1
|
Zhou Z, Yan R, Jiang W, Irudayaraj JMK. Chromatin hierarchical branching visualized at the nanoscale by electron microscopy. NANOSCALE ADVANCES 2021; 3:1019-1028. [PMID: 34381959 PMCID: PMC8323808 DOI: 10.1039/d0na00359j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/12/2020] [Indexed: 06/13/2023]
Abstract
Chromatin is spatially organized in a hierarchical manner by virtue of single nucleosomes condensing into higher order chromatin structures, conferring various mechanical properties and biochemical signals. These higher order chromatin structures regulate genomic function by organization of the heterochromatin and euchromatin landscape. Less is known about its transition state from higher order heterochromatin to the lower order nucleosome form, and there is no information on its physical properties. We have developed a facile method of electron microscopy visualization to reveal the interphase chromatin in eukaryotic cells and its organization into hierarchical branching structures. We note that chromatin hierarchical branching can be distinguished at four levels, clearly indicating the stepwise transition from heterochromatin to euchromatin. The protein-DNA density across the chromatin fibers decreases during the transition from compacted heterochromatin to dispersed euchromatin. Moreover, the thickness of the chromatin ranges between 10 to 270 nm, and the controversial 30 nm chromatin fiber exists as a prominent intermediate structure. This study provides important insights into higher order chromatin organization which plays a key role in diseases such as cancer.
Collapse
Affiliation(s)
- Zhongwu Zhou
- Bindley Bioscience Center, Department of Agricultural and Biological Engineering, Purdue University West Lafayette IN 47907 USA
- The University of Texas at Austin NHB 4.120, 100 E. 24th St. Austin TX 78712 USA
| | - Rui Yan
- Markey Center for Structural Biology, Department of Biological Science, Purdue University West Lafayette IN 47907 USA
- Howard Hughes Medical Institute, Janelia Research Campus 19700 Helix Drive Asburn Virginia 20147 USA
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Science, Purdue University West Lafayette IN 47907 USA
| | - Joseph M K Irudayaraj
- Bindley Bioscience Center, Department of Agricultural and Biological Engineering, Purdue University West Lafayette IN 47907 USA
- Cancer Center at Illinois, Department of Bioengineering, College of Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
2
|
DNA looping by two 5-methylcytosine-binding proteins quantified using nanofluidic devices. Epigenetics Chromatin 2020; 13:18. [PMID: 32178718 PMCID: PMC7076939 DOI: 10.1186/s13072-020-00339-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/06/2020] [Indexed: 11/29/2022] Open
Abstract
Background MeCP2 and MBD2 are members of a family of proteins that possess a domain that selectively binds 5-methylcytosine in a CpG context. Members of the family interact with other proteins to modulate DNA packing. Stretching of DNA–protein complexes in nanofluidic channels with a cross-section of a few persistence lengths allows us to probe the degree of compaction by proteins. Results We demonstrate DNA compaction by MeCP2 while MBD2 does not affect DNA configuration. By using atomic force microscopy (AFM), we determined that the mechanism for compaction by MeCP2 is the formation of bridges between distant DNA stretches and the formation of loops. Conclusions Despite sharing a similar specific DNA-binding domain, the impact of full-length 5-methylcytosine-binding proteins can vary drastically between strong compaction of DNA and no discernable large-scale impact of protein binding. We demonstrate that ATTO 565-labeled MBD2 is a good candidate as a staining agent for epigenetic mapping.
Collapse
|
3
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
4
|
Pereiro I, Cors JF, Pané S, Nelson BJ, Kaigala GV. Underpinning transport phenomena for the patterning of biomolecules. Chem Soc Rev 2019; 48:1236-1254. [PMID: 30671579 DOI: 10.1039/c8cs00852c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Surface-based assays are increasingly being used in biology and medicine, which in turn demand increasing quantitation and reproducibility. This translates into more stringent requirements on the patterning of biological entities on surfaces (also referred to as biopatterning). This tutorial focuses on mass transport in the context of existing and emerging biopatterning technologies. We here develop a step-by-step analysis of how analyte transport affects surface kinetics, and of the advantages and limitations this entails in major categories of patterning methods, including evaporating sessile droplets, laminar flows in microfluidics or electrochemistry. Understanding these concepts is key to obtaining the desired pattern uniformity, coverage, analyte usage or processing time, and equally applicable to surface assays. A representative technological review accompanies each section, highlighting the technical progress enabled by transport control in e.g. microcontact printing, inkjet printing, dip-pen nanolithography and microfluidic probes. We believe this tutorial will serve researchers to better understand available patterning methods/principles, optimize conditions and to help design protocols/assays. By highlighting fundamental challenges and available approaches, we wish to trigger the development of new surface patterning methods and assays.
Collapse
Affiliation(s)
- Iago Pereiro
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland.
| | - Julien F Cors
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland. and Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, 8092, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, 8092, Switzerland
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, 8092, Switzerland
| | - Govind V Kaigala
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland.
| |
Collapse
|
5
|
Sun ZH, Liu YH, Liu JD, Xu DD, Li XF, Meng XM, Ma TT, Huang C, Li J. MeCP2 Regulates PTCH1 Expression Through DNA Methylation in Rheumatoid Arthritis. Inflammation 2018; 40:1497-1508. [PMID: 28573530 DOI: 10.1007/s10753-017-0591-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, in which pathogenesis is not clear. Many research demonstrated that fibroblast-like synoviocytes (FLSs) play a key role in RA pathogenesis, join in the cartilage injury and hyperplasia of the synovium, and contribute to the release of inflammatory cytokines. We used adjuvant arthritis (AA) rats as RA animal models. The methyl-CpG-binding protein 2 (MeCP2) enables the suppressed chromatin structure to be selectively detected in AA FLSs. Overexpression of this protein leads to an increase of integral methylation levels. Some research has confirmed the hedgehog (Hh) signaling pathway plays an important role in RA pathogenesis; furthermore, patched 1 (PTCH1) is a negative fraction of Hh signaling pathway. We used 5-aza-2'-deoxycytidine (5-azadc) as DNA methylation inhibitor. In our research, we found MeCP2 reduced PTCH1 expression in AA FLSs; 5-azadc obstructed the loss of PTCH1 expression. 5-Azadc, treatment of AA FLSs, also blocks the release of inflammatory cytokines. In order to probe the potential molecular mechanism, we assumed the epigenetic participation in the regulation of PTCH1. Results demonstrated that PTCH1 hypermethylation is related to the persistent FLS activation and inflammation in AA rats. Knockdown of MeCP2 using small-interfering RNA technique added PTCH1 expression in AA FLSs. Our results indicate that DNA methylation may offer molecule mechanisms, and the reduced PTCH1 methylation level could regulate inflammation through knockdown of MeCP2. Graphical Abstract PTCH1 is an inhibitory protein of the Hedgehog signaling pathway. Increased expression of PTCH1 can inhibit the expression of Gli1 and Shh, thereby inhibiting the activation of Hedgehog signaling pathway. Inactivated Hedgehog signaling pathway inhibits the secretion of IL-6 and TNF-α. MeCP2 mediates hypermethylation of PTCH1 gene and decreases the expression of PTCH1 protein, thus activating Hedgehog signaling pathway and increasing secretion of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Zheng-Hao Sun
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Yan-Hui Liu
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Jun-da Liu
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Dan-Dan Xu
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Xiao-Feng Li
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Tao-Tao Ma
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China.,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Meishan Road No. 81, Hefei, Anhui Province, 230032, China. .,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Meishan Road No. 81, Hefei, 230032, China. .,Institute for Liver Diseases, Anhui Medical University, Meishan Road No. 81, Hefei, 230032, China.
| |
Collapse
|
6
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
7
|
Slaughter LS, Cheung KM, Kaappa S, Cao HH, Yang Q, Young TD, Serino AC, Malola S, Olson JM, Link S, Häkkinen H, Andrews AM, Weiss PS. Patterning of supported gold monolayers via chemical lift-off lithography. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2648-2661. [PMID: 29259879 PMCID: PMC5727779 DOI: 10.3762/bjnano.8.265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 05/19/2023]
Abstract
The supported monolayer of Au that accompanies alkanethiolate molecules removed by polymer stamps during chemical lift-off lithography is a scarcely studied hybrid material. We show that these Au-alkanethiolate layers on poly(dimethylsiloxane) (PDMS) are transparent, functional, hybrid interfaces that can be patterned over nanometer, micrometer, and millimeter length scales. Unlike other ultrathin Au films and nanoparticles, lifted-off Au-alkanethiolate thin films lack a measurable optical signature. We therefore devised fabrication, characterization, and simulation strategies by which to interrogate the nanoscale structure, chemical functionality, stoichiometry, and spectral signature of the supported Au-thiolate layers. The patterning of these layers laterally encodes their functionality, as demonstrated by a fluorescence-based approach that relies on dye-labeled complementary DNA hybridization. Supported thin Au films can be patterned via features on PDMS stamps (controlled contact), using patterned Au substrates prior to lift-off (e.g., selective wet etching), or by patterning alkanethiols on Au substrates to be reactive in selected regions but not others (controlled reactivity). In all cases, the regions containing Au-alkanethiolate layers have a sub-nanometer apparent height, which was found to be consistent with molecular dynamics simulations that predicted the removal of no more than 1.5 Au atoms per thiol, thus presenting a monolayer-like structure.
Collapse
Affiliation(s)
- Liane S Slaughter
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin M Cheung
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sami Kaappa
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Huan H Cao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qing Yang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas D Young
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew C Serino
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jana M Olson
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, 77005, USA
| | - Hannu Häkkinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Anne M Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Yeh JW, Szeto K. Electrophoretic stretching and imaging of single native chromatin fibers in nanoslits. BIOMICROFLUIDICS 2017; 11:044108. [PMID: 28794818 PMCID: PMC5526712 DOI: 10.1063/1.4996340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 05/16/2023]
Abstract
Stretching single chromosomal DNA fibers in nanofluidic devices has become a valuable tool for studying the genome and more recently the epigenome. Although nanofluidic technology has been extensively used in single molecular DNA analysis, compared to bare DNA, much less work has been done to elongate chromatin, and only a few studies utilize more biologically relevant samples such as native eukaryotic chromatin. Here, we provide a method for stretching and imaging individual chromatin fibers within a micro- and nanofluidic device. This device was used to electrophoretically stretch and image single native chromatin fibers extracted from human cancer cells (HeLa cells) by attaching the chromatin to microspheres held at the entrance of a nanoslit. To further demonstrate the potential of this device in epigenetics, histone modification H3k79me2 was optically detected by fluorescence microscopy.
Collapse
Affiliation(s)
- Jia-Wei Yeh
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Kylan Szeto
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
Microfluidic DNA Stretching Device for Single-Molecule Diagnostics. Methods Mol Biol 2017. [PMID: 28044290 DOI: 10.1007/978-1-4939-6734-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The method described here enables the automatic stretching and patterning of single DNA molecules onto a solid surface. It does not require chemical modification of the DNA or surface modification of the substrate. To detect a signal variation caused by sequence-specific dye binding or partial melting, it is crucial that the DNA molecules are arrayed in a parallel direction inside the narrow microscopic field. The method uses zigzag-shaped microgrooves in a densely-arranged molecular patterning apparatus in a microfluidic channel. By syringing through the microchannel, over 1500 DNA molecules can be arrayed simultaneously in the microgrooves. It will therefore serve as a template preparation for DNA molecular diagnosis by high-resolution imaging.
Collapse
|
10
|
Lacroix J, Pélofy S, Blatché C, Pillaire MJ, Huet S, Chapuis C, Hoffmann JS, Bancaud A. Analysis of DNA Replication by Optical Mapping in Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5963-5970. [PMID: 27624455 DOI: 10.1002/smll.201503795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Indexed: 06/06/2023]
Abstract
DNA replication is essential to maintain genome integrity in S phase of the cell division cycle. Accumulation of stalled replication forks is a major source of genetic instability, and likely constitutes a key driver of tumorigenesis. The mechanisms of regulation of replication fork progression have therefore been extensively investigated, in particular with DNA combing, an optical mapping technique that allows the stretching of single molecules and the mapping of active region for DNA synthesis by fluorescence microscopy. DNA linearization in nanochannels has been successfully used to probe genomic information patterns along single chromosomes, and has been proposed to be a competitive alternative to DNA combing. Yet this conjecture remains to be confirmed experimentally. Here, two complementary techniques are established to detect the genomic distribution of tracks of newly synthesized DNA in human cells by optical mapping in nanochannels. Their respective advantages and limitations are compared, and applied them to detect deregulations of the replication program induced by the antitumor drug hydroxyurea. The developments here thus broaden the field of applications accessible to nanofluidic technologies, and can be used in the future as part for molecular diagnostics in the context of high throughput cancer drug screening.
Collapse
Affiliation(s)
- Joris Lacroix
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400, Toulouse, France
- Univ de Toulouse, LAAS, F-31400, Toulouse, France
| | - Sandrine Pélofy
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400, Toulouse, France
- Univ de Toulouse, LAAS, F-31400, Toulouse, France
| | - Charline Blatché
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400, Toulouse, France
- Univ de Toulouse, LAAS, F-31400, Toulouse, France
| | - Marie-Jeanne Pillaire
- Univ de Toulouse, LAAS, F-31400, Toulouse, France
- Equipe "Labellisée LA LIGUE CONTRE LE CANCER 2013" - Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, 2 Avenue Hubert Curien, CS 53717, 31037, Toulouse, France
| | - Sébastien Huet
- CNRS, UMR 6061, Institut Génétique et Développement de Rennes, F-35043, Rennes, France
- Université Rennes 1, UEB, UMR 6290, Faculté de Médecine, F-35043, Rennes, France
| | - Catherine Chapuis
- CNRS, UMR 6061, Institut Génétique et Développement de Rennes, F-35043, Rennes, France
- Université Rennes 1, UEB, UMR 6290, Faculté de Médecine, F-35043, Rennes, France
| | - Jean-Sébastien Hoffmann
- Univ de Toulouse, LAAS, F-31400, Toulouse, France
- Equipe "Labellisée LA LIGUE CONTRE LE CANCER 2013" - Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, 2 Avenue Hubert Curien, CS 53717, 31037, Toulouse, France
| | - Aurélien Bancaud
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400, Toulouse, France
- Univ de Toulouse, LAAS, F-31400, Toulouse, France
| |
Collapse
|
11
|
Sun X, Yasui T, Yanagida T, Kaji N, Rahong S, Kanai M, Nagashima K, Kawai T, Baba Y. Identifying DNA methylation in a nanochannel. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:644-649. [PMID: 27877910 PMCID: PMC5102024 DOI: 10.1080/14686996.2016.1223516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
DNA methylation is a stable epigenetic modification, which is well known to be involved in gene expression regulation. In general, however, analyzing DNA methylation requires rather time consuming processes (24-96 h) via DNA replication and protein modification. Here we demonstrate a methodology to analyze DNA methylation at a single DNA molecule level without any protein modifications by measuring the contracted length and relaxation time of DNA within a nanochannel. Our methodology is based on the fact that methylation makes DNA molecules stiffer, resulting in a longer contracted length and a longer relaxation time (a slower contraction rate). The present methodology offers a promising way to identify DNA methylation without any protein modification at a single DNA molecule level within 2 h.
Collapse
Affiliation(s)
- Xiaoyin Sun
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
| | - Takao Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
- Japan Science and Technology Agency (JST), PRESTO, Saitama, Japan
| | - Takeshi Yanagida
- Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
| | - Sakon Rahong
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
| | - Masaki Kanai
- Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Kazuki Nagashima
- Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Tomoji Kawai
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| |
Collapse
|
12
|
Chang JB, Kim YH, Thompson E, No YH, Kim NH, Arrieta J, Manfrinato VR, Keating AE, Berggren KK. The Orientations of Large Aspect-Ratio Coiled-Coil Proteins Attached to Gold Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1498-1505. [PMID: 26799936 DOI: 10.1002/smll.201502419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Methods for patterning biomolecules on a substrate at the single molecule level have been studied as a route to sensors with single-molecular sensitivity or as a way to probe biological phenomena at the single-molecule level. However, the arrangement and orientation of single biomolecules on substrates has been less investigated. Here, the arrangement and orientation of two rod-like coiled-coil proteins, cortexillin and tropomyosin, around patterned gold nanostructures is examined. The high aspect ratio of the coiled coils makes it possible to study their orientations and to pursue a strategy of protein orientation via two-point attachment. The proteins are anchored to the surfaces using thiol groups, and the number of cysteine residues in tropomyosin is varied to test how this variation affects the structure and arrangement of the surface-attached proteins. Molecular dynamics studies are used to interpret the observed positional distributions. Based on initial studies of protein attachment to gold post structures, two 31-nm-long tropomyosin molecules are aligned between the two sidewalls of a trench with a width of 68 nm. Because the approach presented in this study uses one of twenty natural amino acids, this method provides a convenient way to pattern biomolecules on substrates using standard chemistry.
Collapse
Affiliation(s)
- Jae-Byum Chang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yong Ho Kim
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Evan Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Hyun No
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Nam Hyeong Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jose Arrieta
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vitor R Manfrinato
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karl K Berggren
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Shim S, Shim J, Taylor WR, Kosari F, Vasmatzis G, Ahlquist DA, Bashir R. Magnetophoretic-based microfluidic device for DNA Concentration. Biomed Microdevices 2016; 18:28. [DOI: 10.1007/s10544-016-0051-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zillner K, Komatsu J, Filarsky K, Kalepu R, Bensimon A, Németh A. Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics 2015; 7:363-78. [PMID: 26077426 DOI: 10.2217/epi.14.93] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The synthesis of rRNA is a key determinant of normal and malignant cell growth and subject to epigenetic regulation. Yet, the epigenomic features of rDNA arrays clustered in nucleolar organizer regions are largely unknown. We set out to explore for the first time how DNA methylation is distributed on individual rDNA arrays. MATERIALS & METHODS Here we combined immunofluorescence detection of DNA modifications with fluorescence hybridization of single DNA fibers, metaphase immuno-FISH and methylation-sensitive restriction enzyme digestions followed by Southern blot. RESULTS We found clustering of both hypomethylated and hypermethylated repeat units and hypermethylation of noncanonical rDNA in IMR90 fibroblasts and HCT116 colorectal carcinoma cells. Surprisingly, we also found transitions between hypo- and hypermethylated rDNA repeat clusters on single DNA fibers. CONCLUSION Collectively, our analyses revealed co-existence of different epialleles on individual nucleolar organizer regions and showed that epi-combing is a valuable approach to analyze epigenomic patterns of repetitive DNA.
Collapse
Affiliation(s)
- Karina Zillner
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jun Komatsu
- Genomic Vision, 80 Rue des Meuniers, 92220 Bagneux, France
| | - Katharina Filarsky
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Rajakiran Kalepu
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.,University Hospital Ulm, Ulm 89070, Germany
| | - Aaron Bensimon
- Genomic Vision, 80 Rue des Meuniers, 92220 Bagneux, France
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Lee J, Kim Y, Lee S, Jo K. Visualization of large elongated DNA molecules. Electrophoresis 2015; 36:2057-71. [PMID: 25994517 DOI: 10.1002/elps.201400479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/08/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.
Collapse
Affiliation(s)
- Jinyong Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| | - Yongkyun Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapogu, Seoul, Republic of Korea
| |
Collapse
|
16
|
Shim J, Kim Y, Humphreys GI, Nardulli AM, Kosari F, Vasmatzis G, Taylor WR, Ahlquist DA, Myong S, Bashir R. Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS NANO 2015; 9:290-300. [PMID: 25569824 DOI: 10.1021/nn5045596] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA methylation is an epigenetic modification of DNA in which methyl groups are added at the 5-carbon position of cytosine. Aberrant DNA methylation, which has been associated with carcinogenesis, can be assessed in various biological fluids and potentially can be used as markers for detection of cancer. Analytically sensitive and specific assays for methylation targeting low-abundance and fragmented DNA are needed for optimal clinical diagnosis and prognosis. We present a nanopore-based direct methylation detection assay that circumvents bisulfite conversion and polymerase chain reaction amplification. Building on our prior work, we used methyl-binding proteins (MBPs), which selectively label the methylated DNA. The nanopore-based assay selectively detects methylated DNA/MBP complexes through a 19 nm nanopore with significantly deeper and prolonged nanopore ionic current blocking, while unmethylated DNA molecules were not detectable due to their smaller diameter. Discrimination of hypermethylated and unmethylated DNA on 90, 60, and 30 bp DNA fragments was demonstrated using sub-10 nm nanopores. Hypermethylated DNA fragments fully bound with MBPs are differentiated from unmethylated DNA at 2.1- to 6.5-fold current blockades and 4.5- to 23.3-fold transport durations. Furthermore, these nanopore assays can detect the CpG dyad in DNA fragments and could someday profile the position of methylated CpG sites on DNA fragments.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Bioengineering, ‡Micro and Nanotechnology Laboratory, and §Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yasaki H, Onoshima D, Yasui T, Yukawa H, Kaji N, Baba Y. Microfluidic transfer of liquid interface for parallel stretching and stamping of terminal-unmodified single DNA molecules in zigzag-shaped microgrooves. LAB ON A CHIP 2015; 15:135-140. [PMID: 25318047 DOI: 10.1039/c4lc00990h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The molecular stretching of DNA is an indispensable tool for the optical exploration of base sequences and epigenomic changes of DNA at a single molecule level. In stretching terminal-unmodified DNA molecules parallel to each other on solid substrate, the receding meniscus assembly and capillary force through the dewetting process are quite useful. These can be achieved by pulling the substrate out of the DNA solution or sliding a droplet of DNA solution between a pair of substrates. However, currently used methods do not allow control over liquid interface motion and single-molecule DNA positioning. Here, we show a microfluidic device for stretching DNA molecules by syringing through microgrooves. The device can trap single DNA molecules at vertices of the microgrooves, which were designed as parallel zigzag lines. Different zigzag pattern depths, sizes, and shapes were studied to evaluate the adsorption possibility of DNA on the surface. The microfluidic transfer of the liquid interface stretched over 1500 DNA molecules simultaneously. The stretched DNA molecules could be stamped to a silanized surface. The device will therefore serve as a template preparation for high-resolution DNA imaging studies.
Collapse
Affiliation(s)
- Hirotoshi Yasaki
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med 2013; 19:732-41. [PMID: 24145019 DOI: 10.1016/j.molmed.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/30/2013] [Accepted: 09/19/2013] [Indexed: 12/11/2022]
Abstract
Perturbations in epigenetic mechanisms have emerged as cardinal features in the molecular pathology of major classes of brain disorders. We therefore highlight evidence which suggests that specific epigenetic signatures measurable in central - and possibly even in peripheral tissues - have significant value as translatable biomarkers for screening, early diagnosis, and prognostication; developing molecularly targeted medicines; and monitoring disease progression and treatment responses. We also draw attention to existing and novel therapeutic approaches directed at epigenetic factors and mechanisms, including strategies for modulating enzymes that write and erase DNA methylation and histone/chromatin marks; protein-protein interactions responsible for reading epigenetic marks; and non-coding RNA pathways.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
19
|
Aguilar CA, Craighead HG. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics. NATURE NANOTECHNOLOGY 2013; 8:709-18. [PMID: 24091454 PMCID: PMC4072028 DOI: 10.1038/nnano.2013.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/28/2013] [Indexed: 05/05/2023]
Abstract
Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin - a dynamic complex of nucleic acids and proteins - is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.
Collapse
Affiliation(s)
- Carlos A. Aguilar
- Massachusetts Institute of Technology - Lincoln Laboratory, 244 Wood St., Lexington, MA 02127
| | - Harold G. Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
20
|
Kirkland B, Wang Z, Zhang P, Takebayashi SI, Lenhert S, Gilbert DM, Guan J. Low-cost fabrication of centimetre-scale periodic arrays of single plasmid DNA molecules. LAB ON A CHIP 2013; 13:3367-72. [PMID: 23824041 PMCID: PMC3753405 DOI: 10.1039/c3lc50562f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the development of a low-cost method to generate a centimetre-scale periodic array of single plasmid DNA molecules of 11 kilobase pairs. The arrayed DNA molecules are amenable to enzymatic and physical manipulations.
Collapse
Affiliation(s)
- Brett Kirkland
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
| | - Zhibin Wang
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
| | - Peipei Zhang
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
| | - Shin-ichiro Takebayashi
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Steven Lenhert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
- Integrative NanoScience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
- Integrative NanoScience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA
| |
Collapse
|
21
|
Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy. Curr Opin Biotechnol 2013; 24:690-8. [DOI: 10.1016/j.copbio.2013.01.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/20/2013] [Accepted: 01/22/2013] [Indexed: 12/25/2022]
|
22
|
Luo JH, Ding Y, Chen R, Michalopoulos G, Nelson J, Tseng G, Yu YP. Genome-wide methylation analysis of prostate tissues reveals global methylation patterns of prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2028-36. [PMID: 23583283 DOI: 10.1016/j.ajpath.2013.02.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
Altered genome methylation is a hallmark of human malignancies. In this study, high-throughput analyses of concordant gene methylation and expression events were performed for 91 human prostate specimens, including prostate tumor (T), matched normal adjacent to tumor (AT), and organ donor (OD). Methylated DNA in genomic DNA was immunoprecipitated with anti-methylcytidine antibodies and detected by Affymetrix human whole genome SNP 6.0 chips. Among the methylated CpG islands, 11,481 islands were found located in the promoter and exon 1 regions of 9295 genes. Genes (7641) were methylated frequently across OD, AT, and T samples, whereas 239 genes were differentially methylated in only T and 785 genes in both AT and T but not OD. Genes with promoter methylation and concordantly suppressed expression were identified. Pathway analysis suggested that many of the methylated genes in T and AT are involved in cell growth and mitogenesis. Classification analysis of the differentially methylated genes in T or OD produced a specificity of 89.4% and a sensitivity of 85.7%. The T and AT groups, however, were only slightly separated by the prediction analysis, indicating a strong field effect. A gene methylation prediction model was shown to predict prostate cancer relapse with sensitivity of 80.0% and specificity of 85.0%. These results suggest methylation patterns useful in predicting clinical outcomes of prostate cancer.
Collapse
Affiliation(s)
- Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113:2584-667. [PMID: 23140825 PMCID: PMC3595390 DOI: 10.1021/cr3002142] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Scott B. King
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Daniel W. Olson
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Joel D. P. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| |
Collapse
|
24
|
Wang H, Silva A, Ho CM. When Medicine Meets Engineering-Paradigm Shifts in Diagnostics and Therapeutics. Diagnostics (Basel) 2013; 3:126-54. [PMID: 26835672 PMCID: PMC4665584 DOI: 10.3390/diagnostics3010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/23/2013] [Indexed: 01/09/2023] Open
Abstract
During the last two decades, the manufacturing techniques of microfluidics-based devices have been phenomenally advanced, offering unlimited potential for bio-medical technologies. However, the direct applications of these technologies toward diagnostics and therapeutics are still far from maturity. The present challenges lay at the interfaces between the engineering systems and the biocomplex systems. A precisely designed engineering system with narrow dynamic range is hard to seamlessly integrate with the adaptive biological system in order to achieve the design goals. These differences remain as the roadblock between two fundamentally non-compatible systems. This paper will not extensively review the existing microfluidic sensors and actuators; rather, we will discuss the sources of the gaps for integration. We will also introduce system interface technologies for bridging the differences to lead toward paradigm shifts in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hann Wang
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aleidy Silva
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chih-Ming Ho
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Zillner K, Németh A. Single-molecule, genome-scale analyses of DNA modifications: exposing the epigenome with next-generation technologies. Epigenomics 2012; 4:403-14. [PMID: 22920180 DOI: 10.2217/epi.12.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA modifications represent an integral part of the epigenome and they have a pivotal role in regulation of genome function. Despite the wide variety of analytical techniques that have been developed to detect DNA modifications, their investigation at the single-genome level is only beginning to emerge. In contrast to population-averaged analyses, single-molecule approaches potentially allow the mapping of epigenetic linkage between distantly located genomic regions, the locus-specific analysis of repetitive DNA elements, as well as determination of allele-specific DNA modification patterns. In this article, the properties of current single-molecule analyses of DNA modifications will be discussed and compared. In addition, the possible biomedical and discovery research applications of single-molecule epigenomics will be highlighted.
Collapse
Affiliation(s)
- Karina Zillner
- Biochemistry Center Regensburg, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany
| | | |
Collapse
|
26
|
Miao CG, Huang C, Huang Y, Yang YY, He X, Zhang L, Lv XW, Jin Y, Li J. MeCP2 modulates the canonical Wnt pathway activation by targeting SFRP4 in rheumatoid arthritis fibroblast-like synoviocytes in rats. Cell Signal 2012. [PMID: 23200852 DOI: 10.1016/j.cellsig.2012.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by the rheumatoid factor and anti-citrullinated peptide antibody (ACPA) against common autoantigens that are widely expressed within and outside the joints. Many factors participate in the pathogenesis of RA, such as cytokine imbalance, Wnt pathway activation, matrix production, and osteoprotegerin on osteoclasts. Fibroblast-like synoviocytes (FLS) activation has an important role in RA pathogenesis. The methyl-CpG-binding protein (MeCP2) which promoted repressed chromatin structure was selectively detected in synovium of diseased articular in rats. Overexpression of this protein results in an up-regulation of global methylation levels and transcriptional suppression of specific genes. There were increased MeCP2 and decreased secreted frizzled-related protein 4 (SFRP4) in synovium as well as the FLS isolated from the synovium of RA rats. Knockdown of MeCP2 using siRNA technique enhanced SFRP4 expression in both mRNA and protein levels in FLS. These results indicated that epigenetic modification was involved in differential expression of SFRP4. To further explore the underlying molecular mechanisms, we hypothesized that the SFRP4 down-regulation in synovium was caused by DNA methylation. Treatment of FLS with DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-azadC) blocked the cell proliferation and increased the SFRP4 expression. Increased SFRP4 down-regulated the key gene β-catenin, the downstream effectors gene ccnd1 and fibronectin expression in canonical Wnt pathway at the same time. MeCP2 and DNA methylation may provide molecular mechanisms for canonical Wnt pathway activation in RA. Combination of 5-azadC and MeCP2 may be a promising treatment strategy for individuals with RA in which SFRP4 is inactivated.
Collapse
Affiliation(s)
- Cheng-gui Miao
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cerf A, Tian HC, Craighead HG. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis. ACS NANO 2012; 6:7928-34. [PMID: 22816516 PMCID: PMC3703913 DOI: 10.1021/nn3023624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Individual chromatin molecules contain valuable genetic and epigenetic information. To date, there have not been reliable techniques available for the controlled stretching and manipulation of individual chromatin fragments for high-resolution imaging and analysis of these molecules. We report the controlled stretching of single chromatin fragments extracted from two different cancerous cell types (M091 and HeLa) characterized through fluorescence microscopy and atomic force microscopy (AFM). Our method combines soft lithography with molecular stretching to form ordered arrays of more than 250,000 individual chromatin fragments immobilized into a beads-on-a-string structure on a solid transparent support. Using fluorescence microscopy and AFM, we verified the presence of histone proteins after the stretching and transfer process.
Collapse
Affiliation(s)
- Aline Cerf
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Harvey C. Tian
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Harold G. Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- To whom correspondence should be addressed. ; Fax: (607) 255-7658
| |
Collapse
|
28
|
Zheng C, Wang J, Pang Y, Wang J, Li W, Ge Z, Huang Y. High-throughput immunoassay through in-channel microfluidic patterning. LAB ON A CHIP 2012; 12:2487-90. [PMID: 22549364 DOI: 10.1039/c2lc40145b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed an integrated microfluidic immunoassay chip for high-throughput sandwich immunoassay tests. The chip creates an array of reactive patterns through mechanical protection by actuating monolithically embedded button valves. We have demonstrated that this chip can achieve highly sensitive immunoassay tests within an hour, and requires only microliter samples.
Collapse
Affiliation(s)
- Chunhong Zheng
- College of Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Korlach J, Turner SW. Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 2012; 22:251-61. [PMID: 22575758 DOI: 10.1016/j.sbi.2012.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/01/2022]
Abstract
DNA sequencing has provided a wealth of information about biological systems, but thus far has focused on the four canonical bases, and 5-methylcytosine through comparison of the genomic DNA sequence to a transformed four-base sequence obtained after treatment with bisulfite. However, numerous other chemical modifications to the nucleotides are known to control fundamental life functions, influence virulence of pathogens, and are associated with many diseases. These modifications cannot be accessed with traditional sequencing methods. In this opinion, we highlight several emerging single-molecule sequencing techniques that have the potential to directly detect many types of DNA modifications as an integral part of the sequencing protocol.
Collapse
Affiliation(s)
- Jonas Korlach
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, United States.
| | | |
Collapse
|