possesses high spatial and temporal resolution, high sensitivity, and real-time imaging capability. These properties are beneficial for the detection of β-Gal in living systems. This Review summarizes the recent progress in development of molecular optical probes for near-infrared fluorescence (NIRF), bioluminescence (BL), chemiluminescence (CL), or photoacoustic (PA) imaging of β-Gal in biological systems. The challenges and opportunities in the probe design for detection of β-Gal are also discussed.
Collapse
Affiliation(s)
- Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science , Northwest University , 710127 , Xi'an , China.,School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| |
Collapse
|
24
|
Gao M, Zhang X, Wang Y, Liu Q, Yu F, Huang Y, Ding C, Chen L. Sequential Detection of Superoxide Anion and Hydrogen Polysulfides under Hypoxic Stress via a Spectral-Response-Separated Fluorescent Probe Functioned with a Nitrobenzene Derivative. Anal Chem 2019; 91:7774-7781. [DOI: 10.1021/acs.analchem.9b01189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingluan Liu
- The Third Division of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Fabiao Yu
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
25
|
Tang Z, Song B, Ma H, Shi Y, Yuan J. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper(II)-coupled lanthanide complexes. Anal Chim Acta 2019; 1049:152-160. [DOI: 10.1016/j.aca.2018.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
|
26
|
Ren M, Li Z, Deng B, Wang L, Lin W. Single Fluorescent Probe Separately and Continuously Visualize H2S and HClO in Lysosomes with Different Fluorescence Signals. Anal Chem 2019; 91:2932-2938. [DOI: 10.1021/acs.analchem.8b05116] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Zihong Li
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Beibei Deng
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Li Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
27
|
Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin RM, Yin C. Functional synthetic probes for selective targeting and multi-analyte detection and imaging. Chem Soc Rev 2019; 48:4155-4177. [PMID: 31204740 DOI: 10.1039/c8cs01006d] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In contrast to the classical design of a probe with one binding site to target one specific analyte, probes with multiple interaction sites or, alternatively, with single sites promoting tandem reactions to target one or multiple analytes, have been developed. They have been used in addressing the inherent challenges of selective targeting in the presence of structurally similar compounds and in complex matrices, as well as the visualization of the in vivo interaction or crosstalk between the analytes. Examples of analytes include reactive sulfur species, reactive oxygen species, nucleotides and enzymes. This review focuses on recent innovations in probe design, detection mechanisms and the investigation of biological processes. The vision is to promote the ongoing development of fluorescent probes to enable deeper insight into the physiology of bioactive analytes.
Collapse
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science of Shanxi University, Taiyuan, Shanxi 030006, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Giovannini G, Gubala V, Hall AJ. ‘Off–on’ switchable fluorescent probe for prompt and cost-efficient detection of bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj03110c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rapid and straightforward detection of bacteria in food and human samples is becoming important, particularly in view of the development of point-of-care devices and lab-on-a-chip tools for prevention and treatment of bacterial infections.
Collapse
Affiliation(s)
- Giorgia Giovannini
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| | - Vladimir Gubala
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| | - Andrew J. Hall
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| |
Collapse
|
29
|
Yue L, Dai Z, Chen X, Liu C, Hu Z, Song B, Zheng X. Development of a novel FePt-based multifunctional ferroptosis agent for high-efficiency anticancer therapy. NANOSCALE 2018; 10:17858-17864. [PMID: 30221289 DOI: 10.1039/c8nr05150j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ferroptosis as an emerging mechanism has become a research hotspot for killing cancer cells. In this work, a novel ferroptosis agent, FePt-PTTA-Eu3+-FA (FPEF), was rationally designed by harnessing the luminescent lanthanide complexes PTTA-Eu3+ and folic acid (FA) in FePt nanoparticles. FePt-Based nanomaterials have potential applications in magnetic resonance imaging/computed tomography (MRI/CT) in clinical diagnosis and have excellent capacity to induce cancer cell death. Mechanistic studies of FPEP showed that the FePt induced cancer cell death was affirmed as the ferroptosis mechanism. To the best of our knowledge, it will be the first report that proves the existence of the ferroptosis process in FePt NPs. The in vitro tests of FPEF demonstrated that the as-prepared NPs exhibit a satisfactory anticancer effect towards FA-positive tumor cells including 4T1, MCF-7 and HeLa cells. The in vivo studies using tumor-bearing balb/c mice revealed that the FPEF NPs could significantly inhibit tumor progression. Such all-in-one therapeutic strategies have great potential in early diagnosis, prognosis and treatment of cancer.
Collapse
Affiliation(s)
- Ludan Yue
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, School of Chemistry and Chemical Engineering, Linyi University, Shandong 276000, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Zeng R, Gao Q, Cheng F, Yang Y, Zhang P, Chen S, Yang H, Chen J, Long Y. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells. Anal Bioanal Chem 2018; 410:2001-2009. [DOI: 10.1007/s00216-018-0867-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
|
31
|
Okorochenkova Y, Porubský M, Benická S, Hlaváč J. A novel three-fluorophore system as a ratiometric sensor for multiple protease detection. Chem Commun (Camb) 2018; 54:7589-7592. [DOI: 10.1039/c8cc01731j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A ratiometric fluorescent system for the detection of two proteases solely or in their mixture.
Collapse
Affiliation(s)
- Yana Okorochenkova
- Institute of Molecular and Translation Medicine
- Faculty of Medicine and Dentistry
- Palacky University
- Olomouc 779 00
- Czech Republic
| | - Martin Porubský
- Department of Organic Chemistry
- Faculty of Science
- Palacky University Olomouc
- Olomouc 771 46
- Czech Republic
| | - Sandra Benická
- Department of Organic Chemistry
- Faculty of Science
- Palacky University Olomouc
- Olomouc 771 46
- Czech Republic
| | - Jan Hlaváč
- Institute of Molecular and Translation Medicine
- Faculty of Medicine and Dentistry
- Palacky University
- Olomouc 779 00
- Czech Republic
| |
Collapse
|
32
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
33
|
Kolanowski JL, Liu F, New EJ. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem Soc Rev 2018; 47:195-208. [DOI: 10.1039/c7cs00528h] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review identifies and discusses fluorescent sensors that are capable of simultaneously reporting on the presence of two analytes for biological application.
Collapse
Affiliation(s)
- Jacek L. Kolanowski
- School of Chemistry
- The University of Sydney
- Australia
- Institute of Bio-organic Chemistry
- Polish Academy of Sciences
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangdong
- People's Republic of China
| | | |
Collapse
|
34
|
Guo J, Yang S, Guo C, Zeng Q, Qing Z, Cao Z, Li J, Yang R. Molecular Engineering of α-Substituted Acrylate Ester Template for Efficient Fluorescence Probe of Hydrogen Polysulfides. Anal Chem 2017; 90:881-887. [DOI: 10.1021/acs.analchem.7b03755] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingru Guo
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Chongchong Guo
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Qinghai Zeng
- Department
of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Zhihe Qing
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhong Cao
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jishan Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ronghua Yang
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
35
|
Hu J, Wu Q, Cheng K, Xie Y, Li C, Li Z. A 19F NMR probe for the detection of β-galactosidase: simple structure with low molecular weight of 274.2, "turn-on" signal without the background, and good performance applicable in cancer cell line. J Mater Chem B 2017; 5:4673-4678. [PMID: 32264309 DOI: 10.1039/c7tb00616k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the efficient cleavage reaction of the C-O ether bond triggered by β-gal selectively, FB-βGal, with good water-solubility, low toxicity, high specificity, excellent water-solubility and high biocompatibility, was prepared, which could report the presence of trace β-gal quickly and conveniently by a significant change in the 19F NMR spectra without any background noise. The successful application of FB-βGal for the detection of β-gal in living Escherichia coli, HeLa cells and OVCAR-3 cells quantitatively makes it a promising candidate for practical application in related fields.
Collapse
Affiliation(s)
- Jie Hu
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | |
Collapse
|
36
|
Dai Z, Tian L, Song B, Liu X, Yuan J. Development of a novel lysosome-targetable time-gated luminescence probe for ratiometric and luminescence lifetime detection of nitric oxide in vivo. Chem Sci 2017; 8:1969-1976. [PMID: 28451312 PMCID: PMC5384565 DOI: 10.1039/c6sc03667h] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Rapid, multiplexed, sensitive and specific identification and quantitative detection of nitric oxide (NO) are in great demand in biomedical science. Herein, a novel multifunctional probe based on the intramolecular LRET (luminescence resonance energy transfer) strategy, TRP-NO, was designed for the highly sensitive and selective ratiometric and luminescence lifetime detection of lysosomal NO. Before reaction with NO, the emission of the rhodamine moiety in TRP-NO is switched off, which prevents the LRET process, so that the probe emits only the long-lived Tb3+ luminescence. However, upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from the Tb3+-complex moiety to rhodamine moiety occurs, which results in a remarkable increase of the rhodamine emission and decrease of the Tb3+ emission. After the reaction, the intensity ratio of the rhodamine emission to the Tb3+ emission, I565/I540, was found to be 28.8-fold increased, and the dose-dependent enhancement of the I565/I540 value showed a good linearity upon the increase of NO concentration. In addition, a dose-dependent luminescence lifetime decrease was distinctly observed between the average luminescence lifetime of the probe and NO concentration, which provides a ∼10-fold contrast window for the detection of NO. These unique properties allowed TRP-NO to be conveniently used as a time-gated luminescence probe for the quantitative detection of NO using both luminescence intensity ratio and luminescence lifetime as signals. The applicability of TRP-NO for ratiometric time-gated luminescence imaging of NO in living cells was investigated. Meanwhile, dye co-localization studies confirmed a quite precise distribution of TRP-NO in lysosomes by confocal microscopy imaging. Furthermore, the practical applicability of TRP-NO was demonstrated by the visualization of NO in Daphnia magna. All of the results demonstrated that TRP-NO could serve as a useful tool for exploiting and elucidating the function of NO at sub-cellular levels with high specificity, accuracy and contrast.
Collapse
Affiliation(s)
- Zhichao Dai
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
- School of Chemistry and Chemical Engineering , Linyi University , Linyi 276005 , P. R. China
| | - Lu Tian
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
- School of Chemistry and Chemical Engineering , Linyi University , Linyi 276005 , P. R. China
| | - Bo Song
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Xiangli Liu
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals , School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China . ;
| |
Collapse
|
37
|
Nagy G, Peng T, Pohl NLB. General Label-Free Mass Spectrometry-Based Assay To Identify Glycosidase Substrate Competence. Anal Chem 2016; 88:7183-90. [DOI: 10.1021/acs.analchem.6b01360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L. B. Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Huang Y, Yu F, Wang J, Chen L. Near-Infrared Fluorescence Probe for in Situ Detection of Superoxide Anion and Hydrogen Polysulfides in Mitochondrial Oxidative Stress. Anal Chem 2016; 88:4122-9. [DOI: 10.1021/acs.analchem.6b00458] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yan Huang
- Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Department of Chemistry, Qinghai Normal University, Xining 810008, China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianchao Wang
- Department of Chemistry, Qinghai Normal University, Xining 810008, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of
Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
39
|
Finkler B, Riemann I, Vester M, Grüter A, Stracke F, Jung G. Monomolecular pyrenol-derivatives as multi-emissive probes for orthogonal reactivities. Photochem Photobiol Sci 2016; 15:1544-1557. [DOI: 10.1039/c6pp00290k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chameleons in a test tube: up to four easily distinguishable emission colors result from conversion by two hydrolytic enzymes at opposite reaction sites.
Collapse
Affiliation(s)
- Björn Finkler
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | | | - Michael Vester
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Andreas Grüter
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | | | - Gregor Jung
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| |
Collapse
|
40
|
Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. Virginia Orange: A Versatile, Red-Shifted Fluorescein Scaffold for Single- and Dual-Input Fluorogenic Probes. Bioconjug Chem 2015; 27:474-80. [DOI: 10.1021/acs.bioconjchem.5b00566] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Todd D. Gruber
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gloria Ortiz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
41
|
Tian L, Dai Z, Liu X, Song B, Ye Z, Yuan J. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System. Anal Chem 2015; 87:10878-85. [PMID: 26462065 DOI: 10.1021/acs.analchem.5b02347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.
Collapse
Affiliation(s)
- Lu Tian
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian 116024, China
| | - Zhichao Dai
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian 116024, China
| | - Xiangli Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian 116024, China
| | - Zhiqiang Ye
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
42
|
Yu F, Gao M, Li M, Chen L. A dual response near-infrared fluorescent probe for hydrogen polysulfides and superoxide anion detection in cells and in vivo. Biomaterials 2015; 63:93-101. [DOI: 10.1016/j.biomaterials.2015.06.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 01/10/2023]
|
43
|
|
44
|
Li Z, Allcock HR. Polyphosphazenes with Immobilized Dyes as Potential Color Filter Materials. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13518-13523. [PMID: 26018938 DOI: 10.1021/acsami.5b02805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Red, green, and blue dye molecules were linked covalently to polyphosphazenes to generate soluble, film-forming materials appropriate for the formation of patterned tricolor filters for possible use in liquid crystalline and other display devices or in camera sensors. The monofunctional dyes (a red 1-[(E)-(4-nitrophenyl)diazenyl]-2-naphthol, a green tetraphenylporphyrin [5-(4-hydroxyphenyl)-10,15,20-tetraphenylporphyrin], and a toluidine blue dye) were employed as representative chromophores. The cosubstituents employed included 2,2,2-trifluoroethoxy with and without aryloxy groups or cyclopentanoxy groups. The optical densities were varied by adopting several dye-to-cosubstituent side group ratios. These dyes are models for a wide range of different chromophores that can be linked to polyphosphazene chains.
Collapse
Affiliation(s)
- Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
45
|
Burke HM, Gunnlaugsson T, Scanlan EM. Recent advances in the development of synthetic chemical probes for glycosidase enzymes. Chem Commun (Camb) 2015; 51:10576-88. [PMID: 26051717 DOI: 10.1039/c5cc02793d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of synthetic glycoconjugates as chemical probes for the detection of glycosidase enzymes has resulted in the development of a range of useful chemical tools with applications in glycobiology, biotechnology, medical and industrial research. Critical to the function of these probes is the preparation of substrates containing a glycosidic linkage that when activated by a specific enzyme or group of enzymes, irreversibly releases a reporter molecule that can be detected. Starting from the earliest examples of colourimetric probes, increasingly sensitive and sophisticated substrates have been reported. In this review we present an overview of the recent advances in this field, covering an array of strategies including chromogenic and fluorogenic substrates, lanthanide complexes, gels and nanoparticles. The applications of these substrates for the detection of various glycosidases and the scope and limitations for each approach are discussed.
Collapse
Affiliation(s)
- Helen M Burke
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | | | | |
Collapse
|
46
|
Zhang P, Li J, Li B, Xu J, Zeng F, Lv J, Wu S. A logic gate-based fluorescent sensor for detecting H2S and NO in aqueous media and inside live cells. Chem Commun (Camb) 2015; 51:4414-6. [DOI: 10.1039/c4cc09737h] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single fluorescent probe herein can sensitively and selectively detect H2S and NO in solution and in cells by using a logic gate approach.
Collapse
Affiliation(s)
- Peisheng Zhang
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jun Li
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bowen Li
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jiangsheng Xu
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Fang Zeng
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jun Lv
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shuizhu Wu
- College of Materials Science & Engineering
- State Key Lab of Luminescent Materials & Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
47
|
Debieu S, Romieu A. Dual enzyme-responsive “turn-on” fluorescence sensing systems based on in situ formation of 7-hydroxy-2-iminocoumarin scaffolds. Org Biomol Chem 2015; 13:10348-61. [DOI: 10.1039/c5ob01624j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a novel class of dual enzyme-responsive fluorogenic probes based on two orthogonal deprotection reactions via the “covalent assembly” principle. Sensing of two different enzymes (hydrolase and nitroreductase) through domino reactions, producing the push–pull backbone of a fluorescent 3-substituted 7-hydroxy-2-iminocoumarin dye, is reported.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| |
Collapse
|
48
|
Dai Z, Tian L, Song B, Ye Z, Liu X, Yuan J. Ratiometric Time-Gated Luminescence Probe for Hydrogen Sulfide Based on Lanthanide Complexes. Anal Chem 2014; 86:11883-9. [DOI: 10.1021/ac503611f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhichao Dai
- State Key Laboratory
of Fine Chemicals,
School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lu Tian
- State Key Laboratory
of Fine Chemicals,
School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory
of Fine Chemicals,
School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Ye
- State Key Laboratory
of Fine Chemicals,
School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiangli Liu
- State Key Laboratory
of Fine Chemicals,
School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory
of Fine Chemicals,
School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
49
|
Prost M, Hasserodt J. “Double gating” – a concept for enzyme-responsive imaging probes aiming at high tissue specificity. Chem Commun (Camb) 2014; 50:14896-9. [DOI: 10.1039/c4cc07147f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Yang S, Qi Y, Liu C, Wang Y, Zhao Y, Wang L, Li J, Tan W, Yang R. Design of a Simultaneous Target and Location-Activatable Fluorescent Probe for Visualizing Hydrogen Sulfide in Lysosomes. Anal Chem 2014; 86:7508-15. [DOI: 10.1021/ac501263d] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sheng Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yue Qi
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Changhui Liu
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yijun Wang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yirong Zhao
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Lili Wang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Ronghua Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, and
Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| |
Collapse
|