1
|
Abramsson ML, Persson LJ, Sobott F, Marklund EG, Landreh M. Charging of DNA Complexes in Positive-Mode Native Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3157-3162. [PMID: 39417657 PMCID: PMC11622369 DOI: 10.1021/jasms.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Native mass spectrometry (nMS) provides insights into the structures and dynamics of biomacromolecules in their native-like states by preserving noncovalent interactions through "soft" electrospray ionization (ESI). For native proteins, the number of charges that are acquired scales with the surface area and mass. Here, we explore the effect of highly negatively charged DNA on the ESI charge of protein complexes and find a reduction of the mass-to-charge ratio as well as a greater variation. The charge state distributions of pure DNA assemblies show a lower mass-to-charge ratio than proteins due to their greater density in the gas phase, whereas the charge of protein-DNA complexes can additionally be influenced by the distribution of the ESI charges, ion pairing events, and collapse of the DNA components. Our findings suggest that structural features of protein-DNA complexes can result in lower charge states than expected for proteins.
Collapse
Affiliation(s)
- Mia L. Abramsson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Louise J. Persson
- Department
of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, LS2
9JT Leeds, U.K.
| | - Erik G. Marklund
- Department
of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Michael Landreh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
- Department
for Cell and Molecular Biology, Uppsala
University, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Jeanne Dit Fouque K, Molano-Arevalo JC, Leng F, Fernandez-Lima F. Conformational and Structural Characterization of Knotted Proteins. Biochemistry 2024; 63:2293-2299. [PMID: 39189377 DOI: 10.1021/acs.biochem.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Knotted proteins are fascinating natural biomolecules whose backbones entangle themselves in a knot. Their particular knotted configurations provide them with a wide range of topological features. However, their folding/unfolding mechanisms, stability, and function are poorly understood. In the present work, native trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used for characterizing structural features of two model knotted proteins: a Gordian 52 knot ubiquitin C-terminal hydrolase (UCH) and a Stevedore 61 knot (α-haloacid dehalogenase, DehI). Experimental results showed structural transitions of UCH and DehI as a function of solution composition (0-50% MeOH) and temperature (T ∼20-95 °C). An increase in the protein charge states and collision cross sections (∼2750-8750 Å2 and ∼3250-15,385 Å2 for UCH and DehI, respectively) with the solution organic content (OC) and temperature suggested a three-step unfolding pathway with at least four structural transitions. Results also showed that the integrity of the UCH knot core was more resistant to thermal unfolding when compared to DehI; however, both knot cores can be disrupted with the increase in the solution OC. Additional enzymatic digestion experiments using carboxypeptidase Y combined with molecular dynamics simulations showed that the knot core was preserved between Glu20 and Glu188 and Arg89 and His304 residues for UCH and DehI, respectively, where disruption of the knot core led to structural collapse followed by unfolding events. This work highlights the potential of solution OC and temperature studies combined with native TIMS-MS for the comprehensive characterization of knotted proteins to gain a better understanding of their structural transitions.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| | - Juan Camilo Molano-Arevalo
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| |
Collapse
|
3
|
Le Huray KI, Wörner TP, Moreira T, Dembek M, Reinhardt-Szyba M, Devine PWA, Bond NJ, Fort KL, Makarov AA, Sobott F. To 200,000 m/ z and Beyond: Native Electron Capture Charge Reduction Mass Spectrometry Deconvolves Heterogeneous Signals in Large Biopharmaceutical Analytes. ACS CENTRAL SCIENCE 2024; 10:1548-1561. [PMID: 39220705 PMCID: PMC11363327 DOI: 10.1021/acscentsci.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Great progress has been made in the detection of large biomolecular analytes by native mass spectrometry; however, characterizing highly heterogeneous samples remains challenging due to the presence of many overlapping signals from complex ion distributions. Electron-capture charge reduction (ECCR), in which a protein cation captures free electrons without apparent dissociation, can separate overlapping signals by shifting the ions to lower charge states. The concomitant shift to higher m/z also facilitates the exploration of instrument upper m/z limits if large complexes are used. Here we perform native ECCR on the bacterial chaperonin GroEL and megadalton scale adeno-associated virus (AAV) capsid assemblies on a Q Exactive UHMR mass spectrometer. Charge reduction of AAV8 capsids by up to 90% pushes signals well above 100,000 m/z and enables charge state resolution and mean mass determination of these highly heterogeneous samples, even for capsids loaded with genetic cargo. With minor instrument modifications, the UHMR instrument can detect charge-reduced ion signals beyond 200,000 m/z. This work demonstrates the utility of ECCR for deconvolving heterogeneous signals in native mass spectrometry and presents the highest m/z signals ever recorded on an Orbitrap instrument, opening up the use of Orbitrap native mass spectrometry for heavier analytes than ever before.
Collapse
Affiliation(s)
- Kyle I.
P. Le Huray
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Tobias P. Wörner
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
| | - Tiago Moreira
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Marcin Dembek
- Purification
Process Sciences, Biopharmaceutical Development, Biopharmaceuticals
R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | | | - Paul W. A. Devine
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Nicholas J. Bond
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Kyle L. Fort
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexander A. Makarov
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Zhao Y, Zhang W, Hong J, Yang L, Wang Y, Qu F, Xu W. Mobility capillary electrophoresis-native mass spectrometry reveals the dynamic conformational equilibrium of calmodulin and its complexes. Analyst 2024; 149:3793-3802. [PMID: 38847183 DOI: 10.1039/d4an00378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Benefitting from the rapid evolution of artificial intelligence and structural biology, an expanding collection of high-resolution protein structures has greatly improved our understanding of protein functions. Yet, proteins are inherently flexible, and these static structures can only offer limited snapshots of their true dynamic nature. The conformational and functional changes of calmodulin (CaM) induced by Ca2+ binding have always been a focus of research. In this study, the conformational dynamics of CaM and its complexes were investigated using a mobility capillary electrophoresis (MCE) and native mass spectrometry (native MS) based method. By analyzing the ellipsoidal geometries of CaM in the solution phase at different Ca2+ concentrations, it is interesting to discover that CaM molecules, whether bound to Ca2+ or not, possess both closed and open conformations. Moreover, each individual CaM molecule actively "jumps" (equilibrium exchange) between these two distinct conformations on a timescale ranging from milli- to micro-seconds. The binding of Ca2+ ions did not affect the structural dynamics of CaM, while the binding of a peptide ligand would stabilize CaM, leading to the observation of a single, compact conformation of the resulting protein complex. A target recognition mechanism was also proposed based on these new findings, suggesting that CaM's interaction with targets may favor a conformational selection model. This enriches our understanding of the binding principles between CaM and its numerous targets.
Collapse
Affiliation(s)
- Yi Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenjing Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jie Hong
- Kunshan Nier Precision Instrumentation Inc. Kunshan, Suzhou, 215316, China
| | - Lei Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuanyuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Schwenzer AK, Kruse L, Jooß K, Neusüß C. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: Current progress and perspectives. Proteomics 2024; 24:e2300135. [PMID: 37312401 DOI: 10.1002/pmic.202300135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Native mass spectrometry is a rapidly emerging technique for fast and sensitive structural analysis of protein constructs, maintaining the protein higher order structure. The coupling with electromigration separation techniques under native conditions enables the characterization of proteoforms and highly complex protein mixtures. In this review, we present an overview of current native CE-MS technology. First, the status of native separation conditions is described for capillary zone electrophoresis (CZE), affinity capillary electrophoresis (ACE), and capillary isoelectric focusing (CIEF), as well as their chip-based formats, including essential parameters such as electrolyte composition and capillary coatings. Further, conditions required for native ESI-MS of (large) protein constructs, including instrumental parameters of QTOF and Orbitrap systems, as well as requirements for native CE-MS interfacing are presented. On this basis, methods and applications of the different modes of native CE-MS are summarized and discussed in the context of biological, medical, and biopharmaceutical questions. Finally, key achievements are highlighted and concluded, while remaining challenges are pointed out.
Collapse
Affiliation(s)
| | - Lena Kruse
- Department of Chemistry, Aalen University, Aalen, Germany
| | - Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Xu A, Tang LC, Jovanovic M, Regev O. Uncovering Distinct Peptide Charging Behaviors in Electrospray Ionization Mass Spectrometry Using a Large-Scale Dataset. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:90-99. [PMID: 38095561 PMCID: PMC10767741 DOI: 10.1021/jasms.3c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (the number of basic sites). We find that these peptides can be classified into two regimes (undercharging and overcharging) and that these two regimes display markedly different charging characteristics. Notably, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.
Collapse
Affiliation(s)
- Allyn
M. Xu
- Department
of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Lauren C. Tang
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Marko Jovanovic
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Oded Regev
- Computer
Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| |
Collapse
|
7
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
8
|
Lee J, Im D, Liu Y, Fang J, Tian X, Kim M, Zhang WB, Seo J. Distinguishing Protein Chemical Topologies Using Supercharging Ion Mobility Spectrometry-Mass Spectrometry. Angew Chem Int Ed Engl 2023; 62:e202314980. [PMID: 37937859 DOI: 10.1002/anie.202314980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A technique combining ion mobility spectrometry-mass spectrometry (IMS-MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain-length-normalized collision cross-section (CCS) and the maximum charge state (zM ) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring-containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Dahye Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Minsu Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| |
Collapse
|
9
|
Cheung See Kit M, Cropley TC, Bleiholder C, Chouinard CD, Sobott F, Webb IK. The role of solvation on the conformational landscape of α-synuclein. Analyst 2023; 149:125-136. [PMID: 37982746 PMCID: PMC10760066 DOI: 10.1039/d3an01680c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | - Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
10
|
Xu AM, Tang LC, Jovanovic M, Regev O. A high-throughput approach reveals distinct peptide charging behaviors in electrospray ionization mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535171. [PMID: 37066236 PMCID: PMC10103939 DOI: 10.1101/2023.03.31.535171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based high-throughput approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (number of basic sites). We find that these peptides can be classified into two regimes-undercharging and overcharging-and that these two regimes display markedly different charging characteristics. Strikingly, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.
Collapse
Affiliation(s)
- Allyn M. Xu
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, NY, USA
| |
Collapse
|
11
|
Yang JF, Wang F, Wang MY, Wang D, Zhou ZS, Hao GF, Li QX, Yang GF. CIPDB: A biological structure databank for studying cation and π interactions. Drug Discov Today 2023; 28:103546. [PMID: 36871844 DOI: 10.1016/j.drudis.2023.103546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
As major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.ccnu.edu.cn/ccb/database/CIPDB). This review lays the foundation for the in-depth study of cation and π interactions and will guide the use of molecular design for drug discovery.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Zhong-Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Khristenko N, Rosu F, Largy E, Haustant J, Mesmin C, Gabelica V. Native Electrospray Ionization of Multi-Domain Proteins via a Bead Ejection Mechanism. J Am Chem Soc 2023; 145:498-506. [PMID: 36573911 DOI: 10.1021/jacs.2c10762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Native ion mobility mass spectrometry is potentially useful for the biophysical characterization of proteins, as the electrospray charge state distribution and the collision cross section distribution depend on their solution conformation. We examine here the charging and gas-phase conformation of multi-domain therapeutic proteins comprising globular domains tethered by disordered linkers. The charge and collision cross section distributions are multimodal, suggesting several conformations in solution, as confirmed by solution hydrogen/deuterium exchange. The most intriguing question is the ionization mechanism of these structures: a fraction of the population does not follow the charged residue mechanism but cannot ionize by pure chain ejection either. We deduce that a hybrid mechanism is possible, wherein globular domains are ejected one at a time from a parent droplet. The charge vs solvent accessible surface area correlations of denatured and intrinsically disordered proteins are also compatible with this "bead ejection mechanism", which we propose as a general tenet of biomolecule electrospray.
Collapse
Affiliation(s)
- Nina Khristenko
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, PessacF-33600, France
| | - Frédéric Rosu
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, PessacF-33600, France
| | - Eric Largy
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, PessacF-33600, France
| | - Jérôme Haustant
- Merck Biodevelopment SAS/An Affiliate of Merck KGaA - Darmstadt, Germany, MartillacF-33650, France
| | - Cédric Mesmin
- Merck Biodevelopment SAS/An Affiliate of Merck KGaA - Darmstadt, Germany, MartillacF-33650, France
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, PessacF-33600, France.,Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, PessacF-33600, France
| |
Collapse
|
13
|
Villacob RA, Egbejiogu BC, Feizi N, Hogan C, Murray KK, Solouki T. Native Mass Spectrometry and Collision-Induced Unfolding of Laser-Ablated Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2215-2225. [PMID: 36346890 DOI: 10.1021/jasms.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared laser ablation sample transfer (LAST) was used to collect samples from solid surfaces for mass spectrometry under native spray conditions. Native mass spectrometry was utilized to probe the charge states and collision-induced unfolding (CIU) characteristics of bovine serum albumin (BSA), bovine hemoglobin (BHb), and jack-bean concanavalin A (ConA) via direct injection electrospray, after liquid extraction surface sampling, and after LAST. Each protein was deposited from solution on solid surfaces and laser-ablated for off-line analysis or sampled for online analysis. It was found that the protein ion gas-phase charge-state distributions were comparable for direct infusion, liquid extraction, and laser ablation experiments. Moreover, calculated average collision cross section (CCS) values from direct injection, liquid extraction, and laser ablation experiments were consistent with previously reported literature values. Additionally, an equivalent number of mobility features and conformational turnovers were identified from unfolding pathways from all three methods for all charge states of each protein analyzed in this work. The presented work suggests that laser ablation yields intact proteins (BSA, BHb, and ConA), is compatible with native mass spectrometry, and could be suitable for spatially resolved interrogation of unfolding pathways of proteins.
Collapse
Affiliation(s)
| | | | - Neda Feizi
- Baylor University, Waco, Texas 76706, United States
| | - Cole Hogan
- Baylor University, Waco, Texas 76706, United States
| | - Kermit K Murray
- Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
14
|
Zhang W, Xiang Y, Xu W. Probing protein higher-order structures by native capillary electrophoresis-mass spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Saikusa K, Kinumi T, Kato M. Development of native mass spectrometry with nanoelectrospray ionization coupled to size exclusion chromatography for proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9395. [PMID: 36068720 DOI: 10.1002/rcm.9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/07/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Native mass spectrometry (MS) is an analytical technique used to determine the molecular mass of protein complexes without cross-linking. Size exclusion chromatography (SEC) coupled with native MS using conventional electrospray ionization (ESI) has been reported to allow online buffer exchange. To detect a wide variety of protein complexes without a collapse in the ionization process, it is important to build an online system that enables robust analysis with a low flow rate. METHODS We created an online native MS system equipped with nanoESI connected to the SEC component (online SEC/nanoESI system) and optimized several parameters for SEC separation and ionization. The constructed system was used to measure a solution consisting of a protein mixture of various molecular masses (10-300 kDa) to verify characteristics such as the measurable molecular mass range, reproducibility, and online buffer exchange. RESULTS The optimal flow rates for SEC separation and nanoESI analysis using this system were 200 and 1 μL/min, respectively. This system was able to analyze proteins in the ranges of 10-300 and 20-300 kDa for protein samples in ammonium acetate and nonvolatile buffer, respectively. Furthermore, the results of consecutive measurements showed that the relative standard deviations of the retention times and observed masses for each protein were sufficiently small. CONCLUSIONS We created an online SEC/nanoESI system and evaluated its utility for the analysis of various proteins in conventional measurement solvent and nonvolatile buffer. As a result, the structural stability and resolution of the proteins were found to be sufficient when using online buffer exchange. Therefore, this online SEC/nanoESI system would be a useful technique for obtaining mass spectra of various proteins automatically with good resolution, simply by loading samples into an autosampler.
Collapse
Affiliation(s)
- Kazumi Saikusa
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tomoya Kinumi
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Megumi Kato
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Santambrogio C, Ponzini E, Grandori R. Native mass spectrometry for the investigation of protein structural (dis)order. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140828. [PMID: 35926718 DOI: 10.1016/j.bbapap.2022.140828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A central challenge in structural biology is represented by dynamic and heterogeneous systems, as typically represented by proteins in solution, with the extreme case of intrinsically disordered proteins (IDPs) [1-3]. These proteins lack a specific three-dimensional structure and have poorly organized secondary structure. For these reasons, they escape structural characterization by conventional biophysical methods. The investigation of these systems requires description of conformational ensembles, rather than of unique, defined structures or bundles of largely superimposable structures. Mass spectrometry (MS) has become a central tool in this field, offering a variety of complementary approaches to generate structural information on either folded or disordered proteins [4-6]. Two main categories of methods can be recognized. On one side, conformation-dependent reactions (such as cross-linking, covalent labeling, H/D exchange) are exploited to label molecules in solution, followed by the characterization of the labeling products by denaturing MS [7-11]. On the other side, non-denaturing ("native") MS can be used to directly explore the different conformational components in terms of geometry and structural compactness [12-16]. All these approaches have in common the capability to conjugate protein structure investigation with the peculiar analytical power of MS measurements, offering the possibility of assessing species distributions for folding and binding equilibria and the combination of both. These methods can be combined with characterization of noncovalent complexes [17, 18] and post-translational modifications [19-23]. This review focuses on the application of native MS to protein structure and dynamics investigation, with a general methodological section, followed by examples on specific proteins from our laboratory.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Erika Ponzini
- Materials Science Department, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; COMiB Research Center, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
17
|
Specific electrolyte effects on hemoglobin in denaturing medium investigated through electro spray ionization mass spectrometry. J Inorg Biochem 2022; 234:111872. [DOI: 10.1016/j.jinorgbio.2022.111872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
|
18
|
Lusci G, Pivetta T, Carucci C, Parsons DF, Salis A, Monduzzi M. BSA fragmentation specifically induced by added electrolytes: An electrospray ionization mass spectrometry investigation. Colloids Surf B Biointerfaces 2022; 218:112726. [PMID: 35914467 DOI: 10.1016/j.colsurfb.2022.112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Biointerfaces are significantly affected by electrolytes according to the Hofmeister series. This work reports a systematic investigation on the effect of different metal chlorides, sodium and potassium bromides, iodides and thiocyanates, on the ESI/MS spectra of bovine serum albumin (BSA) in aqueous solution at pH = 2.7. The concentration of each salt was varied to maximize the quality of the ESI/MS spectrum, in terms of peak intensity and bell-shaped profile. The ESI/MS spectra of BSA in the absence and in the presence of salts showed a main protein pattern characterized by the expected mass of 66.5 kDa, except the case of BSA/RbCl (mass 65.3 kDa). In all systems we observed an additional pattern, characterized by at least three peaks with low intensity, whose deconvolution led to suggest the formation of a BSA fragment with a mass of 19.2 kDa. Only NaCl increased the intensity of the peaks of the main BSA pattern, while minimizing that of the fragment. NaCl addition seems to play a crucial role in stabilizing the BSA ionized interface against hydrolysis of peptide bonds, through different synergistic mechanisms. To quantify the observed specific electrolyte effects, two "Hofmeister" parameters (Hs and Ps) are proposed. They are obtained using the ratio of (BSA-Salt)/BSA peak intensities for both the BSA main pattern and for its fragment. SYNOPSIS: NaCl stabilizes BSA ion and almost prevents fragmentation due to denaturing pH.
Collapse
Affiliation(s)
- Gloria Lusci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Pivetta
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Cristina Carucci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Drew Francis Parsons
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Andrea Salis
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Maura Monduzzi
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
19
|
Chaturvedi R, Webb IK. Multiplexed Conformationally Selective, Localized Gas-Phase Hydrogen Deuterium Exchange of Protein Ions Enabled by Transmission-Mode Electron Capture Dissociation. Anal Chem 2022; 94:8975-8982. [PMID: 35708487 DOI: 10.1021/acs.analchem.2c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we present an approach for conformationally multiplexed, localized hydrogen deuterium exchange (HDX) of gas-phase protein ions facilitated by ion mobility (IM) followed by electron capture dissociation (ECD). A quadrupole-IM-time of flight instrument previously modified to enable ECD in transmission mode (without ion trapping) immediately following a mobility separation was further modified to allow for deuterated ammonia (ND3) to be leaked in after m/z selection. Collisional activation was minimized to prevent deuterium scrambling from giving structurally irrelevant results. Gas-phase HDX with ECD fragmentation for exchange site localization was demonstrated with the extensively studied protein folding models ubiquitin and cytochrome c. Ubiquitin was ionized from conditions that stabilize the native state and conditions that stabilize the partially folded A-state. IM of deuterated ubiquitin 6+ ions allowed the separation of more compact conformers from more extended conformers. ECD of the separated subpopulations revealed that the more extended (later arriving) conformers had significant, localized differences in the amount of HDX observed. The 5+ charge state showed many regions with protection from HDX, and the 11+ charge state, ionized from conditions that stabilize the A-state, showed high levels of deuterium incorporation throughout most of the protein sequence. The 7+ ions of cytochrome c ionized from aqueous conditions showed greater HDX with unstructured regions of the protein relative to interior, structured regions, especially those involved in heme binding. With careful tuning and attention to deuterium scrambling, our approach holds promise for determining region-specific information on a conformer-selected basis for gas-phase protein structures, including localized characterizations of ligand, epitope, and protein-protein binding.
Collapse
Affiliation(s)
- Ritu Chaturvedi
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
20
|
van Dyck JF, Burns JR, Le Huray KIP, Konijnenberg A, Howorka S, Sobott F. Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility. Nat Commun 2022; 13:3610. [PMID: 35750666 PMCID: PMC9232653 DOI: 10.1038/s41467-022-31029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Recent interest in biological and synthetic DNA nanostructures has highlighted the need for methods to comprehensively characterize intermediates and end products of multimeric DNA assembly. Here we use native mass spectrometry in combination with ion mobility to determine the mass, charge state and collision cross section of noncovalent DNA assemblies, and thereby elucidate their structural composition, oligomeric state, overall size and shape. We showcase the approach with a prototypical six-subunit DNA nanostructure to reveal how its assembly is governed by the ionic strength of the buffer, as well as how the mass and mobility of heterogeneous species can be well resolved by careful tuning of instrumental parameters. We find that the assembly of the hexameric, barrel-shaped complex is guided by positive cooperativity, while previously undetected higher-order 12- and 18-mer assemblies are assigned to defined larger-diameter geometric structures. Guided by our insight, ion mobility-mass spectrometry is poised to make significant contributions to understanding the formation and structural diversity of natural and synthetic oligonucleotide assemblies relevant in science and technology.
Collapse
Affiliation(s)
- Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium
| | - Jonathan R Burns
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, London, UK
| | - Kyle I P Le Huray
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium.,Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium. .,School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
21
|
Palomino-Hernandez O, Santambrogio C, Rossetti G, Fernandez CO, Grandori R, Carloni P. Molecular Dynamics-Assisted Interpretation of Experimentally Determined Intrinsically Disordered Protein Conformational Components: The Case of Human α-Synuclein. J Phys Chem B 2022; 126:3632-3639. [PMID: 35543707 DOI: 10.1021/acs.jpcb.1c10954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information on intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) by analyzing a previously published 73 μs-long molecular-dynamics (MD) simulation of the protein in explicit solvent. We further compare MD-based predictions of single molecule Förster resonance energy transfer (smFRET) data of AS in solution with experimental data. The combined theoretical and experimental data provide a description of AS main conformational ensemble, shedding light into its intramolecular interactions and overall structural compactness. This analysis could be easily transferred to other IDPs.
Collapse
Affiliation(s)
- Oscar Palomino-Hernandez
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany.,Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.,Institute of Life Science, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Claudio O Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPI-NAT). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPI-NAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina S2002LRK Rosario, Argentina
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany.,Institute for Neuroscience and Medicine (INM-11) Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
22
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
23
|
Bianchi G, Mangiagalli M, Barbiroli A, Longhi S, Grandori R, Santambrogio C, Brocca S. Distribution of Charged Residues Affects the Average Size and Shape of Intrinsically Disordered Proteins. Biomolecules 2022; 12:biom12040561. [PMID: 35454150 PMCID: PMC9031945 DOI: 10.3390/biom12040561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are ensembles of interconverting conformers whose conformational properties are governed by several physico-chemical factors, including their amino acid composition and the arrangement of oppositely charged residues within the primary structure. In this work, we investigate the effects of charge patterning on the average compactness and shape of three model IDPs with different proline content. We model IDP ensemble conformations as ellipsoids, whose size and shape are calculated by combining data from size-exclusion chromatography and native mass spectrometry. For each model IDP, we analyzed the wild-type protein and two synthetic variants with permuted positions of charged residues, where positive and negative amino acids are either evenly distributed or segregated. We found that charge clustering induces remodeling of the conformational ensemble, promoting compaction and/or increasing spherical shape. Our data illustrate that the average shape and volume of the ensembles depend on the charge distribution. The potential effect of other factors, such as chain length, number of proline residues, and secondary structure content, is also discussed. This methodological approach is a straightforward way to model IDP average conformation and decipher the salient sequence attributes influencing IDP structural properties.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
| | - Alberto Barbiroli
- Departement of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy;
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 13288 Marseille, France;
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
- Correspondence: (C.S.); (S.B.); Tel.: +39-02-6448-3363 (C.S.); +39-02-6448-3518 (S.B.)
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
- Correspondence: (C.S.); (S.B.); Tel.: +39-02-6448-3363 (C.S.); +39-02-6448-3518 (S.B.)
| |
Collapse
|
24
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
25
|
Fiorentino F, Bolla JR. Mass Spectrometry Analysis of Dynamics and Interactions of the LPS Translocon LptDE. Methods Mol Biol 2022; 2548:109-128. [PMID: 36151495 DOI: 10.1007/978-1-0716-2581-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) is essential for Gram-negative bacteria OM barrier function and for maintaining its cell integrity. As such, comprehensive information about its biosynthesis and translocation represents a successful strategy for the development of antibacterial drugs. LPS is a complex glycolipid, and probing its interactions with LPS transport (Lpt) proteins has been extremely challenging. However, mass spectrometry (MS) techniques have recently catalyzed tremendous advancements in the characterization of LPS transport (Lpt) proteins and probed associated conformational dynamics upon substrate binding. Here, we describe the application of MS methods to study the dynamics of LPS translocon LptDE in the presence of natural substrates and inhibitors.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Jani R Bolla
- The Kavli Institute for Nanoscience Discovery, Oxford, UK.
- Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Abramsson ML, Sahin C, Hopper JTS, Branca RMM, Danielsson J, Xu M, Chandler SA, Österlund N, Ilag LL, Leppert A, Costeira-Paulo J, Lang L, Teilum K, Laganowsky A, Benesch JLP, Oliveberg M, Robinson CV, Marklund EG, Allison TM, Winther JR, Landreh M. Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. JACS AU 2021; 1:2385-2393. [PMID: 34977906 PMCID: PMC8717373 DOI: 10.1021/jacsau.1c00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 05/03/2023]
Abstract
In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
Collapse
Affiliation(s)
- Mia L. Abramsson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Cagla Sahin
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Jonathan T. S. Hopper
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Rui M. M. Branca
- Department
of Oncology-Pathology, Science for Life
Laboratory and Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Jens Danielsson
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Mingming Xu
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Shane A. Chandler
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Material and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Axel Leppert
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Neo, 141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Lisa Lang
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Kaare Teilum
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Justin L. P. Benesch
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Mikael Oliveberg
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Erik G. Marklund
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Timothy M. Allison
- Biomolecular
Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Jakob R. Winther
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Michael Landreh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| |
Collapse
|
27
|
De Bruyn P, Prolič-Kalinšek M, Vandervelde A, Malfait M, Sterckx YGJ, Sobott F, Hadži S, Pardon E, Steyaert J, Loris R. Nanobody-aided crystallization of the transcription regulator PaaR2 from Escherichia coli O157:H7. Acta Crystallogr F Struct Biol Commun 2021; 77:374-384. [PMID: 34605442 PMCID: PMC8488858 DOI: 10.1107/s2053230x21009006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
paaR2-paaA2-parE2 is a three-component toxin-antitoxin module found in prophage CP-993P of Escherichia coli O157:H7. Transcription regulation of this module occurs via the 123-amino-acid regulator PaaR2, which forms a large oligomeric structure. Despite appearing to be well folded, PaaR2 withstands crystallization, as does its N-terminal DNA-binding domain. Native mass spectrometry was used to screen for nanobodies that form a unique complex and stabilize the octameric structure of PaaR2. One such nanobody, Nb33, allowed crystallization of the protein. The resulting crystals belong to space group F432, with unit-cell parameter a = 317 Å, diffract to 4.0 Å resolution and are likely to contain four PaaR2 monomers and four nanobody monomers in the asymmetric unit. Crystals of two truncates containing the N-terminal helix-turn-helix domain also interact with Nb33, and the corresponding co-crystals diffracted to 1.6 and 1.75 Å resolution.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexandra Vandervelde
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Milan Malfait
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yann G.-J. Sterckx
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
28
|
Yang W, Tu Z, McClements DJ, Kaltashov IA. A systematic assessment of structural heterogeneity and IgG/IgE-binding of ovalbumin. Food Funct 2021; 12:8130-8140. [PMID: 34287434 DOI: 10.1039/d0fo02980g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovalbumin (OVA), one of the major allergens in hen egg, exhibits extensive structural heterogeneity due to a range of post-translational modifications (PTMs). However, analyzing the structural heterogeneity of native OVA is challenging, and the relationship between heterogeneity and IgG/IgE-binding of OVA remains unclear. In this work, ion exchange chromatography (IXC) with salt gradient elution and on-line detection by native electrospray ionization mass spectrometry (ESI MS) was used to assess the structural heterogeneity of OVA, while inhibition-ELISA was used to assess the IgG/IgE binding characteristics of OVA. Over 130 different OVA proteoforms (including glycan-free species and 32 pairs of isobaric species) were identified. Proteoforms with acetylation, phosphorylation, oxidation and succinimide modifications had reduced IgG/IgE binding capacities, whereas those with few structural modifications had higher IgG/IgE binding capacities. OVA isoforms with a sialic acid-containing glycan modification had the highest IgG/IgE binding capacity. Our results demonstrate that on-line native IXC/MS with salt gradient elution can be used for rapid assessment of the structural heterogeneity of proteins. An improved understanding of the relationship between IgG/IgE binding capacity and OVA structure provides a basis for developing biotechnology or food processing methods for reducing protein allergenicity reduction.
Collapse
Affiliation(s)
- Wenhua Yang
- College of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, People's Republic of China.
| | | | | | | |
Collapse
|
29
|
Hammerschmid D, Germani F, Drusin SI, Fagnen C, Schuster CD, Hoogewijs D, Marti MA, Venien-Bryan C, Moens L, Van Doorslaer S, Sobott F, Dewilde S. Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens. Comput Struct Biotechnol J 2021; 19:1874-1888. [PMID: 33995893 PMCID: PMC8076648 DOI: 10.1016/j.csbj.2021.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function. The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily. In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely. Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e-/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction. Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.
Collapse
Key Words
- AfGcHK, Anaeromyxobacter sp. Fw109-5 GcHK
- AsFRMF, Ascaris suum FRMF-amide receptor
- AvGReg, Azotobacter vinilandii Greg
- BpGReg, Bordetella pertussis Greg
- BsHemAT, Bacillus subtilis HemAT
- CCS, collision cross section
- CIU, collision-induced unfolding
- CMC, critical micelle concentration
- CV, cyclic voltammetry
- CeGLB26, Caenorhabditis elegans globin 26
- CeGLB33, Caenorhabditis elegans globin 33
- CeGLB6, Caenorhabditis elegans globin 6
- DDM, n-dodecyl-β-d-maltoside
- DPV, differential pulse voltammetry
- EcDosC, Escherichia coli Dos with DGC activity
- FMRF, H-Phe-Met-Arg-Phe-NH2 neuropeptide
- GCS, globin-coupled sensor
- GD, globin domain
- GGDEF, Gly-Gly-Asp-Glu-Phe motive
- Gb, globin
- Geobacter sulfurreducens
- GintHb, hemoglobin from Gasterophilus intestinalis
- Globin-coupled sensor
- GsGCS, Geobacter sulfurreducens GCS
- GsGCS162, GD of GsGCS
- IM-MS, ion mobility-mass spectrometry
- LmHemAC, Leishmania major HemAC
- MaPgb, Methanosarcina acetivorans protoglobin
- MtTrHbO, Mycobacterium tuberculosis truncated hemoglobin O
- NH4OAc, ammonium acetate
- OG, n-octyl-β-d-glucopyranoside
- PDE, phosphodiesterase
- PcMb, Physether catodon myoglobin
- PccGCS, Pectobacterium carotivorum GCS
- PsiE, phosphate-starvation-inducible E
- RR, resonance Raman
- SCE, saturated calomel electrode
- SHE, standard hydrogen electrode
- SaktrHb, Streptomyces avermitilis truncated hemoglobin-antibiotic monooxygenase
- SwMb, myoglobin from sperm whale
- TD, Transmitter domain
- TmD, Transmembrane domain
- Transmembrane domain
- Transmembrane-coupled globins
- mNgb, mouse neuroglobin
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Francesca Germani
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Salvador I. Drusin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Charline Fagnen
- Sorbonne Université, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, 75005 Paris, France
| | - Claudio D. Schuster
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Switzerland
| | - Marcelo A. Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Catherine Venien-Bryan
- Sorbonne Université, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, 75005 Paris, France
| | - Luc Moens
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sabine Van Doorslaer
- Biophysics and Biomedical Physics, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Sylvia Dewilde
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
30
|
Beveridge R, Calabrese AN. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Front Chem 2021; 9:603639. [PMID: 33791275 PMCID: PMC8006314 DOI: 10.3389/fchem.2021.603639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Butler KE, Takinami Y, Rainczuk A, Baker ES, Roberts BR. Utilizing Ion Mobility-Mass Spectrometry to Investigate the Unfolding Pathway of Cu/Zn Superoxide Dismutase. Front Chem 2021; 9:614595. [PMID: 33634076 PMCID: PMC7900566 DOI: 10.3389/fchem.2021.614595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Native mass spectrometry has emerged as a powerful tool for structural biology as it enables the evaluation of molecules as they occur in their physiological conditions. Ion mobility spectrometry-mass spectrometry (IMS-MS) has shown essential in these analyses as it allows the measurement of the shape of a molecule, denoted as its collision cross section (CCS), and mass. The structural information garnered from native IMS-MS provides insight into the tertiary and quaternary structure of proteins and can be used to validate NMR or crystallographic X-ray structures. Additionally, due to the rapid nature (millisecond measurements) and ability of IMS-MS to analyze heterogeneous solutions, it can be used to address structural questions not possible with traditional structural approaches. Herein, we applied multiple solution conditions to systematically denature bovine Cu/Zn-superoxide dismutase (SOD1) and assess its unfolding pathway from the holo-dimer to the holo-monomer, single-metal monomer, and apo-monomer. Additionally, we compared and noted 1–2% agreement between CCS values from both drift tube IMS and trapped IMS for the SOD1 holo-monomer and holo-dimer. The observed CCS values were in excellent agreement with computational CCS values predicted from the homo-dimer crystal structure, showcasing the ability to use both IMS-MS platforms to provide valuable structural information for molecular modeling of protein interactions and structural assessments.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | | | | | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neuroscience, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
32
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
33
|
Daems E, Dewaele D, Barylyuk K, De Wael K, Sobott F. Aptamer-ligand recognition studied by native ion mobility-mass spectrometry. Talanta 2020; 224:121917. [PMID: 33379118 DOI: 10.1016/j.talanta.2020.121917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.
Collapse
Affiliation(s)
- Elise Daems
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Debbie Dewaele
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Konstantin Barylyuk
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
34
|
Lermyte F. Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Life (Basel) 2020; 10:E320. [PMID: 33266184 PMCID: PMC7761095 DOI: 10.3390/life10120320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a growing understanding that a significant fraction of the eukaryotic proteome is intrinsically disordered, and that these conformationally dynamic proteins play a myriad of vital biological roles in both normal and pathological states. In this review, selected examples of intrinsically disordered proteins are highlighted, with particular attention for a few which are relevant in neurological disorders and in viral infection. Next, the underlying causes for the intrinsic disorder are discussed, along with computational methods used to predict whether a given amino acid sequence is likely to adopt a folded or unfolded state in the solution. Finally, biophysical methods for the analysis of intrinsically disordered proteins will be discussed, as well as the unique challenges they pose in this context due to their highly dynamic nature.
Collapse
Affiliation(s)
- Frederik Lermyte
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
35
|
Källsten M, Hartmann R, Kovac L, Lehmann F, Lind SB, Bergquist J. Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody-Drug Conjugates. Antibodies (Basel) 2020; 9:antib9030046. [PMID: 32911603 PMCID: PMC7551423 DOI: 10.3390/antib9030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps-as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC-MS))-was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC-MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at -20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures.
Collapse
Affiliation(s)
- Malin Källsten
- Department of Chemistry-BMC, Uppsala University, S-75124 Uppsala, Sweden;
- Recipharm OT Chemistry AB, S-75450 Uppsala, Sweden;
- Correspondence: (M.K.); (J.B.); Tel.: +46-(0)18-4713696 (M.K.); +46-(0)18-4713675 (J.B.)
| | - Rafael Hartmann
- Department of Medicinal Chemistry, Uppsala University, S-75123 Uppsala, Sweden;
| | - Lucia Kovac
- Recipharm OT Chemistry AB, S-75450 Uppsala, Sweden;
| | | | | | - Jonas Bergquist
- Department of Chemistry-BMC, Uppsala University, S-75124 Uppsala, Sweden;
- Correspondence: (M.K.); (J.B.); Tel.: +46-(0)18-4713696 (M.K.); +46-(0)18-4713675 (J.B.)
| |
Collapse
|
36
|
Yin Z, Huang J, Miao H, Hu O, Li H. High-Pressure Electrospray Ionization Yields Supercharged Protein Complexes from Native Solutions While Preserving Noncovalent Interactions. Anal Chem 2020; 92:12312-12321. [DOI: 10.1021/acs.analchem.0c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhibin Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
37
|
Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH. Ag + Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 2020; 92:8923-8932. [PMID: 32515580 PMCID: PMC8114364 DOI: 10.1021/acs.analchem.0c00829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the β-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the β-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the β-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Österlund N, Lundqvist M, Ilag LL, Gräslund A, Emanuelsson C. Amyloid-β oligomers are captured by the DNAJB6 chaperone: Direct detection of interactions that can prevent primary nucleation. J Biol Chem 2020; 295:8135-8144. [PMID: 32350108 PMCID: PMC7294096 DOI: 10.1074/jbc.ra120.013459] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
A human molecular chaperone protein, DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), efficiently inhibits amyloid aggregation. This inhibition depends on a unique motif with conserved serine and threonine (S/T) residues that have a high capacity for hydrogen bonding. Global analysis of kinetics data has previously shown that DNAJB6 especially inhibits the primary nucleation pathways. These observations indicated that DNAJB6 achieves this remarkably effective and sub-stoichiometric inhibition by interacting not with the monomeric unfolded conformations of the amyloid-β symbol (Aβ) peptide but with aggregated species. However, these pre-nucleation oligomeric aggregates are transient and difficult to study experimentally. Here, we employed a native MS-based approach to directly detect oligomeric forms of Aβ formed in solution. We found that WT DNAJB6 considerably reduces the signals from the various forms of Aβ (1–40) oligomers, whereas a mutational DNAJB6 variant in which the S/T residues have been substituted with alanines does not. We also detected signals that appeared to represent DNAJB6 dimers and trimers to which varying amounts of Aβ are bound. These data provide direct experimental evidence that it is the oligomeric forms of Aβ that are captured by DNAJB6 in a manner which depends on the S/T residues. We conclude that, in agreement with the previously observed decrease in primary nucleation rate, strong binding of Aβ oligomers to DNAJB6 inhibits the formation of amyloid nuclei.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | |
Collapse
|
39
|
Wu H, Zhang R, Zhang W, Hong J, Xiang Y, Xu W. Rapid 3-dimensional shape determination of globular proteins by mobility capillary electrophoresis and native mass spectrometry. Chem Sci 2020; 11:4758-4765. [PMID: 34122932 PMCID: PMC8159243 DOI: 10.1039/d0sc01965h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Established high-throughput proteomics methods provide limited information on the stereostructures of proteins. Traditional technologies for protein structure determination typically require laborious steps and cannot be performed in a high-throughput fashion. Here, we report a new medium throughput method by combining mobility capillary electrophoresis (MCE) and native mass spectrometry (MS) for the 3-dimensional (3D) shape determination of globular proteins in the liquid phase, which provides both the geometric structure and molecular mass information of proteins. A theory was established to correlate the ion hydrodynamic radius and charge state distribution in the native mass spectrum with protein geometrical parameters, through which a low-resolution structure (shape) of the protein could be determined. Our test data of 11 different globular proteins showed that this approach allows us to determine the shapes of individual proteins, protein complexes and proteins in a mixture, and to monitor protein conformational changes. Besides providing complementary protein structure information and having mixture analysis capability, this MCE and native MS based method is fast in speed and low in sample consumption, making it potentially applicable in top–down proteomics and structural biology for intact globular protein or protein complex analysis. Using native mass spectrometry and mobility capillary electrophoresis, the ellipsoid dimensions of globular proteins or protein complexes could be measured efficiently.![]()
Collapse
Affiliation(s)
- Haimei Wu
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Rongkai Zhang
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Jie Hong
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Ye Xiang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University Beijng China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| |
Collapse
|
40
|
Petroff JT, Tong A, Chen LJ, Dekoster GT, Khan F, Abramson J, Frieden C, Cheng WWL. Charge Reduction of Membrane Proteins in Native Mass Spectrometry Using Alkali Metal Acetate Salts. Anal Chem 2020; 92:6622-6630. [PMID: 32250604 DOI: 10.1021/acs.analchem.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.
Collapse
Affiliation(s)
| | | | | | | | - Farha Khan
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
41
|
Stiving AQ, Jones BJ, Ujma J, Giles K, Wysocki VH. Collision Cross Sections of Charge-Reduced Proteins and Protein Complexes: A Database for Collision Cross Section Calibration. Anal Chem 2020; 92:4475-4483. [PMID: 32048834 PMCID: PMC7170229 DOI: 10.1021/acs.analchem.9b05519] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of charge-reducing reagents to generate lower-charge ions has gained popularity in the field of native mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS). This is because the lower number of charged sites decreases the propensity for Coulombic repulsions and unfolding/restructuring, helping to preserve the native-like structure. Furthermore, lowering the charge state consequently increases the mass-to-charge values (m/z), effectively increasing spacing between signals originating from small mass differences, such as different proteoforms or protein-drug complexes. IM-MS yields collision cross section (CCS, Ω) values that provide information about the three-dimensional structure of the ion. Traveling wave IM (TWIM) is an established and expanding technique within the native MS field. TWIM measurements require CCS calibration, which is achieved via the use of standard species of known CCS. Current databases for native-like proteins and protein complexes provide CCS values obtained using normal (i.e., non-charge-reducing) conditions. Herein, we explored the validity of using "normal" charge calibrants to calibrate for charge-reduced proteins and show cases where it is not appropriate. Using a custom linear field drift cell that enables the determination of ion mobilities from "first principles", we directly determined CCS values for 19 protein calibrant species under three solution conditions (yielding a broad range of charge states) and two drift gases. This has established a database of CCS and reduced-mobility (K0) values, along with their associated uncertainties, for proteins and protein complexes over a large m/z range. TWIM validation of this database shows improved accuracy over existing methods in calibrating CCS values for charge-reduced proteins.
Collapse
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Benjamin J. Jones
- Department of Chemistry and Biochemistry
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Jakub Ujma
- Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Saikusa K, Kato D, Nagadoi A, Kurumizaka H, Akashi S. Native Mass Spectrometry of Protein and DNA Complexes Prepared in Nonvolatile Buffers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:711-718. [PMID: 31999114 DOI: 10.1021/jasms.9b00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic salts and nonvolatile-buffer components affect the structure and stability of proteins, and some protein complexes are unable to maintain their function and structure without them. However, it is well-known that these components cause suppression of analyte ionization during the electrospray ionization process. Thus, to establish appropriate methods for observation of the intact ions of protein and DNA complexes by native mass spectrometry (native MS) in the presence of nonvolatile buffer components, we herein examined the effect of ammonium acetate addition to a model homotetramer protein, alcohol dehydrogenase (ADH), which was prepared in a range of nonvolatile buffers, including Tris-HCl, phosphate, and HEPES buffers. Furthermore, native MS of nucleosome core particle (NCP), a large protein-DNA complex, prepared in nonvolatile buffer, was also examined. Intact ADH and NCP ions could be observed upon the addition of ammonium acetate, but NCP does not require as high of a concentration of ammonium acetate as ADH. Well-resolved peaks with different charge numbers could be observed for NCP prepared in Tris-HCl by addition of a lower amount of ammonium acetate than for ADH. This suggests that the effects of additives on native MS of biomolecular complexes can vary depending on the intramolecular interactions present. More specifically, NCP is stabilized mainly by electrostatic interactions, whereas the ADH tetramer depends on the presence of hydrophobic interactions between the four subunits. The results presented herein therefore are expected to contribute to structural biology studies of unstable protein-DNA complexes that are formed transiently during the transcription process.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Daiki Kato
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Aritaka Nagadoi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
43
|
Depicting Conformational Ensembles of α-Synuclein by Single Molecule Force Spectroscopy and Native Mass Spectroscopy. Int J Mol Sci 2019; 20:ijms20205181. [PMID: 31635031 PMCID: PMC6829300 DOI: 10.3390/ijms20205181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of α-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric α-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy.
Collapse
|
44
|
Mitra G. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140260. [PMID: 31382021 DOI: 10.1016/j.bbapap.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Intrinsically disordered proteins (IDPs) are integral part of the proteome, regulating vital biological processes. Such proteins gained further visibility due to their key role in neurodegenerative diseases and cancer. IDPs however, escape structural characterization by traditional biophysical tools owing to their extreme flexibility and heterogeneity. In this review, we discuss the advantages of native mass spectrometry (MS) in analysing the atypical conformational dynamics of IDPs and recent advances made in the field. Especially, MS studies unravelling the conformational facets of IDPs involved in neurodegenerative diseases are highlighted. The limitations and the future promises of native MS while studying IDPs have been discussed.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore 560034, Karnataka, India.
| |
Collapse
|
45
|
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins - How to choose and combine them? Arch Biochem Biophys 2019; 676:108055. [PMID: 31356778 DOI: 10.1016/j.abb.2019.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.
Collapse
Affiliation(s)
- Antoine Schramm
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Christophe Bignon
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France.
| |
Collapse
|
46
|
Rolland AD, Prell JS. Computational Insights into Compaction of Gas-Phase Protein and Protein Complex Ions in Native Ion Mobility-Mass Spectrometry. Trends Analyt Chem 2019; 116:282-291. [PMID: 31983791 PMCID: PMC6979403 DOI: 10.1016/j.trac.2019.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is a rapidly growing field for studying the composition and structure of biomolecules and biomolecular complexes using gas-phase methods. Typically, ions are formed in native IM-MS using gentle nanoelectrospray ionization conditions, which in many cases can preserve condensed-phase stoichiometry. Although much evidence shows that large-scale condensed-phase structure, such as quaternary structure and topology, can also be preserved, it is less clear to what extent smaller-scale structure is preserved in native IM-MS. This review surveys computational and experimental efforts aimed at characterizing compaction and structural rearrangements of protein and protein complex ions upon transfer to the gas phase. A brief summary of gas-phase compaction results from molecular dynamics simulations using multiple common force fields and a wide variety of protein ions is presented and compared to literature IM-MS data.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University
of Oregon, Eugene, OR, USA, 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University
of Oregon, Eugene, OR, USA, 97403-1253
- Materials Science Institute, 1252 University of Oregon,
Eugene, OR, USA 97403-1252
| |
Collapse
|
47
|
Österlund N, Moons R, Ilag LL, Sobott F, Gräslund A. Native Ion Mobility-Mass Spectrometry Reveals the Formation of β-Barrel Shaped Amyloid-β Hexamers in a Membrane-Mimicking Environment. J Am Chem Soc 2019; 141:10440-10450. [DOI: 10.1021/jacs.9b04596] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rani Moons
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Leopold L. Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, The United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, The United Kingdom
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
48
|
De Bruyn P, Hadži S, Vandervelde A, Konijnenberg A, Prolič-Kalinšek M, Sterckx YGJ, Sobott F, Lah J, Van Melderen L, Loris R. Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7. Biophys J 2019; 116:1420-1431. [PMID: 30979547 DOI: 10.1016/j.bpj.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module's toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandra Vandervelde
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yann G-J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Laboratory of Medical Biochemistry, University of Antwerp, Campus Drie Eiken, Wilrijk, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium; Astbury Centre for Structural Molecular Biology, Leeds, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
| |
Collapse
|
49
|
Poltash ML, McCabe JW, Patrick JW, Laganowsky A, Russell DH. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:192-198. [PMID: 29796735 PMCID: PMC6251776 DOI: 10.1007/s13361-018-1976-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
50
|
Santambrogio C, Natalello A, Brocca S, Ponzini E, Grandori R. Conformational Characterization and Classification of Intrinsically Disordered Proteins by Native Mass Spectrometry and Charge‐State Distribution Analysis. Proteomics 2018; 19:e1800060. [DOI: 10.1002/pmic.201800060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Antonino Natalello
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Stefania Brocca
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Erika Ponzini
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|