1
|
Xiao Q, Li J, Yang M, Li H, Fang Y, Huang S. A bimetallic PtAu-modified carbon fiber electrochemical sensor for simultaneous and highly sensitive detection of catechol and hydroquinone in environmental water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39417700 DOI: 10.1039/d4ay01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this study, we report the development of a novel electrochemical sensor capable of the simultaneous detection of catechol (CC) and hydroquinone (HQ) through differential pulse voltammetry. The sensor is constructed using carbon fiber (CF) that has been intricately modified with bimetallic PtAu nanoparticles. The fabrication process involves subjecting CF to ultrasound treatment in an acidic mixture, resulting in the formation of activated carbon fiber (ACF). This activation step not only enhances surface roughness but also facilitates subsequent modification, ensuring the stability of the material. Bimetallic PtAu nanoparticles are then uniformly deposited onto the ACF surface through co-deposition from a metal precursor solution. The modified ACF, adorned with bimetallic PtAu nanoparticles, exhibits excellent conductivity and efficiently catalyzes both CC and HQ in a 10 mM phosphate-buffered saline solution at pH 7.0, thereby enabling their simultaneous detection. Under optimized experimental conditions, this electrochemical sensor achieves impressive detection limits of 0.019 μM for CC and 0.28 μM for HQ within the same concentration range of 0.5-50 μM, respectively. The practicality of the sensor is further demonstrated through recovery experiments using real water samples. This electrochemical sensor, with its superior performance and versatility, shows great potential for applications in analytical chemistry and environmental monitoring.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jiawen Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Mingli Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Huihao Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
2
|
Cao W, Guo T, Wang J, Ding Y, Fan B, Liu D. Hierarchical N-doped porous carbon scaffold Cu/Co-oxide with enhanced electrochemical sensing properties for the detection of glucose in beverages and ascorbic acid in vitamin C tablets. Food Chem 2024; 436:137750. [PMID: 37862993 DOI: 10.1016/j.foodchem.2023.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
This research focuses on the development of a highly efficient electrocatalyst, CuxO/NPC@Co3O4/NPC-10-7, for detecting glucose and ascorbic acid. In a 0.1 M NaOH solution, the modified electrode exhibits a sensitivity of 3314.29 μA mM-1 cm-2 for glucose detection. The linear range for ascorbic acid sensing is 0.5 μM - 23.332 mM, with a detection limit as low as 0.24 μM. In a 0.1 M PBS solution, the linear range for ascorbic acid detection extends to 43.328 mM, which represents the best performance reported to date by chronoamperometry. Moreover, the electrode demonstrates high accuracy, with a recovery rate of 96.80 % - 103.60 % for glucose detection and a recovery rate of 95.25 % - 104.83 % for ascorbic acid detection. These results suggest that the CuxO/NPC@Co3O4/NPC-10-7 modified electrode shows significant potential for practical applications in food detection.
Collapse
Affiliation(s)
- Wenbin Cao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Tong Guo
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jialiang Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yigang Ding
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Baoming Fan
- School of Materials and Mechanical Engineering, Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Dong Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China; School of Materials and Mechanical Engineering, Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
3
|
Sahu Y, Patel R, Singh AK, Singh S, Sahu V, Susan MABH. Highly Fluorescent ZnO Composite of N-doped Carbon Dots From Dregea Volubilis for Fluorometric Determination of Glucose in Biological Samples. J Fluoresc 2024:10.1007/s10895-023-03538-z. [PMID: 38180585 DOI: 10.1007/s10895-023-03538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
A nano-sensor based on N-doped carbon dots (NCDs)@ZnO (NCZ) composite was fabricated and efficacy for detecting glucose from human blood and urine samples in a straightforward manner was examined. The composite was prepared following a green hydrothermal method under ambient condition using a novel plant material, Dregea volubilis fruit and structural and optical properties were evaluated using standard techniques. The composite exhibited excellent characteristics including good photostability, biocompatibility, low toxicity, and strong fluorescence, with a decent quantum yield of up to 59%. The NCZ composite has been very sensitive and could selectively detect glucose in urine and blood samples. Selective glucose quenching was efficacious at different concentrations of glucose (1-6 mM) and in the pH range of 7-8, limit of detection was 0.25 mM. The potential uses of carbon-based materials have grown, thanks to the excellent sensing/detection capabilities of the NCZ composite as well as the capacity to prevent nanoparticle aggregation, opening up new possibilities for the development of environmentally benign nano-sensors.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous, College, Durg, Chhattisgarh, 491001, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg, Chhattisgarh, 491001, India
| | - Ajaya K Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous, College, Durg, Chhattisgarh, 491001, India.
- School of Chemistry & Physics, University of KwaZulu-Natal, Durban, South Africa.
| | - S Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous, College, Durg, Chhattisgarh, 491001, India
| | - Vinayak Sahu
- Department of Chemistry, Govt. Model College Raipur, Raipur, Chhattisgarh, 492001, India
| | - Md Abu Bin Hasan Susan
- Department of Chemistry and Dhaka University Nanotechnology Center (DUNC), University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
4
|
Su X, Zhang Y, Jia Z, Zhang S, Gao Y, Huang Y, Xu C, Liu E. In-situ synthesis of metasequoia-leaf-like Cu/Cu2O/Ni(OH)2 on a glassy carbon electrode for efficient non-enzymatic glucose sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Chen Y, Zhang J, Ding Z, Chen L, Wang H, Zhang M, Feng X. Three-Phases Interface Induced Local Alkalinity Generation Enables Electrocatalytic Glucose Oxidation in Neutral Electrolyte. Front Bioeng Biotechnol 2022; 10:909187. [PMID: 35573243 PMCID: PMC9096097 DOI: 10.3389/fbioe.2022.909187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Electrocatalytic glucose oxidation is crucial to the development of non-enzymatic sensors, an attractive alternative for enzymatic biosensors. However, due to OH- consumption during the catalytic process, non-enzymatic detection generally requires electrolytes having an alkaline pH value, limiting its practical application since biofluids are neutral. Herein, via interfacial microenvironment design, we addressed this limitation by developing a non-enzymatic sensor with an air-solid-liquid triphase interface electrodes that synergistically integrates the functions of local alkalinity generation and electrocatalytic glucose oxidation. A sufficiently high local pH value was achieved via oxygen reduction reaction at the triphase interface, which consequently enabled the electrochemical oxidation (detection) of glucose in neutral solution. Moreover, we found that the linear detection range and sensitivity of triphase non-enzymatic sensor can be tuned by changing the electrocatalysts of the detection electrode. The triphase electrode architecture provides a new platform for further exploration and promotes practical application of non-enzymatic sensors.
Collapse
Affiliation(s)
- Yangru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Haili Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Man Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.,Innovation Center for Chemical Science, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Men YL, Liu P, Liu Y, Meng XY, Pan YX. Noble-Metal-Free WO 3-Decorated Carbon Nanotubes with Strong W–C Bonds for Boosting an Electrocatalytic Glucose Oxidation Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yu-Long Men
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xin-Yu Meng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yun-Xiang Pan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Jafari SM, Masoum S, Tafreshi SAH. A microlagal-based carbonaceous sensor for enzymatic determination of glucose in blood serum. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Qu Z, Li S, Feng W, Kan S, Gao X, Guo A, Li H, Deng L, Huang S, Zhao Y, Chen W. Porous Carbon Substrate Improving the Sensing Performance of Copper Nanoparticles Toward Glucose. NANOSCALE RESEARCH LETTERS 2021; 16:127. [PMID: 34357468 PMCID: PMC8346618 DOI: 10.1186/s11671-021-03579-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
An accurate sensor to rapidly determine the glucose concentration is of significant importance for the human body health, as diabetes has become a very high incidence around the world. In this work, copper nanoparticles accommodated in porous carbon substrates (Cu NP@PC), synthesized by calcinating the filter papers impregnated with copper ions at high temperature, were designed as the electrode active materials for electrochemical sensing of glucose. During the formation of porous carbon, the copper nanoparticles spontaneously accommodated into the formed voids and constituted the half-covered composites. For the electrochemical glucose oxidation, the prepared Cu NP@PC composites exhibit much superior catalytic activity with the current density of 0.31 mA/cm2 at the potential of 0.55 V in the presence of 0.2 mM glucose. Based on the high electrochemical oxidation activity, the present Cu NP@PC composites also exhibit a superior glucose sensing performance. The sensitivity is determined to be 84.5 μA /(mmol.L) with a linear range of 0.01 ~ 1.1 mM and a low detection limit (LOD) of 2.1 μmol/L. Compared to that of non-porous carbon supported copper nanoparticles (Cu NP/C), this can be reasonable by the improved mass transfer and strengthened synergistic effect between copper nanoparticles and porous carbon substrates.
Collapse
Affiliation(s)
- Zewen Qu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Shi Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Wenshuai Feng
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Shuting Kan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xiaohui Gao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China.
| | - Aimin Guo
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Hongjian Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Lianwen Deng
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Shengxiang Huang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Yan Zhao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
| | - Wei Chen
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083, Hunan, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Niversity of Science and Technology of China, Hefei, 230029, Anhui, China
| |
Collapse
|
9
|
Jing W, Kong F, Tian S, Yu M, Li Y, Fan L, Li X. Glucose oxidase decorated fluorescent metal-organic frameworks as biomimetic cascade nanozymes for glucose detection through the inner filter effect. Analyst 2021; 146:4188-4194. [PMID: 34057168 DOI: 10.1039/d1an00847a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metal-organic frameworks (MOFs) as a peroxidase mimic have been integrated with glucose oxidase (GOx) to achieve one-step glucose detection. However, limited by the loading amount of GOx, the performances of the developed glucose sensing assays still remain to be further improved to meet sensing requirements in diverse biological samples. Herein, with Fe3+ as the metal ion and 2-amino-benzenedicarboxylic acid as a ligand, a fluorescent Fe-based organic framework (NH2-MIL-101) with peroxidase-like activity was synthesized. Due to the large specific surface area (791.75 m2 g-1), 68 μg mg-1 GOx could be immobilized through the amidation coupling reaction, and the product was designated GOx@NH2-MIL-101. With OPD as the substrate, Gox@NH2-MIL-101 achieved highly efficient biomimetic cascade catalysis for one-step glucose detection through an inner filter effect: upon reacting with glucose, GOx@NH2-MIL-101 catalytically oxidized glucose using dissolved O2, and the produced H2O2 concurrently oxidized o-phenylenediamine (OPD) to oxidized OPD (oxOPD), accompanied by the fluorescence of GOx@NH2-MIL-101 at 456 nm being quenched and that of oxOPD at 565 nm being enhanced. With the fluorescent ratio F565/F456 used as a readout signal, a wide linear range of 0.1-600 μM was obtained, and the detection limit was 0.0428 μM. Based on the excellent selectivity and high stability of GOx@NH2-MIL-101, the developed assay was successfully applied to glucose detection in human serum and saliva, presenting potential applications in diverse biological samples and even medical diagnosis.
Collapse
Affiliation(s)
- Wenjie Jing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Fanbo Kong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Sijia Tian
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Mincong Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Khairullina EM, Panov MS, Andriianov VS, Ratautas K, Tumkin II, Račiukaitis G. High rate fabrication of copper and copper-gold electrodes by laser-induced selective electroless plating for enzyme-free glucose sensing. RSC Adv 2021; 11:19521-19530. [PMID: 35479213 PMCID: PMC9033606 DOI: 10.1039/d1ra01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/23/2021] [Indexed: 12/31/2022] Open
Abstract
In the current study, the method of Selective Surface Activation Induced by Laser (SSAIL) was used for the fabrication of metallic and bimetallic structures based on copper and gold on the surface of glass and glass-ceramics. It was shown that the fabricated electrodes are suitable for non-enzymatic detection of biologically essential analytes such as glucose. The implemented approach allows performing high-rate metallization of various dielectrics. Voltammetric methods were applied to evaluate the electrocatalytic activity of the obtained structures, which were used as working electrodes. The most promising results were revealed by copper–gold electrode structures manufactured on glass-ceramics. For these structures, sensitivity towards glucose sensing was 3060 μA mM−1 cm−2. The linear range of glucose detection varied between 0.3 and 1000 μM. Besides, the manufactured electrodes exhibited high selectivity and long-term stability. In the current study, the method of Selective Surface Activation Induced by Laser (SSAIL) was used for the fabrication of metallic and bimetallic structures based on copper and gold on the surface of glass and glass-ceramics.![]()
Collapse
Affiliation(s)
- Evgeniia M Khairullina
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Maxim S Panov
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Vladimir S Andriianov
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Karolis Ratautas
- Center for Physical Sciences and Technology 231 Savanoriu ave. Vilnius 02300 Lithuania
| | - Ilya I Tumkin
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Gediminas Račiukaitis
- Center for Physical Sciences and Technology 231 Savanoriu ave. Vilnius 02300 Lithuania
| |
Collapse
|
11
|
Rajeev R, Datta R, Varghese A, Sudhakar Y, George L. Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Synthesis of Au–Cu Alloy Nanoparticles as Peroxidase Mimetics for H2O2 and Glucose Colorimetric Detection. Catalysts 2021. [DOI: 10.3390/catal11030343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The detection of hydrogen peroxide (H2O2) is essential in many research fields, including medical diagnosis, food safety, and environmental monitoring. In this context, Au-based bimetallic alloy nanomaterials have attracted increasing attention as an alternative to enzymes due to their superior catalytic activity. In this study, we report a coreduction synthesis of gold–copper (Au–Cu) alloy nanoparticles in aqueous phase. By controlling the amount of Au and Cu precursors, the Au/Cu molar ratio of the nanoparticles can be tuned from 1/0.1 to 1/2. The synthesized Au–Cu alloy nanoparticles show good peroxidase-like catalytic activity and high selectivity for the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB, colorless) to TMB oxide (blue). The Au–Cu nanoparticles with an Au/Cu molar ratio of 1/2 exhibit high catalytic activity in the H2O2 colorimetric detection, with a limit of detection of 0.141 μM in the linear range of 1–10 μM and a correlation coefficient R2 = 0.991. Furthermore, the Au–Cu alloy nanoparticles can also efficiently detect glucose in the presence of glucose oxidase (GOx), and the detection limit is as low as 0.26 μM.
Collapse
|
13
|
Li Y, Li X, Tan H, Huang ZZ. A turn-on fluorescent assay for glucose detection based on carbon dots/manganese dioxide assembly. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zhang X, Li Y, Zheng J. Facile synthesis of Pt-Cu bimetallic catalyst on reduced graphene oxide nanosheets and its application for electrochemical sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
A Non-Enzymatic Sensor Based on Fc-CHIT/CNT@Cu Nanohybrids for Electrochemical Detection of Glucose. Polymers (Basel) 2020; 12:polym12102419. [PMID: 33092222 PMCID: PMC7589752 DOI: 10.3390/polym12102419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2022] Open
Abstract
Herein, a composite structure, consisting of Cu nanoparticles (NPs) deposited onto carbon nanotubes and modified with ferrocene-branched chitosan, was prepared in order to develop a nonenzymatic electrochemical glucose biosensor ferrocene-chitosan/carbon nanotube@ Cu (Fc-CHIT/CNT@Cu). The elemental composition of the carbon nanohybrids, morphology and structure were characterized by various techniques. Electrochemical impedance spectroscopy (EIS) was used to study the interfacial properties of the electrodes. Cyclic voltammetry (CV) and chronoamperometry methods in alkaline solution were used to determine glucose biosensing properties. The synergy effect of Cu NPs and Fc on current responses of the developed electrode resulted in good glucose sensitivity, including broad linear detection between 0.2 mM and 22 mM, a low detection limit of 13.52 μM and sensitivity of 1.256 μA mM−1cm−2. Moreover, the modified electrode possessed long-term stability and good selectivity in the presence of ascorbic acid, dopamine and uric acid. The results indicated that this inexpensive electrode had potential application for non-enzymatic electrochemical glucose detection.
Collapse
|
16
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
17
|
Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection. J Colloid Interface Sci 2020; 583:310-320. [PMID: 33007587 DOI: 10.1016/j.jcis.2020.09.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Transition metal doped carbon materials are recognized as promising sensing platforms for glucose detection. Herein, a simple strategy involving crystallinity, nanostructure engineering, and pyrolysis was developed for constructing well-defined Ni nanoparticle embedded on nanoporous carbon nanorods (Ni/NCNs). A three-dimensional nickel-based metal-organic framework (Ni-MOF) was used as both a self-sacrificing template and precursor. Due to the synergistic effects between the uniformly dispersed Ni nanoparticles and the nanoporous carbon matrix, the as-prepared Ni/NCNs exhibited remarkable electrochemical activity. The fabricated Ni/NCNs glucose sensor showed excellent electrocatalytic performance with ultra-low limit of detection, wide linear detection ranges, fast response times (within 1.6 s), superior stability, and anti-interference characteristics. Moreover, the Ni/NCNs sensing platform was successfully applied to analyze glucose concentrations in human blood samples. These results showed that Ni/NCNs hold potential applications in developing enzyme-free glucose sensors.
Collapse
|
18
|
Xu X, Lv H, Sun L, Song P, Liu B, Chen X. An Electrochemical Non-Enzymatic Glucose Sensor Based on Ultrathin PdAg Single-Crystalline Nanowires. Chempluschem 2020; 85:970-976. [PMID: 32410371 DOI: 10.1002/cplu.202000141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Indexed: 11/05/2022]
Abstract
Electrochemical non-enzymatic sensors have great potential for prompt and efficient detection of glucose. Herein, a novel, highly efficient electrochemical non-enzymatic glucose sensor is reported that is based on ultrathin PdAg single-crystalline nanowires (NWs). Ultrathin PdAg NWs are fabricated by a facile one-pot aqueous synthesis through an in situ growth strategy with an amphiphilic surfactant as the template. A comparison of the activities of PdAg NWs with different compositional ratios and nanostructures shows that ultrathin Pd2 Ag1 NWs hold the best performance toward electrochemical detection of glucose with an operable sensitivity of 11.6 μA mM-1 cm-2 and a linear response range of 0.1-8 mM. Structural and compositional features of the Pd2 Ag1 NWs allow an excellent selectivity, rapid response, and good long-term stability for electrochemical glucose sensor. This work thus provides a new possibility for the rational design and synthesis of noble-metal-based nanomaterials for non-enzymatic sensors.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Hao Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
19
|
Du P, Niu Q, Chen J, Chen Y, Zhao J, Lu X. “Switch-On” Fluorescence Detection of Glucose with High Specificity and Sensitivity Based on Silver Nanoparticles Supported on Porphyrin Metal–Organic Frameworks. Anal Chem 2020; 92:7980-7986. [DOI: 10.1021/acs.analchem.0c01651] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peiyao Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Qixia Niu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Yang Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Jie Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
20
|
Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose. Mikrochim Acta 2020; 187:276. [PMID: 32307592 DOI: 10.1007/s00604-020-04246-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023]
Abstract
A bimetallic nanostructure of Co/Cu for the non-enzymatic determination of glucose is presented. The heterostructure includes cobalt thin film on a porous array of Cu nanocolumns. Glancing angle deposition (GLAD) method was used to grow Cu nanocolumns directly on a fluorine-doped tin oxide (FTO) substrate. Then a thin film of cobalt was electrodeposited on the Cu nanostructures. Various characterization studies were performed in order to define the optimum nanostructure for the determination of glucose. The results showed remarkable boosting of the electrocatalytic activity of Co/Cu bimetallic structure compare to the responses achieved by the monometallic structures of Co or Cu. The sensor showed two linear response ranges for the determination of glucose at 0.55 V in 0.1 M NaOH, from 5 μM-1 mM and 2-9 mM. The sensitivity was 1741 (μA mM-1 cm-2) and 626 (μA mM-1 cm-2), respectively, while the detection limit for a signal-to-noise ratio of 3 was found to be 0.4 μM. The sensor exhibited excellent selectivity and was successfully applied to the determination of glucose in real human blood serum samples. Graphical Abstract Schematic representation of fabrication process of the glucose sensor of Co (Cobalt)/Cu (Copper) on Fluorine doped Tin Oxide (FTO). The current voltage plots show higher electrooxidation activity of the bimetallic nanostructure of Co/Cu/FTO relative to the bare Co/FTO.
Collapse
|
21
|
Huang H, Zhang W, Lei L, Bai J, Li J, Song D, Zhao J, Li J, Li Y. One-step cascade detection of glucose at neutral pH based on oxidase-integrated copper( ii) metal–organic framework composites. NEW J CHEM 2020. [DOI: 10.1039/d0nj02550j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An integrated system was fabricated from a copper(ii) metal–organic framework (Cu-MOF) and glucose oxidase (GOx) for one-step cascade determination of glucose at neutral pH (pH = 7.0).
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Wenjing Zhang
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Lulu Lei
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Juan Bai
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Jiao Li
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Donghui Song
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Jingqi Zhao
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Jiali Li
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Yongxin Li
- College of New Energy and Environment
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
22
|
Qiao Y, Zhang R, He F, Hu W, Cao X, Jia J, Lu W, Sun X. A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj04150e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A glucose sensor based on conductive Ni-MOF nanosheet arrays/CC exhibits a fast response time, a low detection limit, a high sensitivity, and it can also be applied for the detection of glucose in human serum samples.
Collapse
Affiliation(s)
- Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Rui Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Fangyuan He
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Wenli Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xiaowei Cao
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
23
|
Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun (Camb) 2020; 56:14553-14569. [DOI: 10.1039/d0cc05650b] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the development of electrocatalysts for non-enzymatic glucose detection. The sensing mechanism and influencing factors are discussed, and the perspectives and challenges are also addressed.
Collapse
Affiliation(s)
- Ming Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haitao Zhao
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
24
|
Han J, Miao L, Song Y. Preparation of co-Co 3 O 4 /carbon nanotube/carbon foam for glucose sensor. J Mol Recognit 2019; 33:e2820. [PMID: 31835276 DOI: 10.1002/jmr.2820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022]
Abstract
Co-Co3 O4 /carbon nanotube/carbon foam (Co-Co3 O4 /CNT/CF) nanocomposites were prepared by soaking melamine foam into a solution of Co(NO3 )2 ·6H2 O, followed by calcination in N2 and air in sequence. The obtained Co-Co3 O4 /CNT/CF nanocomposites were characterized with scanning electron microscopy and cyclic voltammetry. It was found that Co3 O4 nanoparticles were grown on the external of CF successfully, while CNTs were grown on the surfaces of CF in a large amount, which further improved the electrical conductivity of the. The prepared Co-Co3 O4 /CNT/CF nanocomposites were then used to construct nonenzymatic sensor to detect glucose in alkaline solution. The sensor showed detection range from 1.2 μM to 2.29 mM with a detection limit of 0.4 μM (S/N =3) and a high sensitivity of 637.5 μA-1 cm-2 . The developed sensor also showed an instant response, favorable reproducibility, and high selectivity. The results attest that Co-Co3 O4 /CNT/CF composites have great potential in the development of nonenzymatic sensors for glucose.
Collapse
Affiliation(s)
- Jiajia Han
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Longfei Miao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
25
|
Chen C, Xu H, Shang H, Jin L, Song T, Wang C, Gao F, Zhang Y, Du Y. Ultrafine PtCuRh nanowire catalysts with alleviated poisoning effect for efficient ethanol oxidation. NANOSCALE 2019; 11:20090-20095. [PMID: 31612887 DOI: 10.1039/c9nr05954g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a green power source, direct ethanol fuel cells (DEFCs) have broad application prospects. However, most catalysts of DEFCs still exhibit defects, such as the difficulty of C-C bond cleavage, serious CO poisoning and limited catalytic activity. Here, we report ultrafine PtCuRh nanowires (NWs) with outstanding anti-CO-poisoning properties and enhanced activity. The average diameter of the ultrafine PtCuRh NWs is about 1.49 nm, effectively improving the atomic utilization efficiency (UE) of platinum. Owing to the combination of an ultrafine nanostructure, good electronic interaction and the high UE of Pt atoms, the optimized ultrafine PtCuRh NWs/C display superior electrocatalytic activity and stability compared with commercial Pt/C for the ethanol oxidation reaction (EOR). More importantly, further electrochemical results demonstrate that the incorporation of Rh is beneficial for enhancing the antipoisoning capability for some CO-like intermediates. Meanwhile, the synthetic method in this report is robust and universal, and can also be applied to the synthesis of ultrafine trimetallic PtCuPd and PtCuIr nanowires.
Collapse
Affiliation(s)
- Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
26
|
Abstract
Platinum nanomaterials provide an excellent catalytic activity for diverse applications and given its high cost, platinum alloys and bi-metallic nanomaterials with transition metals are appealing for low cost and catalytic specificity. Here the synthesis of hierarchically porous Pt–Cu macrobeams and macrotubes templated from Magnus’s salt derivative needles is demonstrated. The metal composition was controlled through the combination of [PtCl4]2− with [Pt(NH3)4]2+ and [Cu(NH3)4]2+ ions in different ratios to form salt needle templates. Polycrystalline Pt–Cu porous macrotubes and macrobeams 10’ s–100’ s μm long with square cross-sections were formed through chemical reduction with dimethylamine borane (DMAB) and NaBH4, respectively. Specific capacitance as high as 20.7 F/g was demonstrated with cyclic voltammetry. For macrotubes and macrobeams synthesized from Pt2−:Pt2+:Cu2+ salt ratios of 1:1:0, 2:1:1, 3:1:2, and 1:0:1, DMAB reduced 3:1:2 macrotubes demonstrated the highest ethanol oxidation peak currents of 12.0 A/g at 0.5 mV/s and is attributed to the combination of a highly porous structure and platinum enriched surface. Salt templates with electrochemical reduction are suggested as a rapid, scalable, and tunable platform to achieve a wide range of 3-dimensional porous metal, alloy, and multi-metallic nanomaterials for catalysis, sensor, and energy storage applications.
Collapse
|
27
|
Peng X, Wan Y, Wang Y, Liu T, Zou P, Wang X, Zhao Q, Ding F, Rao H. Flower‐like Ni(II)‐based Metal‐organic Framework‐decorated Ag Nanoparticles: Fabrication, Characterization and Electrochemical Detection of Glucose. ELECTROANAL 2019. [DOI: 10.1002/elan.201900259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuerong Peng
- College of ScienceSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| | - Yue Wan
- College of ScienceSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| | - Yanying Wang
- College of ScienceSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| | - Tao Liu
- College of Information EngineeringSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| | - Ping Zou
- College of ScienceSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| | - Xianxiang Wang
- College of ScienceSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of OptoelectronicsEast China Normal University Shanghai 200241 P. R. China
| | - Fang Ding
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Hanbing Rao
- College of ScienceSichuan Agricultural University Xin Kang Road, Yucheng District Ya'an 625014 P. R. China
| |
Collapse
|
28
|
Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:951-956. [DOI: 10.1016/j.msec.2019.02.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
|
29
|
Li X, Gao L, Chen Z. Highly sensitive colorimetric detection of glucose through glucose oxidase and Cu 2+-catalyzed 3,3',5,5'-tetramethylbenzidine oxidation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:37-41. [PMID: 30677737 DOI: 10.1016/j.saa.2019.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
We develop a glucose oxidase (GOx)-mediated strategy for detecting glucose based on oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), which is generated from Cu2+-catalyzed 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 reaction, as colorimetric readout. The sensing system involves two processes: generation of H2O2 from GOx-catalyzed oxidation of glucose, and H2O2-induced the oxidization of TMB via the catalysis of Cu2+. The H2O2 formed by GOx-catalyzed oxidation of glucose oxidizes colorless TMB to blue oxTMB, thus enhancing the absorbance intensity at 670 nm. Therefore, we draw a conclusion that the enhancement in colorimetric signal relies directly on H2O2 concentration, which, in turn, depends on glucose concentration. This color change can be used not only for visual detection of glucose by naked eyes but for reliable glucose quantification in the range from 1 to 100 nM with a detection limit of 0.21 nM. The method possesses the following advantages: simple design, low experimental cost, and no any additional experimental equipment for heating, illuminating, or bubbling.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Linna Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
30
|
Karami K, Allafchian AR, Amiri R, Shirani F, Bayat P, Rezaei B. Glassy carbon electrode modified by new Copper(I) oxide nanocomposite for glucose detection: An electroanalysis study. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazem Karami
- Department of ChemistryIsfahan University of Technology Isfahan Iran 84156–83111
| | - Ali Reza Allafchian
- Research Institute for Nanotechnology and Advanced MaterialsIsfahan University of Technology Isfahan Iran 84156–83111
| | - Razieh Amiri
- Department of ChemistryIsfahan University of Technology Isfahan Iran 84156–83111
| | - Fatemeh Shirani
- Department of ChemistryIsfahan University of Technology Isfahan Iran 84156–83111
| | - Parvaneh Bayat
- Department of ChemistryIsfahan University of Technology Isfahan Iran 84156–83111
| | - Behzad Rezaei
- Department of ChemistryIsfahan University of Technology Isfahan Iran 84156–83111
| |
Collapse
|
31
|
Synthesis of the crystalline porous copper oxide architectures derived from metal-organic framework for electrocatalytic oxidation and sensitive detection of glucose. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Lu Y, Zhang X, Mao X, Huang Y. Engineering FeCo alloy@N-doped carbon layers by directly pyrolyzing Prussian blue analogue: new peroxidase mimetic for chemiluminescence glucose biosensing. J Mater Chem B 2019; 7:4661-4668. [DOI: 10.1039/c9tb00797k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Direct pyrolysis of a Prussian blue analogue produced FeCo@NC with high and stable peroxidase-like activity, which catalyzes luminol oxidation by H2O2 to generate strong CL emission, and this finding results in a new CL biosensor for glucose.
Collapse
Affiliation(s)
- Yuwan Lu
- The Key Laboratory of Luminescence and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaodan Zhang
- The Key Laboratory of Luminescence and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xuanxiang Mao
- The Key Laboratory of Luminescence and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuming Huang
- The Key Laboratory of Luminescence and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
33
|
Mao W, He H, Ye Z, Huang J. Three-dimensional graphene foam integrated with Ni(OH)2 nanosheets as a hierarchical structure for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Matysiak-Brynda E, Sęk JP, Kasprzak A, Królikowska A, Donten M, Patrzalek M, Poplawska M, Nowicka AM. Reduced graphene oxide doping with nanometer-sized ferrocene moieties - New active material for glucose redox sensors. Biosens Bioelectron 2018; 128:23-31. [PMID: 30616214 DOI: 10.1016/j.bios.2018.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023]
Abstract
Herein, we present that the reduced graphene oxide (rGO) doped with nanometer-sized ferrocene moieties is a new, excellent active material for redox sensors. Two distinct approaches were utilized for the modification of rGO. The first method was based on the covalent decoration of rGO via the addition of azomethine ylide generated from the ferrocenecarboxaldehyde oxime. The second approach utilized the adsorption of 1,1'-ferrocenedicarboxylic acid on the graphene sheet via the π-π stacking. The morphology of the synthesized graphene materials was studied by application of microscopic techniques, whereas the Raman data allowed the characteristics of the tested materials in terms of their structural properties. The tested graphene materials doped with ferrocene moieties were used as a bioactive platform for glucose oxidase (GOx) immobilization. The enzyme was immobilized onto the rGO materials in two ways: (i) using a crosslinking agent - glutaraldehyde (GA) and (ii) by formation of the amide bonds between carboxylic groups of rGO-Fc(COOH)2 and amine groups from enzyme. Ferrocene moieties present at the graphene surface play the role of mediator in the electron transfer between the redox center of GOx and the electrode surface. The functionality of the constructed biosensors has been tested on real samples. The results of the recovery rates showed a satisfying degree of accuracy toward determination of glucose concentration. Examination of the potential interfering species has demonstrated favorable sensitivity and selectivity of the designed biosensor for the detection of glucose.
Collapse
Affiliation(s)
- Edyta Matysiak-Brynda
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland.
| | - Jakub P Sęk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str., PL-00-664 Warsaw, Poland
| | - Agata Królikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Mikolaj Donten
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland
| | - Michał Patrzalek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str., PL-00-664 Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| |
Collapse
|
35
|
Smikhovskaia AV, Panov MS, Tumkin II, Khairullina EM, Ermakov SS, Balova IA, Ryazantsev MN, Kochemirovsky VA. In situ laser-induced codeposition of copper and different metals for fabrication of microcomposite sensor-active materials. Anal Chim Acta 2018; 1044:138-146. [PMID: 30442395 DOI: 10.1016/j.aca.2018.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/07/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
We report one-step in situ laser-induced synthesis of the conductive copper microstructures doped with iron, zinc, nickel, and cobalt with highly developed surface area. It was observed that the presence of chlorides of the aforementioned metals in the solutions used in our experiments increases the deposition rate and the amount of copper in the resulting deposits; it also leads to the deposit miniaturization. The laser deposition from solutions containing cobalt (II) chloride of concentration more than 0.003 M results in fabrication of copper microelectrode with better electrochemical properties than those deposited from solutions containing chlorides of other metals of the same concentration. Moreover, copper microelectrode doped with cobalt has demonstrated good reproducibility and long-run stability as well as sensitivity and selectivity towards determination of hydrogen peroxide (limit of detection-0.2 μM) and d-glucose (limit of detection-2.2 μM). Thus, in this article we have shown the opportunity to manufacture two-phase microcomposite materials with good electrical conductivity and electrochemical characteristics using in situ laser-induced metal deposition technique. These materials might be quite useful in development of new perspective sensors for non-enzymatic detection of such important analytes as hydrogen peroxide and glucose.
Collapse
Affiliation(s)
| | - Maxim S Panov
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Ilya I Tumkin
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Evgeniia M Khairullina
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Sergey S Ermakov
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Irina A Balova
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail N Ryazantsev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | | |
Collapse
|
36
|
Li A, Mu X, Li T, Wen H, Li W, Li Y, Wang B. Formation of porous Cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. NANOSCALE 2018; 10:11948-11954. [PMID: 29901675 DOI: 10.1039/c8nr02832j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Currently, nanomaterials with peroxidase activity have become an important colorimetric tool for biomolecular detection. However, compared with natural enzymes, the efficiency of most nanozymes is still lower. Here, with a leaf-like metal-organic-framework-5 as both a precursor and a template and copper acetate as a second precursor, hierarchical Cu hydroxy double salt (HDS) nanoflowers have been prepared and used as a label-free glucose colorimetric detection platform. We have demonstrated a scalable and facile synthesis of hierarchical Cu HDS nanoflowers, and density functional theory (DFT) calculations confirmed that there exists a hydrogen bond between the terephthalate anions and the layer OH group. The composition of Cu hydroxyl double salt is [Cu4(OH)6][BDC]·2H2O. Importantly, for the first time, the as-prepared Cu HDSs were demonstrated as peroxidase mimics to catalyze the oxidation of the enzyme substrate, 3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which accompanies a color change from colorless to blue and followed classic Michaelis-Menten models. Based on these findings, a colorimetric method based on Cu HDSs that is highly sensitive and selective for the detection of glucose was developed, with a low detection limit of 0.5 μM. The clinical applicability of the sensor is also proven to be suitable for sensing glucose in blood, suggesting that Cu HDSs could be used in the construction of portable sensors for point-of-care diagnosis and on-site tests.
Collapse
Affiliation(s)
- Ali Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Recent advances in electrochemical non-enzymatic glucose sensors - A review. Anal Chim Acta 2018; 1033:1-34. [PMID: 30172314 DOI: 10.1016/j.aca.2018.05.051] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
This review encompasses the mechanisms of electrochemical glucose detection and recent advances in non-enzymatic glucose sensors based on a variety of materials ranging from platinum, gold, metal alloys/adatom, non-precious transition metal/metal oxides to glucose-specific organic materials. It shows that the discovery of new materials based on unique nanostructures have not only provided the detailed insight into non-enzymatic glucose oxidation, but also demonstrated the possibility of direct detection in whole blood or interstitial fluids. We critically evaluate various aspects of non-enzymatic electrochemical glucose sensors in terms of significance as well as performance. Beyond laboratory tests, the prospect of commercialization of non-enzymatic glucose sensors is discussed.
Collapse
|
38
|
Chen C, Zhang Y, Zhang Z, He R, Chen Y. Fluorescent Determination of Glucose Using Silicon Nanodots. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1456547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chaohui Chen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yanan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Zhengtao Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Rongxiang He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Yong Chen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
- Département de Chimie, Ecole Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
39
|
Li ZH, Zhao XL, Jiang XC, Wu YH, Chen C, Zhu ZG, Marty JL, Chen QS. An enhanced Nonenzymatic Electrochemical Glucose Sensor Based on Copper-Palladium Nanoparticles Modified Glassy Carbon Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhan-Hong Li
- School of Environmental and Materials Engineering, College of Engineering; Shanghai Polytechnic University; Shanghai 201209 China
- Shanghai Innovation Institute for Materials; Shanghai 200444 China
| | - Xue-Ling Zhao
- School of Environmental and Materials Engineering, College of Engineering; Shanghai Polytechnic University; Shanghai 201209 China
- Shanghai Innovation Institute for Materials; Shanghai 200444 China
| | - Xin-Cheng Jiang
- School of Environmental and Materials Engineering, College of Engineering; Shanghai Polytechnic University; Shanghai 201209 China
| | - Yi-Hua Wu
- School of Environmental and Materials Engineering, College of Engineering; Shanghai Polytechnic University; Shanghai 201209 China
- Shanghai Innovation Institute for Materials; Shanghai 200444 China
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering; Shanghai Polytechnic University; Shanghai 201209 China
- Shanghai Innovation Institute for Materials; Shanghai 200444 China
| | - Zhi-Gang Zhu
- School of Environmental and Materials Engineering, College of Engineering; Shanghai Polytechnic University; Shanghai 201209 China
- Shanghai Innovation Institute for Materials; Shanghai 200444 China
| | - Jean-Louis Marty
- BAE Laboratory; Université de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan 66860 France
| | - Qing-Song Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 P. R. China
| |
Collapse
|
40
|
Mei LP, Jiang XY, Yu XD, Zhao WW, Xu JJ, Chen HY. Cu Nanoclusters-Encapsulated Liposomes: Toward Sensitive Liposomal Photoelectrochemical Immunoassay. Anal Chem 2018; 90:2749-2755. [DOI: 10.1021/acs.analchem.7b04789] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Li-Ping Mei
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yuan Jiang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Dong Yu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Pang Y, Huang Z, Yang Y, Long Y, Zheng H. Colorimetric detection of glucose based on ficin with peroxidase-like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:510-515. [PMID: 28846980 DOI: 10.1016/j.saa.2017.08.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce H2O2, then, ficin catalyzes the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100μM with a detection limit of 0.5μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO2@Fe3O4 NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.
Collapse
Affiliation(s)
- Yanjiao Pang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zili Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yufang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
42
|
Zhu W, Wang J, Zhang W, Hu N, Wang J, Huang L, Wang R, Suo Y, Wang J. Monolithic copper selenide submicron particulate film/copper foam anode catalyst for ultrasensitive electrochemical glucose sensing in human blood serum. J Mater Chem B 2018; 6:718-724. [DOI: 10.1039/c7tb02996a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A copper selenide submicron particulate film on Cu foam, synthesized by a facile hydrothermal process, shows superior glucose sensing performance.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Jing Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Wentao Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Na Hu
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Xining 810008
- China
| | - Jing Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Lunjie Huang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Rong Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Yourui Suo
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Xining 810008
- China
| | - Jianlong Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
43
|
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim Acta 2017; 185:49. [PMID: 29594566 DOI: 10.1007/s00604-017-2609-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
Collapse
|
44
|
Chen Z, Zhao B, Fu XZ, Sun R, Wong CP. CuO nanorods supported Pd nanoparticles as high performance electrocatalysts for glucose detection. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.11.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y. Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens Bioelectron 2017; 98:76-82. [DOI: 10.1016/j.bios.2017.06.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
46
|
Ji Y, Liu J, Liu X, Yuen MM, Fu XZ, Yang Y, Sun R, Wong CP. 3D porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Song D, Li Y, Lu X, Sun M, Liu H, Yu G, Gao F. Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides. Anal Chim Acta 2017; 982:168-175. [PMID: 28734356 DOI: 10.1016/j.aca.2017.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
A highly sensitive acetylcholinesterase (AChE) electrochemical biosensor for the quantitative determination of organophosphate pesticides (OPs) in vegetables and fruits based on palladium-copper nanowires (Pd-Cu NWs) was reported. AChE immobilized on the modified electrode could catalyze hydrolysis of acetylthiocholine chloride (ATCl), generating an irreversible oxidation peak. When exposed to the OPs, the activity of the AChE was inhibited and the current significantly decreased. The detection mechanism is based on the inhibition of AChE. The Pd-Cu NWs not only provide a large active surface area (0.268 ± 0.01) cm2 for the immobilization of AChE, which was approximately 3.8 times higher than the bare glass carbon electrode, but also exhibit excellent electro-catalytic activity and remarkable electron mobility. The biosensor modified with Pd-Cu NWs displayed a good affinity to ATCl and catalyzed hydrolysis of ATCl, with a low Michaelis-Menten constant (KM) of 50.56 μM. Under optimized conditions, the AChE-Cs/Pd-Cu NWs/GCE biosensor detected malathion with wide linear ranges of 5-1000 ppt and 500-3000 ppb, and the low detection limit was 1.5 ppt (4.5 pM). In addition, the OPs biosensor has been applied to the analysis of malathion in commercial vegetable and fruit samples, with excellent recoveries in the range of 98.5%-113.5%. This work provides a simple, sensitive and effective platform for biosensors and exhibits future potential in practical application for the OPs assay.
Collapse
Affiliation(s)
- Dandan Song
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Yan Li
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiong Lu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Muxue Sun
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Hui Liu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Guangming Yu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
48
|
Yang M, Jeong JM, Lee KG, Kim DH, Lee SJ, Choi BG. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors. Biosens Bioelectron 2017; 89:612-619. [DOI: 10.1016/j.bios.2016.01.075] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/01/2016] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
|
49
|
Chen Y, Liu X, Zhang S, Yang L, Liu M, Zhang Y, Yao S. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.060] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Eid K, Ahmad YH, AlQaradawi SY, Allam NK. Rational design of porous binary Pt-based nanodendrites as efficient catalysts for direct glucose fuel cells over a wide pH range. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00860k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous binary PtPd, AuPt, PtCu, and PtNi nanodendrites prepared by a facile one-step reduction under ultrasonic irradiation at room temperature, exhibited a substantial catalytic activity towards glucose oxidation reaction at different pH values relative to a commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Kamel Eid
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Yahia H. Ahmad
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Siham Y. AlQaradawi
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Nageh K. Allam
- Energy Materials Lab (EML)
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|