1
|
Wu P, Wang W, Huang C, Sun L, Wu X, Xu L, Xiao P. A rapid and reliable targeted LC-MS/MS method for quantitative analysis of the Tryptophan-NAD metabolic network disturbances in tissues and blood of sleep deprivation mice. Anal Chim Acta 2024; 1328:343125. [PMID: 39266191 DOI: 10.1016/j.aca.2024.343125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND TRY-NAD metabolic network includes TRY (tryptophan), 5-HT (5-hydroxytryptamine), KYN (kynurenine), and NAD (nicotinamide adenine dinucleotide) pathway, which plays a significant role in neurological diseases and ageing. It is important to monitor these metabolites for studying the pathological anatomy of disease and treatment of responses evaluation. Although previous studies have reported quantitative methods for several metabolites in the network, the bottlenecks of simultaneously quantifying the whole metabolic network are their similar structures, diverse physico-chemical properties, and instability. Standardized protocols for the whole metabolic network are still missing, which hinders the in-depth study of TRY-NAD metabolic network in laboratory research and clinical screening. RESULTS We developed a LC-MS/MS method for quantifying 28 metabolites in the TRY-NAD network simultaneously. Optimization was done for the mass spectral parameters, chromatographic conditions and sample pretreatment process. The developed method was fully validated in terms of standard curves, sensitivity, carryover, recovery, matrix effect, accuracy, precision, and stability. The pretreatment of 30 samples only takes 90 min, and the LC-MS/MS running time of one sample is only 13 min. With this method, we bring to light the chaos of global TRY-NAD metabolic network in sleep deprivation mice for the first time, including serum, clotted blood cells, hippocampus, cerebral cortex, and liver. NAD pathway levels in brain and blood decreased, whereas the opposite happened in the liver. The 5-HT pathway decreased and the concentration of KYN increased significantly in the brain. The concentration of many metabolites in KYN pathway (NAD+ de novo synthesis pathway) increased in the liver. SIGNIFICANCE This method is the first time to determine the metabolites of KYN, 5-HT and NAD pathway at the same time, and it is found that TRY-NAD metabolic network will be disordered after sleep deprivation. This work clarifies the importance of the pH of the extraction solution, the time and temperature control in pretreatment in standardized protocols building, and overcoming the problems of inconsistent sample pretreatment, separation, matrix effect interference and potential metabolite degradation. This method exhibits great prospects in providing more information on metabolic disturbances caused by sleep deprivation as well as neurological diseases and ageing.
Collapse
Affiliation(s)
- Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wenjie Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chuan Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Le Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xiaoli Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
Pennington T, Eshima J, Smith BS. Identification of volatile metabolites produced from levodopa metabolism by different bacteria strains of the gut microbiome. BMC Microbiol 2024; 24:260. [PMID: 38997651 PMCID: PMC11245815 DOI: 10.1186/s12866-024-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Interspecies pathways in the gut microbiome have been shown to metabolize levodopa, the primary treatment for Parkinson's disease, and reduce its bioavailability. While the enzymatic reactions have been identified, the ability to establish the resulting macromolecules as biomarkers of microbial metabolism remains technically challenging. In this study, we leveraged an untargeted mass spectrometry-based approach to investigate volatile organic compounds (VOCs) produced during levodopa metabolism by Enterococcus faecalis, Clostridium sporogenes, and Eggerthella lenta. We cultured these organisms with and without their respective bioactive metabolites and detected levodopa-induced shifts in VOC profiles. We then utilized bioinformatics to identify significant differences in 2,6-dimethylpyrazine, 4,6-dimethylpyrimidine, and 4,5-dimethylpyrimidine associated with its biotransformation. Supplementing cultures with inhibitors of levodopa-metabolizing enzymes revealed specific modulation of levodopa-associated diazines, verifying their relationship to its metabolism. Furthermore, functional group analysis depicts strain-specific VOC profiles that reflect interspecies differences in metabolic activity that can be leveraged to assess microbiome functionality in individual patients. Collectively, this work identifies previously uncharacterized metabolites of microbe-mediated levodopa metabolism to determine potential indicators of this activity and further elucidate the metabolic capabilities of different gut bacteria.
Collapse
Affiliation(s)
- Taylor Pennington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Jarrett Eshima
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
4
|
Kemp ET, Zandberg L, Harvey BH, Smuts CM, Baumgartner J. Iron and n-3 fatty acid depletion, alone and in combination, during early development provoke neurochemical changes, anhedonia, anxiety and social dysfunction in rats. Nutr Neurosci 2024; 27:698-714. [PMID: 37585720 DOI: 10.1080/1028415x.2023.2245615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Objectives: Both iron and omega-3 (n-3) fatty acids (FA) play important roles in the development and functioning of the brain. We investigated the effects of n-3 FA and iron deficiencies, alone and in combination, during early development on behaviour and brain monoamines in rats. Methods: Using a 2-factorial design, female Wistar rats were randomly allocated to one of four diet groups: Control, n-3 FA deficient (n-3 FAD), iron deficient (ID), or n-3 FAD + ID. Females received these diets throughout mating, pregnancy and lactation. Offspring (n = 24/group; male:female = 1:1) continued on the same diet until post-natal day 42-45, and underwent a sucrose preference test (SPT), novel object recognition test, elevated plus maze (EPM) and social interaction test (SIT). Results: ID offspring consumed less sucrose in the SPT and spent more time in closed arms and less time in open arms of the EPM than non-ID offspring. In female offspring only, ID and n-3 FAD reduced time approaching and together in the SIT, with an additive effect of ID and n-3 FAD for even less time approaching and spent together in the n-3 FAD + ID group compared to controls. ID offspring had higher striatal dopamine and norepinephrine and lower frontal cortex dopamine concentrations. N-3 FAD and ID affected frontal cortex serotonin concentrations in a sex-specific manner. Conclusions: Our results suggest that ID and n-3 FAD during early development provoke anhedonia, anxiety and social dysfunction in rats, with potential additive and attenuating effects when combined. These effects may in part be attributed to disturbances in brain neurochemistry and may be sex-specific.
Collapse
Affiliation(s)
- Erna T Kemp
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lizelle Zandberg
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- School of Pharmacy and Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Cornelius M Smuts
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
5
|
Di Micco S, Ciaglia T, Salviati E, Michela P, Kostrzewa M, Musella S, Schiano Moriello A, Di Sarno V, Smaldone G, Di Matteo F, Capolupo I, Infantino R, Bifulco G, Pepe G, Sommella EM, Kumar P, Basilicata MG, Allarà M, Sánchez-Fernández N, Aso E, Gomez-Monterrey IM, Campiglia P, Ostacolo C, Maione S, Ligresti A, Bertamino A. Novel pyrrole based CB2 agonists: New insights on CB2 receptor role in regulating neurotransmitters' tone. Eur J Med Chem 2024; 269:116298. [PMID: 38493727 DOI: 10.1016/j.ejmech.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Perrone Michela
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | | | - Marco Allarà
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Nuria Sánchez-Fernández
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Ester Aso
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Isabel M Gomez-Monterrey
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain.
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
6
|
Liang SS, Shen PT, Liang YQ, Ke YW, Cheng CW, Lin YR. Assisted Reductive Amination for Quantitation of Tryptophan, 5-Hydroxytryptophan, and Serotonin by Ultraperformance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2023; 28:4580. [PMID: 37375135 DOI: 10.3390/molecules28124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Herein, we used isotopic formaldehyde and sodium cyanoborohydride via reductive amination to label two methyl groups on primary amine to arrange the standards (h2-formaldehyde-modified) and internal standards (ISs, d2-formaldehyde-modified) of tryptophan and its metabolites, such as serotonin (5-hydroxytryptamine) and 5-hydroxytryptophan. These derivatized reactions with a high yield are very satisfactory for manufacturing standards and ISs. This strategy will generate one or two methyl groups on amine to create different mass unit shifts with 14 vs. 16 or 28 vs. 32 in individual compounds for biomolecules with amine groups. In other words, multiples of two mass units shift are created using this derivatized method with isotopic formaldehyde. Serotonin, 5-hydroxytryptophan, and tryptophan were used as examples to demonstrate isotopic formaldehyde-generating standards and ISs. h2-formaldehyde-modified serotonin, 5-hydroxytryptophan, and tryptophan are standards to construct calibration curves, and d2-formaldehyde-modified analogs such as ISs spike into samples to normalize the signal of each detection. We utilized multiple reaction monitoring modes and triple quadrupole mass spectrometry to demonstrate the derivatized method suitable for these three nervous biomolecules. The derivatized method demonstrated a linearity range of the coefficient of determinations between 0.9938 to 0.9969. The limits of detection and quantification ranged from 1.39 to 15.36 ng/mL.
Collapse
Affiliation(s)
- Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Science, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Tsun Shen
- Protein Chemistry Core Laboratory, Core Instrument Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Qing Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Wen Ke
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chieh-Wen Cheng
- Bachelor Program in Industrial Technology, College of Future, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, School of Environment and Life Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| |
Collapse
|
7
|
Yu H, Qu T, Yang J, Dai Q. Serotonin acts through YAP to promote cell proliferation: mechanism and implication in colorectal cancer progression. Cell Commun Signal 2023; 21:75. [PMID: 37046308 PMCID: PMC10100184 DOI: 10.1186/s12964-023-01096-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a key messenger that mediates several central and peripheral functions in the human body. Emerging evidence indicates that serotonin is critical in tumorigenesis, but its role in colorectal cancer remains elusive. Herein, we report that serotonin transporter (SERT) transports serotonin into colorectal cancer cells, enhancing Yes-associated protein (YAP) expression and promoting in vitro and in vivo colon cancer cell growth. Once within the cells, transglutaminase 2 (TG2) mediates RhoA serotonylated and activates RhoA-ROCK1/2 signalling to upregulate YAP expression in SW480 and SW1116 cells. Blocking SERT with citalopram reversed the serotonin-induced YAP expression and cell proliferation, inhibiting serotonin's effects on tumour formation in mice. Moreover, SERT expression was correlated with YAP in pathological human colorectal cancer samples and the levels of 5-HT were highly significant in the serum of patients with colorectal cancer. Together, our findings suggested that serotonin enters cells via SERT to activate RhoA/ROCK/YAP signalling to promote colon cancer carcinogenesis. Consequently, targeting serotonin-SERT-YAP axis may be a potential therapeutic strategy for colorectal cancer. Video abstract.
Collapse
Affiliation(s)
- Huangfei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China.
- Clinical Cancer Center of Zunyi, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China.
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China.
| | - Tianyin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Clinical Cancer Center of Zunyi, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
| | - Jinlan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
| |
Collapse
|
8
|
Abusoglu S, Eryavuz Onmaz D, Abusoglu G, Humeyra Yerlikaya F, Unlu A. Measurement of kynurenine pathway metabolites by tandem mass spectrometry. J Mass Spectrom Adv Clin Lab 2023; 28:114-121. [PMID: 37113385 PMCID: PMC10127116 DOI: 10.1016/j.jmsacl.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Objectives Recent studies have shown that derangements in kynurenine pathway metabolite levels are associated with various pathologies such as neurodegenerative diseases, schizophrenia, depression, bipolar disorder, rheumatoid arthritis, and cancer. Therefore, reliable, accurate, fast, and multiplex measurement methods for kynurenines have become increasingly important. This study aimed to validate a new mass spectrometric method for analyzing tryptophan metabolites. Methods A tandem mass spectrometric method, including protein precipitation and evaporation steps, was developed to measure serum levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid. Samples were separated using a Phenomenex Luna C18 reversed-phase column. The kynurenine pathway metabolites were detected by tandem mass spectrometry. The developed method was validated according to Clinical & Laboratory Standards Institute (CLSI) guidelines and applied to hemodialysis samples. Results The developed method was linear at the concentrations of 48.8 - 25,000, 0.98 - 500, 1.2-5000, 1.2-5000, and 0.98-250 ng/mL for tryptophan, kynurenic acid, kynurenine, 3-hydroxyanthranilic acid, and 3-hydroxykynurenine, respectively. The imprecisions were less than 12 %. The median serum concentrations of tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid were 10530, 1100, 218, 17.6, and 25.4 ng/mL in pre-dialysis blood samples, respectively. They were 4560, 664, 135, 7.4, and 12.8 ng/mL in post-dialysis blood samples, respectively. Conclusions A fast, simple, cost-effective, accurate, robust, and validated tandem mass spectrometric method was developed, and the method was successfully used for the quantitation of kynurenine pathway metabolite concentrations in hemodialysis patients.
Collapse
Affiliation(s)
- Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
- Corresponding author.
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | | | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
9
|
Qiu Z, Zhang C, He Z, Hua J, Wen C, Zhao S. Intracerebral Fluorescence-Photoacoustic Dual-Mode Imaging for Precise Diagnosis and Drug Intervention Tracing in Depression. Anal Chem 2023; 95:5384-5392. [PMID: 36811909 DOI: 10.1021/acs.analchem.2c05742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Unravelling the pathophysiology of depression is a unique challenge. Depression is closely associated with reduced norepinephrine (NE) levels; therefore, developing bioimaging probes to visualize NE levels in the brain is a key to elucidating the pathophysiological process of depression. However, because NE is similar in structure and chemical properties to two other catecholamine neurotransmitters, epinephrine and dopamine, designing an NE-specific multimodal bioimaging probe is a difficult task. In this work, we designed and synthesized the first near-infrared fluorescent-photoacoustic (PA) dual-modality imaging probe for NE (FPNE). The β-hydroxyethylamine of NE was shown to react via nucleophilic substitution and intramolecular nucleophilic cyclization, resulting in the cleavage of a carbonic ester bond in the probe molecule and release of a merocyanine molecule (IR-720). This process changed the color of the reaction solution from blue-purple to green, and the absorption peak was red-shifted from 585 to 720 nm. Under light excitation at 720 nm, linear relationships between the concentration of NE and both the PA response and the fluorescence signal intensity were observed. Thus, the use of intracerebral in situ visualization for diagnosis of depression and monitoring of drug interventions was achieved in a mouse model by fluorescence and PA imaging of brain regions after administration of FPNE by tail-vein injection.
Collapse
Affiliation(s)
- Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zongyi He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
10
|
Gu P, Li L, Fu A, Song H, Zhao B, Wei L, Ji L, Li W, Zhang R, Wang Q, He G, Yang L. High-performance fluorescence probe for fast and specific visualization of norepinephrine in vivo and depression-like mice. Bioorg Chem 2023; 131:106306. [PMID: 36493621 DOI: 10.1016/j.bioorg.2022.106306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Norepinephrine (NE), as an important neurotransmitter, is closely associated with the pathogenesis of anxiety and depressive disorders. Effective monitoring of NE fluctuation aids in the diagnosis of depression and the therapeutic assessment of the antidepressant intervention. The construction of novel fluorescent probes with high specificity towards NE for imaging in depression models is still in demand urgently. In this work, a novel resorufin-based red-emitting fluorescent probe for real-time tracking NE was developed. NE can significantly increase the fluorescence of probe LNE by triggering deprotection of carbonothioate ligand via nucleophilic substitution. The probe LNE demonstrated significant NE selectivity and sensitivity over other analytes in vitro. In addition, probe LNE showed a fast response time (<10 min), and the change in fluorescence signal was positively linked with NE concentration, which could be utilized to track the dysregulation of NE in vivo. More importantly, this powerful probe was successfully employed for real-time visual and imaging of NE in living cells and depression-like behavior animals.
Collapse
Affiliation(s)
- Pengli Gu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Lili Li
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453003, Henan Province, PR China
| | - Aoxiang Fu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Huina Song
- School of Basic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Wenqiang Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Ruiling Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Qingzhi Wang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China.
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
11
|
Zhu Y, Wang F, Han J, Zhao Y, Yu M, Ma M, Yu Z. Untargeted and targeted mass spectrometry reveal the effects of theanine on the central and peripheral metabolomics of chronic unpredictable mild stress-induced depression in juvenile rats. J Pharm Anal 2023; 13:73-87. [PMID: 36816539 PMCID: PMC9937789 DOI: 10.1016/j.jpha.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/25/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
l-theanine has been shown to have a therapeutic effect on depression. However, whether l-theanine has an excellent preventive effect on depression in children and adolescents and what its mechanism is have not been well explained. Given the complexity of the pathogenesis of depression, this study investigated the preventive effect and mechanism of l-theanine on depression in juvenile rats by combining serum and hippocampal metabolomic strategies. Behavioral tests, hippocampal tissue sections, and serum and hippocampal biochemical indexes were studied, and the results confirmed the preventive effect of l-theanine. Untargeted reversed-phase liquid chromatography-quadrupole-time-of-flight mass spectrometry and targeted hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry were developed to analyze the metabolism changes in the serum and hippocampus to screen for potential biomarkers related to l-theanine treatment. The results suggested that 28 abnormal metabolites in the serum and hippocampus that were considered as potential biomarkers returned to near-normal levels after l-theanine administration. These biomarkers were involved in various metabolic pathways, mainly including amino acid metabolism and lipid metabolism. The levels of amino acids and neurotransmitters in the phenylalanine, tryptophan, and glutamic acid pathways were significantly reduced after l-theanine administration compared with chronic unpredictable mild stress-induced rats. In summary, l-theanine had a significant preventive effect on depression and achieved its preventive results on depression by regulating various aspects of the body, such as amino acids, lipids, and inflammation. This research systematically analyzed the mechanism of l-theanine in preventing depression and laid the foundation for applying l-theanine to prevent depression in children and adolescents.
Collapse
Affiliation(s)
- Yanru Zhu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315100, China
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Wang
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiatong Han
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunli Zhao
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Miao Yu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyan Ma
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315100, China
| | - Zhiguo Yu
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
12
|
Li T, Wang R, Wang P. The Development of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010184. [PMID: 36615379 PMCID: PMC9822501 DOI: 10.3390/molecules28010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Biogenic amines (BAs) are a group of substances that are formed from amino acids by decarboxylation or amination and transamination of aldehydes and ketones. They may have either an aliphatic, aromatic, or heterocyclic structure. Their quantity determines their effects and optimum amounts are essential for physiological functions, but excess BAs causes various toxic effects throughout the human body. In our study, to rapidly determine 14 BAs (histamine, tyramine, dopamine, tryptamine, serotonin, putrescine, spermine, spermidine, octopamine, benzylamine, 1-Phenylethanamine, cadaverine, 2-Phenethylamine, and agmatine) in real fish samples, an ultra-performance liquid chromatography-tandem mass spectrometry method was established. The fish sample was extracted by acetonitrile with 0.1% formic acid and stable biogenic amine derivatives could be obtained by benzoyl chloride derivatization with a shorter reaction time. The method showed good linearity with a linear range of 3-4 orders of magnitude and regression coefficients ranging from 0.9961 to 0.9999. The calculated LODs ranged from 0.1 to 20 nM and the LOQs ranged from 0.3 to 60 nM. Satisfactory recovery was obtained from 84.6% to 119.3%. The proposed method was employed to determine the concentration levels of biogenic amine derivatives in different fish. The results indicated that this method was suitable for the analysis of biogenic amines.
Collapse
|
13
|
Zhang Y, Li K, Zhao Y, Shi W, Iyer H, Kim S, Brenden C, Sweedler JV, Vlasov Y. Attomole-Level Multiplexed Detection of Neurochemicals in Picoliter Droplets by On-Chip Nanoelectrospray Ionization Coupled to Mass Spectrometry. Anal Chem 2022; 94:13804-13809. [PMID: 36166829 PMCID: PMC9558086 DOI: 10.1021/acs.analchem.2c02323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
While droplet microfluidics is becoming an effective
tool for biomedical research,
sensitive detection of droplet content is still challenging, especially
for multiplexed analytes compartmentalized within ultrasmall droplets
down to picoliter volumes. To enable such measurements, we demonstrate
a silicon-based integrated microfluidic platform for multiplexed analysis
of neurochemicals in picoliter droplets via nanoelectrospray ionization
(nESI)-mass spectrometry (MS). An integrated silicon microfluidic
chip comprising downscaled 7 μm-radius channels, a compact T-junction
for droplet generation, and an integrated nESI emitter tip is used
for segmentation of analytes into picoliter compartments and their
efficient delivery for subsequent MS detection. The developed system
demonstrates effective detection of multiple neurochemicals encapsulated
within oil-isolated plugs down to low picoliter volumes. Quantitative
measurements for each neurochemical demonstrate limits of detection
at the attomole level. Such results are promising for applications
involving label-free and small-volume detection for monitoring a range
of brain chemicals.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Keyin Li
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Yaoyao Zhao
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Weihua Shi
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hrishikesh Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Sungho Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Christopher Brenden
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Yurii Vlasov
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States.,Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Viana RR, Pego AMF, Oliveira TFD, Dallegrave E, Eller S. Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of neurotransmitters in rat brain tissue exposed to 4'-Fluoro-α-PHP. Biomed Chromatogr 2022; 36:e5487. [PMID: 36001303 DOI: 10.1002/bmc.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
The combination of different advanced analytical techniques makes it possible to determine the concentrations of neurotransmitters in various biological matrices, providing a complex and comprehensive study of the effects of psychoactive substances. The present study aimed to develop and validate a fast and simple analytical method for the determination of acetylcholine, serotonin, γ-aminobutyric acid, glutamate, dopamine, and metabolites in rats brain tissue by liquid chromatography coupled to tandem mass spectrometry. The brain was homogenized and an aliquot of sample, dopamine-d4 , and acetone were added in a tube and then vortexed and centrifuged. The supernatant was collected and dried. The residue was reconstituted and injected. LLOQ ranged from 0.001 to 1 μg/g; intra-run precision from 0.47 to 11.52%; inter-run precision from 0.68 to 17.54%; bias from 89.10 to 109.60%. As proof of concept, the method was applied to animals exposed to the synthetic cathinone 4'-fuoro-α-pyrrolidinohexanophenone (300 mg/kg). In addition, the workflow proved to be simple, rapid, and useful to estimate the concentration of neurotransmitters. This analytical tool can be used to support the investigation of the changes in the neurochemical profile for the characterization of the mechanism of action of psychoactive substances, as well as both neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Roberta Rodrigues Viana
- Undergraduate Program in Pharmacy, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Tiago Franco de Oliveira
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.,Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.,Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, RS, Brazil.,Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.,Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Mezo-González CE, Daher Abdi A, Reyes-Castro LA, Olvera Hernández S, Almeida C, Croyal M, Aguesse A, Gavioli EC, Zambrano E, Bolaños-Jiménez F. Learning Deficits Induced by High-Calorie Feeding in the Rat are Associated With Impaired Brain Kynurenine Pathway Metabolism. Int J Tryptophan Res 2022; 15:11786469221111116. [PMID: 35846874 PMCID: PMC9277427 DOI: 10.1177/11786469221111116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to be a primary risk factor for type 2 diabetes and cardiovascular
disease, obesity is associated with learning disabilities. Here we examined
whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp)
metabolism might underlie the learning deficits exhibited by obese individuals.
The KP is initiated by the enzymatic conversion of Trp into kynurenine (KYN) by
indoleamine 2,3-dioxygenase (IDO). KYN is further converted to several signaling
molecules including quinolinic acid (QA) which has a negative impact on
learning. Wistar rats were fed either standard chow or made obese by exposure to
a free choice high-fat high-sugar (fcHFHS) diet. Their learning capacities were
evaluated using a combination of the novel object recognition and the novel
object location tasks, and the concentrations of Trp and KYN-derived metabolites
in several brain regions determined by ultra-performance liquid
chromatography-tandem mass spectrometry. Male, but not female, obese rats
exhibited reduced learning capacity characterized by impaired encoding along
with increased hippocampal concentrations of QA, Xanthurenic acid (XA),
Nicotinamide (Nam), and oxidized Nicotinamide Adenine Dinucleotide (NAD+). In
contrast, no differences were detected in the serum levels of Trp or KP
metabolites. Moreover, obesity enhanced the expression in the hippocampus and
frontal cortex of kynurenine monooxygenase (KMO), an enzyme involved in the
production of QA from kynurenine. QA stimulates the glutamatergic system and its
increased production leads to cognitive impairment. These results suggest that
the deleterious effects of obesity on cognition are sex dependent and that
altered KP metabolism might contribute to obesity-associated learning
disabilities.
Collapse
Affiliation(s)
| | - Amran Daher Abdi
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France
| | - Luis Antonio Reyes-Castro
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France.,Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Sandra Olvera Hernández
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France.,Medical and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Clarissa Almeida
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France.,Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | |
Collapse
|
16
|
Lu Z, Li S, Aa N, Zhang Y, Zhang R, Xu C, Zhang S, Kong X, Wang G, Aa J, Zhang Y. Quantitative analysis of 20 purine and pyrimidine metabolites by HILIC-MS/MS in the serum and hippocampus of depressed mice. J Pharm Biomed Anal 2022; 219:114886. [PMID: 35715372 DOI: 10.1016/j.jpba.2022.114886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
Purine and pyrimidine metabolism are vital metabolic pathways in the development, proliferation or repairment of cells or tissues associated with various diseases. Here, a simple, all-in-one injection hydrophilic interaction liquid chromatography-tandem mass spectrometry method was developed for simultaneous determination of 20 metabolites: adenine, adenosine, deoxyadenosine, adenosine 5'-monophosphate, cyclic adenosine monophosphate, hypoxanthine, xanthine, inosine, deoxyinosine, xanthosine, xanthosine 5'-monophosphate and uric acid, which are products of purine metabolism; uridine, deoxyuridine, uridine 5'-monophosphate and uracil, are products of pyrimidine metabolism; and corticosterone, methionine, acetylcholine and serotonin. To minimize interference of endogenous molecules in sample matrixes, a combination of activated carbon adsorption and a serum substitute matrix (5% bovine serum albumin in phosphate buffered saline) was utilized and jointly applied. The sensitivity, linearity, stability, precision, accuracy and extraction recovery were evaluated, and the method was demonstrated to be accurate, sensitive and reliable. An analytical strategy was successfully applied to quantitatively determine 20 metabolite levels in the serum and hippocampus of mice with chronic social defeat stress-induced depression. The results showed greatly perturbed purine metabolism in the depressed mice, which was primarily characterized by dramatic increases in hypoxanthine, xanthine and inosine in serum and reduced levels of adenine, adenosine and adenosine 5'-monophosphate in the hippocampus. These findings suggest that this novel strategy can facilitate the quantitative analysis of adenine and other purine and pyrimidine metabolites in tissue and serum and exhibits great potential in the exploration of metabolism-related mechanisms of relevant diseases.
Collapse
Affiliation(s)
- Zhenyao Lu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Sijia Li
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yuanmao Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chen Xu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shize Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Yue Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Ogunkunle EO, Donohue MJ, Steyer DJ, Adeoye DI, Eaton WJ, Roper MG. Small molecules released from islets of Langerhans determined by liquid chromatography - mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2100-2107. [PMID: 35567801 PMCID: PMC9159447 DOI: 10.1039/d2ay00402j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 05/04/2023]
Abstract
Islets of Langerhans are the endocrine tissue within the pancreas that secrete hormones for maintenance of blood glucose homeostasis. A variety of small molecules including classical neurotransmitters are also released from islets. While the roles of most of these small molecules are unknown, some have been hypothesized to play a critical role in islet physiology. To better understand their role on islet function, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to separate and quantify 39 small molecules released from islets. Benzoyl chloride derivatization of analyte molecules was used to impart retention and facilitate electrospray ionization efficiency. Separation was achieved on a 2.1 × 150 mm column packed with 2.7 μm core-shell C18 particles. Calibration curves showed excellent linearity between the concentration and analyte response, with relative standard deviations of the analyte responses below 15% and limits of detection from 0.01-40 nM. The method was applied to examine small molecules released from murine and human islets of Langerhans after static incubation and perfusion with glucose. Results showed a decrease in secretion rates with increasing glucose concentration for most of the analytes. Secretion rates were found to be higher in human islets compared to their murine counterpart. This method will be useful in understanding the roles of small molecules in biological systems.
Collapse
Affiliation(s)
- Emmanuel O Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Matthew J Donohue
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Daniel J Steyer
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Damilola I Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Wesley J Eaton
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
18
|
Gallegos A, Isseroff RR. Simultaneous determination of tryptophan, 5-hydroxytryptophan, tryptamine, serotonin, and 5-HIAA in small volumes of mouse serum using UHPLC-ED. MethodsX 2022; 9:101624. [PMID: 35141137 PMCID: PMC8810555 DOI: 10.1016/j.mex.2022.101624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 01/06/2023] Open
Abstract
In this paper we report a simple and efficient method for the concurrent analysis of tryptophan, 5-HTP, tryptamine, serotonin, and 5-HIAA in mouse serum using UHPLC-ED after protein precipitation and dilution. These compounds are neuroactive and are of interest in studies of mood and behavior; They are also biomarkers for the presence of neuroendocrine tumors and are used in the diagnosis of these cancers. After a brief series of validation experiments, this method was applied to serum from mouse behaviour experiments.A convenient UHPLC method with electrochemical detection for concomitant analysis of the serotonin pathway in serum, including, for the first time, tryptamine. The method met all performance criteria established for use in our lab and was applied in rodent experiments.
Collapse
|
19
|
Huang YH, Ding WL, Li XT, Cai MT, Li HL, Yang ZY, Piao XH, Zhu S, Tohda C, Komatsu K, Wang S, Ge YW. Memory enhancement effect of saponins from Eleutherococcus senticosus leaves and blood-brain barrier-permeated saponins profiling using a pseudotargeted monitoring strategy. Food Funct 2022; 13:3603-3620. [DOI: 10.1039/d1fo03078g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dried Eleutherococcus senticosus leaves (ESL), also known as Siberian ginseng tea, are beneficial for human neural disorders. Our previous studies showed that the aqueous extract of ESL enhanced memory in...
Collapse
|
20
|
Shichkova P, Coggan JS, Markram H, Keller D. A Standardized Brain Molecular Atlas: A Resource for Systems Modeling and Simulation. Front Mol Neurosci 2021; 14:604559. [PMID: 34858137 PMCID: PMC8631404 DOI: 10.3389/fnmol.2021.604559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Accurate molecular concentrations are essential for reliable analyses of biochemical networks and the creation of predictive models for molecular and systems biology, yet protein and metabolite concentrations used in such models are often poorly constrained or irreproducible. Challenges of using data from different sources include conflicts in nomenclature and units, as well as discrepancies in experimental procedures, data processing and implementation of the model. To obtain a consistent estimate of protein and metabolite levels, we integrated and normalized data from a large variety of sources to calculate Adjusted Molecular Concentrations. We found a high degree of reproducibility and consistency of many molecular species across brain regions and cell types, consistent with tight homeostatic regulation. We demonstrated the value of this normalization with differential protein expression analyses related to neurodegenerative diseases, brain regions and cell types. We also used the results in proof-of-concept simulations of brain energy metabolism. The standardized Brain Molecular Atlas overcomes the obstacles of missing or inconsistent data to support systems biology research and is provided as a resource for biomolecular modeling.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
21
|
Veit C, Janczak AM, Ranheim B, Vas J, Valros A, Sandercock DA, Piepponen P, Dulgheriu D, Nordgreen J. The Effect of LPS and Ketoprofen on Cytokines, Brain Monoamines, and Social Behavior in Group-Housed Pigs. Front Vet Sci 2021; 7:617634. [PMID: 33585605 PMCID: PMC7873924 DOI: 10.3389/fvets.2020.617634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Poor health is a risk factor for damaging behaviors, but the mechanisms behind this link are unknown. Injection of pigs with lipopolysaccharide (LPS) can be used to model aspects of poor health. Recent studies have shown that LPS-injected pigs perform more tail- and ear-directed behavior compared to saline-injected pigs and suggest that pro-inflammatory cytokines may play a role in these behaviors. The aims of this study were to test the effect of LPS on the social behavior of pigs and the neurotransmitters and modulators in their brains and to test the effect of a nonsteroidal anti-inflammatory drug on the effects of LPS. Fifty-two female pigs (11-12 weeks) were allocated to four treatments comprising two injections: saline-saline (SS), saline-LPS (SL), ketoprofen-saline (KS), and ketoprofen-LPS (KL). Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Social behavior was observed continuously in 10 × 15-min bouts between 8 a.m. and 5 p.m. 1 day before (baseline) and 1 and 2 days after the injection. Saliva was analyzed for cortisol and plasma for tryptophan and kynurenine. The frontal cortex, hippocampus, hypothalamus, and brain stem were sampled 72 h after the injection and analyzed for cytokines and monoamines. LPS activated the HPA axis and decreased the activity within 6 h after the injection. Ketoprofen lowered the effect of LPS on cortisol release and attenuated the behavioral signs of sickness in challenged pigs. SL pigs manipulated the ears of their pen mates significantly longer than SS pigs 2 days after the injection. LPS had no observed effect on IFN-γ, TNF-α, and IL-18. At 72 h after the injection, plasma tryptophan was depleted in SL pigs, and tryptophan and kynurenine concentrations in the frontal cortex and brain stem of SL pigs were significantly lower compared to those in SS pigs. Dopamine concentrations in the hypothalamus of SL pigs were significantly lower compared to those in SS pigs. Serotonin concentrations in the hypothalamus and noradrenaline concentrations in the hippocampus of SL pigs were significantly lower compared to those in KL pigs. In conclusion, LPS influenced the different neurotransmitters and modulators in the brain that are hypothesized to play an important role in the regulation of mood and behavior.
Collapse
Affiliation(s)
- Christina Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Andrew M Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Birgit Ranheim
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Judit Vas
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anna Valros
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian, United Kingdom
| | - Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Daniela Dulgheriu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
22
|
Absolute quantitative analysis of endogenous neurotransmitters and amino acids by liquid chromatography-tandem mass spectrometry combined with multidimensional adsorption and collision energy defect. J Chromatogr A 2021; 1638:461867. [PMID: 33485029 DOI: 10.1016/j.chroma.2020.461867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023]
Abstract
Considering that neurotransmitters (NTs) and amino acids (AAs) exert pivotal roles in various neurological diseases, global detection of these endogenous metabolites is of great significance for the treatment of nervous system diseases. Herein, a workflow that could cope with various challenges was proposed to establish an extendable all-in-one injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for analyzing these small molecular metabolites with high coverage. To obtain a qualified blank biological matrix for the preparation of standard curves and quality control samples, different absorption solvents, including activated carbon (AC), calcite (Cal) and montmorillonite (Mnt) were systematically evaluated for efficient absorption of endogenous substances with minimum residue. We also firstly proposed a "Collision Energy Defect (CED)" strategy to solve the huge difference of mass signal strength caused by different properties and concentrations of 11 NTs and 17 AAs. The quantitative results were validated by LC-MS/MS. Sensitivity, accuracy, and recovery meeting generally accepted bioanalytic guidelines were observed in a concentration span of at least 100 to 500 times for each analyte. Then the temporal changes of intracerebral and peripheral NTs and AAs in ischemic stroke model and sham operated rats were successfully produced and compared using the described method. All these results suggested that the currently developed assay was powerful enough to simultaneously monitor a large panel of endogenous small molecule metabolites, which was expected to be widely used in the research of various diseases mediated by NTs and AAs.
Collapse
|
23
|
Lee W, Um J, Ko KH, Lee YC, Chung BC, Hong J. UHPLC-MS/MS profiling of histidine and bile acid metabolism in human gastric fluid for diagnosis of gastric diseases. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBile acids (BAs) are synthesized in the liver and can mediate homeostasis and various metabolism processes in the human body. Their levels in the gastrointestinal tract are closely related to various gastrointestinal diseases. In particular, farnesoid X receptor activated by free BAs is associated with overexpression of histidine decarboxylase in tumorigenesis. Therefore, comprehensive profiling of histamine (HIST), histidine (His), and BAs in biological samples can provide insight into the pathological mechanisms of gastrointestinal diseases. However, development of an analytical platform to profile HIST, His, and BAs in biological samples has several challenges such as highly different polarities between acidic and basic targets, low physiological concentrations of analytes, and high matrix interference of biological samples. In this study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method combined with serial derivatization was developed to simultaneously determine HIST, His, and 5 BAs (cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and lithocholic acid) in human gastric fluid. In serial derivatization, benzoyl chloride (BzCl) and N,N-dimethylethylenediamine (DMED) were used to selectively derivatize amino and carboxyl groups of analytes, respectively. After serial derivatization, all target derivatives were determined using a reverse-phase C18 LC column and positive multiple reaction monitoring (MRM) mode, with reasonable chromatographic separation and sensitive MS detection. To accurately quantify target metabolites, 7 stable isotope-labeled internal standards were used. The MS/MS spectra of DMED and Bz derivatives exhibited specific fragments via loss of a neutral molecule (dimethylamine; 45 Da) and inductive cleavage (benzoyl; m/z 105) from protonated molecules, enabling selection of appropriate MRM transition ions for selective and sensitive detection. The developed method was validated with respect to limits of detection and quantification, linearity, precision, accuracy, stability, and matrix effect. The established method was successfully applied to human gastric fluid samples. This method provides reliable quantification of HIST, His, and BAs in human gastric fluid and will be helpful to understand pathophysiological mechanisms of gastric diseases.
Collapse
|
24
|
Zhou N, Huo F, Yue Y, Yin C. Specific Fluorescent Probe Based on "Protect-Deprotect" To Visualize the Norepinephrine Signaling Pathway and Drug Intervention Tracers. J Am Chem Soc 2020; 142:17751-17755. [PMID: 33000941 DOI: 10.1021/jacs.0c08956] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, increased social pressure and other factors have led to a surge in the number of people suffering from depression: studies show that quite a few people will experience major depression in their lifetime. Currently, it is widely believed that the internal cause of major depression is reduced levels of norepinephrine (NE) in brain tissue. Norepinephrine is very similar in structure and chemical properties to the other two catecholamine neurotransmitters, epinephrine (EP) and dopamine (DA). These three neurotransmitters are synthesized sequentially through enzymatic reactions in the biological system. Therefore, design of a norepinephrine-specific fluorescent probe is very challenging. In this work, we utilized a "protect-deprotect" strategy: longer emission wavelength cyanine containing water-soluble sulfonate was protected by a carbonic ester linking departing group thiophenol; the β-hydroxy ethyl amine moiety of norepinephrine may react with the carbonic ester via nucleophilic substitution and intramolecular nucleophilic cyclization to release the fluorophore. The process realized the specific red fluorescence detection of norepinephrine. Imaging of the norepinephrine nerve signal transduction stimulated by potassium ion was studied. More importantly, real-time fluorescence imaging of norepinephrine levels in the brain of rats stimulated by antidepressant drugs was studied for the first time.
Collapse
Affiliation(s)
- Na Zhou
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
25
|
Meng X, Bai H, Ma Q, Zhang P, Ma H, Deng Y. Broad targeted analysis of neurochemicals in rat serum using liquid chromatography tandem mass spectrometry with chemical derivatization. J Sep Sci 2020; 43:4006-4017. [PMID: 32866349 DOI: 10.1002/jssc.202000709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
Abstract
In this study, an efficient and sensitive assay for the detection of 42 polar neurochemicals, including neurotransmitters, amino acids, and biogenic amines, was established by combining reversed-phase liquid chromatography tandem mass spectrometry with chemical derivatization. An optimally designed benzoyl chloride derivatization was easily conducted in a one-pot reaction and stable neurochemical derivatives were obtained under mild conditions within 5 min (except for acetylcholine and melatonin). Derivatization also enabled the introduction of heavy labeling of the analytes through the use of labeled derivatization agents. Chromatography separation was performed on an HSS T3 column within 15 min by gradient elution. Multiple reaction monitoring acquisition mode enabled quantitation of neurochemicals with limits of detection of 0.05 to 11.63 nM and lower limits of quantitation of 0.09 to 46.50 nM in rat serum. The assay was well validated in terms of linearity and extraction recovery. Furthermore, the instrumental precision, specificity, matrix effect, accuracy, precision, stability, dilution effect, and carry-over effect were also validated. Finally, the overall efficacy of the assay was experimentally tested using serum from six Sprague-Dawley rats. The results demonstrated that the developed method is effective for broad targeted analysis of 42 neurochemicals in serum.
Collapse
Affiliation(s)
- Xianshuang Meng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Chinese Academy of Inspection and Quarantine, Beijing, 100176, P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, P. R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, P. R. China
| | - Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
26
|
Wang XN, Liu JQ, Shi ZQ, Sun FY, Liu LF, Xin GZ. Orthogonal label and label-free dual pretreatment for targeted profiling of neurotransmitters in enteric nervous system. Anal Chim Acta 2020; 1139:68-78. [PMID: 33190711 DOI: 10.1016/j.aca.2020.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023]
Abstract
Neurotransmitter (NT) abnormalities in the enteric nervous system have been reported as crucial roles to regulate the intestinal inflammation and gut immune homeostasis. Capturing quantitative changes at the NT metabolome provides an opportunity to develop an understanding of neuroimmune-mediated inflammation. Given the wide diversity of chemical characterizations in the NTs, only partial coverage of the NT metabolome can be simultaneously quantified in a single-run analysis. Herein, we summarized the distribution of functional groups of compound entries in the NT metabolome. Based on this information, an orthogonal dansyl-labeling and label-free dual pretreatment approach was separately designed to target phenol and amine NTs and tertiary amine and choline NTs. By combining the dansyl-labeled and unlabeled NTs within a single vial, a comprehensive and practical approach was optimized for quantifying high coverage of NT metabolome in a single-run analysis on the reversed-phase C18 column. Method validation indicated good linearity with correlation coefficients (R2) > 0.99, intra- and interday accuracy with relative error < ±20%, and precision with relative standard deviations of ≤15%. With this method, we could simultaneously monitor the alterations of cholines, amines, amino acids, tryptophan and phenylalanine biological pathways in dextran sulphate sodium-induced colitis mice. The measured levels of NT metabolome ranged from 0.0007 to 3.540 μg/mg in intestinal contents and 0.013-154.54 μg/mL in serum samples. The NT metabolism was disrupted by colitis, characterized by the changed NT levels in serum and excessive amino acid NTs accumulation in the intestinal contents. We envisage that the orthogonal approach is of great significance for the comprehensive determination of targeted metabolomics. NTs have the potential to be biomarkers for clinical metabolomics.
Collapse
Affiliation(s)
- Xin-Nan Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang, 330004, Jiangxi Province, China
| | - Zi-Qi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
27
|
Hou Y, He D, Ye L, Wang G, Zheng Q, Hao H. An improved detection and identification strategy for untargeted metabolomics based on UPLC-MS. J Pharm Biomed Anal 2020; 191:113531. [PMID: 32889345 DOI: 10.1016/j.jpba.2020.113531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Untargeted metabolomics provides a comprehensive investigation of metabolites and enables the discovery of biomarkers. Improvements in sample preparation, chromatographic separation and raw data processing procedure greatly enhance the metabolome coverage. In addition, database-dependent software identification is also essential, upon which enhances the identification confidence and benefits downstream biological analysis. Herein, we developed an improved detection and identification strategy for untargeted metabolomics based on UPLC-MS. In this work, sample preparation was optimized by considering chemical properties of different metabolites. Chromatographic separation was done by two different columns and MS detection was performed under positive and negative ion modes regarding to the different polarities of metabolites. According to the characteristics of the collected data, an improved identification and evaluation strategy was developed involving fragment simulation and MS/MS library search based on two commonly used databases, HMDB and METLIN. Such combination integrated information from different databases and was aimed to enhance identification confidence by considering the rationality of fragmentation, biological sources and functions comprehensively. In addition, decision tree analysis and lab-developed database were also introduced to assist the data processing and enhance the identification confidence. Finally, the feasibility of the developed strategy was validated by liver samples of obesity mice and controls. 238 metabolites were accurately detected, which was beneficial for the subsequent biomarker discovery and downstream pathway analysis. Therefore, the developed strategy remarkably facilitated the identification accuracy and the confirmation of metabolites in untargeted metabolomics.
Collapse
Affiliation(s)
- Yuanlong Hou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Dandan He
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China.
| | - Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China; Department of Pharmaceutical Analysis, College of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China.
| | - Haiping Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
28
|
Lee W, Um J, Hwang B, Lee YC, Chung BC, Hong J. Assessing the progression of gastric cancer via profiling of histamine, histidine, and bile acids in gastric juice using LC-MS/MS. J Steroid Biochem Mol Biol 2020; 197:105539. [PMID: 31730800 DOI: 10.1016/j.jsbmb.2019.105539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Bile acid (BA) imbalance may be directly associated with gastric cancer and indirectly influence stomach carcinogenesis via overexpression of histidine decarboxylase (HDC), which converts histidine (His) into histamine (HIST). Moreover, the progression of gastric cancer, could change the gut microbiome, including bacteria spp. that produce secondary BAs. Gastric juice has various metabolites that could indicate gastric cancer-related stomach conditions. Therefore, profiling of HIST, His, and BAs in gastric juice is crucial for understanding the etiological mechanisms of gastric cancer. We used a profiling method to simultaneously determine targeted metabolites in gastric juice using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We successfully analyzed 70 human gastric juice samples from patients with chronic superficial gastritis (CSG, n = 20), intestinal metaplasia (IM, n = 12), and gastric cancer (n = 38). Furthermore, we investigated the relevance between BA metabolism and gastric cancer. There were statistical differences in the metabolism of cholic acid (CA) into deoxycholic acid (DCA) based on the progression of CSG into IM and gastric cancer. Hence, the progression of gastric cancer might be related to the alterations in gut microbiome composition. We provide insight into the etiological mechanisms of the progression of gastric cancer and biomarkers to diagnose and treat gastric cancer.
Collapse
Affiliation(s)
- Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jinhee Um
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Boram Hwang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
29
|
Chen Y, Chen H, Shi G, Yang M, Zheng F, Zheng Z, Zhang S, Zhong S. Ultra-performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan metabolites in human plasma and its application to clinical study. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121745. [PMID: 31586884 DOI: 10.1016/j.jchromb.2019.121745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/11/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023]
Abstract
A sensitive, rapid and reliable ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to assay tryptophan (TRP) and its nine metabolites, including kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), xanthurenic acid (XA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), 3-indolepropionic acid (IPA) and 3-indoleacetic acid (IAA) in human plasma. Tryptophan-d5 (TRP-d5) and carbamazepine (CAR) were applied to the method quantification, where TRP-d5 was the corresponding internal standard (IS) for TRP and KYN, and CAR was the corresponding IS for the other analytes. Plasma samples were processed by deproteinisation with acetonitrile, followed by separation on an Acquity UPLC HSS T3 column by using gradient elution with 0.1% (v/v) formic acid in water and acetonitrile and detection by electrospray ionisation tandem mass spectrometry in positive ion multiple reaction monitoring (MRM) within a total run time of 5 min. The calibration ranges were 3-600 ng/mL for 3-HK, 1.5-300 ng/mL for 5-HT, 25-5000 ng/mL for KYN, 1-200 ng/mL for XA, 100-20,000 ng/mL for TRP, 5-1000 ng/mL for KYNA, 2-400 ng/mL for 3-HAA, 2.5-500 ng/mL for 5-HIAA and 10-2000 ng/mL for IAA and IPA. All intra- and inter-day analytical variations were acceptable. Matrix effect and recovery evaluation proved that matrix effect can be negligible, and sample preparation approach was effective. The newly developed method can simultaneously determine a panel of TRP metabolites and was successfully applied in the clinical study characterising TRP metabolism in healthy volunteers.
Collapse
Affiliation(s)
- Yun Chen
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou 515031, PR China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Hui Chen
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Fuchun Zheng
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, PR China
| | - Zhijie Zheng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shuyao Zhang
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou 515031, PR China; Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital Affiliated of Jinan University Medical College, Guangzhou 510220, PR China.
| | - Shilong Zhong
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou 515031, PR China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
30
|
Therapeutic Duration and Extent Affect the Effect of Moxibustion on Depression-Like Behaviour in Rats via Regulating the Brain Tryptophan Transport and Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7592124. [PMID: 31534466 PMCID: PMC6732624 DOI: 10.1155/2019/7592124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
Abstract
Moxibustion has been widely accepted as an alternative therapy for major depressive disease (MDD). However, the efficacy of moxibustion treatment on MDD is highly variable because of its irregular operation. This study was designed to investigate how therapeutic duration and extent influence the anti-depression effect of moxibustion and the underlying mechanism involved. Rats with lipopolysaccharide-induced depression-like behavior were treated by moxibustion treatment. The anti-depression effect was determined by forced swimming test and open field test. Tryptophan (Trp) transport and its metabolism to serotonin (5-HT) and kynurenine (Kyn) were evaluated to explore the anti-depression mechanism. The results showed that moxibustion treatment could alleviate the depression-like behavior in rats. Trp transport and 5-HT generation were significantly increased, and the Trp-Kyn pathway was moderately inhibited by moxibustion. Prolonged therapy could be beneficial to the anti-depression effect by promoting the brain uptake of Trp and shifting the Trp metabolism to 5-HT. An enhanced therapeutic extent could increase 5-HT generation. In conclusion, this study determined that the anti-depression effect of moxibustion involves improved Trp transport and metabolism. The therapeutic duration benefits antidepressant effects, but the complex influence of the therapeutic extent on moxibustion efficacy requires further studies.
Collapse
|
31
|
Development of an underivatized LC-MS/MS method for quantitation of 14 neurotransmitters in rat hippocampus, plasma and urine: Application to CUMS induced depression rats. J Pharm Biomed Anal 2019; 174:683-695. [PMID: 31288191 DOI: 10.1016/j.jpba.2019.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Sensitive and comprehensive measurement of systemic metabolites of tryptophan, phenylalanine and glutamate metabolism in biological samples is effective for understanding the pathogenesis of depression and other neurological diseases. Therefore, this study developed an underivatized liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous monitoring the 3 components of glutamate metabolism in rat hippocampus and 11 components of tryptophan and phenylalanine metabolism in rat hippocampus, plasma and urine, and applied it to investigate their changes in rats induced by chronic unpredictable mild stress (CUMS). The investigated analytes are as follows: tryptophan, serotonin, 5-hydroxyindoleacetic acid, kynurenine, kynurenic acid, xanthurenic acid, 3-hydroxyanthranilic acid, quinolinic acid, phenylalanine, tyrosine, tyramine, glutamate, glutamine and gamma-aminobutyric acid. The method was verified to be sensitive and effective with satisfactory linearity, accuracies in the range of 78.2%-120.4%, and precisions less than 17.8% for all identified analytes. A series of significant changes in CUMS-induced rats can be detected: tryptophan, serotonin and tyrosine levels decreased and quinolinic acid increased in both hippocampus and plasma. In addition, the kynurenine/tryptophan ratios increased in hippocampus and plasma, the kynurenic acid/quinolinic acid ratios of plasma and urine were significantly reduced. These findings demonstrated that the CUMS procedure could lead to the central and peripheral imbalances of tryptophan and phenylalanine metabolism. In conclusion, a LC-MS/MS method for simultaneous measurement of several neurotransmitters in rat hippocampus, plasma and urine was developed and successfully applied to investigation of the central and peripheral changes in CUMS-induced rats. The method would be expected to provide applicability to the study of the mechanisms of depression and other related diseases associated with these neurotransmitters.
Collapse
|
32
|
Xu Y, Sun L, Wang X, Zhu S, You J, Zhao XE, Bai Y, Liu H. Integration of stable isotope labeling derivatization and magnetic dispersive solid phase extraction for measurement of neurosteroids by in vivo microdialysis and UHPLC-MS/MS. Talanta 2019; 199:97-106. [DOI: 10.1016/j.talanta.2019.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
|
33
|
Zheng X, Hu M, Zang X, Fan Q, Liu Y, Che Y, Guan X, Hou Y, Wang G, Hao H. Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress. Brain Behav Immun 2019; 79:244-255. [PMID: 30790702 DOI: 10.1016/j.bbi.2019.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Psychological stress is well known to increase colitis susceptibility and promote relapse. Metabolic changes are commonly observed under psychological stress, but little is known how this relates to the progression of colitis. Here we show that kynurenic acid (KA) is an endogenous driver of social stress-exacerbated colitis via regulating the magnitude of NLRP3 inflammasome. Chronic social defeat stress (CSDS) in mice induced colonic accumulation of KA, and mice receiving KA during CSDS had defects in colonic NLRP3 inflammasome activation. Mechanistically, KA activated GPR35 signaling to induce autophagy-dependent degradation of NLRP3 in macrophages, thereby suppressing IL-1β production. Socially defeated mice with KA treatment displayed enhanced vulnerability to subsequent dextran sulphate sodium (DSS)-induced colonic injury and inflammatory disturbance, and this effect was reversed by autophagic inhibition that blocked the NLRP3-suppressive effect of KA. Thus, our research describes a mechanism by which KA/GPR35 signaling represses adaptive NLRP3 inflammasome activation to increase colitis susceptibility and suggests a potential metabolic target for the intervention of stress-related colonic disorder.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Miaomiao Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojie Zang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiling Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yali Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojing Guan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
35
|
Lefèvre A, Mavel S, Nadal-Desbarats L, Galineau L, Attucci S, Dufour D, Sokol H, Emond P. Validation of a global quantitative analysis methodology of tryptophan metabolites in mice using LC-MS. Talanta 2019; 195:593-598. [DOI: 10.1016/j.talanta.2018.11.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
|
36
|
Zhao XE, He Y, Zhu S, Xu Y, You J, Bai Y, Liu H. Stable isotope labeling derivatization and magnetic dispersive solid phase extraction coupled with UHPLC-MS/MS for the measurement of brain neurotransmitters in post-stroke depression rats administrated with gastrodin. Anal Chim Acta 2019; 1051:73-81. [DOI: 10.1016/j.aca.2018.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
|
37
|
Sørensen LK, Johannsen M. Sensitive determination of monoamine neurotransmitters, their main metabolites and precursor amino acids in different mouse brain components by liquid chromatography-electrospray tandem mass spectrometry after selective sample clean-up. Biomed Chromatogr 2019; 33:e4479. [PMID: 30597586 DOI: 10.1002/bmc.4479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
For the assessment of diets and supplements formulated for the treatment of phenylketonuria, a highly sensitive and selective method was developed and validated for the quantification of dopamine (DA), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), phenylalanine, tyrosine and tryptophan in mouse cerebellum, brain stem, hypothalamus, parietal cortex, anterior piriform cortex and bulbus olfactorius. Samples were extracted by deproteinization with acetonitrile, and the extracts were cleaned up by strong anion exchange and weak cation exchange applied sequentially. The substances were detected by rapid liquid chromatography tandem mass spectrometry. Matrix components were largely removed by the clean-up, resulting in low matrix effects. The lower limits of quantification for an extracted tissue mass of 100 mg were 0.3, 0.3, 0.2 and 2 ng/g for DA, 5-HT, 5-HIAA and DOPAC, respectively. The mean true extraction recoveries were 80-102%. The relative intra-laboratory reproducibility standard deviations were generally <11% at concentrations of 20-1000 ng/g for DA, 5-HT, 5-HIAA and DOPAC and 7% at concentrations of 5-50 μg/g for the amino acids. This method was successfully used in a phenylketonuria mice study including nearly 300 brain tissue samples and for small sample masses (for example, 2 mg of bulbus olfactorius).
Collapse
Affiliation(s)
- Lambert K Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Mogens Johannsen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
38
|
Bhuvanendran S, Kumari Y, Othman I, Shaikh MF. Amelioration of Cognitive Deficit by Embelin in a Scopolamine-Induced Alzheimer's Disease-Like Condition in a Rat Model. Front Pharmacol 2018; 9:665. [PMID: 29988493 PMCID: PMC6026638 DOI: 10.3389/fphar.2018.00665] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022] Open
Abstract
Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) is one of the active components (2.3%) found in Embelia ribes Burm fruits. As determined via in vitro AChE inhibition assay, embelin can inhibit the acetylcholinesterase enzyme. Therefore, embelin can be utilized as a therapeutic compound, after further screening has been conducted for its use in the treatment of Alzheimer's disease (AD). In this study, the nootropic and anti-amnesic effects of embelin on scopolamine-induced amnesia in rats were evaluated. Rats were treated once daily with embelin (0.3 mg/kg, 0.6 mg/kg, 1.2 mg/kg) and donepezil (1 mg/kg) intraperitoneally (i.p.) for 17 days. During the final 9 days of treatment, a daily injection of scopolamine (1 mg/kg) was administered to induce cognitive deficits. Besides that, behavioral analysis was carried out to assess the rats' learning and memory functions. Meanwhile, hippocampal tissues were extracted for gene expression, neurotransmitter, and immunocytochemistry studies. Embelin was found to significantly improve the recognition index and memory retention in the novel object recognition (NOR) and elevated plus maze (EPM) tests, respectively. Furthermore, embelin at certain doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) significantly exhibited a memory-enhancing effect in the absence of scopolamine, besides improving the recognition index when challenged with chronic scopolamine treatment. Moreover, in the EPM test, embelin treated rats (0.6 mg/kg) showed an increase in inflection ratio in nootropic activity. However, the increase was not significant in chronic scopolamine model. In addition, embelin contributed toward the elevated expression of BDNF, CREB1, and scavengers enzymes (SOD1 and CAT) mRNA levels. Next, pretreatment of rats with embelin mitigated scopolamine-induced neurochemical and histological changes in a manner comparable to donepezil. These research findings suggest that embelin is a nootropic compound, which also possesses an anti-amnesic ability that is displayed against scopolamine-induced memory impairment in rats. Hence, embelin could be a promising compound to treat AD.
Collapse
Affiliation(s)
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
39
|
Yao J, Lu H, Wang Z, Wang T, Fang F, Wang J, Yu J, Gao R. A sensitive method for the determination of the gender difference of neuroactive metabolites in tryptophan and dopamine pathways in mouse serum and brain by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:91-99. [PMID: 30005419 DOI: 10.1016/j.jchromb.2018.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/21/2022]
Abstract
Tryptophan (TRP) and dopamine (DA) pathways are of great importance for their related pathology and physiology. In the present study, a new reliable and sensitive analytical method was developed and validated for 12 neuroactive metabolites in TRP and DA pathways in mouse serum and brain by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method exhibited good sensitivity as the lower limit of detections ranged from 0.10 to 0.50 ng/ml and the lower limit of quantifications ranged from 0.20 to 2.00 ng/ml by derivatization with dansyl chloride (DNS-Cl) following solid phase extraction (SPE) on C18 cartridges. Good linearity (R2 > 0.99), intra-day precision (<9.8% in serum and <8.8% in brain), inter-day precision (<8.9% in serum and <8.5% in brain) and accuracy (90.3%-110.3% in serum and 86.5%-114.0% in brain) were obtained. The method was successfully applied in measuring 12 neuroactive metabolites in TRP and DA pathways in serum and brain samples of male and female mice to explore the differences between genders. As a result, DA and the turnover of DA to 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxtryptamine (5-HT) to TRP and 5-hydroxyindole acetic acid (5-HIAA) to 5-HT in the serum and norepinephrine (NE) in the brain were significantly different between genders.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China
| | - Haihua Lu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China
| | - Zhonghe Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China
| | - Tingwei Wang
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China
| | - Fangfang Fang
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China
| | - Jun Wang
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China.
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
40
|
Arnhard K, Pitterl F, Sperner-Unterweger B, Fuchs D, Koal T, Oberacher H. A validated liquid chromatography-high resolution-tandem mass spectrometry method for the simultaneous quantitation of tryptophan, kynurenine, kynurenic acid, and quinolinic acid in human plasma. Electrophoresis 2018; 39:1171-1180. [DOI: 10.1002/elps.201700400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Kathrin Arnhard
- Institute of Legal Medicine and Core Facility Metabolomics; Medical University of Innsbruck; Innsbruck Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics; Medical University of Innsbruck; Innsbruck Austria
| | - Barbara Sperner-Unterweger
- Department of Psychiatry; Psychotherapy and Psychosomatics; University Hospital of Psychiatry II; Medical University of Innsbruck; Innsbruck Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry; Biocenter; Medical University of Innsbruck; Innsbruck Austria
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
41
|
Forgacsova A, Galba J, Garruto RM, Majerova P, Katina S, Kovac A. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1073:154-162. [PMID: 29275172 DOI: 10.1016/j.jchromb.2017.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Neurotransmitters, small molecules widely distributed in the central nervous system are essential in transmitting electrical signals across neurons via chemical communication. Dysregulation of these chemical signaling molecules is linked to numerous neurological diseases including tauopathies. In this study, a precise and reliable liquid chromatography method was established with tandem mass spectrometry detection for the simultaneous determination of aspartic acid, asparagine, glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-l-aspartic acid, pyroglutamic acid, acetylcholine and choline in human brain tissue. The method was successfully applied to the analysis of human brain tissues from three different tauopathies; corticobasal degeneration, progressive supranuclear palsy and parkinsonism-dementia complex of Guam. Neurotransmitters were analyzed on ultra-high performance chromatography (UHPLC) using an ethylene bridged hybrid amide column coupled with tandem mass spectrometry (MS/MS). Identification and quantification of neurotransmitters was carried out by ESI+ mass spectrometry detection. We optimized sample preparation to achieve simple and fast extraction of all nine analytes. Our method exhibited an excellent linearity for all analytes (all coefficients of determination >0.99), with inter-day and intra-day precision yielding relative standard deviations 3.2%-11.2% and an accuracy was in range of 92.6%-104.3%. The present study, using the above method, is the first to demonstrate significant alterations of brain neurotransmitters caused by pathological processes in the brain tissues of patient with three different tauopathies.
Collapse
Affiliation(s)
- Andrea Forgacsova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy of Comenius University, Odbojarov 10, 832 32, Bratislava, Slovak Republic.
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy of Comenius University, Odbojarov 10, 832 32, Bratislava, Slovak Republic; AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovak Republic
| | - Ralph M Garruto
- Graduate Program in Biomedical Anthropology, Departments of Anthropology and Biological Sciences, Binghamton University, Binghamton, NY, USA; Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic; AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovak Republic
| | - Stanislav Katina
- Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic; Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovak Republic; AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovak Republic
| |
Collapse
|
42
|
Szeitz A, Bandiera SM. Analysis and measurement of serotonin. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- András Szeitz
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| | - Stelvio M. Bandiera
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
43
|
Pavlova T, Vidova V, Bienertova-Vasku J, Janku P, Almasi M, Klanova J, Spacil Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal Chim Acta 2017; 987:72-80. [DOI: 10.1016/j.aca.2017.08.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
|
44
|
An UHPLC-MS/MS method for simultaneous determination of quercetin 3- O -rutinoside, kaempferol 3- O -rutinoside, isorhamnetin 3- O -rutinoside, bilobalide and ligustrazine in rat plasma, and its application to pharmacokinetic study of Xingxiong injection. Chin J Nat Med 2017; 15:710-720. [DOI: 10.1016/s1875-5364(17)30101-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/22/2022]
|
45
|
Belle L, Zhou V, Stuhr KL, Beatka M, Siebers EM, Knight JM, Lawlor MW, Weaver C, Hashizume M, Hillard CJ, Drobyski WR. Host interleukin 6 production regulates inflammation but not tryptophan metabolism in the brain during murine GVHD. JCI Insight 2017; 2:93726. [PMID: 28724796 DOI: 10.1172/jci.insight.93726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Graft-versus-host disease (GVHD) induces pathological damage in peripheral target organs leading to well-characterized, organ-specific clinical manifestations. Patients with GVHD, however, can also have behavioral alterations that affect overall cognitive function, but the extent to which GVHD alters inflammatory and biochemical pathways in the brain remain poorly understood. In the current study, we employed complementary murine GVHD models to demonstrate that alloreactive donor T cells accumulate in the brain and affect a proinflammatory cytokine milieu that is associated with specific behavioral abnormalities. Host IL-6 was identified as a pivotal cytokine mediator, as was host indoleamine 2,3-dioxygenase (IDO-1), which was upregulated in GVHD in an IL-6-dependent manner in microglial cells and was accompanied by dysregulated tryptophan metabolism in the dorsal raphe nucleus and prefrontal cortex. Blockade of the IL-6 signaling pathway significantly reduced donor T cell accumulation, inflammatory cytokine gene expression, and host microglial cell expansion, but did not reverse GVHD-induced tryptophan metabolite dysregulation. Thus, these results indicate that inhibition of IL-6 signaling attenuates neuroinflammation, but does not reverse all of the metabolic abnormalities in the brain during GVHD, which may also have implications for the treatment of neurotoxicity occurring after other T cell-based immune therapies with IL-6-directed approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Casey Weaver
- University of Alabama Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
46
|
Han X, Min M, Wang J, Bao Z, Fan H, Li X, Adelusi TI, Zhou X, Yin X. Quantitative profiling of neurotransmitter abnormalities in brain, cerebrospinal fluid, and serum of experimental diabetic encephalopathy male rat. J Neurosci Res 2017; 96:138-150. [DOI: 10.1002/jnr.24098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaowen Han
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| | - Mengjun Min
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| | - Juan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| | - Zejun Bao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| | - Hongbin Fan
- Department of Neurology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Xinyu Li
- Department of Neurology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University; Xuzhou China
| |
Collapse
|
47
|
Wang H, Zhou J, Liu QZ, Wang LL, Shang J. Simvastatin and Bezafibrate ameliorate Emotional disorder Induced by High fat diet in C57BL/6 mice. Sci Rep 2017; 7:2335. [PMID: 28539670 PMCID: PMC5443827 DOI: 10.1038/s41598-017-02576-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
High fat diet (HFD)-induced metabolic disorders may lead to emotional disorders. This study aimed to explore the effect of simvastatin (SMV) and bezafibrate (BZ) on improving HFD-induced emotional changes, and tried to identify their different mechanisms. The intraperitoneal glucose tolerance test (IPGTT) was used to evaluate glucose control ability; and behavior tests including open field tests (OFT), forced swimming tests (FST), tail suspension tests (TST) and sucrose preference (SPT), were then performed to evaluate emotional changes. Serum samples were collected for the LC-MS based metabolomics analysis to explore the emotional-related differential compounds; we then evaluated the effect of the drugs. The abnormal serum metabolic profiling and emotional changes caused by HFD in mice was alleviated by SMV treatment, whereas BZ only affected the emotional disorder. The improvement of cannabinoid analogues and then produced influences on the endocannabinoid system, which may be a potential mechanism SMV action. BZ promoted tryptophan-serotonin pathway and inhibited tryptophan-kynurenine pathway, which may be its mechanism of action. Here, we proposed a shed light on the biological mechanisms underlying the observed effects, and identified an important drug candidate for the treatment of emotional disorders induced by HFD.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiong Zhen Liu
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai Province, P.R. China
| | - Lu Lu Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
48
|
Xu T, Feng G, Zhao B, Zhao J, Pi Z, Liu S, Song F, Liu Z. A non-target urinary and serum metabolomics strategy reveals therapeutical mechanism of Radix Astragali on adjuvant-induced arthritis rats. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:94-101. [DOI: 10.1016/j.jchromb.2017.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 01/20/2023]
|
49
|
Analysis of amino acid and monoamine neurotransmitters and their metabolites in rat urine of Alzheimer’s disease using in situ ultrasound-assisted derivatization dispersive liquid-liquid microextraction with UHPLC–MS/MS. J Pharm Biomed Anal 2017; 135:186-198. [DOI: 10.1016/j.jpba.2016.11.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/25/2022]
|
50
|
Liu XG, Lu X, Wang JX, Wu B, Lin L, Wang HY, Guo RZ, Li P, Yang H. Combining paired analytical metabolomics and common garden trial to study the metabolism and gene variation of Ginkgo biloba L. cultivated varieties. RSC Adv 2017. [DOI: 10.1039/c7ra06229j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Paired analytical targeted metabolomics and common garden trial were combined to uncover the gene basis for plant secondary metabolite synthesis.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xu Lu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ji-Xin Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Bin Wu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Lin Lin
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hui-Ying Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ru-Zhou Guo
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hua Yang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|